コード例 #1
0
	void DeconvNormLayer<Dtype>::Reshape(const vector<Blob<Dtype>*>& bottom,
		const vector<Blob<Dtype>*>& top)
	{
		CHECK_EQ(4, bottom[0]->num_axes()) << "Input must have 4 axes, "
			<< "corresponding to (num, channels, height, width)";

		constant1.Reshape(1, 1, bottom[0]->height(), bottom[0]->width());
		caffe_set(constant1.count(), Dtype(1), constant1.mutable_cpu_data());

		deconv2_layer->Reshape(bottom, deconv2_top_vec);
		deconv1_layer->Reshape(deconv1_bottom_vec, deconv1_top_vec);
		exp_layer->Reshape(exp_bottom_vec, exp_top_vec);

	    top[0]->ReshapeLike(*deconv2_top_vec[0]);

		deconv1_top_cache.Reshape(deconv1_top_vec[0]->shape());
		alpha_cache.Reshape(alphas->shape());
		alpha_cache2.Reshape(alphas->shape());
		// Set up the all ones "bias multiplier" for adding biases by BLAS
		if (bias_term_) {
			vector<int> bias_multiplier_shape(1, top[0]->height() * top[0]->width());
			bias_multiplier.Reshape(bias_multiplier_shape);
			caffe_set(bias_multiplier.count(), Dtype(1),
				bias_multiplier.mutable_cpu_data());
		}
	}
コード例 #2
0
ファイル: base_conv_layer.cpp プロジェクト: t-rad679/caffe
void BaseConvolutionLayer<Dtype>::Reshape(
    const vector<Blob<Dtype>*>& bottom,
    const vector<Blob<Dtype>*>& top) {
  CHECK_EQ(4, bottom[0]->num_axes())<< "Input must have 4 axes, "
  << "corresponding to (num, channels, height, width)";
  num_ = bottom[0]->num();
  height_ = bottom[0]->height();
  width_ = bottom[0]->width();
  CHECK_EQ(bottom[0]->channels(), channels_) << "Input size incompatible with"
  " convolution kernel.";
  // TODO: generalize to handle inputs of different shapes.
  for (int bottom_id = 1; bottom_id < bottom.size(); ++bottom_id) {
    CHECK_EQ(num_, bottom[bottom_id]->num()) << "Inputs must have same num.";
    CHECK_EQ(channels_, bottom[bottom_id]->channels())
    << "Inputs must have same channels.";
    CHECK_EQ(height_, bottom[bottom_id]->height())
    << "Inputs must have same height.";
    CHECK_EQ(width_, bottom[bottom_id]->width())
    << "Inputs must have same width.";
  }
  // Shape the tops.
  compute_output_shape();
  for (int top_id = 0; top_id < top.size(); ++top_id) {
    top[top_id]->Reshape(num_, num_output_, height_out_, width_out_);
  }
  if (reverse_dimensions()) {
    conv_in_height_ = height_out_;
    conv_in_width_ = width_out_;
    conv_out_spatial_dim_ = height_ * width_;
  } else {
    conv_in_height_ = height_;
    conv_in_width_ = width_;
    conv_out_spatial_dim_ = height_out_ * width_out_;
  }
  kernel_dim_ = conv_in_channels_ * kernel_h_ * kernel_w_;
  weight_offset_ = conv_out_channels_ * kernel_dim_ / group_ / group_;
  col_offset_ = kernel_dim_ * conv_out_spatial_dim_ / group_;
  output_offset_ = conv_out_channels_ * conv_out_spatial_dim_ / group_;
  // The im2col result buffer will only hold one image at a time to avoid
  // overly large memory usage. In the special case of 1x1 convolution
  // it goes lazily unused to save memory.
  if (reverse_dimensions()) {
    col_buffer_.Reshape(num_, kernel_dim_, height_, width_);
  } else {
    col_buffer_.Reshape(num_, kernel_dim_, height_out_, width_out_);
  }
  // Set up the all ones "bias multiplier" for adding biases by BLAS
  if (bias_term_) {
    vector<int> bias_multiplier_shape(1, num_* height_out_ * width_out_);
    bias_multiplier_.Reshape(bias_multiplier_shape);
    caffe_set(bias_multiplier_.count(), Dtype(1),
        bias_multiplier_.mutable_cpu_data());
  }

