コード例 #1
0
ファイル: test_xpbym.c プロジェクト: figual/blis
void libblis_test_xpbym_check
     (
       test_params_t* params,
       obj_t*         x,
       obj_t*         beta,
       obj_t*         y,
       obj_t*         y_orig,
       double*        resid
     )
{
	num_t  dt      = bli_obj_dt( y );
	num_t  dt_real = bli_obj_dt_proj_to_real( y );

	dim_t  m       = bli_obj_length( y );
	dim_t  n       = bli_obj_width( y );

	obj_t  x_temp, y_temp;
	obj_t  norm;

	double junk;

	//
	// Pre-conditions:
	// - x is randomized.
	// - y_orig is randomized.
	// Note:
	// - alpha should have a non-zero imaginary component in the complex
	//   cases in order to more fully exercise the implementation.
	//
	// Under these conditions, we assume that the implementation for
	//
	//   y := beta * y_orig + conjx(x)
	//
	// is functioning correctly if
	//
	//   normf( y - ( beta * y_orig + conjx(x) ) )
	//
	// is negligible.
	//

	bli_obj_scalar_init_detached( dt_real, &norm );

    bli_obj_create( dt, m, n, 0, 0, &x_temp );
    bli_obj_create( dt, m, n, 0, 0, &y_temp );

    bli_copym( x,      &x_temp );
    bli_copym( y_orig, &y_temp );

    bli_scalm( beta, &y_temp );
	bli_addm( &x_temp, &y_temp );

    bli_subm( &y_temp, y );
    bli_normfm( y, &norm );
    bli_getsc( &norm, resid, &junk );

    bli_obj_free( &x_temp );
    bli_obj_free( &y_temp );
}
コード例 #2
0
ファイル: test_axpbyv.c プロジェクト: skbaum/blis
void libblis_test_axpbyv_check( obj_t*  alpha,
                                obj_t*  x,
                                obj_t*  beta,
                                obj_t*  y,
                                obj_t*  y_orig,
                                double* resid )
{
	num_t  dt      = bli_obj_datatype( *y );
	num_t  dt_real = bli_obj_datatype_proj_to_real( *y );

	dim_t  m       = bli_obj_vector_dim( *y );

	obj_t  x_temp, y_temp;
	obj_t  norm;

	double junk;

	//
	// Pre-conditions:
	// - x is randomized.
	// - y_orig is randomized.
	// Note:
	// - alpha should have a non-zero imaginary component in the complex
	//   cases in order to more fully exercise the implementation.
	//
	// Under these conditions, we assume that the implementation for
	//
	//   y := beta * y_orig + alpha * conjx(x)
	//
	// is functioning correctly if
	//
	//   normf( y - ( beta * y_orig + alpha * conjx(x) ) )
	//
	// is negligible.
	//

	bli_obj_scalar_init_detached( dt_real, &norm );

	bli_obj_create( dt, m, 1, 0, 0, &x_temp );
	bli_obj_create( dt, m, 1, 0, 0, &y_temp );

	bli_copyv( x,      &x_temp );
	bli_copyv( y_orig, &y_temp );

	bli_scalv( alpha, &x_temp );
	bli_scalv(  beta, &y_temp );
	bli_addv( &x_temp, &y_temp );

	bli_subv( &y_temp, y );
	bli_normfv( y, &norm );
	bli_getsc( &norm, resid, &junk );

	bli_obj_free( &x_temp );
	bli_obj_free( &y_temp );
}
コード例 #3
0
ファイル: bli_obj.c プロジェクト: honnibal/cython-blis
void bli_obj_create_const( double value, obj_t* obj )
{
	gint_t*   temp_i;
	float*    temp_s;
	double*   temp_d;
	scomplex* temp_c;
	dcomplex* temp_z;

	if ( bli_error_checking_is_enabled() )
		bli_obj_create_const_check( value, obj );

	bli_obj_create( BLIS_CONSTANT, 1, 1, 1, 1, obj );

	temp_s = bli_obj_buffer_for_const( BLIS_FLOAT,    *obj );
	temp_d = bli_obj_buffer_for_const( BLIS_DOUBLE,   *obj );
	temp_c = bli_obj_buffer_for_const( BLIS_SCOMPLEX, *obj );
	temp_z = bli_obj_buffer_for_const( BLIS_DCOMPLEX, *obj );
	temp_i = bli_obj_buffer_for_const( BLIS_INT,      *obj );

	// Use the bli_??sets() macros to set the temp variables in order to
	// properly support BLIS_ENABLE_C99_COMPLEX.
	bli_dssets( value, 0.0, *temp_s );
	bli_ddsets( value, 0.0, *temp_d );
	bli_dcsets( value, 0.0, *temp_c );
	bli_dzsets( value, 0.0, *temp_z );

	*temp_i = ( gint_t ) value;
}
コード例 #4
0
ファイル: test_hemv.c プロジェクト: jmhautbois/blis
void libblis_test_hemv_check( obj_t*  alpha,
                              obj_t*  a,
                              obj_t*  x,
                              obj_t*  beta,
                              obj_t*  y,
                              obj_t*  y_orig,
                              double* resid )
{
    num_t  dt      = bli_obj_datatype( *y );
    num_t  dt_real = bli_obj_datatype_proj_to_real( *y );

    dim_t  m       = bli_obj_vector_dim( *y );

    obj_t  v;
    obj_t  norm;

    double junk;

    //
    // Pre-conditions:
    // - a is randomized and Hermitian.
    // - x is randomized.
    // - y_orig is randomized.
    // Note:
    // - alpha and beta should have non-zero imaginary components in the
    //   complex cases in order to more fully exercise the implementation.
    //
    // Under these conditions, we assume that the implementation for
    //
    //   y := beta * y_orig + alpha * conja(A) * conjx(x)
    //
    // is functioning correctly if
    //
    //   normf( y - v )
    //
    // is negligible, where
    //
    //   v = beta * y_orig + alpha * conja(A_dense) * x
    //

    bli_obj_scalar_init_detached( dt_real, &norm );

    bli_obj_create( dt, m, 1, 0, 0, &v );

    bli_copyv( y_orig, &v );

    bli_mkherm( a );
    bli_obj_set_struc( BLIS_GENERAL, *a );
    bli_obj_set_uplo( BLIS_DENSE, *a );

    bli_gemv( alpha, a, x, beta, &v );

    bli_subv( &v, y );
    bli_normfv( y, &norm );
    bli_getsc( &norm, resid, &junk );

    bli_obj_free( &v );
}
コード例 #5
0
ファイル: test_scalv.c プロジェクト: figual/blis
void libblis_test_scalv_check
     (
       test_params_t* params,
       obj_t*         beta,
       obj_t*         y,
       obj_t*         y_orig,
       double*        resid
     )
{
	num_t  dt      = bli_obj_dt( y );
	num_t  dt_real = bli_obj_dt_proj_to_real( y );

	dim_t  m       = bli_obj_vector_dim( y );

	obj_t  norm_y_r;
	obj_t  nbeta;

	obj_t  y2;

	double junk;

	//
	// Pre-conditions:
	// - y_orig is randomized.
	// Note:
	// - beta should have a non-zero imaginary component in the complex
	//   cases in order to more fully exercise the implementation.
	//
	// Under these conditions, we assume that the implementation for
	//
	//   y := conjbeta(beta) * y_orig
	//
	// is functioning correctly if
	//
	//   normf( y + -conjbeta(beta) * y_orig )
	//
	// is negligible.
	//

	bli_obj_create( dt, m, 1, 0, 0, &y2 );
    bli_copyv( y_orig, &y2 );

	bli_obj_scalar_init_detached( dt,      &nbeta );
	bli_obj_scalar_init_detached( dt_real, &norm_y_r );

	bli_copysc( beta, &nbeta );
	bli_mulsc( &BLIS_MINUS_ONE, &nbeta );

	bli_scalv( &nbeta, &y2 );
    bli_addv( &y2, y );

    bli_normfv( y, &norm_y_r );

    bli_getsc( &norm_y_r, resid, &junk );

    bli_obj_free( &y2 );
}
コード例 #6
0
ファイル: bli_obj.c プロジェクト: honnibal/cython-blis
void bli_obj_create_const_copy_of( obj_t* a, obj_t* b )
{
	gint_t*   temp_i;
	float*    temp_s;
	double*   temp_d;
	scomplex* temp_c;
	dcomplex* temp_z;
	void*     buf_a;
	dcomplex  value;

	if ( bli_error_checking_is_enabled() )
		bli_obj_create_const_copy_of_check( a, b );

	bli_obj_create( BLIS_CONSTANT, 1, 1, 1, 1, b );

	temp_s = bli_obj_buffer_for_const( BLIS_FLOAT,    *b );
	temp_d = bli_obj_buffer_for_const( BLIS_DOUBLE,   *b );
	temp_c = bli_obj_buffer_for_const( BLIS_SCOMPLEX, *b );
	temp_z = bli_obj_buffer_for_const( BLIS_DCOMPLEX, *b );
	temp_i = bli_obj_buffer_for_const( BLIS_INT,      *b );

	buf_a = bli_obj_buffer_at_off( *a );

	bli_zzsets( 0.0, 0.0, value ); 

	if ( bli_obj_is_float( *a ) )
	{
		bli_szcopys( *(( float*    )buf_a), value );
	}
	else if ( bli_obj_is_double( *a ) )
	{
		bli_dzcopys( *(( double*   )buf_a), value );
	}
	else if ( bli_obj_is_scomplex( *a ) )
	{
		bli_czcopys( *(( scomplex* )buf_a), value );
	}
	else if ( bli_obj_is_dcomplex( *a ) )
	{
		bli_zzcopys( *(( dcomplex* )buf_a), value );
	}
	else
	{
		bli_check_error_code( BLIS_NOT_YET_IMPLEMENTED );
	}

	bli_zscopys( value, *temp_s );
	bli_zdcopys( value, *temp_d );
	bli_zccopys( value, *temp_c );
	bli_zzcopys( value, *temp_z );

	*temp_i = ( gint_t ) bli_zreal( value );
}
コード例 #7
0
ファイル: 05level1v.c プロジェクト: devinamatthews/blis
int main( int argc, char** argv )
{
	obj_t alpha, beta, gamma;
	obj_t x, y, z, w, a;
	num_t dt;
	dim_t m, n;
	inc_t rs, cs;

	//
	// This file demonstrates working with vector objects and the level-1v
	// operations.
	//

