コード例 #1
0
// Command an angular velocity with angular velocity feedforward and smoothing
void AC_AttitudeControl::input_rate_bf_roll_pitch_yaw(float roll_rate_bf_cds, float pitch_rate_bf_cds, float yaw_rate_bf_cds)
{
    // Convert from centidegrees on public interface to radians
    float roll_rate_rads = radians(roll_rate_bf_cds*0.01f);
    float pitch_rate_rads = radians(pitch_rate_bf_cds*0.01f);
    float yaw_rate_rads = radians(yaw_rate_bf_cds*0.01f);

    // calculate the attitude target euler angles
    _attitude_target_quat.to_euler(_attitude_target_euler_angle.x, _attitude_target_euler_angle.y, _attitude_target_euler_angle.z);

    if (_rate_bf_ff_enabled & _use_ff_and_input_shaping) {
        // Compute acceleration-limited euler rates
        // When acceleration limiting is enabled, the input shaper constrains angular acceleration about the axis, slewing
        // the output rate towards the input rate.
        _attitude_target_ang_vel.x = input_shaping_ang_vel(_attitude_target_ang_vel.x, roll_rate_rads, get_accel_roll_max_radss());
        _attitude_target_ang_vel.y = input_shaping_ang_vel(_attitude_target_ang_vel.y, pitch_rate_rads, get_accel_pitch_max_radss());
        _attitude_target_ang_vel.z = input_shaping_ang_vel(_attitude_target_ang_vel.z, yaw_rate_rads, get_accel_yaw_max_radss());

        // Convert body-frame angular velocity into euler angle derivative of desired attitude
        ang_vel_to_euler_rate(_attitude_target_euler_angle, _attitude_target_ang_vel, _attitude_target_euler_rate);
    } else {
        // When feedforward is not enabled, the quaternion is calculated and is input into the target and the feedforward rate is zeroed.
        Quaternion attitude_target_update_quat;
        attitude_target_update_quat.from_axis_angle(Vector3f(roll_rate_rads * _dt, pitch_rate_rads * _dt, yaw_rate_rads * _dt));
        _attitude_target_quat = _attitude_target_quat * attitude_target_update_quat;
        _attitude_target_quat.normalize();

        // Set rate feedforward requests to zero
        _attitude_target_euler_rate = Vector3f(0.0f, 0.0f, 0.0f);
        _attitude_target_ang_vel = Vector3f(0.0f, 0.0f, 0.0f);
    }

    // Call quaternion attitude controller
    attitude_controller_run_quat();
}
コード例 #2
0
// Command a Quaternion attitude with feedforward and smoothing
void AC_AttitudeControl::input_quaternion(Quaternion attitude_desired_quat, float smoothing_gain)
{
    // calculate the attitude target euler angles
    _attitude_target_quat.to_euler(_attitude_target_euler_angle.x, _attitude_target_euler_angle.y, _attitude_target_euler_angle.z);

    // ensure smoothing gain can not cause overshoot
    smoothing_gain = constrain_float(smoothing_gain,1.0f,1/_dt);

    Quaternion attitude_error_quat = _attitude_target_quat.inverse() * attitude_desired_quat;
    Vector3f attitude_error_angle;
    attitude_error_quat.to_axis_angle(attitude_error_angle);

    if (_rate_bf_ff_enabled & _use_ff_and_input_shaping) {
        // When acceleration limiting and feedforward are enabled, the sqrt controller is used to compute an euler
        // angular velocity that will cause the euler angle to smoothly stop at the input angle with limited deceleration
        // and an exponential decay specified by smoothing_gain at the end.
        _attitude_target_ang_vel.x = input_shaping_angle(wrap_PI(attitude_error_angle.x), smoothing_gain, get_accel_roll_max_radss(), _attitude_target_ang_vel.x, _dt);
        _attitude_target_ang_vel.y = input_shaping_angle(wrap_PI(attitude_error_angle.y), smoothing_gain, get_accel_pitch_max_radss(), _attitude_target_ang_vel.y, _dt);
        _attitude_target_ang_vel.z = input_shaping_angle(wrap_PI(attitude_error_angle.z), smoothing_gain, get_accel_yaw_max_radss(), _attitude_target_ang_vel.z, _dt);