  // this->setupMaskIM2COL();
  // this->setupMaskCOL2IM();
}
コード例 #3
0
void BaseConvolutionLayer<Dtype>::Reshape(const vector<Blob<Dtype>*>& bottom,
      const vector<Blob<Dtype>*>& top) {
  const int num_axes = bottom[0]->num_axes();
  // Setting forced_3d_ in LayerSetup() alone is not sufficient as that can be
  // skipped and Reshape() is directed called.
  if (num_axes == 5 && channel_axis_ == 1 && bottom[0]->shape(2) == 1) {
    forced_3d_ = true;
  } else {
    forced_3d_ = false;
  }
  const int first_spatial_axis = channel_axis_ + 1 + forced_3d_;
  CHECK_EQ(num_axes, first_spatial_axis + num_spatial_axes_)
      << "bottom num_axes may not change.";
  num_ = bottom[0]->count(0, channel_axis_);
  CHECK_EQ(bottom[0]->shape(channel_axis_), channels_)
      << "Input size incompatible with convolution kernel.";
  // TODO: generalize to handle inputs of different shapes.
  for (int bottom_id = 1; bottom_id < bottom.size(); ++bottom_id) {
    CHECK(bottom[0]->shape() == bottom[bottom_id]->shape())
        << "shape mismatch - bottom[0]: " << bottom[0]->shape_string()
        << " vs. bottom[" << bottom_id << "]: "
        << bottom[bottom_id]->shape_string();
  }
  // Shape the tops.
  bottom_shape_ = &bottom[0]->shape();
  compute_output_shape();
  vector<int> top_shape(bottom[0]->shape().begin(),
      bottom[0]->shape().begin() + channel_axis_);
  top_shape.push_back(num_output_);
  if (forced_3d_)
    top_shape.push_back(1);  // in place of length
  for (int i = 0; i < num_spatial_axes_; ++i) {
    top_shape.push_back(output_shape_[i]);
  }
  for (int top_id = 0; top_id < top.size(); ++top_id) {
    top[top_id]->Reshape(top_shape);
  }
  if (reverse_dimensions()) {
    conv_out_spatial_dim_ = bottom[0]->count(first_spatial_axis);
  } else {
    conv_out_spatial_dim_ = top[0]->count(first_spatial_axis);
  }
  col_offset_ = kernel_dim_ * conv_out_spatial_dim_;
  output_offset_ = conv_out_channels_ * conv_out_spatial_dim_ / group_;
  // Setup input dimensions (conv_input_shape_).
  vector<int> bottom_dim_blob_shape(1, num_spatial_axes_ + 1);
  conv_input_shape_.Reshape(bottom_dim_blob_shape);
  int* conv_input_shape_data = conv_input_shape_.mutable_cpu_data();
  for (int i = 0; i < num_spatial_axes_ + 1; ++i) {
    if (reverse_dimensions()) {
      conv_input_shape_data[i] = top[0]->shape(channel_axis_ + i + forced_3d_);
    } else {
      conv_input_shape_data[i] = bottom[0]->shape(channel_axis_ + i +
          forced_3d_);
    }
  }
  // The im2col result buffer will only hold one image at a time to avoid
  // overly large memory usage. In the special case of 1x1 convolution
  // it goes lazily unused to save memory.
  col_buffer_shape_.clear();
  col_buffer_shape_.push_back(kernel_dim_ * group_);
  for (int i = 0; i < num_spatial_axes_; ++i) {
    if (reverse_dimensions()) {
      col_buffer_shape_.push_back(input_shape(i + 1));
    } else {