	//
	// Example 1: Create vector objects and then broadcast (copy) scalar
	//            values to all elements.
	//

	printf( "\n#\n#  -- Example 1 --\n#\n\n" );

	// Create a few vectors to work with. We make them all of the same length
	// so that we can perform operations between them.
	// NOTE: We've chosen to use row vectors here (1x4) instead of column
	// vectors (4x1) to allow for easier reading of standard output (less
	// scrolling).
	dt = BLIS_DOUBLE;
	m = 1; n = 4; rs = 0; cs = 0;
	bli_obj_create( dt, m, n, rs, cs, &x );
	bli_obj_create( dt, m, n, rs, cs, &y );
	bli_obj_create( dt, m, n, rs, cs, &z );
	bli_obj_create( dt, m, n, rs, cs, &w );
	bli_obj_create( dt, m, n, rs, cs, &a );

	// Let's also create and initialize some scalar objects.
	bli_obj_create_1x1( dt, &alpha );
	bli_obj_create_1x1( dt, &beta );
	bli_obj_create_1x1( dt, &gamma );

	bli_setsc( 2.0, 0.0, &alpha );
	bli_setsc( 0.2, 0.0, &beta );
	bli_setsc( 3.0, 0.0, &gamma );

	bli_printm( "alpha:", &alpha, "%4.1f", "" );
	bli_printm( "beta:", &beta, "%4.1f", "" );
	bli_printm( "gamma:", &gamma, "%4.1f", "" );

	// Vectors can set by "broadcasting" a constant to every element.
	bli_setv( &BLIS_ONE, &x );
	bli_setv( &alpha, &y );
	bli_setv( &BLIS_ZERO, &z );

	// Note that we can use printv or printm to print vectors since vectors
	// are also matrices. We choose to use printm because it honors the
	// orientation of the vector (row or column) when printing, whereas
	// printv always prints vectors as column vectors regardless of their
	// they are 1 x n or n x 1.
	bli_printm( "x := 1.0", &x, "%4.1f", "" );
	bli_printm( "y := alpha", &y, "%4.1f", "" );
	bli_printm( "z := 0.0", &z, "%4.1f", "" );

	//
	// Example 2: Randomize a vector object.
	//

	printf( "\n#\n#  -- Example 2 --\n#\n\n" );

	// Set a vector to random values.
	bli_randv( &w );

	bli_printm( "w := randv()", &w, "%4.1f", "" );

	//
	// Example 3: Perform various element-wise operations on vector objects.
	//

	printf( "\n#\n#  -- Example 3 --\n#\n\n" );

	// Copy a vector.
	bli_copyv( &w, &a );
	bli_printm( "a := w", &a, "%4.1f", "" );

	// Add and subtract vectors.
	bli_addv( &y, &a );
	bli_printm( "a := a + y", &a, "%4.1f", "" );

	bli_subv( &w, &a );
	bli_printm( "a := a - w", &a, "%4.1f", "" );

	// Scale a vector (destructive).
	bli_scalv( &beta, &a );
	bli_printm( "a := beta * a", &a, "%4.1f", "" );

	// Scale a vector (non-destructive).
	bli_scal2v( &gamma, &a, &z );
	bli_printm( "z := gamma * a", &z, "%4.1f", "" );

	// Scale and accumulate between vectors.
	bli_axpyv( &alpha, &w, &x );
	bli_printm( "x := x + alpha * w", &x, "%4.1f", "" );

	bli_xpbyv( &w, &BLIS_MINUS_ONE, &x );
	bli_printm( "x := -1.0 * x + w", &x, "%4.1f", "" );

	// Invert a vector element-wise.
	bli_invertv( &y );
	bli_printm( "y := 1 / y", &y, "%4.1f", "" );

	// Swap two vectors.
	bli_swapv( &x, &y );
	bli_printm( "x (after swapping with y)", &x, "%4.1f", "" );
	bli_printm( "y (after swapping with x)", &y, "%4.1f", "" );

	//
	// Example 4: Perform contraction-like operations on vector objects.
	//

	printf( "\n#\n#  -- Example 4 --\n#\n\n" );

	// Perform a dot product.
	bli_dotv( &a, &z, &gamma );
	bli_printm( "gamma := a * z (dot product)", &gamma, "%5.2f", "" );

	// Perform an extended dot product.
	bli_dotxv( &alpha, &a, &z, &BLIS_ONE, &gamma );
	bli_printm( "gamma := 1.0 * gamma + alpha * a * z (accumulate scaled dot product)", &gamma, "%5.2f", "" );


	// Free the objects.
	bli_obj_free( &alpha );
	bli_obj_free( &beta );
	bli_obj_free( &gamma );
	bli_obj_free( &x );
	bli_obj_free( &y );
	bli_obj_free( &z );
	bli_obj_free( &w );
	bli_obj_free( &a );

	return 0;
}
コード例 #8
0
ファイル: test_herk.c プロジェクト: ShawnLess/blis
int main( int argc, char** argv )
{
	obj_t a, c;
	obj_t c_save;
	obj_t alpha, beta;
	dim_t m, k;
	dim_t p;
	dim_t p_begin, p_end, p_inc;
	int   m_input, k_input;
	num_t dt;
	int   r, n_repeats;
	uplo_t uploc;
	trans_t transa;
	f77_char f77_uploc;
	f77_char f77_transa;

	double dtime;
	double dtime_save;
	double gflops;

	bli_init();

	//bli_error_checking_level_set( BLIS_NO_ERROR_CHECKING );

	n_repeats = 3;

#ifndef PRINT
	p_begin = 200;
	p_end   = 2000;
	p_inc   = 200;

	m_input = -1;
	k_input = -1;
#else
	p_begin = 16;
	p_end   = 16;
	p_inc   = 1;

	m_input = 3;
	k_input = 1;
#endif

#if 1
	//dt = BLIS_FLOAT;
	dt = BLIS_DOUBLE;
#else
	//dt = BLIS_SCOMPLEX;
	dt = BLIS_DCOMPLEX;
#endif

	uploc = BLIS_LOWER;
	//uploc = BLIS_UPPER;

	transa = BLIS_NO_TRANSPOSE;

	bli_param_map_blis_to_netlib_uplo( uploc, &f77_uploc );
	bli_param_map_blis_to_netlib_trans( transa, &f77_transa );


	for ( p = p_begin; p <= p_end; p += p_inc )
	{
		if ( m_input < 0 ) m = p * ( dim_t )abs(m_input);
		else               m =     ( dim_t )    m_input;
		if ( k_input < 0 ) k = p * ( dim_t )abs(k_input);
		else               k =     ( dim_t )    k_input;

		bli_obj_create( dt, 1, 1, 0, 0, &alpha );
		bli_obj_create( dt, 1, 1, 0, 0, &beta );

		if ( bli_does_trans( transa ) )
			bli_obj_create( dt, k, m, 0, 0, &a );
		else
			bli_obj_create( dt, m, k, 0, 0, &a );
		bli_obj_create( dt, m, m, 0, 0, &c );
		bli_obj_create( dt, m, m, 0, 0, &c_save );

		bli_randm( &a );
		bli_randm( &c );

		bli_obj_set_struc( BLIS_HERMITIAN, c );
		bli_obj_set_uplo( uploc, c );

		bli_obj_set_conjtrans( transa, a );


		bli_setsc(  (2.0/1.0), 0.0, &alpha );
		bli_setsc( -(1.0/1.0), 0.0, &beta );


		bli_copym( &c, &c_save );
	
		dtime_save = 1.0e9;

		for ( r = 0; r < n_repeats; ++r )
		{
			bli_copym( &c_save, &c );


			dtime = bli_clock();


#ifdef PRINT
			bli_printm( "a", &a, "%4.1f", "" );
			bli_printm( "c", &c, "%4.1f", "" );
#endif

#ifdef BLIS

			bli_herk( &alpha,
			          &a,
			          &beta,
			          &c );

#else
		if ( bli_is_float( dt ) )
		{
			f77_int  mm     = bli_obj_length( c );
			f77_int  kk     = bli_obj_width_after_trans( a );
			f77_int  lda    = bli_obj_col_stride( a );
			f77_int  ldc    = bli_obj_col_stride( c );
			float*   alphap = bli_obj_buffer( alpha );
			float*   ap     = bli_obj_buffer( a );
			float*   betap  = bli_obj_buffer( beta );
			float*   cp     = bli_obj_buffer( c );

			ssyrk_( &f77_uploc,
			        &f77_transa,
			        &mm,
			        &kk,
			        alphap,
			        ap, &lda,
			        betap,
			        cp, &ldc );
		}
		else if ( bli_is_double( dt ) )
		{
			f77_int  mm     = bli_obj_length( c );
			f77_int  kk     = bli_obj_width_after_trans( a );
			f77_int  lda    = bli_obj_col_stride( a );
			f77_int  ldc    = bli_obj_col_stride( c );
			double*  alphap = bli_obj_buffer( alpha );
			double*  ap     = bli_obj_buffer( a );
			double*  betap  = bli_obj_buffer( beta );
			double*  cp     = bli_obj_buffer( c );

			dsyrk_( &f77_uploc,
			        &f77_transa,
			        &mm,
			        &kk,
			        alphap,
			        ap, &lda,
			        betap,
			        cp, &ldc );
		}
		else if ( bli_is_scomplex( dt ) )
		{
			f77_int  mm     = bli_obj_length( c );
			f77_int  kk     = bli_obj_width_after_trans( a );
			f77_int  lda    = bli_obj_col_stride( a );
			f77_int  ldc    = bli_obj_col_stride( c );
			float*     alphap = bli_obj_buffer( alpha );
			scomplex*  ap     = bli_obj_buffer( a );
			float*     betap  = bli_obj_buffer( beta );
			scomplex*  cp     = bli_obj_buffer( c );

			cherk_( &f77_uploc,
			        &f77_transa,
			        &mm,
			        &kk,
			        alphap,
			        ap, &lda,
			        betap,
			        cp, &ldc );
		}
		else if ( bli_is_dcomplex( dt ) )
		{
			f77_int  mm     = bli_obj_length( c );
			f77_int  kk     = bli_obj_width_after_trans( a );
			f77_int  lda    = bli_obj_col_stride( a );
			f77_int  ldc    = bli_obj_col_stride( c );
			double*    alphap = bli_obj_buffer( alpha );
			dcomplex*  ap     = bli_obj_buffer( a );
			double*    betap  = bli_obj_buffer( beta );
			dcomplex*  cp     = bli_obj_buffer( c );

			zherk_( &f77_uploc,
			        &f77_transa,
			        &mm,
			        &kk,
			        alphap,
			        ap, &lda,
			        betap,
			        cp, &ldc );
		}
#endif