        // Convert body-frame angular velocity into euler angle derivative of desired attitude
        ang_vel_to_euler_rate(_attitude_target_euler_angle, _attitude_target_ang_vel, _attitude_target_euler_rate);
    } else {
        _attitude_target_quat = attitude_desired_quat;

        // Set rate feedforward requests to zero
        _attitude_target_euler_rate = Vector3f(0.0f, 0.0f, 0.0f);
        _attitude_target_ang_vel = Vector3f(0.0f, 0.0f, 0.0f);
    }

    // Call quaternion attitude controller
    attitude_controller_run_quat();
}
コード例 #3
0
void AC_AttitudeControl::input_att_quat_bf_ang_vel(const Quaternion& att_target_quat, const Vector3f& att_target_ang_vel_rads)
{
    // Call attitude controller
    attitude_controller_run_quat(att_target_quat, att_target_ang_vel_rads);

    // Keep euler derivative updated
    ang_vel_to_euler_rate(Vector3f(_ahrs.roll,_ahrs.pitch,_ahrs.yaw), _ang_vel_target_rads, _att_target_euler_rate_rads);
}
コード例 #4
0
void AC_AttitudeControl::attitude_controller_run_euler(const Vector3f& att_target_euler_rad, const Vector3f& att_target_ang_vel_rads)
{
    // Compute quaternion target attitude
    Quaternion att_target_quat;
    att_target_quat.from_euler(att_target_euler_rad.x, att_target_euler_rad.y, att_target_euler_rad.z);

    // Call quaternion attitude controller
    attitude_controller_run_quat(att_target_quat, att_target_ang_vel_rads);
}
コード例 #5
0
// Command an euler roll, pitch and yaw angle with angular velocity feedforward and smoothing
void AC_AttitudeControl::input_euler_angle_roll_pitch_yaw(float euler_roll_angle_cd, float euler_pitch_angle_cd, float euler_yaw_angle_cd, bool slew_yaw, float smoothing_gain)
{
    // Convert from centidegrees on public interface to radians
    float euler_roll_angle = radians(euler_roll_angle_cd*0.01f);
    float euler_pitch_angle = radians(euler_pitch_angle_cd*0.01f);
    float euler_yaw_angle = radians(euler_yaw_angle_cd*0.01f);

    // calculate the attitude target euler angles
    _attitude_target_quat.to_euler(_attitude_target_euler_angle.x, _attitude_target_euler_angle.y, _attitude_target_euler_angle.z);

    // ensure smoothing gain can not cause overshoot
    smoothing_gain = constrain_float(smoothing_gain,1.0f,1/_dt);

    // Add roll trim to compensate tail rotor thrust in heli (will return zero on multirotors)
    euler_roll_angle += get_roll_trim_rad();

    if (_rate_bf_ff_enabled & _use_ff_and_input_shaping) {
        // translate the roll pitch and yaw acceleration limits to the euler axis
        Vector3f euler_accel = euler_accel_limit(_attitude_target_euler_angle, Vector3f(get_accel_roll_max_radss(), get_accel_pitch_max_radss(), get_accel_yaw_max_radss()));

        // When acceleration limiting and feedforward are enabled, the sqrt controller is used to compute an euler
        // angular velocity that will cause the euler angle to smoothly stop at the input angle with limited deceleration
        // and an exponential decay specified by smoothing_gain at the end.
        _attitude_target_euler_rate.x = input_shaping_angle(wrap_PI(euler_roll_angle-_attitude_target_euler_angle.x), smoothing_gain, euler_accel.x, _attitude_target_euler_rate.x, _dt);
        _attitude_target_euler_rate.y = input_shaping_angle(wrap_PI(euler_pitch_angle-_attitude_target_euler_angle.y), smoothing_gain, euler_accel.y, _attitude_target_euler_rate.y, _dt);
        _attitude_target_euler_rate.z = input_shaping_angle(wrap_PI(euler_yaw_angle-_attitude_target_euler_angle.z), smoothing_gain, euler_accel.z, _attitude_target_euler_rate.z, _dt);
        if (slew_yaw) {
            _attitude_target_euler_rate.z = constrain_float(_attitude_target_euler_rate.z, -get_slew_yaw_rads(), get_slew_yaw_rads());
        }