      col_buffer_shape_.push_back(output_shape_[i]);
    }
  }
  col_buffer_.Reshape(col_buffer_shape_);
  bottom_dim_ = bottom[0]->count(channel_axis_);
  top_dim_ = top[0]->count(channel_axis_);
  num_kernels_im2col_ = conv_in_channels_ * conv_out_spatial_dim_;
  num_kernels_col2im_ = reverse_dimensions() ? top_dim_ : bottom_dim_;
  // Set up the all ones "bias multiplier" for adding biases by BLAS
  out_spatial_dim_ = top[0]->count(first_spatial_axis);
  if (bias_term_) {
    vector<int> bias_multiplier_shape(1, out_spatial_dim_);
    bias_multiplier_.Reshape(bias_multiplier_shape);
    caffe_set(bias_multiplier_.count(), Dtype(1),
        bias_multiplier_.mutable_cpu_data());
  }
}
コード例 #4
0
ファイル: base_conv_layer.cpp プロジェクト: victorv/caffe
void BaseConvolutionLayer<Dtype>::Reshape(const vector<Blob<Dtype>*>& bottom,
                                          const vector<Blob<Dtype>*>& top) {
  const int_tp first_spatial_axis = channel_axis_ + 1;
  CHECK_EQ(bottom[0]->num_axes(), first_spatial_axis + num_spatial_axes_)
    << "bottom num_axes may not change.";
  num_ = bottom[0]->count(0, channel_axis_);
  CHECK_EQ(bottom[0]->shape(channel_axis_), channels_)
    << "Input size incompatible with convolution kernel.";
  // TODO: generalize to handle inputs of different shapes.
  for (int_tp bottom_id = 1; bottom_id < bottom.size(); ++bottom_id) {
    CHECK(bottom[0]->shape() == bottom[bottom_id]->shape())
        << "All inputs must have the same shape.";
  }
  // Shape the tops.
  bottom_shape_ = &bottom[0]->shape();
  compute_output_shape();
  vector<int_tp> top_shape(bottom[0]->shape().begin(),
                        bottom[0]->shape().begin() + channel_axis_);
  top_shape.push_back(num_output_);
  for (int_tp i = 0; i < num_spatial_axes_; ++i) {
    top_shape.push_back(output_shape_[i]);
  }
  for (int_tp top_id = 0; top_id < top.size(); ++top_id) {
    top[top_id]->Reshape(top_shape);
  }
  if (reverse_dimensions()) {
    conv_out_spatial_dim_ = bottom[0]->count(first_spatial_axis);
  } else {
    conv_out_spatial_dim_ = top[0]->count(first_spatial_axis);
  }
  col_offset_ = kernel_dim_ * conv_out_spatial_dim_;
  output_offset_ = conv_out_channels_ * conv_out_spatial_dim_ / group_;
  // Setup input dimensions (conv_input_shape_).
  vector<int_tp> bottom_dim_blob_shape(1, num_spatial_axes_ + 1);
  conv_input_shape_.Reshape(bottom_dim_blob_shape);
  int_tp* conv_input_shape_data = conv_input_shape_.mutable_cpu_data();
  for (int_tp i = 0; i < num_spatial_axes_ + 1; ++i) {
    if (reverse_dimensions()) {
      conv_input_shape_data[i] = top[0]->shape(channel_axis_ + i);
    } else {
      conv_input_shape_data[i] = bottom[0]->shape(channel_axis_ + i);
    }
  }
  // The im2col result buffer will only hold one image at a time to avoid
  // overly large memory usage. In the special case of 1x1 convolution
  // it goes lazily unused to save memory.