#ifdef PRINT
			bli_printm( "c after", &c, "%4.1f", "" );
			exit(1);
#endif


			dtime_save = bli_clock_min_diff( dtime_save, dtime );
		}

		gflops = ( 1.0 * m * k * m ) / ( dtime_save * 1.0e9 );

		if ( bli_is_complex( dt ) ) gflops *= 4.0;

#ifdef BLIS
		printf( "data_herk_blis" );
#else
		printf( "data_herk_%s", BLAS );
#endif
		printf( "( %2lu, 1:4 ) = [ %4lu %4lu  %10.3e  %6.3f ];\n",
		        ( unsigned long )(p - p_begin + 1)/p_inc + 1,
		        ( unsigned long )m,
		        ( unsigned long )k, dtime_save, gflops );


		bli_obj_free( &alpha );
		bli_obj_free( &beta );

		bli_obj_free( &a );
		bli_obj_free( &c );
		bli_obj_free( &c_save );
	}

	bli_finalize();

	return 0;
}
コード例 #9
0
ファイル: test_syr2.c プロジェクト: jmhautbois/blis
void libblis_test_syr2_check( obj_t*  alpha,
                              obj_t*  x,
                              obj_t*  y,
                              obj_t*  a,
                              obj_t*  a_orig,
                              double* resid )
{
	num_t  dt      = bli_obj_datatype( *a );
	num_t  dt_real = bli_obj_datatype_proj_to_real( *a );

	dim_t  m_a     = bli_obj_length( *a );

	obj_t  xt, yt;
	obj_t  t, v, w1, w2;
	obj_t  tau, rho, norm;

	double junk;

	//
	// Pre-conditions:
	// - x is randomized.
	// - y is randomized.
	// - a is randomized and symmetric.
	// Note:
	// - alpha should have a non-zero imaginary component in the
	//   complex cases in order to more fully exercise the implementation.
	//
	// Under these conditions, we assume that the implementation for
	//
	//   A := A_orig + alpha * conjx(x) * conjy(y)^T + alpha * conjy(y) * conjx(x)^T
	//
	// is functioning correctly if
	//
	//   normf( v - w )
	//
	// is negligible, where
	//
	//   v = A * t
	//   w = ( A_orig + alpha * conjx(x) * conjy(y)^T + alpha * conjy(y) * conjx(x)^T ) * t
	//     = A_orig * t + alpha * conjx(x) * conjy(y)^T * t + alpha * conjy(y) * conjx(x)^T * t
	//     = A_orig * t + alpha * conjx(x) * conjy(y)^T * t + alpha * conjy(y) * rho
	//     = A_orig * t + alpha * conjx(x) * conjy(y)^T * t + w1
	//     = A_orig * t + alpha * conjx(x) * rho            + w1
	//     = A_orig * t + w2                                + w1
	//

	bli_mksymm( a );
	bli_mksymm( a_orig );
	bli_obj_set_struc( BLIS_GENERAL, *a );
	bli_obj_set_struc( BLIS_GENERAL, *a_orig );
	bli_obj_set_uplo( BLIS_DENSE, *a );
	bli_obj_set_uplo( BLIS_DENSE, *a_orig );

	bli_obj_scalar_init_detached( dt,      &tau );
	bli_obj_scalar_init_detached( dt,      &rho );
	bli_obj_scalar_init_detached( dt_real, &norm );

	bli_obj_create( dt, m_a, 1, 0, 0, &t );
	bli_obj_create( dt, m_a, 1, 0, 0, &v );
	bli_obj_create( dt, m_a, 1, 0, 0, &w1 );
	bli_obj_create( dt, m_a, 1, 0, 0, &w2 );

	bli_obj_alias_to( *x, xt );
	bli_obj_alias_to( *y, yt );

	bli_setsc( 1.0/( double )m_a, -1.0/( double )m_a, &tau );
	bli_setv( &tau, &t );

	bli_gemv( &BLIS_ONE, a, &t, &BLIS_ZERO, &v );

	bli_dotv( &xt, &t, &rho );
	bli_mulsc( alpha, &rho );
	bli_scal2v( &rho, y, &w1 );

	bli_dotv( &yt, &t, &rho );
	bli_mulsc( alpha, &rho );
	bli_scal2v( &rho, x, &w2 );

	bli_addv( &w2, &w1 );

	bli_gemv( &BLIS_ONE, a_orig, &t, &BLIS_ONE, &w1 );

	bli_subv( &w1, &v );
	bli_normfv( &v, &norm );
	bli_getsc( &norm, resid, &junk );

	bli_obj_free( &t );
	bli_obj_free( &v );
	bli_obj_free( &w1 );
	bli_obj_free( &w2 );
}
コード例 #10
0
ファイル: test_gemmtrsm_ukr.c プロジェクト: audiofilter/blis
void libblis_test_gemmtrsm_ukr_check( side_t  side,
                                      obj_t*  alpha,
                                      obj_t*  a1x,
                                      obj_t*  a11,
                                      obj_t*  bx1,
                                      obj_t*  b11,
                                      obj_t*  c11,
                                      obj_t*  c11_orig,
                                      double* resid )
{
	num_t  dt      = bli_obj_datatype( *b11 );
	num_t  dt_real = bli_obj_datatype_proj_to_real( *b11 );

	dim_t  m       = bli_obj_length( *b11 );
	dim_t  n       = bli_obj_width( *b11 );
	dim_t  k       = bli_obj_width( *a1x );

	obj_t  kappa, norm;
	obj_t  t, v, w, z;

	double junk;

	//
	// Pre-conditions:
	// - a1x, a11, bx1, c11_orig are randomized; a11 is triangular.
	// - contents of b11 == contents of c11.
	// - side == BLIS_LEFT.
	//
	// Under these conditions, we assume that the implementation for
	//
	//   B := inv(A11) * ( alpha * B11 - A1x * Bx1 )       (side = left)
	//
	// is functioning correctly if
	//
	//   fnorm( v - z )
	//
	// is negligible, where
	//
	//   v = B11 * t
	//
	//   z = ( inv(A11) * ( alpha * B11_orig - A1x * Bx1 ) ) * t
	//     = inv(A11) * ( alpha * B11_orig * t - A1x * Bx1 * t )
	//     = inv(A11) * ( alpha * B11_orig * t - A1x * w )
	//

	bli_obj_scalar_init_detached( dt,      &kappa );
	bli_obj_scalar_init_detached( dt_real, &norm );

	if ( bli_is_left( side ) )
	{
		bli_obj_create( dt, n, 1, 0, 0, &t );
		bli_obj_create( dt, m, 1, 0, 0, &v );
		bli_obj_create( dt, k, 1, 0, 0, &w );
		bli_obj_create( dt, m, 1, 0, 0, &z );
	}
	else // else if ( bli_is_left( side ) )
	{
		// BLIS does not currently support right-side micro-kernels.
		bli_check_error_code( BLIS_NOT_YET_IMPLEMENTED );
	}

	bli_randv( &t );
	bli_setsc( 1.0/( double )n, 0.0, &kappa );
	bli_scalv( &kappa, &t );

	bli_gemv( &BLIS_ONE, b11, &t, &BLIS_ZERO, &v );

	// Restore the diagonal of a11 to its original, un-inverted state
	// (needed for trsv).
	bli_invertd( a11 );

	if ( bli_is_left( side ) )
	{
		bli_gemv( &BLIS_ONE, bx1, &t, &BLIS_ZERO, &w );
		bli_gemv( alpha, c11_orig, &t, &BLIS_ZERO, &z );
		bli_gemv( &BLIS_MINUS_ONE, a1x, &w, &BLIS_ONE, &z );
		bli_trsv( &BLIS_ONE, a11, &z );
	}
	else // else if ( bli_is_left( side ) )
	{
		// BLIS does not currently support right-side micro-kernels.
		bli_check_error_code( BLIS_NOT_YET_IMPLEMENTED );
	}

	bli_subv( &z, &v );
	bli_fnormv( &v, &norm );
	bli_getsc( &norm, resid, &junk );

	bli_obj_free( &t );
	bli_obj_free( &v );
	bli_obj_free( &w );
	bli_obj_free( &z );
}
コード例 #11
0
ファイル: test_gemv.c プロジェクト: jmhautbois/blis
void libblis_test_gemv_check( obj_t*  kappa,
                              obj_t*  alpha,
                              obj_t*  a,
                              obj_t*  x,
                              obj_t*  beta,
                              obj_t*  y,
                              obj_t*  y_orig,
                              double* resid )
{
	num_t  dt      = bli_obj_datatype( *y );
	num_t  dt_real = bli_obj_datatype_proj_to_real( *y );

	conj_t conja   = bli_obj_conj_status( *a );

	dim_t  n_x     = bli_obj_vector_dim( *x );
	dim_t  m_y     = bli_obj_vector_dim( *y );

	dim_t  min_m_n = bli_min( m_y, n_x );

	obj_t  x_temp, y_temp;
	obj_t  kappac, norm;
	obj_t  xT_temp, yT_temp, yT;

	double junk;

