コード例 #1
0
ファイル: sat.c プロジェクト: Meijuh/ltsmin
void
reach_sat_loop(reach_proc_t reach_proc, vset_t visited,
               bitvector_t *reach_groups, long *eg_count, long *next_count, long *guard_count)
{
    bitvector_t groups[max_sat_levels];
    int empty_groups[max_sat_levels];
    vset_t old_vis = vset_create(domain, -1, NULL);
    vset_t prev_vis[nGrps];

    for (int k = 0; k < max_sat_levels; k++)
        bitvector_create(&groups[k], nGrps);

    initialize_levels(groups, empty_groups, NULL, reach_groups);

    for (int i = 0; i < max_sat_levels; i++)
        prev_vis[i] = save_sat_levels?vset_create(domain, -1, NULL):NULL;

    while (!vset_equal(old_vis, visited)) {
        vset_copy(old_vis, visited);
        for (int k = 0; k < max_sat_levels; k++) {
            if (empty_groups[k]) continue;
            Warning(infoLong, "Saturating level: %d", k);
            reach_proc(visited, prev_vis[k], &groups[k], eg_count, next_count,guard_count);
            check_invariants(visited, -1);
            if (save_sat_levels) vset_copy(prev_vis[k], visited);
        }
    }

    for (int k = 0; k < max_sat_levels; k++)
        bitvector_free(&groups[k]);

    vset_destroy(old_vis);
    if (save_sat_levels)
        for (int i = 0; i < max_sat_levels; i++) vset_destroy(prev_vis[i]);
}
コード例 #2
0
ファイル: dm.c プロジェクト: graydon/ltsmin
int
dm_copy (const matrix_t *src, matrix_t *tgt)
{
    tgt->rows = src->rows;
    tgt->cols = src->cols;
    tgt->bits_per_row = src->bits_per_row;
    tgt->row_perm.data = NULL;
    tgt->row_perm.count = NULL;
    tgt->col_perm.data = NULL;
    tgt->col_perm.count = NULL;
    tgt->bits.data = NULL;

    if (dm_copy_header (&(src->row_perm), &(tgt->row_perm))) {
        dm_free (tgt);
        return -1;
    }


    if (dm_copy_header (&(src->col_perm), &(tgt->col_perm))) {
        dm_free (tgt);
        return -1;
    }

    if (src->rows != 0 && src->cols != 0) {
        if (bitvector_copy (&(tgt->bits), &(src->bits))) {
            dm_free (tgt);
            return -1;
        }
    } else {
        bitvector_create(&(tgt->bits), 0);
    }

    return 0;
}
コード例 #3
0
ファイル: dm.c プロジェクト: graydon/ltsmin
int
dm_create (matrix_t *m, const int rows, const int cols)
{
    DMDBG (printf ("rows, cols: %d, %d\n", rows, cols));

    m->rows = rows;
    m->cols = cols;
    m->row_perm.data = NULL;
    m->col_perm.data = NULL;
    m->bits.data = NULL;

    // calculate the number of bits needed per row, dword aligned
    size_t              row_size =
        (cols % 32) ? cols - (cols % 32) + 32 : cols;
    m->bits_per_row = row_size;
    if (bitvector_create (&(m->bits), rows * row_size)) {
        dm_free (m);
        return -1;
    }
    // create row header
    if (dm_create_header (&(m->row_perm), rows)) {
        dm_free (m);
        return -1;
    }
    // create column header
    if (dm_create_header (&(m->col_perm), cols)) {
        dm_free (m);
        return -1;
    }

    return 0;
}
コード例 #4
0
ファイル: ndfs.c プロジェクト: graydon/ltsmin
void
ndfs_local_setup   (run_t *run, wctx_t *ctx)
{
    alg_local_t        *loc = ctx->local;
    size_t              local_bits = 2;
    int res = bitvector_create (&loc->color_map, local_bits<<dbs_size);
    HREassert (res != -1, "Failure to allocate a color_map bitvector.");
    if (all_red)
        res = bitvector_create (&loc->stackbits, MAX_STACK);
    HREassert (res != -1, "Failure to allocate a all_red bitvector.");
    loc->rec_bits = 0;
    loc->strat = get_strategy (run->alg);
    loc->seed = state_info_create ();
    size_t              len = state_info_serialize_int_size (ctx->state);