        // Convert euler angle derivative of desired attitude into a body-frame angular velocity vector for feedforward
        euler_rate_to_ang_vel(_attitude_target_euler_angle, _attitude_target_euler_rate, _attitude_target_ang_vel);
    } else {
        // When feedforward is not enabled, the target euler angle is input into the target and the feedforward rate is zeroed.
        _attitude_target_euler_angle.x = euler_roll_angle;
        _attitude_target_euler_angle.y = euler_pitch_angle;
        if (slew_yaw) {
            // Compute constrained angle error
            float angle_error = constrain_float(wrap_PI(euler_yaw_angle-_attitude_target_euler_angle.z), -get_slew_yaw_rads()*_dt, get_slew_yaw_rads()*_dt);
            // Update attitude target from constrained angle error
            _attitude_target_euler_angle.z = wrap_PI(angle_error + _attitude_target_euler_angle.z);
        } else {
            _attitude_target_euler_angle.z = euler_yaw_angle;
        }
        // Compute quaternion target attitude
        _attitude_target_quat.from_euler(_attitude_target_euler_angle.x, _attitude_target_euler_angle.y, _attitude_target_euler_angle.z);

        // Set rate feedforward requests to zero
        _attitude_target_euler_rate = Vector3f(0.0f, 0.0f, 0.0f);
        _attitude_target_ang_vel = Vector3f(0.0f, 0.0f, 0.0f);
    }

    // Call quaternion attitude controller
    attitude_controller_run_quat();
}
コード例 #6
0
void AC_AttitudeControl::input_rate_bf_roll_pitch_yaw(float roll_rate_bf_cds, float pitch_rate_bf_cds, float yaw_rate_bf_cds)
{
    // Convert from centidegrees on public interface to radians
    float roll_rate_bf_rads = radians(roll_rate_bf_cds*0.01f);
    float pitch_rate_bf_rads = radians(pitch_rate_bf_cds*0.01f);
    float yaw_rate_bf_rads = radians(yaw_rate_bf_cds*0.01f);

    // Compute acceleration-limited body-frame roll rate
    if (get_accel_roll_max_radss() > 0.0f) {
        float rate_change_limit_rads = get_accel_roll_max_radss() * _dt;
        _att_target_ang_vel_rads.x += constrain_float(roll_rate_bf_rads - _att_target_ang_vel_rads.x, -rate_change_limit_rads, rate_change_limit_rads);
    } else {
        _att_target_ang_vel_rads.x = roll_rate_bf_rads;
    }

    // Compute acceleration-limited body-frame pitch rate
    if (get_accel_pitch_max_radss() > 0.0f) {
        float rate_change_limit_rads = get_accel_pitch_max_radss() * _dt;
        _att_target_ang_vel_rads.y += constrain_float(pitch_rate_bf_rads - _att_target_ang_vel_rads.y, -rate_change_limit_rads, rate_change_limit_rads);
    } else {
        _att_target_ang_vel_rads.y = pitch_rate_bf_rads;
    }

    // Compute acceleration-limited body-frame yaw rate
    if (get_accel_yaw_max_radss() > 0.0f) {
        float rate_change_limit_rads = get_accel_yaw_max_radss() * _dt;
        _att_target_ang_vel_rads.z += constrain_float(yaw_rate_bf_rads - _att_target_ang_vel_rads.z, -rate_change_limit_rads, rate_change_limit_rads);
    } else {
        _att_target_ang_vel_rads.z = yaw_rate_bf_rads;
    }

    // Compute quaternion target attitude
    Quaternion att_target_quat;
    att_target_quat.from_euler(_att_target_euler_rad.x,_att_target_euler_rad.y,_att_target_euler_rad.z);

    // Rotate quaternion target attitude using computed rate
    att_target_quat.rotate(_att_target_ang_vel_rads*_dt);
    att_target_quat.normalize();

    // Call attitude controller
    attitude_controller_run_quat(att_target_quat, _att_target_ang_vel_rads);

    // Keep euler derivative updated
    ang_vel_to_euler_rate(Vector3f(_ahrs.roll,_ahrs.pitch,_ahrs.yaw), _ang_vel_target_rads, _att_target_euler_rate_rads);
}
コード例 #7
0
// Command an euler roll, pitch, and yaw rate with angular velocity feedforward and smoothing
void AC_AttitudeControl::input_euler_rate_roll_pitch_yaw(float euler_roll_rate_cds, float euler_pitch_rate_cds, float euler_yaw_rate_cds)
{
    // Convert from centidegrees on public interface to radians
    float euler_roll_rate = radians(euler_roll_rate_cds*0.01f);
    float euler_pitch_rate = radians(euler_pitch_rate_cds*0.01f);
    float euler_yaw_rate = radians(euler_yaw_rate_cds*0.01f);