	//
	// Pre-conditions:
	// - a is initialized to kappa along the diagonal.
	// - x is randomized.
	// - y_orig is randomized.
	// Note:
	// - alpha, beta, and kappa should have non-zero imaginary components in
	//   the complex cases in order to more fully exercise the implementation.
	//
	// Under these conditions, we assume that the implementation for
	//
	//   y := beta * y_orig + alpha * transa(A) * conjx(x)
	//
	// is functioning correctly if
	//
	//   normf( y - z )
	//
	// is negligible, where
	//
	//   z = beta * y_orig + alpha * conja(kappa) * x
	//

	bli_obj_scalar_init_detached_copy_of( dt, conja, kappa, &kappac );
	bli_obj_scalar_init_detached( dt_real, &norm );

	bli_obj_create( dt, n_x, 1, 0, 0, &x_temp );
	bli_obj_create( dt, m_y, 1, 0, 0, &y_temp );

	bli_copyv( x,      &x_temp );
	bli_copyv( y_orig, &y_temp );

	bli_acquire_vpart_f2b( BLIS_SUBPART1, 0, min_m_n, 
	                       &x_temp, &xT_temp );
	bli_acquire_vpart_f2b( BLIS_SUBPART1, 0, min_m_n, 
	                       &y_temp, &yT_temp );
	bli_acquire_vpart_f2b( BLIS_SUBPART1, 0, min_m_n, 
	                       y, &yT );

	bli_scalv( &kappac, &xT_temp );
	bli_scalv( beta, &yT_temp );
	bli_axpyv( alpha, &xT_temp, &yT_temp );

	bli_subv( &yT_temp, &yT );
	bli_normfv( &yT, &norm );
	bli_getsc( &norm, resid, &junk );

	bli_obj_free( &x_temp );
	bli_obj_free( &y_temp );
}
コード例 #12
0
ファイル: test_syr2k.c プロジェクト: jmhautbois/blis
void libblis_test_syr2k_check( obj_t*  alpha,
                               obj_t*  a,
                               obj_t*  b,
                               obj_t*  beta,
                               obj_t*  c,
                               obj_t*  c_orig,
                               double* resid )
{
	num_t  dt      = bli_obj_datatype( *c );
	num_t  dt_real = bli_obj_datatype_proj_to_real( *c );

	dim_t  m       = bli_obj_length( *c );
	dim_t  k       = bli_obj_width_after_trans( *a );

	obj_t  at, bt;
	obj_t  kappa, norm;
	obj_t  t, v, w1, w2, z;

	double junk;

	//
	// Pre-conditions:
	// - a is randomized.
	// - b is randomized.
	// - c_orig is randomized and symmetric.
	// Note:
	// - alpha and beta should have non-zero imaginary components in the
	//   complex cases in order to more fully exercise the implementation.
	//
	// Under these conditions, we assume that the implementation for
	//
	//   C := beta * C_orig + alpha * transa(A) * transb(B)^T + alpha * transb(B) * transa(A)^T
	//
	// is functioning correctly if
	//
	//   normf( v - z )
	//
	// is negligible, where
	//
	//   v = C * t
	//   z = ( beta * C_orig + alpha * transa(A) * transb(B)^T + alpha * transb(B) * transa(A)^T ) * t
	//     = beta * C_orig * t + alpha * transa(A) * transb(B)^T * t + alpha * transb(B) * transa(A)^T * t
	//     = beta * C_orig * t + alpha * transa(A) * transb(B)^T * t + alpha * transb(B) * w2
	//     = beta * C_orig * t + alpha * transa(A) * w1              + alpha * transb(B) * w2
	//     = beta * C_orig * t + alpha * transa(A) * w1              + z
	//     = beta * C_orig * t + z
	//

	bli_obj_alias_with_trans( BLIS_TRANSPOSE, *a, at );
	bli_obj_alias_with_trans( BLIS_TRANSPOSE, *b, bt );

	bli_obj_scalar_init_detached( dt,      &kappa );
	bli_obj_scalar_init_detached( dt_real, &norm );

	bli_obj_create( dt, m, 1, 0, 0, &t );
	bli_obj_create( dt, m, 1, 0, 0, &v );
	bli_obj_create( dt, k, 1, 0, 0, &w1 );
	bli_obj_create( dt, k, 1, 0, 0, &w2 );
	bli_obj_create( dt, m, 1, 0, 0, &z );

	bli_randv( &t );
	bli_setsc( 1.0/( double )m, 0.0, &kappa );
	bli_scalv( &kappa, &t );

	bli_symv( &BLIS_ONE, c, &t, &BLIS_ZERO, &v );

	bli_gemv( &BLIS_ONE, &at, &t, &BLIS_ZERO, &w2 );
	bli_gemv( &BLIS_ONE, &bt, &t, &BLIS_ZERO, &w1 );
	bli_gemv( alpha, a, &w1, &BLIS_ZERO, &z );
	bli_gemv( alpha, b, &w2, &BLIS_ONE, &z );
	bli_symv( beta, c_orig, &t, &BLIS_ONE, &z );

	bli_subv( &z, &v );
	bli_normfv( &v, &norm );
	bli_getsc( &norm, resid, &junk );

	bli_obj_free( &t );
	bli_obj_free( &v );
	bli_obj_free( &w1 );
	bli_obj_free( &w2 );
	bli_obj_free( &z );
}
コード例 #13
0
ファイル: test_her.c プロジェクト: figual/blis
int main( int argc, char** argv )
{
	obj_t a, x;
	obj_t a_save;
	obj_t alpha;
	dim_t m;
	dim_t p;
	dim_t p_begin, p_end, p_inc;
	int   m_input;
	num_t dt_a, dt_x;
	num_t dt_alpha;
	int   r, n_repeats;
	uplo_t uplo;

	double dtime;
	double dtime_save;
	double gflops;

	//bli_init();

	n_repeats = 3;

#ifndef PRINT
	p_begin = 40;
	p_end   = 2000;
	p_inc   = 40;

	m_input = -1;
#else
	p_begin = 16;
	p_end   = 16;
	p_inc   = 1;

	m_input = 6;
#endif

#if 1
	dt_alpha = dt_x = dt_a = BLIS_DOUBLE;
#else
	dt_alpha = dt_x = dt_a = BLIS_DCOMPLEX;
#endif

	uplo = BLIS_LOWER;

	// Begin with initializing the last entry to zero so that
	// matlab allocates space for the entire array once up-front.
	for ( p = p_begin; p + p_inc <= p_end; p += p_inc ) ;
#ifdef BLIS
	printf( "data_her_blis" );
#else
	printf( "data_her_%s", BLAS );
#endif
	printf( "( %2lu, 1:2 ) = [ %4lu %7.2f ];\n",
	        ( unsigned long )(p - p_begin + 1)/p_inc + 1,
	        ( unsigned long )0, 0.0 );

	for ( p = p_begin; p <= p_end; p += p_inc )
	{

		if ( m_input < 0 ) m = p * ( dim_t )abs(m_input);
		else               m =     ( dim_t )    m_input;


		bli_obj_create( dt_alpha, 1, 1, 0, 0, &alpha );

		bli_obj_create( dt_x, m, 1, 0, 0, &x );
		bli_obj_create( dt_a, m, m, 0, 0, &a );
		bli_obj_create( dt_a, m, m, 0, 0, &a_save );

		bli_randm( &x );
		bli_randm( &a );

		bli_obj_set_struc( BLIS_HERMITIAN, &a );
		//bli_obj_set_struc( BLIS_SYMMETRIC, &a );
		bli_obj_set_uplo( uplo, &a );


		bli_setsc(  (2.0/1.0), 0.0, &alpha );


		bli_copym( &a, &a_save );
	
		dtime_save = DBL_MAX;

		for ( r = 0; r < n_repeats; ++r )
		{
			bli_copym( &a_save, &a );


			dtime = bli_clock();

#ifdef PRINT
			bli_printm( "x", &x, "%4.1f", "" );
			bli_printm( "a", &a, "%4.1f", "" );
#endif

#ifdef BLIS
			//bli_obj_toggle_conj( &x );

			//bli_syr( &alpha,
			bli_her( &alpha,
			         &x,
			         &a );

#else

			f77_char uplo   = 'L';
			f77_int  mm     = bli_obj_length( &a );
			f77_int  incx   = bli_obj_vector_inc( &x );
			f77_int  lda    = bli_obj_col_stride( &a );
			double*  alphap = bli_obj_buffer( &alpha );
			double*  xp     = bli_obj_buffer( &x );
			double*  ap     = bli_obj_buffer( &a );
/*
			dcomplex* xp   = bli_obj_buffer( x );
			dcomplex* ap   = bli_obj_buffer( &a );
*/

			dsyr_( &uplo,
			//zher_( &uplo,
			       &mm,
			       alphap,
			       xp, &incx,
			       ap, &lda );
#endif

#ifdef PRINT
			bli_printm( "a after", &a, "%4.1f", "" );
			exit(1);
#endif


			dtime_save = bli_clock_min_diff( dtime_save, dtime );
		}

		gflops = ( 1.0 * m * m ) / ( dtime_save * 1.0e9 );

#ifdef BLIS
		printf( "data_her_blis" );
#else
		printf( "data_her_%s", BLAS );
#endif
		printf( "( %2lu, 1:2 ) = [ %4lu %7.2f ];\n",
		        ( unsigned long )(p - p_begin + 1)/p_inc + 1,
		        ( unsigned long )m, gflops );

		bli_obj_free( &alpha );

		bli_obj_free( &x );
		bli_obj_free( &a );
		bli_obj_free( &a_save );
	}

	//bli_finalize();

	return 0;
}
コード例 #14
0
ファイル: test_hemm.c プロジェクト: ShawnLess/blis
int main( int argc, char** argv )
{
	obj_t a, b, c;
	obj_t c_save;
	obj_t alpha, beta;
	dim_t m, n;
	dim_t p;
	dim_t p_begin, p_end, p_inc;
	int   m_input, n_input;
	num_t dt;
	int   r, n_repeats;
	side_t side;
	uplo_t uploa;
	f77_char f77_side;
	f77_char f77_uploa;

	double dtime;
	double dtime_save;
	double gflops;

	bli_init();

	//bli_error_checking_level_set( BLIS_NO_ERROR_CHECKING );

	n_repeats = 3;

#ifndef PRINT
	p_begin = 200;
	p_end   = 2000;
	p_inc   = 200;

	m_input = -1;
	n_input = -1;
#else
	p_begin = 16;
	p_end   = 16;
	p_inc   = 1;

	m_input = 4;
	n_input = 4;
#endif

#if 1
	//dt = BLIS_FLOAT;
	dt = BLIS_DOUBLE;
#else
	//dt = BLIS_SCOMPLEX;
	dt = BLIS_DCOMPLEX;
#endif

	side = BLIS_LEFT;
	//side = BLIS_RIGHT;

	uploa = BLIS_LOWER;
	//uploa = BLIS_UPPER;

	bli_param_map_blis_to_netlib_side( side, &f77_side );
	bli_param_map_blis_to_netlib_uplo( uploa, &f77_uploa );


	for ( p = p_begin; p <= p_end; p += p_inc )
	{
		if ( m_input < 0 ) m = p * ( dim_t )abs(m_input);
		else               m =     ( dim_t )    m_input;
		if ( n_input < 0 ) n = p * ( dim_t )abs(n_input);
		else               n =     ( dim_t )    n_input;

		bli_obj_create( dt, 1, 1, 0, 0, &alpha );
		bli_obj_create( dt, 1, 1, 0, 0, &beta );

		if ( bli_is_left( side ) )
			bli_obj_create( dt, m, m, 0, 0, &a );
		else
			bli_obj_create( dt, n, n, 0, 0, &a );
		bli_obj_create( dt, m, n, 0, 0, &b );
		bli_obj_create( dt, m, n, 0, 0, &c );
		bli_obj_create( dt, m, n, 0, 0, &c_save );

		bli_randm( &a );
		bli_randm( &b );
		bli_randm( &c );

		bli_obj_set_struc( BLIS_HERMITIAN, a );
		bli_obj_set_uplo( uploa, a );

