コード例 #1
0
ファイル: init.c プロジェクト: felixonmars/LibXtract
double *xtract_init_window(const int N, const int type)
{
    double *window;

    window = malloc(N * sizeof(double));

    switch (type)
    {
    case XTRACT_GAUSS:
        gauss(window, N, 0.4);
        break;
    case XTRACT_HAMMING:
        hamming(window, N);
        break;
    case XTRACT_HANN:
        hann(window, N);
        break;
    case XTRACT_BARTLETT:
        bartlett(window, N);
        break;
    case XTRACT_TRIANGULAR:
        triangular(window, N);
        break;
    case XTRACT_BARTLETT_HANN:
        bartlett_hann(window, N);
        break;
    case XTRACT_BLACKMAN:
        blackman(window, N);
        break;
    case XTRACT_KAISER:
        kaiser(window, N, 3 * PI);
        break;
    case XTRACT_BLACKMAN_HARRIS:
        blackman_harris(window, N);
        break;
    default:
        hann(window, N);
        break;
    }

    return window;
}
コード例 #2
0
ファイル: genepi.cpp プロジェクト: francois-boyer/plink
void CCA_caseonly(bool perm, 
	          vector<vector<int> > & blperm_case,
		  Set & S,
		  Plink & P)
  
{


    ///////////////
    // Output file

    ofstream EPI;

    if (!perm)
    {  
	string f = par::output_file_name+".genepi";
	P.printLOG("\nWriting gene-based epistasis tests to [ " + f + " ]\n");
	EPI.open(f.c_str(), ios::out);
	EPI.precision(4);

	EPI << setw(12) << "NIND"  << " "
	    << setw(12) << "GENE1"  << " "
	    << setw(12) << "GENE2"  << " "
	    << setw(12) << "NSNP1"  << " "
	    << setw(12) << "NSNP2"  << " "
	    << setw(12) << "CC1" << " "
	  //	    << setw(12) << "PILLAI" << " "
	    << setw(12) << "BART" << " "
	    << "\n";
    }

    //////////////////////////////////
    // Canonical correlation analysis

    // Number of genes
    int ns = P.snpset.size(); 


    // Consider each pair of genes
    for (int s1=0; s1 < ns-1; s1++)
    {
	for (int s2 = s1+1; s2 < ns; s2++)
        {


	    ////////////////////////////////////////////////////////
	    // Step 1. Construct covariance matrix (cases only)
	    //    And partition covariance matrix:
	    //    S_11  S_21
	    //    S_12  S_22
	          
	    int n1=0, n2=0;
	          
	    vector<vector<double> > sigma(0);
	    vector<double> mean(0);
	    vector<CSNP*> pSNP(0);


	    /////////////////////////////
	    // List of SNPs for both loci
	          
	    for (int l=0; l<P.snpset[s1].size(); l++)
            {
		if ( S.cur[s1][l] )
		{
		    pSNP.push_back( P.SNP[ P.snpset[s1][l] ] );
		    n1++;
		}
	    }
	    for (int l=0; l<P.snpset[s2].size(); l++)
	    {
		if ( S.cur[s2][l] )
		{
		    pSNP.push_back( P.SNP[ P.snpset[s2][l] ] );
		    n2++;
		}
	    }

	    // NOTE: we need to make sure that n1 < n2. Migth cause problems below if this is not the case.// *********
	    int n12 = n1 + n2;
	    int ne = n1 < n2 ? n1 : n2;// ne = min(p,q)

  
            ///////////////////////////////////////////////////
	    // Choose cases-only 
	          
	    P.setFlags(false);
	    vector<Individual*>::iterator person = P.sample.begin();
            int ncase=0;
	    while ( person != P.sample.end() )
	     {
		if ( (*person)->aff && !(*person)->missing ) 
		{
		    (*person)->flag = true;
		    ncase++;
		}
                person++;

	     }
	    
	    int nind = calcGENEPIMeanVariance(pSNP, 
					      n1,n2,
					      false,
					      &P,
					      mean, 
					      sigma, 
					      P.sample , 
					      blperm_case[s1],
					      blperm_case[s2] );

	    ///////////////////////////
	    // Partition covariance matrix
	          
	    vector<vector<double> > I11;
	    vector<vector<double> > I11b;
	    vector<vector<double> > I12;
	    vector<vector<double> > I21;
	    vector<vector<double> > I22;
	    vector<vector<double> > I22b;
	          
	    sizeMatrix( I11, n1, n1);
            sizeMatrix( I11b, n1, n1);
	    sizeMatrix( I12, n1, n2);
	    sizeMatrix( I21, n2, n1);
	    sizeMatrix( I22, n2, n2);
	    sizeMatrix( I22b, n2, n2);             // For step 4b (eigenvectors for gene2)
	          
	    for (int i=0; i<n1; i++)
		for (int j=0; j<n1; j++)
                {
		    I11[i][j] = sigma[i][j];
		    I11b[i][j] = sigma[i][j];
                }
	          
	    for (int i=0; i<n1; i++)
		for (int j=0; j<n2; j++)
		    I12[i][j] = sigma[i][n1+j];
	          
	    for (int i=0; i<n2; i++)
		for (int j=0; j<n1; j++)
		    I21[i][j] = sigma[n1+i][j];
	          
	    for (int i=0; i<n2; i++)
		for (int j=0; j<n2; j++)
                {     
		    I22[i][j] = sigma[n1+i][n1+j];
		    I22b[i][j] = sigma[n1+i][n1+j];
		}


	    ////////////////////////////////////////////////////////
	    // Step 2. Calculate the p x p matrix M1 = inv(sqrt(sig11)) %*% sig12 %*% inv(sig22) %*% sig21 %*% inv(sqrt(sig11))

	    bool flag = true;

	    I11 = msqrt(I11);
	    I11 = svd_inverse(I11,flag);
	    I22 = svd_inverse(I22,flag);

	    I22b = msqrt(I22b);// For Step 4b
	    I22b = svd_inverse(I22b,flag);
	    I11b = svd_inverse(I11b,flag);
      
	    matrix_t tmp;
	    matrix_t M1;
	          
	    multMatrix(I11, I12, tmp);
            multMatrix(tmp, I22, M1);
	    multMatrix(M1, I21, tmp);
	    multMatrix(tmp, I11, M1);


	    ////////////////////////////////////////////////////////
	    // Step 3. Determine the p eigenvalues of M1. The sqrt(eigen(M)) =
	    // p canonical correlations Identify the largest can corr 

            // Compute evalues and evectors
            vector_t eigen = eigenvalues(M1);

            // Sort eigenvalues
	    vector<double> sorted_eigen = eigen;
            sort(sorted_eigen.begin(),sorted_eigen.end(),greater<double>());

            // P-value
	    //	    long double pillai_pvalue = pillai(ncase,n1,n2,sorted_eigen[0]);
            long double bartlett_pvalue = bartlett(ncase,n1,n2,sorted_eigen);


            /////////////////////////////////////////////////////////////////////
	    // OUTPUT
	    
	    EPI << setw(12) << ncase  << " "
		<< setw(12) << P.setname[s1]  << " "
		<< setw(12) << P.setname[s2] << " "
		<< setw(12) << n1  << " "
		<< setw(12) << n2 << " "
                << setw(12) << sqrt(sorted_eigen[0]) << " "
	      //                << setw(12) << pillai_pvalue << " "
                << setw(12) << bartlett_pvalue << " "
		<< "\n";


	}  // End of loop over genes2

    }  // End of loop over genes1

    EPI.close();


}  // End of CCA_caseonly