  col_buffer_shape_.clear();
  col_buffer_shape_.push_back(kernel_dim_ * group_);
  for (int_tp i = 0; i < num_spatial_axes_; ++i) {
    if (reverse_dimensions()) {
      col_buffer_shape_.push_back(input_shape(i + 1));
    } else {
      col_buffer_shape_.push_back(output_shape_[i]);
    }
  }

  col_buffer_.Reshape(col_buffer_shape_);
  if (Caffe::mode() == Caffe::Brew::GPU) {
    // Shared column buffer per device-queue across all layers on that device
    for (int_tp i = 0; i < this->device_->num_queues(); ++i) {
      shared_ptr<Blob<Dtype> > buffer = this->device_
          ->template Buffer<Dtype>(i);
      buffer->Reshape(col_buffer_shape_);
    }
  }

  bottom_dim_ = bottom[0]->count(channel_axis_);
  top_dim_ = top[0]->count(channel_axis_);
  num_kernels_im2col_ = conv_in_channels_ * conv_out_spatial_dim_;
  num_kernels_col2im_ = reverse_dimensions() ? top_dim_ : bottom_dim_;

  // Set up the all ones "bias multiplier" for adding biases by BLAS
  out_spatial_dim_ = top[0]->count(first_spatial_axis);
  if (bias_term_) {
    vector<int_tp> bias_multiplier_shape(1, out_spatial_dim_);
    bool reshaped = bias_multiplier_.Reshape(bias_multiplier_shape);
    // This will trigger a memory copy if in GPU mode,
    // which may not be necessary.
    // Thus omit to set the values if not necessary.
    if (reshaped) {
      caffe_set(bias_multiplier_.count(), Dtype(1),
                bias_multiplier_.mutable_cpu_data());
    }
  }
}
コード例 #5
0
void BaseConvolutionNDLayer<Dtype>::Reshape(const vector<Blob<Dtype>*>& bottom,
      const vector<Blob<Dtype>*>& top) {
  ConvolutionParameter conv_param = this->layer_param_.convolution_param();
  channel_axis_ = bottom[0]->CanonicalAxisIndex(conv_param.axis());
  const int first_spatial_axis = channel_axis_ + 1;
  const int num_axes = bottom[0]->num_axes();
  num_spatial_axes_ = num_axes - first_spatial_axis;
  CHECK_GE(num_spatial_axes_, 1);
  num_ = bottom[0]->count(0, channel_axis_);
  CHECK_EQ(bottom[0]->shape(channel_axis_), channels_)
      << "Input size incompatible with convolution kernel.";
  // TODO: generalize to handle inputs of different shapes.
  for (int bottom_id = 1; bottom_id < bottom.size(); ++bottom_id) {
    CHECK(bottom[0]->shape() == bottom[bottom_id]->shape())
        << "All inputs must have the same shape.";
  }
  // Shape the tops.
  compute_output_shape();
  vector<int> top_shape = bottom[0]->shape();
  top_shape[channel_axis_] = num_output_;
  top_shape.resize(first_spatial_axis);  // Discard input spatial axes.
  for (int i = 0; i < num_spatial_axes_; ++i) {
    top_shape.push_back(output_shape_[i]);
  }
  for (int top_id = 0; top_id < top.size(); ++top_id) {
    top[top_id]->Reshape(top_shape);
  }
  if (reverse_dimensions()) {
    conv_out_spatial_dim_ = bottom[0]->count(first_spatial_axis);
  } else {
    conv_out_spatial_dim_ = top[0]->count(first_spatial_axis);
  }
  const int* kernel_shape_data = kernel_shape_.cpu_data();
  kernel_dim_ = conv_in_channels_;
  for (int i = 0; i < num_spatial_axes_; ++i) {
    kernel_dim_ *= kernel_shape_data[i];
  }
  weight_offset_ = conv_out_channels_ * kernel_dim_ / group_ / group_;
  col_offset_ = kernel_dim_ * conv_out_spatial_dim_ / group_;
  output_offset_ = conv_out_channels_ * conv_out_spatial_dim_ / group_;
  // Setup input dimensions (conv_input_shape_).
  vector<int> bottom_dim_blob_shape(1, num_spatial_axes_ + 1);
  conv_input_shape_.Reshape(bottom_dim_blob_shape);
  int* conv_input_shape_data = conv_input_shape_.mutable_cpu_data();
  for (int i = 0; i < num_spatial_axes_ + 1; ++i) {
    if (reverse_dimensions()) {
      conv_input_shape_data[i] = top[0]->shape(channel_axis_ + i);
    } else {
      conv_input_shape_data[i] = bottom[0]->shape(channel_axis_ + i);
    }
  }
  // The im2col result buffer will only hold one image at a time to avoid
  // overly large memory usage. In the special case of 1x1 convolution
  // it goes lazily unused to save memory.
  col_buffer_shape_.clear();
  col_buffer_shape_.push_back(kernel_dim_);
  const int* input_shape_data = input_shape_.cpu_data() + 1;
  for (int i = 0; i < num_spatial_axes_; ++i) {
    if (reverse_dimensions()) {
      col_buffer_shape_.push_back(input_shape_data[i]);
    } else {
      col_buffer_shape_.push_back(output_shape_[i]);
    }
  }
  col_buffer_.Reshape(col_buffer_shape_);
  bottom_dim_ = bottom[0]->count(channel_axis_);
  top_dim_ = top[0]->count(channel_axis_);
  num_kernels_im2col_ = conv_in_channels_ * conv_out_spatial_dim_;
  num_kernels_col2im_ = reverse_dimensions() ? top_dim_ : bottom_dim_;
  // Set up the all ones "bias multiplier" for adding biases by BLAS
  out_spatial_dim_ = top[0]->count(first_spatial_axis);
  if (bias_term_) {
    vector<int> bias_multiplier_shape(1, out_spatial_dim_);
    bias_multiplier_.Reshape(bias_multiplier_shape);
    caffe_set(bias_multiplier_.count(), Dtype(1),
        bias_multiplier_.mutable_cpu_data());
  }
}
コード例 #6
0
ファイル: base_conv_layer.cpp プロジェクト: xieguotian/caffe
void BaseConvolutionLayer<Dtype>::Reshape(const vector<Blob<Dtype>*>& bottom,
      const vector<Blob<Dtype>*>& top) {
	if (is_direct_connect_ && !is_direct_intialized_)
	{
		direct_num_ = std::min((int)((direct_ratio_)*(num_output_ / (1 - direct_ratio_))), bottom[0]->channels());
		this->blobs_.push_back(shared_ptr<Blob<Dtype> >());
		vector<int> idx_shape;
		idx_shape.push_back(direct_num_);
		int idx_param_idx = this->blobs_.size() - 1;
		this->blobs_[idx_param_idx].reset(new Blob<Dtype>(idx_shape));