		// Randomize A, make it densely Hermitian, and zero the unstored
		// triangle to ensure the implementation reads only from the stored
		// region.
		bli_randm( &a );
		bli_mkherm( &a );
		bli_mktrim( &a );
/*
		bli_obj_toggle_uplo( a );
		bli_obj_inc_diag_off( 1, a );
		bli_setm( &BLIS_ZERO, &a );
		bli_obj_inc_diag_off( -1, a );
		bli_obj_toggle_uplo( a );
		bli_obj_set_diag( BLIS_NONUNIT_DIAG, a );
		bli_scalm( &BLIS_TWO, &a );
		bli_scalm( &BLIS_TWO, &a );
*/

		bli_setsc(  (2.0/1.0), 1.0, &alpha );
		bli_setsc( -(1.0/1.0), 0.0, &beta );


		bli_copym( &c, &c_save );
	
		dtime_save = 1.0e9;

		for ( r = 0; r < n_repeats; ++r )
		{
			bli_copym( &c_save, &c );


			dtime = bli_clock();

#ifdef PRINT
			bli_printm( "a", &a, "%4.1f", "" );
			bli_printm( "b", &b, "%4.1f", "" );
			bli_printm( "c", &c, "%4.1f", "" );
#endif

#ifdef BLIS

			bli_hemm( side,
			          &alpha,
			          &a,
			          &b,
			          &beta,
			          &c );
#else

		if ( bli_is_float( dt ) )
		{
			f77_int  mm     = bli_obj_length( c );
			f77_int  nn     = bli_obj_width( c );
			f77_int  lda    = bli_obj_col_stride( a );
			f77_int  ldb    = bli_obj_col_stride( b );
			f77_int  ldc    = bli_obj_col_stride( c );
			float*   alphap = bli_obj_buffer( alpha );
			float*   ap     = bli_obj_buffer( a );
			float*   bp     = bli_obj_buffer( b );
			float*   betap  = bli_obj_buffer( beta );
			float*   cp     = bli_obj_buffer( c );

			ssymm_( &f77_side,
			        &f77_uploa,
			        &mm,
			        &nn,
			        alphap,
			        ap, &lda,
			        bp, &ldb,
			        betap,
			        cp, &ldc );
		}
		else if ( bli_is_double( dt ) )
		{
			f77_int  mm     = bli_obj_length( c );
			f77_int  nn     = bli_obj_width( c );
			f77_int  lda    = bli_obj_col_stride( a );
			f77_int  ldb    = bli_obj_col_stride( b );
			f77_int  ldc    = bli_obj_col_stride( c );
			double*  alphap = bli_obj_buffer( alpha );
			double*  ap     = bli_obj_buffer( a );
			double*  bp     = bli_obj_buffer( b );
			double*  betap  = bli_obj_buffer( beta );
			double*  cp     = bli_obj_buffer( c );

			dsymm_( &f77_side,
			        &f77_uploa,
			        &mm,
			        &nn,
			        alphap,
			        ap, &lda,
			        bp, &ldb,
			        betap,
			        cp, &ldc );
		}
		else if ( bli_is_scomplex( dt ) )
		{
			f77_int  mm     = bli_obj_length( c );
			f77_int  nn     = bli_obj_width( c );
			f77_int  lda    = bli_obj_col_stride( a );
			f77_int  ldb    = bli_obj_col_stride( b );
			f77_int  ldc    = bli_obj_col_stride( c );
			scomplex*  alphap = bli_obj_buffer( alpha );
			scomplex*  ap     = bli_obj_buffer( a );
			scomplex*  bp     = bli_obj_buffer( b );
			scomplex*  betap  = bli_obj_buffer( beta );
			scomplex*  cp     = bli_obj_buffer( c );

			chemm_( &f77_side,
			        &f77_uploa,
			        &mm,
			        &nn,
			        alphap,
			        ap, &lda,
			        bp, &ldb,
			        betap,
			        cp, &ldc );
		}
		else if ( bli_is_dcomplex( dt ) )
		{
			f77_int  mm     = bli_obj_length( c );
			f77_int  nn     = bli_obj_width( c );
			f77_int  lda    = bli_obj_col_stride( a );
			f77_int  ldb    = bli_obj_col_stride( b );
			f77_int  ldc    = bli_obj_col_stride( c );
			dcomplex*  alphap = bli_obj_buffer( alpha );
			dcomplex*  ap     = bli_obj_buffer( a );
			dcomplex*  bp     = bli_obj_buffer( b );
			dcomplex*  betap  = bli_obj_buffer( beta );
			dcomplex*  cp     = bli_obj_buffer( c );

			zhemm_( &f77_side,
			        &f77_uploa,
			        &mm,
			        &nn,
			        alphap,
			        ap, &lda,
			        bp, &ldb,
			        betap,
			        cp, &ldc );
		}
#endif

#ifdef PRINT
			bli_printm( "c after", &c, "%9.5f", "" );
			exit(1);
#endif

			dtime_save = bli_clock_min_diff( dtime_save, dtime );
		}

		if ( bli_is_left( side ) )
			gflops = ( 2.0 * m * m * n ) / ( dtime_save * 1.0e9 );
		else
			gflops = ( 2.0 * m * n * n ) / ( dtime_save * 1.0e9 );

		if ( bli_is_complex( dt ) ) gflops *= 4.0;

#ifdef BLIS
		printf( "data_hemm_blis" );
#else
		printf( "data_hemm_%s", BLAS );
#endif
		printf( "( %2lu, 1:4 ) = [ %4lu %4lu  %10.3e  %6.3f ];\n",
		        ( unsigned long )(p - p_begin + 1)/p_inc + 1,
		        ( unsigned long )m,
		        ( unsigned long )n, dtime_save, gflops );

		bli_obj_free( &alpha );
		bli_obj_free( &beta );

		bli_obj_free( &a );
		bli_obj_free( &b );
		bli_obj_free( &c );
		bli_obj_free( &c_save );
	}

	bli_finalize();

	return 0;
}
コード例 #15
0
ファイル: test_gemm.c プロジェクト: mindis/blis
int main( int argc, char** argv )
{
	obj_t    a, b, c;
	obj_t    c_save;
	obj_t    alpha, beta;
	dim_t    m, n, k;
	dim_t    p;
	dim_t    p_begin, p_end, p_inc;
	int      m_input, n_input, k_input;
	num_t    dt, dt_real;
	char     dt_ch;
	int      r, n_repeats;
	trans_t  transa;
	trans_t  transb;
	f77_char f77_transa;
	f77_char f77_transb;

	double   dtime;
	double   dtime_save;
	double   gflops;

	extern blksz_t* gemm_kc;

	bli_init();

	//bli_error_checking_level_set( BLIS_NO_ERROR_CHECKING );

	n_repeats = 3;

	dt      = DT;
	dt_real = bli_datatype_proj_to_real( DT );

	p_begin = P_BEGIN;
	p_end   = P_END;
	p_inc   = P_INC;

	m_input = -1;
	n_input = -1;
	k_input = -1;

	// Extract the kc blocksize for the requested datatype and its
	// real analogue.
	dim_t kc      = bli_blksz_get_def( dt,      gemm_kc );
	dim_t kc_real = bli_blksz_get_def( dt_real, gemm_kc );

	// Assign the k dimension depending on which implementation is
	// being tested. Note that the BLIS_NAT case handles the real
	// domain cases as well as native complex.
	if      ( IND == BLIS_NAT  ) k_input = kc;
	else if ( IND == BLIS_3M1  ) k_input = kc_real / 3;
	else if ( IND == BLIS_4M1A ) k_input = kc_real / 2;
	else                         k_input = kc_real;

	// Adjust the relative dimensions, if requested.
#if   (defined ADJ_MK)
	m_input = -2; k_input = -2; n_input = -1;
#elif (defined ADJ_KN)
	k_input = -2; n_input = -2; m_input = -1;
#elif (defined ADJ_MN)
	m_input = -2; n_input = -2; k_input = -1;
#endif

	// Choose the char corresponding to the requested datatype.
	if      ( bli_is_float( dt ) )    dt_ch = 's';
	else if ( bli_is_double( dt ) )   dt_ch = 'd';
	else if ( bli_is_scomplex( dt ) ) dt_ch = 'c';
	else                              dt_ch = 'z';

	transa = BLIS_NO_TRANSPOSE;
	transb = BLIS_NO_TRANSPOSE;

	bli_param_map_blis_to_netlib_trans( transa, &f77_transa );
	bli_param_map_blis_to_netlib_trans( transb, &f77_transb );

	// Begin with initializing the last entry to zero so that
	// matlab allocates space for the entire array once up-front.
	for ( p = p_begin; p + p_inc <= p_end; p += p_inc ) ;
#ifdef BLIS
	printf( "data_%s_%cgemm_%s_blis", THR_STR, dt_ch, STR );
#else
	printf( "data_%s_%cgemm_%s",      THR_STR, dt_ch, STR );
#endif
	printf( "( %2lu, 1:5 ) = [ %4lu %4lu %4lu  %10.3e  %6.3f ];\n",
	        ( unsigned long )(p - p_begin + 1)/p_inc + 1,
	        ( unsigned long )0,
	        ( unsigned long )0,
	        ( unsigned long )0, 0.0, 0.0 );


	for ( p = p_begin; p <= p_end; p += p_inc )
	{
		if ( m_input < 0 ) m = p / ( dim_t )abs(m_input);
		else               m =     ( dim_t )    m_input;
		if ( n_input < 0 ) n = p / ( dim_t )abs(n_input);
		else               n =     ( dim_t )    n_input;
		if ( k_input < 0 ) k = p / ( dim_t )abs(k_input);
		else               k =     ( dim_t )    k_input;

		bli_obj_create( dt, 1, 1, 0, 0, &alpha );
		bli_obj_create( dt, 1, 1, 0, 0, &beta );

		bli_obj_create( dt, m, k, 0, 0, &a );
		bli_obj_create( dt, k, n, 0, 0, &b );
		bli_obj_create( dt, m, n, 0, 0, &c );
		//bli_obj_create( dt, m, k, 2, 2*m, &a );
		//bli_obj_create( dt, k, n, 2, 2*k, &b );
		//bli_obj_create( dt, m, n, 2, 2*m, &c );
		bli_obj_create( dt, m, n, 0, 0, &c_save );

		bli_randm( &a );
		bli_randm( &b );
		bli_randm( &c );

		bli_obj_set_conjtrans( transa, a );
		bli_obj_set_conjtrans( transb, b );

		bli_setsc(  (2.0/1.0), 0.0, &alpha );
		bli_setsc( -(1.0/1.0), 0.0, &beta );


		bli_copym( &c, &c_save );
	