    //state_info_add_simple (ctx->state, sizeof(int), &loc->bits);
    //state_info_add_simple (ctx->local->seed, sizeof(int), &loc->seed_bits);

    loc->stack = dfs_stack_create (len);
}
コード例 #5
0
ファイル: c_example.c プロジェクト: sidfarkus/bvutils
int test_create_destroy()
{
    printf("test_create_destroy()... ");fflush(NULL);
    cbitvector a = NULL;
    a = bitvector_create();
    if (a == NULL)
    {
        printf("\nERROR in test_create_destroy() creation seems to have failed\n");
        return 1;
    }
    bitvector_destroy(&a);
    if (a != NULL)
    {
        printf("\nERROR in test_create_destroy() destruction seems to have failed\n");
        return 1;
    }
    printf("success\n");
    return 0;
}
コード例 #6
0
ファイル: test-dm.c プロジェクト: Meijuh/ltsmin
int
main (void)
{

    bitvector_t         b1;
    bitvector_t         b2;

    bitvector_create (&b1, 20);

    user_bitvector_print (&b1);

    bitvector_set (&b1, 4);
    user_bitvector_print (&b1);

    bitvector_copy (&b2, &b1);

    bitvector_unset (&b1, 4);
    user_bitvector_print (&b1);

    user_bitvector_print (&b2);

    // test is_empty
    printf ("is_empty b1? %c (should be t)\n", bitvector_is_empty(&b1)?'t':'f');
    printf ("is_empty b2? %c (should be f)\n", bitvector_is_empty(&b2)?'t':'f');

    // set even/odd bits in b1/b2
    for(int i=0; i<20; ++i)
    {
        if (i%2)
        {
            bitvector_set(&b1,i);
        } else {
            bitvector_set(&b2,i);
        }
    }

    // print before union
    printf ("before union\n");
    user_bitvector_print (&b1);
    user_bitvector_print (&b2);

    // disjoint?
    printf ("b1,b2 are disjoint %c (should be t)\n", bitvector_is_disjoint(&b1, &b2)?'t':'f');

    printf ("union\n");
    bitvector_union(&b1, &b2);

    // disjoint?
    printf ("b1,b2 are disjoint %c (should be f)\n", bitvector_is_disjoint(&b1, &b2)?'t':'f');

    // print after union
    user_bitvector_print (&b1);
    user_bitvector_print (&b2);
    printf ("intersect\n");
    bitvector_intersect(&b1, &b2);

    // disjoint?
    printf ("b1,b2 are disjoint %c (should be f)\n", bitvector_is_disjoint(&b1, &b2)?'t':'f');

    // print after intersection
    user_bitvector_print (&b1);
    user_bitvector_print (&b2);

    printf ("invert b1\n");
    bitvector_invert(&b1);

    // print after inversion
    user_bitvector_print (&b1);

    // disjoint?
    printf ("b1,b2 are disjoint %c (should be t)\n", bitvector_is_disjoint(&b1, &b2)?'t':'f');

    bitvector_free (&b2);
    bitvector_free (&b1);

    matrix_t            m1;
    matrix_t            m2;
    dm_create (&m1, 10, 10);

    print_matrix (&m1);
    printf ("dm_set(4,4)\n");
    dm_set (&m1, 4, 4);
    print_matrix (&m1);
    printf ("dm_unset(4,4)\n");
    dm_unset (&m1, 4, 4);
    print_matrix (&m1);

    printf ("test shift permutation (3,4,5)(6,7)\n");
    printf ("before\n");
    dm_set (&m1, 3, 3);
    dm_set (&m1, 4, 4);
    dm_set (&m1, 5, 5);
    dm_set (&m1, 6, 6);
    dm_set (&m1, 7, 7);
    print_matrix (&m1);

