static av_cold void uninit(AVFilterContext *ctx) { AConvertContext *aconvert = ctx->priv; avfilter_unref_buffer(aconvert->mix_samplesref); avfilter_unref_buffer(aconvert->out_samplesref); if (aconvert->audioconvert_ctx) av_audio_convert_free(aconvert->audioconvert_ctx); }
AudioLoader::~AudioLoader() { closeAudioFile(); av_freep(&_buffer); #if LIBAVCODEC_VERSION_INT >= AVCODEC_AUDIO_DECODE4 av_freep(&_decodedFrame); #endif #if !HAVE_SWRESAMPLE av_freep(&_buff1); av_freep(&_buff2); if (_audioConvert) { av_audio_convert_free(_audioConvert); _audioConvert = NULL; } #endif }
int decode_audio_file(ChromaprintContext *chromaprint_ctx, int16_t *buffer1, int16_t *buffer2, const char *file_name, int max_length, int *duration) { int i, ok = 0, remaining, length, consumed, buffer_size, codec_ctx_opened = 0; AVFormatContext *format_ctx = NULL; AVCodecContext *codec_ctx = NULL; AVCodec *codec = NULL; AVStream *stream = NULL; AVPacket packet, packet_temp; #ifdef HAVE_AV_AUDIO_CONVERT AVAudioConvert *convert_ctx = NULL; #endif int16_t *buffer; if (!strcmp(file_name, "-")) { file_name = "pipe:0"; } #if LIBAVFORMAT_VERSION_INT < AV_VERSION_INT(53, 2, 0) if (av_open_input_file(&format_ctx, file_name, NULL, 0, NULL) != 0) { #else if (avformat_open_input(&format_ctx, file_name, NULL, NULL) != 0) { #endif fprintf(stderr, "ERROR: couldn't open the file\n"); goto done; } if (av_find_stream_info(format_ctx) < 0) { fprintf(stderr, "ERROR: couldn't find stream information in the file\n"); goto done; } for (i = 0; i < format_ctx->nb_streams; i++) { codec_ctx = format_ctx->streams[i]->codec; if (codec_ctx && codec_ctx->codec_type == AVMEDIA_TYPE_AUDIO) { stream = format_ctx->streams[i]; break; } } if (!stream) { fprintf(stderr, "ERROR: couldn't find any audio stream in the file\n"); goto done; } codec = avcodec_find_decoder(codec_ctx->codec_id); if (!codec) { fprintf(stderr, "ERROR: unknown codec\n"); goto done; } if (avcodec_open(codec_ctx, codec) < 0) { fprintf(stderr, "ERROR: couldn't open the codec\n"); goto done; } codec_ctx_opened = 1; if (codec_ctx->channels <= 0) { fprintf(stderr, "ERROR: no channels found in the audio stream\n"); goto done; } if (codec_ctx->sample_fmt != AV_SAMPLE_FMT_S16) { #ifdef HAVE_AV_AUDIO_CONVERT convert_ctx = av_audio_convert_alloc(AV_SAMPLE_FMT_S16, codec_ctx->channels, codec_ctx->sample_fmt, codec_ctx->channels, NULL, 0); if (!convert_ctx) { fprintf(stderr, "ERROR: couldn't create sample format converter\n"); goto done; } #else fprintf(stderr, "ERROR: unsupported sample format\n"); goto done; #endif } *duration = stream->time_base.num * stream->duration / stream->time_base.den; av_init_packet(&packet); av_init_packet(&packet_temp); remaining = max_length * codec_ctx->channels * codec_ctx->sample_rate; chromaprint_start(chromaprint_ctx, codec_ctx->sample_rate, codec_ctx->channels); while (1) { if (av_read_frame(format_ctx, &packet) < 0) { break; } packet_temp.data = packet.data; packet_temp.size = packet.size; while (packet_temp.size > 0) { buffer_size = BUFFER_SIZE; #if LIBAVCODEC_VERSION_INT < AV_VERSION_INT(52, 23, 0) consumed = avcodec_decode_audio2(codec_ctx, buffer1, &buffer_size, packet_temp.data, packet_temp.size); #else consumed = avcodec_decode_audio3(codec_ctx, buffer1, &buffer_size, &packet_temp); #endif if (consumed < 0) { break; } packet_temp.data += consumed; packet_temp.size -= consumed; if (buffer_size <= 0) { if (buffer_size < 0) { fprintf(stderr, "WARNING: size returned from avcodec_decode_audioX is too small\n"); } continue; } if (buffer_size > BUFFER_SIZE) { fprintf(stderr, "WARNING: size returned from avcodec_decode_audioX is too large\n"); continue; } #ifdef HAVE_AV_AUDIO_CONVERT if (convert_ctx) { const void *ibuf[6] = { buffer1 }; void *obuf[6] = { buffer2 }; #if LIBAVUTIL_VERSION_INT < AV_VERSION_INT(51, 8, 0) int istride[6] = { av_get_bits_per_sample_format(codec_ctx->sample_fmt) / 8 }; #else int istride[6] = { av_get_bytes_per_sample(codec_ctx->sample_fmt) }; #endif int ostride[6] = { 2 }; int len = buffer_size / istride[0]; if (av_audio_convert(convert_ctx, obuf, ostride, ibuf, istride, len) < 0) { break; } buffer = buffer2; buffer_size = len * ostride[0]; } else { buffer = buffer1; } #else buffer = buffer1; #endif length = MIN(remaining, buffer_size / 2); if (!chromaprint_feed(chromaprint_ctx, buffer, length)) { fprintf(stderr, "ERROR: fingerprint calculation failed\n"); goto done; } if (max_length) { remaining -= length; if (remaining <= 0) { goto finish; } } } if (packet.data) { av_free_packet(&packet); } } finish: if (!chromaprint_finish(chromaprint_ctx)) { fprintf(stderr, "ERROR: fingerprint calculation failed\n"); goto done; } ok = 1; done: if (codec_ctx_opened) { avcodec_close(codec_ctx); } if (format_ctx) { av_close_input_file(format_ctx); } #ifdef HAVE_AV_AUDIO_CONVERT if (convert_ctx) { av_audio_convert_free(convert_ctx); } #endif return ok; } int fpcalc_main(int argc, char **argv) { int i, j, max_length = 120, num_file_names = 0, raw = 0, raw_fingerprint_size, duration; int16_t *buffer1, *buffer2; int32_t *raw_fingerprint; char *file_name, *fingerprint, **file_names; ChromaprintContext *chromaprint_ctx; int algo = CHROMAPRINT_ALGORITHM_DEFAULT; file_names = malloc(argc * sizeof(char *)); for (i = 1; i < argc; i++) { char *arg = argv[i]; if (!strcmp(arg, "-length") && i + 1 < argc) { max_length = atoi(argv[++i]); } else if (!strcmp(arg, "-version") || !strcmp(arg, "-v")) { printf("fpcalc version %s\n", chromaprint_get_version()); return 0; } else if (!strcmp(arg, "-raw")) { raw = 1; } else if (!strcmp(arg, "-algo") && i + 1 < argc) { const char *v = argv[++i]; if (!strcmp(v, "test1")) { algo = CHROMAPRINT_ALGORITHM_TEST1; } else if (!strcmp(v, "test2")) { algo = CHROMAPRINT_ALGORITHM_TEST2; } else if (!strcmp(v, "test3")) { algo = CHROMAPRINT_ALGORITHM_TEST3; } else if (!strcmp(v, "test4")) { algo = CHROMAPRINT_ALGORITHM_TEST4; } else { fprintf(stderr, "WARNING: unknown algorithm, using the default\n"); } } else if (!strcmp(arg, "-set") && i + 1 < argc) { i += 1; } else { file_names[num_file_names++] = argv[i]; } } if (!num_file_names) { printf("usage: %s [OPTIONS] FILE...\n\n", argv[0]); printf("Options:\n"); printf(" -version print version information\n"); printf(" -length SECS length of the audio data used for fingerprint calculation (default 120)\n"); printf(" -raw output the raw uncompressed fingerprint\n"); printf(" -algo NAME version of the fingerprint algorithm\n"); return 2; } av_register_all(); av_log_set_level(AV_LOG_ERROR); buffer1 = av_malloc(BUFFER_SIZE + 16); buffer2 = av_malloc(BUFFER_SIZE + 16); chromaprint_ctx = chromaprint_new(algo); for (i = 1; i < argc; i++) { char *arg = argv[i]; if (!strcmp(arg, "-set") && i + 1 < argc) { char *name = argv[++i]; char *value = strchr(name, '='); if (value) { *value++ = '\0'; chromaprint_set_option(chromaprint_ctx, name, atoi(value)); } } } for (i = 0; i < num_file_names; i++) { file_name = file_names[i]; if (!decode_audio_file(chromaprint_ctx, buffer1, buffer2, file_name, max_length, &duration)) { fprintf(stderr, "ERROR: unable to calculate fingerprint for file %s, skipping\n", file_name); continue; } if (i > 0) { printf("\n"); } printf("FILE=%s\n", file_name); printf("DURATION=%d\n", duration); if (raw) { if (!chromaprint_get_raw_fingerprint(chromaprint_ctx, (void **)&raw_fingerprint, &raw_fingerprint_size)) { fprintf(stderr, "ERROR: unable to calculate fingerprint for file %s, skipping\n", file_name); continue; } printf("FINGERPRINT="); for (j = 0; j < raw_fingerprint_size; j++) { printf("%d%s", raw_fingerprint[j], j + 1 < raw_fingerprint_size ? "," : ""); } printf("\n"); chromaprint_dealloc(raw_fingerprint); } else { if (!chromaprint_get_fingerprint(chromaprint_ctx, &fingerprint)) { fprintf(stderr, "ERROR: unable to calculate fingerprint for file %s, skipping\n", file_name); continue; } printf("FINGERPRINT=%s\n", fingerprint); chromaprint_dealloc(fingerprint); } } chromaprint_free(chromaprint_ctx); av_free(buffer1); av_free(buffer2); free(file_names); return 0; }
static hb_buffer_t * Encode( hb_work_object_t * w ) { hb_work_private_t * pv = w->private_data; uint64_t pts, pos; hb_audio_t * audio = w->audio; hb_buffer_t * buf; if( hb_list_bytes( pv->list ) < pv->input_samples * sizeof( float ) ) { return NULL; } hb_list_getbytes( pv->list, pv->buf, pv->input_samples * sizeof( float ), &pts, &pos); // XXX: ffaac fails to remap from the internal libav* channel map (SMPTE) to the native AAC channel map // do it here - this hack should be removed if Libav fixes the bug hb_chan_map_t * out_map = ( w->codec_param == CODEC_ID_AAC ) ? &hb_qt_chan_map : &hb_smpte_chan_map; if ( audio->config.in.channel_map != out_map ) { hb_layout_remap( audio->config.in.channel_map, out_map, pv->layout, (float*)pv->buf, pv->samples_per_frame ); } // Do we need to convert our internal float format? if ( pv->context->sample_fmt != AV_SAMPLE_FMT_FLT ) { int isamp, osamp; AVAudioConvert *ctx; isamp = av_get_bytes_per_sample( AV_SAMPLE_FMT_FLT ); osamp = av_get_bytes_per_sample( pv->context->sample_fmt ); ctx = av_audio_convert_alloc( pv->context->sample_fmt, 1, AV_SAMPLE_FMT_FLT, 1, NULL, 0 ); // get output buffer size then malloc a buffer //nsamples = out_size / isamp; //buffer = av_malloc( nsamples * sizeof(hb_sample_t) ); // we're doing straight sample format conversion which // behaves as if there were only one channel. const void * const ibuf[6] = { pv->buf }; void * const obuf[6] = { pv->buf }; const int istride[6] = { isamp }; const int ostride[6] = { osamp }; av_audio_convert( ctx, obuf, ostride, ibuf, istride, pv->input_samples ); av_audio_convert_free( ctx ); } buf = hb_buffer_init( pv->output_bytes ); buf->size = avcodec_encode_audio( pv->context, buf->data, buf->alloc, (short*)pv->buf ); buf->start = pts + 90000 * pos / pv->out_discrete_channels / sizeof( float ) / audio->config.out.samplerate; buf->stop = buf->start + 90000 * pv->samples_per_frame / audio->config.out.samplerate; buf->frametype = HB_FRAME_AUDIO; if ( !buf->size ) { hb_buffer_close( &buf ); return Encode( w ); } else if (buf->size < 0) { hb_log( "encavcodeca: avcodec_encode_audio failed" ); hb_buffer_close( &buf ); return NULL; } return buf; }