#ifdef BLIS
		bli_ind_disable_all_dt( dt );
		bli_ind_enable_dt( IND, dt );
#endif

		dtime_save = 1.0e9;

		for ( r = 0; r < n_repeats; ++r )
		{
			bli_copym( &c_save, &c );


			dtime = bli_clock();


#ifdef PRINT
			bli_printm( "a", &a, "%4.1f", "" );
			bli_printm( "b", &b, "%4.1f", "" );
			bli_printm( "c", &c, "%4.1f", "" );
#endif

#ifdef BLIS

			bli_gemm( &alpha,
			          &a,
			          &b,
			          &beta,
			          &c );

#else

		if ( bli_is_float( dt ) )
		{
			f77_int  mm     = bli_obj_length( c );
			f77_int  kk     = bli_obj_width_after_trans( a );
			f77_int  nn     = bli_obj_width( c );
			f77_int  lda    = bli_obj_col_stride( a );
			f77_int  ldb    = bli_obj_col_stride( b );
			f77_int  ldc    = bli_obj_col_stride( c );
			float*   alphap = bli_obj_buffer( alpha );
			float*   ap     = bli_obj_buffer( a );
			float*   bp     = bli_obj_buffer( b );
			float*   betap  = bli_obj_buffer( beta );
			float*   cp     = bli_obj_buffer( c );

			sgemm_( &f77_transa,
			        &f77_transb,
			        &mm,
			        &nn,
			        &kk,
			        alphap,
			        ap, &lda,
			        bp, &ldb,
			        betap,
			        cp, &ldc );
		}
		else if ( bli_is_double( dt ) )
		{
			f77_int  mm     = bli_obj_length( c );
			f77_int  kk     = bli_obj_width_after_trans( a );
			f77_int  nn     = bli_obj_width( c );
			f77_int  lda    = bli_obj_col_stride( a );
			f77_int  ldb    = bli_obj_col_stride( b );
			f77_int  ldc    = bli_obj_col_stride( c );
			double*  alphap = bli_obj_buffer( alpha );
			double*  ap     = bli_obj_buffer( a );
			double*  bp     = bli_obj_buffer( b );
			double*  betap  = bli_obj_buffer( beta );
			double*  cp     = bli_obj_buffer( c );

			dgemm_( &f77_transa,
			        &f77_transb,
			        &mm,
			        &nn,
			        &kk,
			        alphap,
			        ap, &lda,
			        bp, &ldb,
			        betap,
			        cp, &ldc );
		}
		else if ( bli_is_scomplex( dt ) )
		{
			f77_int  mm     = bli_obj_length( c );
			f77_int  kk     = bli_obj_width_after_trans( a );
			f77_int  nn     = bli_obj_width( c );
			f77_int  lda    = bli_obj_col_stride( a );
			f77_int  ldb    = bli_obj_col_stride( b );
			f77_int  ldc    = bli_obj_col_stride( c );
			scomplex*  alphap = bli_obj_buffer( alpha );
			scomplex*  ap     = bli_obj_buffer( a );
			scomplex*  bp     = bli_obj_buffer( b );
			scomplex*  betap  = bli_obj_buffer( beta );
			scomplex*  cp     = bli_obj_buffer( c );

			cgemm_( &f77_transa,
			        &f77_transb,
			        &mm,
			        &nn,
			        &kk,
			        alphap,
			        ap, &lda,
			        bp, &ldb,
			        betap,
			        cp, &ldc );
		}
		else if ( bli_is_dcomplex( dt ) )
		{
			f77_int  mm     = bli_obj_length( c );
			f77_int  kk     = bli_obj_width_after_trans( a );
			f77_int  nn     = bli_obj_width( c );
			f77_int  lda    = bli_obj_col_stride( a );
			f77_int  ldb    = bli_obj_col_stride( b );
			f77_int  ldc    = bli_obj_col_stride( c );
			dcomplex*  alphap = bli_obj_buffer( alpha );
			dcomplex*  ap     = bli_obj_buffer( a );
			dcomplex*  bp     = bli_obj_buffer( b );
			dcomplex*  betap  = bli_obj_buffer( beta );
			dcomplex*  cp     = bli_obj_buffer( c );

			zgemm_( &f77_transa,
			//zgemm3m_( &f77_transa,
			        &f77_transb,
			        &mm,
			        &nn,
			        &kk,
			        alphap,
			        ap, &lda,
			        bp, &ldb,
			        betap,
			        cp, &ldc );
		}
#endif

#ifdef PRINT
			bli_printm( "c after", &c, "%4.1f", "" );
			exit(1);
#endif


			dtime_save = bli_clock_min_diff( dtime_save, dtime );
		}

		gflops = ( 2.0 * m * k * n ) / ( dtime_save * 1.0e9 );

		if ( bli_is_complex( dt ) ) gflops *= 4.0;

#ifdef BLIS
		printf( "data_%s_%cgemm_%s_blis", THR_STR, dt_ch, STR );
#else
		printf( "data_%s_%cgemm_%s",      THR_STR, dt_ch, STR );
#endif
		printf( "( %2lu, 1:5 ) = [ %4lu %4lu %4lu  %10.3e  %6.3f ];\n",
		        ( unsigned long )(p - p_begin + 1)/p_inc + 1,
		        ( unsigned long )m,
		        ( unsigned long )k,
		        ( unsigned long )n, dtime_save, gflops );

		bli_obj_free( &alpha );
		bli_obj_free( &beta );

		bli_obj_free( &a );
		bli_obj_free( &b );
		bli_obj_free( &c );
		bli_obj_free( &c_save );
	}

	bli_finalize();

	return 0;
}
コード例 #16
0
ファイル: test_trsm.c プロジェクト: flame/blis
int main( int argc, char** argv )
{
	obj_t    a, c;
	obj_t    c_save;
	obj_t    alpha;
	dim_t    m, n;
	dim_t    p;
	dim_t    p_begin, p_max, p_inc;
	int      m_input, n_input;
	ind_t    ind;
	num_t    dt;
	char     dt_ch;
	int      r, n_repeats;
	side_t   side;
	uplo_t   uploa;
	trans_t  transa;
	diag_t   diaga;
	f77_char f77_side;
	f77_char f77_uploa;
	f77_char f77_transa;
	f77_char f77_diaga;

	double   dtime;
	double   dtime_save;
	double   gflops;

	//bli_init();

	//bli_error_checking_level_set( BLIS_NO_ERROR_CHECKING );

	n_repeats = 3;

	dt      = DT;

	ind     = IND;

	p_begin = P_BEGIN;
	p_max   = P_MAX;
	p_inc   = P_INC;

	m_input = -1;
	n_input = -1;


	// Supress compiler warnings about unused variable 'ind'.
	( void )ind;

#if 0

	cntx_t* cntx;

	ind_t ind_mod = ind;

	// A hack to use 3m1 as 1mpb (with 1m as 1mbp).
	if ( ind == BLIS_3M1 ) ind_mod = BLIS_1M;

	// Initialize a context for the current induced method and datatype.
	cntx = bli_gks_query_ind_cntx( ind_mod, dt );

	// Set k to the kc blocksize for the current datatype.
	k_input = bli_cntx_get_blksz_def_dt( dt, BLIS_KC, cntx );

#elif 1

	//k_input = 256;

#endif

	// Choose the char corresponding to the requested datatype.
	if      ( bli_is_float( dt ) )    dt_ch = 's';
	else if ( bli_is_double( dt ) )   dt_ch = 'd';
	else if ( bli_is_scomplex( dt ) ) dt_ch = 'c';
	else                              dt_ch = 'z';

#if 0
	side   = BLIS_LEFT;
#else
	side   = BLIS_RIGHT;
#endif
#if 0
	uploa  = BLIS_LOWER;
#else
	uploa  = BLIS_UPPER;
#endif
	transa = BLIS_NO_TRANSPOSE;
	diaga  = BLIS_NONUNIT_DIAG;

	bli_param_map_blis_to_netlib_side( side, &f77_side );
	bli_param_map_blis_to_netlib_uplo( uploa, &f77_uploa );
	bli_param_map_blis_to_netlib_trans( transa, &f77_transa );
	bli_param_map_blis_to_netlib_diag( diaga, &f77_diaga );

	// Begin with initializing the last entry to zero so that
	// matlab allocates space for the entire array once up-front.
	for ( p = p_begin; p + p_inc <= p_max; p += p_inc ) ;

	printf( "data_%s_%ctrsm_%s", THR_STR, dt_ch, STR );
	printf( "( %2lu, 1:3 ) = [ %4lu %4lu %7.2f ];\n",
	        ( unsigned long )(p - p_begin + 1)/p_inc + 1,
	        ( unsigned long )0,
	        ( unsigned long )0, 0.0 );


	for ( p = p_begin; p <= p_max; p += p_inc )
	{

		if ( m_input < 0 ) m = p / ( dim_t )abs(m_input);
		else               m =     ( dim_t )    m_input;
		if ( n_input < 0 ) n = p / ( dim_t )abs(n_input);
		else               n =     ( dim_t )    n_input;

		bli_obj_create( dt, 1, 1, 0, 0, &alpha );

		if ( bli_is_left( side ) )
			bli_obj_create( dt, m, m, 0, 0, &a );
        else
			bli_obj_create( dt, n, n, 0, 0, &a );
		bli_obj_create( dt, m, n, 0, 0, &c );
		//bli_obj_create( dt, m, n, n, 1, &c );
		bli_obj_create( dt, m, n, 0, 0, &c_save );

		bli_randm( &a );
		bli_randm( &c );

		bli_obj_set_struc( BLIS_TRIANGULAR, &a );
		bli_obj_set_uplo( uploa, &a );
		bli_obj_set_conjtrans( transa, &a );
		bli_obj_set_diag( diaga, &a );

		bli_randm( &a );
		bli_mktrim( &a );

