/* this function calculates the next state of the convolutional encoder, given the current state and the input data. It also calculates the memory contents of the convolutional encoder. */ int nxt_stat(int current_state, int input, int *memory_contents) { int binary_state[K - 1]; /* binary value of current state */ int next_state_binary[K - 1]; /* binary value of next state */ int next_state; /* decimal value of next state */ int i; /* loop variable */ /* convert the decimal value of the current state number to binary */ deci2bin(current_state, K - 1, binary_state); /* given the input and current state number, compute the next state number */ next_state_binary[0] = input; for (i = 1; i < K - 1; i++) next_state_binary[i] = binary_state[i - 1]; /* convert the binary value of the next state number to decimal */ next_state = bin2deci(next_state_binary, K - 1); /* memory_contents are the inputs to the modulo-two adders in the encoder */ memory_contents[0] = input; for (i = 1; i < K; i++) memory_contents[i] = binary_state[i - 1]; return(next_state); }
// OK void test_deci_binl(){ int M = 8; int Ns = pow(2,M); int * state; for(int i = 0 ; i < Ns ; ++i){ state = deci2binl(i,M); printf("i=%d,and state=",i); for(int j = 0 ; j < M ; ++j) printf("%d ",state[j]); printf("\nand the backward is %d\n",bin2deci(state,M)); free(state); } }
void sdvd(int g[2][K], float es_ovr_n0, long channel_length, float *channel_output_vector, int *decoder_output_matrix) { int i, j, l, ll; /* loop variables */ long t; /* time */ int memory_contents[K]; /* input + conv. encoder sr */ int input[TWOTOTHEM][TWOTOTHEM]; /* maps current/nxt sts to input */ int output[TWOTOTHEM][2]; /* gives conv. encoder output */ int nextstate[TWOTOTHEM][2]; /* for current st, gives nxt given input */ int accum_err_metric[TWOTOTHEM][2]; /* accumulated error metrics */ int state_history[TWOTOTHEM][K * 5 + 1]; /* state history table */ int state_sequence[K * 5 + 1]; /* state sequence list */ int *channel_output_matrix; /* ptr to input matrix */ int binary_output[2]; /* vector to store binary enc output */ int branch_output[2]; /* vector to store trial enc output */ int m, n, number_of_states, depth_of_trellis, step, branch_metric, sh_ptr, sh_col, x, xx, h, hh, next_state, last_stop; /* misc variables */ /* ************************************************************************** */ /* n is 2^1 = 2 for rate 1/2 */ n = 2; /* m (memory length) = K - 1 */ m = K - 1; /* number of states = 2^(K - 1) = 2^m for k = 1 */ number_of_states = (int) pow(2, m); /* little degradation in performance achieved by limiting trellis depth to K * 5--interesting to experiment with smaller values and measure the resulting degradation. */ depth_of_trellis = K * 5; /* initialize data structures */ for (i = 0; i < number_of_states; i++) { for (j = 0; j < number_of_states; j++) input[i][j] = 0; for (j = 0; j < n; j++) { nextstate[i][j] = 0; output[i][j] = 0; } for (j = 0; j <= depth_of_trellis; j++) { state_history[i][j] = 0; } /* initial accum_error_metric[x][0] = zero */ accum_err_metric[i][0] = 0; /* by setting accum_error_metric[x][1] to INT_MAX, we don't need a flag */ /* so I don't get any more questions about this: */ /* INT_MAX is simply the largest possible integer, defined in limits.h */ accum_err_metric[i][1] = INT_MAX; } /* generate the state transition matrix, output matrix, and input matrix - input matrix shows how FEC encoder bits lead to next state - next_state matrix shows next state given current state and input bit - output matrix shows FEC encoder output bits given current presumed encoder state and encoder input bit--this will be compared to actual received symbols to determine metric for corresponding branch of trellis */ for (j = 0; j < number_of_states; j++) { for (l = 0; l < n; l++) { next_state = nxt_stat(j, l, memory_contents); input[j][next_state] = l; /* now compute the convolutional encoder output given the current state number and the input value */ branch_output[0] = 0; branch_output[1] = 0; for (i = 0; i < K; i++) { branch_output[0] ^= memory_contents[i] & g[0][i]; branch_output[1] ^= memory_contents[i] & g[1][i]; } /* next state, given current state and input */ nextstate[j][l] = next_state; /* output in decimal, given current state and input */ output[j][l] = bin2deci(branch_output, 2); } /* end of l for loop */ } /* end of j for loop */ #ifdef DEBUG printf("\nInput:"); for (j = 0; j < number_of_states; j++) { printf("\n"); for (l = 0; l < number_of_states; l++) printf("%2d ", input[j][l]); } /* end j for-loop */ printf("\nOutput:"); for (j = 0; j < number_of_states; j++) { printf("\n"); for (l = 0; l < n; l++) printf("%2d ", output[j][l]); } /* end j for-loop */ printf("\nNext State:"); for (j = 0; j < number_of_states; j++) { printf("\n"); for (l = 0; l < n; l++) printf("%2d ", nextstate[j][l]); } /* end j for-loop */ #endif channel_output_matrix = malloc( channel_length * sizeof(int) ); if (channel_output_matrix == NULL) { printf( "\nsdvd.c: Can't allocate memory for channel_output_matrix! Aborting..."); exit(1); } /* now we're going to rearrange the channel output so it has n rows, and n/2 columns where each row corresponds to a channel symbol for a given bit and each column corresponds to an encoded bit */ channel_length = channel_length / n; /* interesting to compare performance of fixed vs adaptive quantizer */ /* init_quantizer(); */ init_adaptive_quant(es_ovr_n0); /* quantize the channel output--convert float to short integer */ /* channel_output_matrix = reshape(channel_output, n, channel_length) */ for (t = 0; t < (channel_length * n); t += n) { for (i = 0; i < n; i++) *(channel_output_matrix + (t / n) + (i * channel_length) ) = soft_quant( *(channel_output_vector + (t + i) ) ); } /* end t for-loop */ /* ************************************************************************** */ /* End of setup. Start decoding of channel outputs with forward traversal of trellis! Stop just before encoder-flushing bits. */ for (t = 0; t < channel_length - m; t++) { if (t <= m) /* assume starting with zeroes, so just compute paths from all-zeroes state */ step = pow(2, m - t * 1); else step = 1; /* we're going to use the state history array as a circular buffer so we don't have to shift the whole thing left after each bit is processed so that means we need an appropriate pointer */ /* set up the state history array pointer for this time t */ sh_ptr = (int) ( ( t + 1 ) % (depth_of_trellis + 1) ); /* repeat for each possible state */ for (j = 0; j < number_of_states; j+= step) { /* repeat for each possible convolutional encoder output n-tuple */ for (l = 0; l < n; l++) { branch_metric = 0; /* compute branch metric per channel symbol, and sum for all channel symbols in the convolutional encoder output n-tuple */ #ifdef SLOWACS /* convert the decimal representation of the encoder output to binary */ deci2bin(output[j][l], n, binary_output); /* compute branch metric per channel symbol, and sum for all channel symbols in the convolutional encoder output n-tuple */ for (ll = 0; ll < n; ll++) { branch_metric = branch_metric + soft_metric( *(channel_output_matrix + ( ll * channel_length + t )), binary_output[ll] ); } /* end of 'll' for loop */ #endif #ifdef FASTACS /* this only works for n = 2, but it's fast! */ /* convert the decimal representation of the encoder output to binary */ binary_output[0] = ( output[j][l] & 0x00000002 ) >> 1; binary_output[1] = output[j][l] & 0x00000001; /* compute branch metric per channel symbol, and sum for all channel symbols in the convolutional encoder output n-tuple */ branch_metric = branch_metric + abs( *( channel_output_matrix + ( 0 * channel_length + t ) ) - 7 * binary_output[0] ) + abs( *( channel_output_matrix + ( 1 * channel_length + t ) ) - 7 * binary_output[1] ); #endif /* now choose the surviving path--the one with the smaller accumlated error metric... */ if ( accum_err_metric[ nextstate[j][l] ] [1] > accum_err_metric[j][0] + branch_metric ) { /* save an accumulated metric value for the survivor state */ accum_err_metric[ nextstate[j][l] ] [1] = accum_err_metric[j][0] + branch_metric; /* update the state_history array with the state number of the survivor */ state_history[ nextstate[j][l] ] [sh_ptr] = j; } /* end of if-statement */ } /* end of 'l' for-loop */ } /* end of 'j' for-loop -- we have now updated the trellis */ /* for all rows of accum_err_metric, move col 2 to col 1 and flag col 2 */ for (j = 0; j < number_of_states; j++) { accum_err_metric[j][0] = accum_err_metric[j][1]; accum_err_metric[j][1] = INT_MAX; } /* end of 'j' for-loop */ /* now start the traceback, if we've filled the trellis */ if (t >= depth_of_trellis - 1) { /* initialize the state_sequence vector--probably unnecessary */ for (j = 0; j <= depth_of_trellis; j++) state_sequence[j] = 0; /* find the element of state_history with the min. accum. error metric */ /* since the outer states are reached by relatively-improbable runs of zeroes or ones, search from the top and bottom of the trellis in */ x = INT_MAX; for (j = 0; j < ( number_of_states / 2 ); j++) { if ( accum_err_metric[j][0] < accum_err_metric[number_of_states - 1 - j][0] ) { xx = accum_err_metric[j][0]; hh = j; } else { xx = accum_err_metric[number_of_states - 1 - j][0]; hh = number_of_states - 1 - j; } if ( xx < x) { x = xx; h = hh; } } /* end 'j' for-loop */ #ifdef NORM /* interesting to experiment with different numbers of bits in the accumulated error metric--does performance decrease with fewer bits? */ /* if the smallest accum. error metric value is > MAXMETRIC, normalize the accum. errror metrics by