		vector<int> idx_tmp;
		for (int i = 0; i < bottom[0]->channels(); i++)
			idx_tmp.push_back(i);
		std::random_shuffle(idx_tmp.begin(), idx_tmp.end());
		for (int i = 0; i < direct_num_; i++)
			//direct_idx_.push_back(idx_tmp[i]);
			this->blobs_[idx_param_idx]->mutable_cpu_data()[i] = idx_tmp[i];
		is_direct_intialized_ = true;
	}

  const int first_spatial_axis = channel_axis_ + 1;
  CHECK_EQ(bottom[0]->num_axes(), first_spatial_axis + num_spatial_axes_)
      << "bottom num_axes may not change.";
  num_ = bottom[0]->count(0, channel_axis_);
  CHECK_EQ(bottom[0]->shape(channel_axis_), channels_)
      << "Input size incompatible with convolution kernel.";
  // TODO: generalize to handle inputs of different shapes.
  for (int bottom_id = 1; bottom_id < bottom.size(); ++bottom_id) {
    CHECK(bottom[0]->shape() == bottom[bottom_id]->shape())
        << "All inputs must have the same shape.";
  }
  // Shape the tops.
  bottom_shape_ = &bottom[0]->shape();
  compute_output_shape();
  vector<int> top_shape(bottom[0]->shape().begin(),
      bottom[0]->shape().begin() + channel_axis_);
  if (is_direct_connect_)
	  top_shape.push_back(num_output_ + direct_num_);
  else
  top_shape.push_back(num_output_);
  for (int i = 0; i < num_spatial_axes_; ++i) {
    top_shape.push_back(output_shape_[i]);
  }
  for (int top_id = 0; top_id < top.size(); ++top_id) {
    top[top_id]->Reshape(top_shape);
  }
  if (reverse_dimensions()) {
    conv_out_spatial_dim_ = bottom[0]->count(first_spatial_axis);
  } else {
    conv_out_spatial_dim_ = top[0]->count(first_spatial_axis);
  }
  col_offset_ = kernel_dim_ * conv_out_spatial_dim_;
  output_offset_ = conv_out_channels_ * conv_out_spatial_dim_ / group_;
  // Setup input dimensions (conv_input_shape_).
  vector<int> bottom_dim_blob_shape(1, num_spatial_axes_ + 1);
  conv_input_shape_.Reshape(bottom_dim_blob_shape);
  int* conv_input_shape_data = conv_input_shape_.mutable_cpu_data();
  for (int i = 0; i < num_spatial_axes_ + 1; ++i) {
    if (reverse_dimensions()) {
      conv_input_shape_data[i] = top[0]->shape(channel_axis_ + i);
    } else {
      conv_input_shape_data[i] = bottom[0]->shape(channel_axis_ + i);
    }
  }
  // The im2col result buffer will only hold one image at a time to avoid
  // overly large memory usage. In the special case of 1x1 convolution
  // it goes lazily unused to save memory.
  col_buffer_shape_.clear();
  col_buffer_shape_.push_back(kernel_dim_ * group_);
  for (int i = 0; i < num_spatial_axes_; ++i) {
    if (reverse_dimensions()) {
      col_buffer_shape_.push_back(input_shape(i + 1));
    } else {
      col_buffer_shape_.push_back(output_shape_[i]);
    }
  }
  col_buffer_.Reshape(col_buffer_shape_);
  bottom_dim_ = bottom[0]->count(channel_axis_);
  if (is_direct_connect_)
	  top_dim_ = top[0]->count(channel_axis_) * num_output_ / (direct_num_ + num_output_);
  else
  top_dim_ = top[0]->count(channel_axis_);
  num_kernels_im2col_ = conv_in_channels_ * conv_out_spatial_dim_;
  num_kernels_col2im_ = reverse_dimensions() ? top_dim_ : bottom_dim_;
  // Set up the all ones "bias multiplier" for adding biases by BLAS
  out_spatial_dim_ = top[0]->count(first_spatial_axis);
  if (bias_term_) {
    vector<int> bias_multiplier_shape(1, out_spatial_dim_);
    bias_multiplier_.Reshape(bias_multiplier_shape);
    caffe_set(bias_multiplier_.count(), Dtype(1),
        bias_multiplier_.mutable_cpu_data());
  }
}
コード例 #7
0
ファイル: base_conv_layer.cpp プロジェクト: aharrison24/caffe
void BaseConvolutionLayer<Dtype>::Reshape(const vector<Blob<Dtype>*>& bottom,
                                          const vector<Blob<Dtype>*>& top) {
  CHECK_EQ(4, bottom[0]->num_axes())<< "Input must have 4 axes, "
  << "corresponding to (num, channels, height, width)";
  num_ = bottom[0]->num();