		// Load the diagonal of A to make it more likely to be invertible.
		bli_shiftd( &BLIS_TWO, &a );

		bli_setsc(  (2.0/1.0), 0.0, &alpha );

		bli_copym( &c, &c_save );
	
#if 0 //def BLIS
		bli_ind_disable_all_dt( dt );
		bli_ind_enable_dt( ind, dt );
#endif

		dtime_save = DBL_MAX;

		for ( r = 0; r < n_repeats; ++r )
		{
			bli_copym( &c_save, &c );

			dtime = bli_clock();

#ifdef PRINT
			bli_printm( "a", &a, "%4.1f", "" );
			bli_printm( "c", &c, "%4.1f", "" );
#endif

#ifdef BLIS

			bli_trsm( side,
			          &alpha,
			          &a,
			          &c );

#else

			if ( bli_is_float( dt ) )
			{
				f77_int   mm     = bli_obj_length( &c );
				f77_int   kk     = bli_obj_width( &c );
				f77_int   lda    = bli_obj_col_stride( &a );
				f77_int   ldc    = bli_obj_col_stride( &c );
				float*    alphap = ( float* )bli_obj_buffer( &alpha );
				float*    ap     = ( float* )bli_obj_buffer( &a );
				float*    cp     = ( float* )bli_obj_buffer( &c );

				strsm_( &f77_side,
						&f77_uploa,
						&f77_transa,
						&f77_diaga,
						&mm,
						&kk,
						alphap,
						ap, &lda,
						cp, &ldc );
			}
			else if ( bli_is_double( dt ) )
			{
				f77_int   mm     = bli_obj_length( &c );
				f77_int   kk     = bli_obj_width( &c );
				f77_int   lda    = bli_obj_col_stride( &a );
				f77_int   ldc    = bli_obj_col_stride( &c );
				double*   alphap = ( double* )bli_obj_buffer( &alpha );
				double*   ap     = ( double* )bli_obj_buffer( &a );
				double*   cp     = ( double* )bli_obj_buffer( &c );

				dtrsm_( &f77_side,
						&f77_uploa,
						&f77_transa,
						&f77_diaga,
						&mm,
						&kk,
						alphap,
						ap, &lda,
						cp, &ldc );
			}
			else if ( bli_is_scomplex( dt ) )
			{
				f77_int   mm     = bli_obj_length( &c );
				f77_int   kk     = bli_obj_width( &c );
				f77_int   lda    = bli_obj_col_stride( &a );
				f77_int   ldc    = bli_obj_col_stride( &c );
#ifdef EIGEN
				float*    alphap = ( float*    )bli_obj_buffer( &alpha );
				float*    ap     = ( float*    )bli_obj_buffer( &a );
				float*    cp     = ( float*    )bli_obj_buffer( &c );
#else
				scomplex* alphap = ( scomplex* )bli_obj_buffer( &alpha );
				scomplex* ap     = ( scomplex* )bli_obj_buffer( &a );
				scomplex* cp     = ( scomplex* )bli_obj_buffer( &c );
#endif

				ctrsm_( &f77_side,
						&f77_uploa,
						&f77_transa,
						&f77_diaga,
						&mm,
						&kk,
						alphap,
						ap, &lda,
						cp, &ldc );
			}
			else if ( bli_is_dcomplex( dt ) )
			{
				f77_int   mm     = bli_obj_length( &c );
				f77_int   kk     = bli_obj_width( &c );
				f77_int   lda    = bli_obj_col_stride( &a );
				f77_int   ldc    = bli_obj_col_stride( &c );
#ifdef EIGEN
				double*   alphap = ( double*   )bli_obj_buffer( &alpha );
				double*   ap     = ( double*   )bli_obj_buffer( &a );
				double*   cp     = ( double*   )bli_obj_buffer( &c );
#else
				dcomplex* alphap = ( dcomplex* )bli_obj_buffer( &alpha );
				dcomplex* ap     = ( dcomplex* )bli_obj_buffer( &a );
				dcomplex* cp     = ( dcomplex* )bli_obj_buffer( &c );
#endif

				ztrsm_( &f77_side,
						&f77_uploa,
						&f77_transa,
						&f77_diaga,
						&mm,
						&kk,
						alphap,
						ap, &lda,
						cp, &ldc );
			}
#endif

#ifdef PRINT
			bli_printm( "c after", &c, "%4.1f", "" );
			exit(1);
#endif

			dtime_save = bli_clock_min_diff( dtime_save, dtime );
		}

		if ( bli_is_left( side ) )
			gflops = ( 1.0 * m * m * n ) / ( dtime_save * 1.0e9 );
		else
			gflops = ( 1.0 * m * n * n ) / ( dtime_save * 1.0e9 );

		if ( bli_is_complex( dt ) ) gflops *= 4.0;

		printf( "data_%s_%ctrsm_%s", THR_STR, dt_ch, STR );
		printf( "( %2lu, 1:3 ) = [ %4lu %4lu %7.2f ];\n",
		        ( unsigned long )(p - p_begin + 1)/p_inc + 1,
		        ( unsigned long )m,
		        ( unsigned long )n, gflops );

		bli_obj_free( &alpha );

		bli_obj_free( &a );
		bli_obj_free( &c );
		bli_obj_free( &c_save );
	}

	//bli_finalize();

	return 0;
}
コード例 #17
0
ファイル: test_axpyf.c プロジェクト: elemental/blis
void libblis_test_axpyf_check( obj_t*  alpha,
                               obj_t*  a,
                               obj_t*  x,
                               obj_t*  y,
                               obj_t*  y_orig,
                               double* resid )
{
	num_t  dt      = bli_obj_datatype( *y );
	num_t  dt_real = bli_obj_datatype_proj_to_real( *y );

	dim_t  m       = bli_obj_vector_dim( *y );
	dim_t  b_n     = bli_obj_width( *a );

	dim_t  i;

	obj_t  a1, chi1, v;
	obj_t  alpha_chi1;
	obj_t  norm;

	double junk;

	//
	// Pre-conditions:
	// - a is randomized.
	// - x is randomized.
	// - y is randomized.
	// Note:
	// - alpha should have a non-zero imaginary component in the complex
	//   cases in order to more fully exercise the implementation.
	//
	// Under these conditions, we assume that the implementation for
	//
	//   y := y_orig + alpha * conja(A) * conjx(x)
	//
	// is functioning correctly if
	//
	//   normf( y - v )
	//
	// is negligible, where v contains y as computed by repeated calls to
	// axpyv.
	//

	bli_obj_scalar_init_detached( dt_real, &norm );
	bli_obj_scalar_init_detached( dt,      &alpha_chi1 );

	bli_obj_create( dt, m,   1, 0, 0, &v );

	bli_copyv( y_orig, &v );

	for ( i = 0; i < b_n; ++i )
	{
		bli_acquire_mpart_l2r( BLIS_SUBPART1, i, 1, a, &a1 );
		bli_acquire_vpart_f2b( BLIS_SUBPART1, i, 1, x, &chi1 );

		bli_copysc( &chi1, &alpha_chi1 );
		bli_mulsc( alpha, &alpha_chi1 );

		bli_axpyv( &alpha_chi1, &a1, &v );
	}

	bli_subv( y, &v );
	bli_normfv( &v, &norm );
	bli_getsc( &norm, resid, &junk );

	bli_obj_free( &v );
}
コード例 #18
0
ファイル: test_gemm.c プロジェクト: flame/blis
void libblis_test_gemm_md_check
     (
       test_params_t* params,
       obj_t*         alpha,
       obj_t*         a,
       obj_t*         b,
       obj_t*         beta,
       obj_t*         c,
       obj_t*         c_orig,
       double*        resid
     )
{
	num_t  dt_real = bli_obj_dt_proj_to_real( c );
	num_t  dt_comp = bli_obj_dt_proj_to_complex( c );
	num_t  dt;

	dim_t  m       = bli_obj_length( c );
	dim_t  n       = bli_obj_width( c );
	dim_t  k       = bli_obj_width_after_trans( a );

	obj_t  norm;
	obj_t  t, v, w, z;

	double junk;

	// Compute our reference checksum in the real domain if all operands
	// are real, and in the complex domain otherwise. Also implicit in this
	// is that we use the storage precision of C to determine the precision
	// in which we perform the reference checksum.
	if ( bli_obj_is_real( a ) &&
	     bli_obj_is_real( b ) &&
	     bli_obj_is_real( c ) ) dt = dt_real;
	else                        dt = dt_comp;

	// This function works in a manner similar to that of the function
	// libblis_test_gemm_check(), except that we project a, b, and c into
	// the complex domain (regardless of their storage datatype), and then
	// proceed with the checking accordingly.

	obj_t a2, b2, c2, c0;

	bli_obj_scalar_init_detached( dt_real, &norm );

	bli_obj_create( dt, n, 1, 0, 0, &t );
	bli_obj_create( dt, m, 1, 0, 0, &v );
	bli_obj_create( dt, k, 1, 0, 0, &w );
	bli_obj_create( dt, m, 1, 0, 0, &z );

	libblis_test_vobj_randomize( params, TRUE, &t );

	// We need to zero out the imaginary part of t in order for our
	// checks to work in all cases. Otherwise, the imaginary parts
	// could affect intermediate products, depending on the order that
	// they are executed.
	bli_setiv( &BLIS_ZERO, &t );

	// Create complex equivalents of a, b, c_orig, and c.
	bli_obj_create( dt, m, k, 0, 0, &a2 );
	bli_obj_create( dt, k, n, 0, 0, &b2 );
	bli_obj_create( dt, m, n, 0, 0, &c2 );
	bli_obj_create( dt, m, n, 0, 0, &c0 );

	// Cast a, b, c_orig, and c into the datatype of our temporary objects.
	bli_castm( a,      &a2 );
	bli_castm( b,      &b2 );
	bli_castm( c_orig, &c2 );
	bli_castm( c,      &c0 );

	bli_gemv( &BLIS_ONE, &c0, &t, &BLIS_ZERO, &v );