    printf ("after\n");
    // create permutation_group, apply
    permutation_group_t o1;
    dm_create_permutation_group (&o1, 2, NULL);
    dm_add_to_permutation_group (&o1, 3);
    dm_add_to_permutation_group (&o1, 4);
    dm_add_to_permutation_group (&o1, 5);
    dm_close_group (&o1);
    dm_add_to_permutation_group (&o1, 6);
    dm_add_to_permutation_group (&o1, 7);

    dm_permute_cols (&m1, &o1);

    print_matrix (&m1);

    dm_free_permutation_group (&o1);

    printf ("swap cols 6,7\n");
    dm_swap_cols (&m1, 6, 7);
    print_matrix (&m1);

    printf ("swap rows 6,7\n");
    dm_swap_rows (&m1, 6, 7);
    print_matrix (&m1);

    printf ("copy\n");
    dm_create(&m2, dm_nrows(&m1), dm_ncols(&m1));
    dm_copy (&m1, &m2);
    // TODO: needs some more work
    print_matrix (&m2);


    dm_sort_rows (&m1, &min_row_first);
    print_matrix (&m1);

    dm_sort_rows (&m1, &max_row_first);
    print_matrix (&m1);

    dm_print_perm (&(m1.row_perm));

    printf ("to nub rows added & resorted\n");
    dm_set (&m1, 7, 3);
    dm_set (&m1, 8, 4);
    dm_sort_rows (&m1, &max_row_first);
    print_matrix (&m1);

    printf ("flatten \n");
    dm_flatten (&m1);

    print_matrix (&m1);
    dm_print_perm (&(m1.row_perm));

    printf ("nub sorted\n");

    //dm_nub_rows (&m1, &eq_rows, NULL);

    print_matrix (&m1);

    dm_print_perm (&(m1.row_perm));
    /* 
     * printf("again, now to test row order & nub idx\n"); dm_free(&m1);
     * dm_create(&m1, 10, 10); dm_set(&m1, 0,0); dm_set(&m1, 1,0);
     * dm_set(&m1, 2,3); dm_set(&m1, 3,3); print_matrix(&m1);
     * 
     * printf("nub sorted\n");
     * 
     * dm_nub_rows(&m1);
     * 
     * print_matrix(&m1);
     * 
     * dm_print_perm(&(m1.row_perm)); */
    printf ("optimize sorted\n");
    dm_set (&m1, 0, 7);
    dm_set (&m1, 1, 6);
    dm_set (&m1, 3, 9);

    printf ("before\n");
    print_matrix (&m1);
    dm_optimize (&m1);
    printf ("after\n");
    print_matrix (&m1);

    printf ("resorted\n");
    dm_sort_rows (&m1, &max_row_first);
    print_matrix (&m1);

/*
    dm_nub_cols(&m1);
    dm_ungroup_rows(&m1);
    dm_ungroup_cols(&m1);
    print_matrix (&m1);
*/

    // get bitvector from matrix text
    bitvector_create (&b1, 6);
    bitvector_create (&b2, 10);

    printf ("bitvector of row 0\n");
    user_bitvector_print (&b2);

    printf ("bitvector of col 8\n");
    user_bitvector_print (&b1);

    bitvector_free (&b2);
    bitvector_free (&b1);

    printf ("count test\n");
    for (int i = 0; i < dm_nrows (&m1); i++)
        printf ("ones in row %d: %d\n", i, dm_ones_in_row (&m1, i));
    for (int i = 0; i < dm_ncols (&m1); i++)
        printf ("ones in col %d: %d\n", i, dm_ones_in_col (&m1, i));

    printf ("iterator test\n");

    dm_row_iterator_t   mx;
    dm_col_iterator_t   my;