    // calculate the attitude target euler angles
    _attitude_target_quat.to_euler(_attitude_target_euler_angle.x, _attitude_target_euler_angle.y, _attitude_target_euler_angle.z);

    if (_rate_bf_ff_enabled & _use_ff_and_input_shaping) {
        // translate the roll pitch and yaw acceleration limits to the euler axis
        Vector3f euler_accel = euler_accel_limit(_attitude_target_euler_angle, Vector3f(get_accel_roll_max_radss(), get_accel_pitch_max_radss(), get_accel_yaw_max_radss()));

        // When acceleration limiting is enabled, the input shaper constrains angular acceleration, slewing
        // the output rate towards the input rate.
        _attitude_target_euler_rate.x = input_shaping_ang_vel(_attitude_target_euler_rate.x, euler_roll_rate, euler_accel.x);
        _attitude_target_euler_rate.y = input_shaping_ang_vel(_attitude_target_euler_rate.y, euler_pitch_rate, euler_accel.y);
        _attitude_target_euler_rate.z = input_shaping_ang_vel(_attitude_target_euler_rate.z, euler_yaw_rate, euler_accel.z);

        // Convert euler angle derivative of desired attitude into a body-frame angular velocity vector for feedforward
        euler_rate_to_ang_vel(_attitude_target_euler_angle, _attitude_target_euler_rate, _attitude_target_ang_vel);
    } else {
        // When feedforward is not enabled, the target euler angle is input into the target and the feedforward rate is zeroed.
        // Pitch angle is restricted to +- 85.0 degrees to avoid gimbal lock discontinuities.
        _attitude_target_euler_angle.x = wrap_PI(_attitude_target_euler_angle.x + euler_roll_rate*_dt);
        _attitude_target_euler_angle.y = constrain_float(_attitude_target_euler_angle.y + euler_pitch_rate*_dt, radians(-85.0f), radians(85.0f));
        _attitude_target_euler_angle.z = wrap_2PI(_attitude_target_euler_angle.z + euler_yaw_rate*_dt);

        // Set rate feedforward requests to zero
        _attitude_target_euler_rate = Vector3f(0.0f, 0.0f, 0.0f);
        _attitude_target_ang_vel = Vector3f(0.0f, 0.0f, 0.0f);

        // Compute quaternion target attitude
        _attitude_target_quat.from_euler(_attitude_target_euler_angle.x, _attitude_target_euler_angle.y, _attitude_target_euler_angle.z);
    }

    // Call quaternion attitude controller
    attitude_controller_run_quat();
}
コード例 #8
0
// Command an angular step (i.e change) in body frame angle
// Used to command a step in angle without exciting the orthogonal axis during autotune
void AC_AttitudeControl::input_angle_step_bf_roll_pitch_yaw(float roll_angle_step_bf_cd, float pitch_angle_step_bf_cd, float yaw_angle_step_bf_cd)
{
    // Convert from centidegrees on public interface to radians
    float roll_step_rads = radians(roll_angle_step_bf_cd*0.01f);
    float pitch_step_rads = radians(pitch_angle_step_bf_cd*0.01f);
    float yaw_step_rads = radians(yaw_angle_step_bf_cd*0.01f);

    // rotate attitude target by desired step
    Quaternion attitude_target_update_quat;
    attitude_target_update_quat.from_axis_angle(Vector3f(roll_step_rads, pitch_step_rads, yaw_step_rads));
    _attitude_target_quat = _attitude_target_quat * attitude_target_update_quat;
    _attitude_target_quat.normalize();

    // calculate the attitude target euler angles
    _attitude_target_quat.to_euler(_attitude_target_euler_angle.x, _attitude_target_euler_angle.y, _attitude_target_euler_angle.z);

    // Set rate feedforward requests to zero
    _attitude_target_euler_rate = Vector3f(0.0f, 0.0f, 0.0f);
    _attitude_target_ang_vel = Vector3f(0.0f, 0.0f, 0.0f);

    // Call quaternion attitude controller
    attitude_controller_run_quat();
}