subtracting the value of the smallest one from all of them (making the smallest = 0) and saturate all other metrics at MAXMETRIC */ if (x > MAXMETRIC) { for (j = 0; j < number_of_states; j++) { accum_err_metric[j][0] = accum_err_metric[j][0] - x; if (accum_err_metric[j][0] > MAXMETRIC) accum_err_metric[j][0] = MAXMETRIC; } /* end 'j' for-loop */ } #endif /* now pick the starting point for traceback */ state_sequence[depth_of_trellis] = h; /* now work backwards from the end of the trellis to the oldest state in the trellis to determine the optimal path. The purpose of this is to determine the most likely state sequence at the encoder based on what channel symbols we received. */ for (j = depth_of_trellis; j > 0; j--) { sh_col = j + ( sh_ptr - depth_of_trellis ); if (sh_col < 0) sh_col = sh_col + depth_of_trellis + 1; state_sequence[j - 1] = state_history[ state_sequence[j] ] [sh_col]; } /* end of j for-loop */ /* now figure out what input sequence corresponds to the state sequence in the optimal path */ *(decoder_output_matrix + t - depth_of_trellis + 1) = input[ state_sequence[0] ] [ state_sequence[1] ]; } /* end of if-statement */ } /* end of 't' for-loop */ /* ************************************************************************** */ /* now decode the encoder flushing channel-output bits */ for (t = channel_length - m; t < channel_length; t++) { /* set up the state history array pointer for this time t */ sh_ptr = (int) ( ( t + 1 ) % (depth_of_trellis + 1) ); /* don't need to consider states where input was a 1, so determine what is the highest possible state number where input was 0 */ last_stop = number_of_states / pow(2, t - channel_length + m); /* repeat for each possible state */ for (j = 0; j < last_stop; j++) { branch_metric = 0; deci2bin(output[j][0], n, binary_output); /* compute metric per channel bit, and sum for all channel bits in the convolutional encoder output n-tuple */ for (ll = 0; ll < n; ll++) { branch_metric = branch_metric + soft_metric( *(channel_output_matrix + (ll * channel_length + t)), binary_output[ll] ); } /* end of 'll' for loop */ /* now choose the surviving path--the one with the smaller total metric... */ if ( (accum_err_metric[ nextstate[j][0] ][1] > accum_err_metric[j][0] + branch_metric) /*|| flag[ nextstate[j][0] ] == 0*/) { /* save a state metric value for the survivor state */ accum_err_metric[ nextstate[j][0] ][1] = accum_err_metric[j][0] + branch_metric; /* update the state_history array with the state number of the survivor */ state_history[ nextstate[j][0] ][sh_ptr] = j; } /* end of if-statement */ } /* end of 'j' for-loop */ /* for all rows of accum_err_metric, swap columns 1 and 2 */ for (j = 0; j < number_of_states; j++) { accum_err_metric[j][0] = accum_err_metric[j][1]; accum_err_metric[j][1] = INT_MAX; } /* end of 'j' for-loop */ /* now start the traceback, if i >= depth_of_trellis - 1*/ if (t >= depth_of_trellis - 1) { /* initialize the state_sequence vector */ for (j = 0; j <= depth_of_trellis; j++) state_sequence[j] = 0; /* find the state_history element with the minimum accum. error metric */ x = accum_err_metric[0][0]; h = 0; for (j = 1; j < last_stop; j++) { if (accum_err_metric[j][0] < x) { x = accum_err_metric[j][0]; h = j; } /* end if */ } /* end 'j' for-loop */ #ifdef NORM /* if the smallest accum. error metric value is > MAXMETRIC, normalize the accum. errror metrics by subtracting the value of the smallest one from all of them (making the smallest = 0) and saturate all other metrics at MAXMETRIC */ if (x > MAXMETRIC) { for (j = 0; j < number_of_states; j++) { accum_err_metric[j][0] = accum_err_metric[j][0] - x; if (accum_err_metric[j][0] > MAXMETRIC) { accum_err_metric[j][0] = MAXMETRIC; } /* end if */ } /* end 'j' for-loop */ } #endif state_sequence[depth_of_trellis] = h; /* now work backwards from the end of the trellis to the oldest state in the trellis to determine the optimal path. The purpose of this is to determine the most likely state sequence at the encoder based on what channel symbols we received. */ for (j = depth_of_trellis; j > 0; j--) { sh_col = j + ( sh_ptr - depth_of_trellis ); if (sh_col < 0) sh_col = sh_col + depth_of_trellis + 1; state_sequence[j - 1] = state_history[ state_sequence[j] ][sh_col]; } /* end of j for-loop */ /* now figure out what input sequence corresponds to the optimal path */ *(decoder_output_matrix + t - depth_of_trellis + 1) = input[ state_sequence[0] ][ state_sequence[1] ]; } /* end of if-statement */ } /* end of 't' for-loop */ for (i = 1; i < depth_of_trellis - m; i++) *(decoder_output_matrix + channel_length - depth_of_trellis + i) = input[ state_sequence[i] ] [ state_sequence[i + 1] ]; /* free the dynamically allocated array storage area */ free(channel_output_matrix); return; } /* end of function sdvd */