    for (int i = 0; i < dm_nrows (&m1); i++) {
        printf ("iterator row: %d\n", i);
        dm_create_row_iterator (&mx, &m1, i);
        int                 r;
        while ((r = dm_row_next (&mx)) != -1)
            printf (" next: %d\n", r);
        printf ("\n\n");
    }

    for (int i = 0; i < dm_ncols (&m1); i++) {
        printf ("iterator col: %d\n", i);
        dm_create_col_iterator (&my, &m1, i);
        int                 r;
        while ((r = dm_col_next (&my)) != -1)
            printf (" next: %d\n", r);
        printf ("\n\n");
    }

    printf ("projection test\n");
    int                 s0[10];
    int                 src[10];
    int                 prj[2];
    int                 tgt[10];

    // initialize
    for (int i = 0; i < 10; i++) {
        s0[i] = -i;
        src[i] = i;
    }

    // do projection
    int                 prj_n = dm_project_vector (&m1, 0, src, prj);

    // print projection
    printf ("projection:");
    for (int i = 0; i < prj_n; i++) {
        printf (" %d", prj[i]);
    }
    printf ("\n");

    printf ("expansion test\n");

    // do expansion
    int                 exp_n = dm_expand_vector (&m1, 0, s0, prj, tgt);
    (void)exp_n;

    // print expansion
    printf ("expansion:");
    for (int i = 0; i < 10; i++) {
        printf (" %d", tgt[i]);
    }
    printf ("\n");

    // subsumption
    printf ("subsumption test:\n");
    dm_swap_rows (&m1, 0, 3);
    dm_swap_rows (&m1, 1, 2);
    dm_flatten (&m1);
    print_matrix (&m1);
    dm_subsume_rows (&m1, &eq_rows, NULL);
    printf ("after subsumption:\n");
    print_matrix (&m1);
    printf ("\n");

    printf ("after ungrouping:\n");
    dm_ungroup_rows (&m1);
    print_matrix (&m1);
    printf ("\n");

    printf ("column sort test:\n");
    dm_flatten (&m1);
    printf ("max col first:\n");
    dm_sort_cols (&m1, &max_col_first);
    print_matrix (&m1);
    printf ("min col first:\n");
    dm_sort_cols (&m1, &min_col_first);
    print_matrix (&m1);

    printf ("nub columns test:\n");
    dm_set (&m1, 0, 1);
    dm_set (&m1, 3, 1);
    dm_set (&m1, 3, 4);
    dm_set (&m1, 3, 5);
    dm_sort_cols (&m1, &max_col_first);
    // dm_flatten(&m1);
    printf ("max col first:\n");
    print_matrix (&m1);
    //printf ("subsume columns:\n");
    //dm_subsume_cols (&m1, &eq_cols, NULL);
    //dm_subsume_rows (&m1, &eq_rows, NULL);
    print_matrix (&m1);
    printf ("column permutation:\n");
    dm_print_perm (&(m1.col_perm));

    printf ("optimize columns:\n");
    dm_optimize (&m1);
    print_matrix (&m1);

    //printf ("ungroup columns:\n");
    //dm_ungroup_cols (&m1);
    //print_matrix (&m1);


    //printf ("all permutations:\n");
    //dm_set (&m1, 0, 9);
    //dm_nub_cols(&m1, &eq_cols, NULL);
    //print_matrix (&m1);
    //dm_all_perm (&m1);

    dm_free (&m2);
    dm_free (&m1);

    return 0;
}
コード例 #7
0
ファイル: sat.c プロジェクト: Meijuh/ltsmin
static void
initialize_levels(bitvector_t *groups, int *empty_groups, int *back,
                      bitvector_t *reach_groups)
{
    int level[nGrps];

    // groups: i = 0 .. nGrps - 1
    // vars  : j = 0 .. N - 1

    // level[i] = first '+' in row (highest in BDD) of group i
    // recast 0 .. N - 1 down to equal groups 0 .. (N - 1) / sat_granularity
    for (int i = 0; i < nGrps; i++) {
        level[i] = -1;

        for (int j = 0; j < N; j++) {
            if (dm_is_set(GBgetDMInfo(model), i, j)) {
                level[i] = (N - j - 1) / sat_granularity;
                break;
            }
        }

        if (level[i] == -1)
            level[i] = 0;
    }

    for (int i = 0; i < nGrps; i++)
        bitvector_set(&groups[level[i]], i);