  height_ = bottom[0]->height();
  width_ = bottom[0]->width();
  CHECK_EQ(bottom[0]->channels(), channels_) << "Input size incompatible with"
  " convolution kernel.";
  // TODO: generalize to handle inputs of different shapes.
  for (int bottom_id = 1; bottom_id < bottom.size(); ++bottom_id) {
    CHECK_EQ(num_, bottom[bottom_id]->num()) << "Inputs must have same num.";
    CHECK_EQ(channels_, bottom[bottom_id]->channels())
    << "Inputs must have same channels.";
    CHECK_EQ(height_, bottom[bottom_id]->height())
    << "Inputs must have same height.";
    CHECK_EQ(width_, bottom[bottom_id]->width())
    << "Inputs must have same width.";
  }
  // Shape the tops.
  compute_output_shape();
  for (int top_id = 0; top_id < top.size(); ++top_id) {
    top[top_id]->Reshape(num_, num_output_, height_out_, width_out_);
  }
  if (reverse_dimensions()) {
    conv_in_height_ = height_out_;
    conv_in_width_ = width_out_;
    conv_out_spatial_dim_ = height_ * width_;
  } else {
    conv_in_height_ = height_;
    conv_in_width_ = width_;
    conv_out_spatial_dim_ = height_out_ * width_out_;
  }
  kernel_dim_ = conv_in_channels_ * kernel_h_ * kernel_w_;
  weight_offset_ = conv_out_channels_ * kernel_dim_ / group_ / group_;
  col_offset_ = kernel_dim_ * conv_out_spatial_dim_ / group_;
  output_offset_ = conv_out_channels_ * conv_out_spatial_dim_ / group_;
  // The im2col result buffer will only hold one image at a time to avoid
  // overly large memory usage. In the special case of 1x1 convolution
  // it goes lazily unused to save memory.
  if (Caffe::mode() == Caffe::Brew::CPU) {
    if (reverse_dimensions()) {
      col_buffer_.Reshape(1, kernel_dim_, height_, width_);
    } else {
      col_buffer_.Reshape(1, kernel_dim_, height_out_, width_out_);
    }
  } else {
    // Shared column buffer per device-queue across all layers on that device
    for (int i = 0; i < this->device_context_->num_queues(); ++i) {
      if (reverse_dimensions()) {
        shared_ptr< Blob<Dtype> > buffer =
            this->device_context_->template Buffer<Dtype>(i);
        buffer->Reshape(1, kernel_dim_, height_, width_);
      } else {
        shared_ptr< Blob<Dtype> > buffer =
            this->device_context_->template Buffer<Dtype>(i);
        buffer->Reshape(1, kernel_dim_, height_out_, width_out_);
      }
    }
  }
  // Set up the all ones "bias multiplier" for adding biases by BLAS
  if (bias_term_) {
    vector<int> bias_multiplier_shape(1, height_out_ * width_out_);
    bool reshaped = bias_multiplier_.Reshape(bias_multiplier_shape);
    // This will trigger a memory copy if in GPU mode,
    // which may not be necessary.
    // Thus omit to set the values if not necessary.
    if (reshaped) {
      caffe_set(bias_multiplier_.count(), Dtype(1),
                bias_multiplier_.mutable_cpu_data());
    }
  }
}
コード例 #8
0
void CudnnNdConvolutionLayer<Dtype>::Reshape(
  const vector<Blob<Dtype>*>& bottom, const vector<Blob<Dtype>*>& top) {
  num_ = bottom[0]->shape(0);
  CHECK_EQ(bottom[0]->shape(1),
           channels_) << "Input size incompatible with convolution kernel.";
  input_shape_ = bottom[0]->shape();
  // TODO: generalize to handle inputs of different shapes.
  for (int bottom_id = 1; bottom_id < bottom.size(); ++bottom_id) {
    CHECK_EQ(num_, bottom[bottom_id]->shape(0))
        << "Inputs must have same num.";
    CHECK_EQ(channels_, bottom[bottom_id]->shape(1))
        << "Inputs must have same channels.";
    for (int i = 0; i < bottom[0]->num_axes(); ++i) {
      CHECK_EQ(input_shape_[i],
               bottom[bottom_id]->shape(i)) << "Inputs must have same shape.";
    }
  }
  // Shape the tops.
  compute_output_shape();
  for (int top_id = 0; top_id < top.size(); ++top_id) {
    top[top_id]->Reshape(output_shape_);
  }