    // Limit the bit vectors to the groups we are interested in and establish
    // which saturation levels are not used.
    for (int k = 0; k < max_sat_levels; k++) {
        bitvector_intersect(&groups[k], reach_groups);
        empty_groups[k] = bitvector_is_empty(&groups[k]);
    }

    if (back == NULL)
        return;

    // back[k] = last + in any group of level k
    bitvector_t level_matrix[max_sat_levels];

    for (int k = 0; k < max_sat_levels; k++) {
        bitvector_create(&level_matrix[k], N);
        back[k] = max_sat_levels;
    }

    for (int i = 0; i < nGrps; i++) {
        dm_row_union(&level_matrix[level[i]], GBgetDMInfo(model), i);
    }

    for (int k = 0; k < max_sat_levels; k++) {
        for (int j = 0; j < k; j++) {
            bitvector_t temp;
            int empty;

            bitvector_copy(&temp, &level_matrix[j]);
            bitvector_intersect(&temp, &level_matrix[k]);
            empty = bitvector_is_empty(&temp);
            bitvector_free(&temp);

            if (!empty)
                if (j < back[k]) back[k] = j;
        }

        if (back[k] == max_sat_levels && !bitvector_is_empty(&level_matrix[k]))
            back[k] = k + 1;
    }

    for (int k = 0; k < max_sat_levels; k++)
        bitvector_free(&level_matrix[k]);

}
コード例 #8
0
ファイル: pins2lts-sym.c プロジェクト: alaarman/ltsmin
static void actual_main(void *arg)
#endif
{
    int argc = ((struct args_t*)arg)->argc;
    char **argv = ((struct args_t*)arg)->argv;

    /* initialize HRE */
    HREinitBegin(argv[0]);
    HREaddOptions(options,"Perform a symbolic reachability analysis of <model>\n"
                  "The optional output of this analysis is an ETF "
                      "representation of the input\n\nOptions");
    lts_lib_setup(); // add options for LTS library
    HREinitStart(&argc,&argv,1,2,files,"<model> [<etf>]");

    /* initialize HRE on other workers */
    init_hre(HREglobal());

    /* check for unsupported options */
    if (PINS_POR != PINS_POR_NONE) Abort("Partial-order reduction and symbolic model checking are not compatible.");
    if (inhibit_matrix != NULL && sat_strategy != NO_SAT) Abort("Maximal progress is incompatibale with saturation.");
    if (files[1] != NULL) {
        char *ext = strrchr(files[1], '.');
        if (ext == NULL || ext == files[1]) {
            Abort("Output filename has no extension!");
        }
        if (strcasecmp(ext, ".etf") != 0) {
            // not ETF
            if (!(vset_default_domain == VSET_Sylvan && strcasecmp(ext, ".bdd") == 0) &&
                !(vset_default_domain == VSET_LDDmc  && strcasecmp(ext, ".ldd") == 0)) {
                Abort("Only supported output formats are ETF, BDD (with --vset=sylvan) and LDD (with --vset=lddmc)");
            }
            if (PINS_USE_GUARDS) {
                Abort("Exporting symbolic state space not comptabile with "
                        "guard-splitting");
            }
        }
    }

#ifdef HAVE_SYLVAN
    if (!USE_PARALLELISM) {
        if (strategy == PAR_P) {
            strategy = BFS_P;
            Print(info, "Front-end not thread-safe; using --order=bfs-prev instead of --order=par-prev.");
        } else if (strategy == PAR) {
            strategy = BFS;
            Print(info, "Front-end not thread-safe; using --order=bfs instead of --order=par.");
        }
    }
#endif

    /* turn off Lace for now to speed up while not using parallelism */
    lace_suspend();

    /* initialize the model and PINS wrappers */
    init_model(files[0]);

    /* initialize action detection */
    act_label = lts_type_find_edge_label_prefix (ltstype, LTSMIN_EDGE_TYPE_ACTION_PREFIX);
    if (act_label != -1) action_typeno = lts_type_get_edge_label_typeno(ltstype, act_label);
    if (act_detect != NULL) init_action_detection();

    bitvector_create(&state_label_used, sLbls);
    if (inv_detect != NULL) init_invariant_detection();
    else if (PINS_USE_GUARDS) {
        for (int i = 0; i < nGuards; i++) {
            bitvector_set(&state_label_used, i);
        }
    }

    init_maxsum(ltstype);

    /* turn on Lace again (for Sylvan) */
    if (vset_default_domain==VSET_Sylvan || vset_default_domain==VSET_LDDmc) {
        lace_resume();
    }

    if (next_union) vset_next_fn = vset_next_union_src;

    init_domain(VSET_IMPL_AUTOSELECT);

    vset_t initial = vset_create(domain, -1, NULL);
    int *src = RTmalloc (sizeof(int[N]));
    GBgetInitialState(model, src);
    vset_add(initial, src);

    Print(infoShort, "got initial state");

    /* if writing .dot files, open directory first */
    if (dot_dir != NULL) {
        DIR* dir = opendir(dot_dir);
        if (dir) {
            closedir(dir);
        } else if (ENOENT == errno) {
            Abort("Option 'dot-dir': directory '%s' does not exist", dot_dir);
        } else {
            Abort("Option 'dot-dir': failed opening directory '%s'", dot_dir);
        }
    }

    if (vset_dir != NULL) {
        DIR *dir = opendir(vset_dir);
        if (dir) {
            closedir(dir);
        } else if (errno == ENOENT) {
            Abort("Option 'save-levels': directory '%s' does not exist", vset_dir);
        } else {
            Abort("Option 'save-levels': failed opening directory '%s'", vset_dir);
        }
    }

    init_mu_calculus();

    /* determine if we need to generate a symbolic parity game */
#ifdef LTSMIN_PBES
    bool spg = true;
#else
    bool spg = GBhaveMucalc() ? true : false;
#endif

    /* if spg, then initialize labeling stuff before reachability */
    if (spg) {
        Print(infoShort, "Generating a Symbolic Parity Game (SPG).");
        init_spg(model);
    }

    /* create timer */
    reach_timer = RTcreateTimer();

    /* fix level 0 */
    visited = vset_create(domain, -1, NULL);
    vset_copy(visited, initial);

    /* check the invariants at level 0 */
    check_invariants(visited, 0);

    /* run reachability */
    run_reachability(visited, files[1]);

    /* report states */
    final_stat_reporting(visited);

    /* save LTS */
    if (files[1] != NULL) {
        char *ext = strrchr(files[1], '.');
        if (strcasecmp(ext, ".etf") == 0) {
            do_output(files[1], visited);
        } else {
            // if not .etf, then the filename ends with .bdd or .ldd, symbolic LTS
            do_dd_output (initial, visited, files[1]);
        }
    }

    compute_maxsum(visited, domain);

    CHECK_MU(visited, src);

    if (max_mu_count > 0) {
        Print(info, "Mu-calculus peak nodes: %ld", max_mu_count);
    }

    /* optionally print counts of all group_next and group_explored sets */
    final_final_stats_reporting ();

    if (spg) { // converting the LTS to a symbolic parity game, save and solve.
        lts_to_pg_solve (visited, src);
    }

#ifdef HAVE_SYLVAN
    /* in case other Lace threads were still suspended... */
    if (vset_default_domain!=VSET_Sylvan && vset_default_domain!=VSET_LDDmc) {
        lace_resume();
    } else if (SYLVAN_STATS) {
        sylvan_stats_report(stderr);
    }
#endif

    RTfree (src);
    GBExit(model);
}