  conv_out_spatial_dim_ = 1;
  for (int i = 2; i < output_shape_.size(); ++i) {
    conv_out_spatial_dim_ *= output_shape_[i];
  }

  kernel_dim_ = channels_;
  for (int i = 0; i < kernel_shape_.size(); ++i) {
    kernel_dim_ *= kernel_shape_[i];
  }
  weight_offset_ = num_output_ * kernel_dim_ / group_ / group_;
  output_offset_ = num_output_ * conv_out_spatial_dim_ / group_;
  // Set up the all ones "bias multiplier" for adding biases by BLAS
  if (bias_term_) {
    vector<int> bias_multiplier_shape(1, conv_out_spatial_dim_);
    bias_multiplier_.Reshape(bias_multiplier_shape);
    caffe_set(bias_multiplier_.count(), Dtype(1),
              bias_multiplier_.mutable_cpu_data());
  }

  bottom_offset_ = 1;
  for (int i = 1; i < input_shape_.size(); ++i) {
    bottom_offset_ *= input_shape_[i];
  }
  bottom_offset_ /= group_;
  top_offset_ = 1;
  for (int i = 1; i < output_shape_.size(); ++i) {
    top_offset_ *= output_shape_[i];
  }
  top_offset_ /= group_;

  vector<int> bottom_tensor_shape(input_shape_);
  bottom_tensor_shape[1] /= group_;
  vector<int> bottom_tensor_stride(input_shape_.size(), 1);
  for (int i = input_shape_.size()-2; i >= 0; --i) {
    bottom_tensor_stride[i] = input_shape_[i+1] * bottom_tensor_stride[i
        +1];
  }
  vector<int> top_tensor_shape(output_shape_);
  top_tensor_shape[1] /= group_;
  vector<int> top_tensor_stride(output_shape_.size(), 1);
  for (int i = output_shape_.size()-2; i >= 0; --i) {
    top_tensor_stride[i] = output_shape_[i+1] * top_tensor_stride[i+1];
  }

  for (int i = 0; i < bottom.size(); i++) {
    cudnn::setTensorNdDesc<Dtype>(&bottom_descs_[i],
        bottom_tensor_shape, bottom_tensor_stride);
    cudnn::setTensorNdDesc<Dtype>(&top_descs_[i],
        top_tensor_shape, top_tensor_stride);
    cudnn::setNdConvolutionDesc<Dtype>(&conv_descs_[i], bottom_descs_[i],
        filter_desc_, pad_shape_, stride_shape_);
  }

  // Tensor descriptor for bias.
  if (this->bias_term_) {
    vector<int> bias_shape(input_shape_.size(), 1);
    bias_shape[1] = this->num_output_ / this->group_;
    cudnn::setTensorNdDesc<Dtype>(&bias_desc_, bias_shape);
  }
}