#if 0
if ( bli_obj_is_scomplex( c ) &&
     bli_obj_is_float( a ) &&
     bli_obj_is_float( b ) )
{
bli_printm( "test_gemm.c: a", a, "%7.3f", "" );
bli_printm( "test_gemm.c: b", b, "%7.3f", "" );
bli_printm( "test_gemm.c: c orig", c_orig, "%7.3f", "" );
bli_printm( "test_gemm.c: c computed", c, "%7.3f", "" );
}
#endif

#if 0
	bli_gemm( alpha, &a2, &b2, beta, &c2 );
	bli_gemv( &BLIS_ONE, &c2, &t, &BLIS_ZERO, &z );
	if ( bli_obj_is_real( c ) ) bli_setiv( &BLIS_ZERO, &z );
#else
	bli_gemv( &BLIS_ONE, &b2, &t, &BLIS_ZERO, &w );
	bli_gemv( alpha, &a2, &w, &BLIS_ZERO, &z );
	bli_gemv( beta, &c2, &t, &BLIS_ONE, &z );
	if ( bli_obj_is_real( c ) ) bli_setiv( &BLIS_ZERO, &z );
#endif

	bli_subv( &z, &v );
	bli_normfv( &v, &norm );
	bli_getsc( &norm, resid, &junk );

	bli_obj_free( &t );
	bli_obj_free( &v );
	bli_obj_free( &w );
	bli_obj_free( &z );

	bli_obj_free( &a2 );
	bli_obj_free( &b2 );
	bli_obj_free( &c2 );
	bli_obj_free( &c0 );
}
コード例 #19
0
ファイル: test_gemm_mpi.c プロジェクト: tlrmchlsmth/blis-mt
int main( int argc, char** argv )
{
	obj_t a, b, c;
	obj_t c_save;
	obj_t alpha, beta;
	dim_t m, n, k;
	dim_t p;
	dim_t p_begin, p_end, p_inc;
	int   m_input, n_input, k_input;
	num_t dt_a, dt_b, dt_c;
	num_t dt_alpha, dt_beta;
	int   r, n_repeats;

	double dtime;
	double dtime_save;
	double gflops;

    
    int world_size, world_rank, provided;
    MPI_Init_thread( NULL, NULL, MPI_THREAD_FUNNELED, &provided );
    MPI_Comm_size( MPI_COMM_WORLD, &world_size );
    MPI_Comm_rank( MPI_COMM_WORLD, &world_rank );

	bli_init();

	n_repeats = 3;

#ifndef PRINT
	p_begin = 16;
	p_end   = 2048;
	p_inc   = 16;

	m_input = 10240;
	n_input = 10240;
	k_input = -1;
#else
	p_begin = 24;
	p_end   = 24;
	p_inc   = 1;

	m_input = -1;
	k_input = -1;
	n_input = -1;
#endif

	dt_a = BLIS_DOUBLE;
	dt_b = BLIS_DOUBLE;
	dt_c = BLIS_DOUBLE;
	dt_alpha = BLIS_DOUBLE;
	dt_beta = BLIS_DOUBLE;

	for ( p = p_begin + world_rank * p_inc ; p <= p_end; p += p_inc * world_size )
	{

		if ( m_input < 0 ) m = p * ( dim_t )abs(m_input);
		else               m =     ( dim_t )    m_input;
		if ( n_input < 0 ) n = p * ( dim_t )abs(n_input);
		else               n =     ( dim_t )    n_input;
		if ( k_input < 0 ) k = p * ( dim_t )abs(k_input);
		else               k =     ( dim_t )    k_input;


		bli_obj_create( dt_alpha, 1, 1, 0, 0, &alpha );
		bli_obj_create( dt_beta,  1, 1, 0, 0, &beta );

		bli_obj_create( dt_a, m, k, 0, 0, &a );
		bli_obj_create( dt_b, k, n, 0, 0, &b );
		bli_obj_create( dt_c, m, n, 0, 0, &c );
		bli_obj_create( dt_c, m, n, 0, 0, &c_save );

		bli_randm( &a );
		bli_randm( &b );
		bli_randm( &c );


		bli_setsc(  (1.0/1.0), 0.0, &alpha );
		bli_setsc(  (1.0/1.0), 0.0, &beta );

		bli_copym( &c, &c_save );
	
		dtime_save = 1.0e9;

		for ( r = 0; r < n_repeats; ++r )
		{
			bli_copym( &c_save, &c );


			dtime = bli_clock();


#ifdef PRINT
			bli_printm( "a", &a, "%4.1f", "" );
			bli_printm( "b", &b, "%4.1f", "" );
			bli_printm( "c", &c, "%4.1f", "" );
#endif

#ifdef BLIS
			//bli_error_checking_level_set( BLIS_NO_ERROR_CHECKING );
            {
                bli_gemm( &alpha,
                          &a,
                          &b,
                          &beta,
                          &c );
            }

#else
			char    transa = 'N';
			char    transb = 'N';
			int     mm     = bli_obj_length( c );
			int     kk     = bli_obj_width_after_trans( a );
			int     nn     = bli_obj_width( c );
			int     lda    = bli_obj_col_stride( a );
			int     ldb    = bli_obj_col_stride( b );
			int     ldc    = bli_obj_col_stride( c );
			double* alphap = bli_obj_buffer( alpha );
			double* ap     = bli_obj_buffer( a );
			double* bp     = bli_obj_buffer( b );
			double* betap  = bli_obj_buffer( beta );
			double* cp     = bli_obj_buffer( c );

			dgemm_( &transa,
			        &transb,
			        &mm,
			        &nn,
			        &kk,
			        alphap,
			        ap, &lda,
			        bp, &ldb,
			        betap,
			        cp, &ldc );
            
#endif

#ifdef PRINT
			bli_printm( "c after", &c, "%4.1f", "" );
			exit(1);
#endif


			dtime_save = bli_clock_min_diff( dtime_save, dtime );
		}
		
        gflops = ( 2.0 * m * k * n ) / ( dtime_save * 1.0e9 );

        //if(world_rank == 0){
#ifdef BLIS
            printf( "data_gemm_blis" );
#else
            printf( "data_gemm_%s", BLAS );
#endif
            printf( "( %2ld, 1:5 ) = [ %4lu %4lu %4lu  %10.3e  %6.3f %d ];\n",
                    (p - p_begin + 1)/p_inc + 1, m, k, n, dtime_save, gflops, world_rank );
        //}
    
        bli_obj_free( &alpha );
        bli_obj_free( &beta );

        bli_obj_free( &a );
        bli_obj_free( &b );
        bli_obj_free( &c );
        bli_obj_free( &c_save );
	}

	bli_finalize();

    MPI_Finalize();

	return 0;
}
コード例 #20
0
ファイル: test_gemm.c プロジェクト: flame/blis
void libblis_test_gemm_check
     (
       test_params_t* params,
       obj_t*         alpha,
       obj_t*         a,
       obj_t*         b,
       obj_t*         beta,
       obj_t*         c,
       obj_t*         c_orig,
       double*        resid
     )
{
	num_t  dt      = bli_obj_dt( c );
	num_t  dt_real = bli_obj_dt_proj_to_real( c );

	dim_t  m       = bli_obj_length( c );
	dim_t  n       = bli_obj_width( c );
	dim_t  k       = bli_obj_width_after_trans( a );

	obj_t  norm;
	obj_t  t, v, w, z;

	double junk;

	//
	// Pre-conditions:
	// - a is randomized.
	// - b is randomized.
	// - c_orig is randomized.
	// Note:
	// - alpha and beta should have non-zero imaginary components in the
	//   complex cases in order to more fully exercise the implementation.
	//
	// Under these conditions, we assume that the implementation for
	//
	//   C := beta * C_orig + alpha * transa(A) * transb(B)
	//
	// is functioning correctly if
	//
	//   normf( v - z )
	//
	// is negligible, where
	//
	//   v = C * t
	//   z = ( beta * C_orig + alpha * transa(A) * transb(B) ) * t
	//     = beta * C_orig * t + alpha * transa(A) * transb(B) * t
	//     = beta * C_orig * t + alpha * transa(A) * w
	//     = beta * C_orig * t + z
	//

	bli_obj_scalar_init_detached( dt_real, &norm );

	bli_obj_create( dt, n, 1, 0, 0, &t );
	bli_obj_create( dt, m, 1, 0, 0, &v );
	bli_obj_create( dt, k, 1, 0, 0, &w );
	bli_obj_create( dt, m, 1, 0, 0, &z );

	libblis_test_vobj_randomize( params, TRUE, &t );

	bli_gemv( &BLIS_ONE, c, &t, &BLIS_ZERO, &v );

	bli_gemv( &BLIS_ONE, b, &t, &BLIS_ZERO, &w );
	bli_gemv( alpha, a, &w, &BLIS_ZERO, &z );
	bli_gemv( beta, c_orig, &t, &BLIS_ONE, &z );

	bli_subv( &z, &v );
	bli_normfv( &v, &norm );
	bli_getsc( &norm, resid, &junk );

	bli_obj_free( &t );
	bli_obj_free( &v );
	bli_obj_free( &w );
	bli_obj_free( &z );
}
コード例 #21
0
ファイル: test_trmm.c プロジェクト: tlrmchlsmth/blis-mt
int main( int argc, char** argv )
{
	obj_t a, b, c;
	obj_t c_save;
	obj_t alpha, beta;
	dim_t m, n;
	dim_t p;
	dim_t p_begin, p_end, p_inc;
	int   m_input, n_input;
	num_t dt_a, dt_b, dt_c;
	num_t dt_alpha, dt_beta;
	int   r, n_repeats;
	side_t side;
	uplo_t uplo;

	double dtime;
	double dtime_save;
	double gflops;

	bli_init();

	n_repeats = 3;

#ifndef PRINT
	p_begin = 40;
	p_end   = 2000;
	p_inc   = 40;

	m_input = -1;
	n_input = -1;
#else
	p_begin = 16;
	p_end   = 16;
	p_inc   = 1;

	m_input = 8;
	n_input = 4;
#endif

	dt_a = BLIS_DOUBLE;
	dt_b = BLIS_DOUBLE;
	dt_c = BLIS_DOUBLE;
	dt_alpha = BLIS_DOUBLE;
	dt_beta = BLIS_DOUBLE;

	side = BLIS_LEFT;
	//side = BLIS_RIGHT;

	uplo = BLIS_LOWER;

	for ( p = p_begin; p <= p_end; p += p_inc )
	{

		if ( m_input < 0 ) m = p * ( dim_t )abs(m_input);
		else               m =     ( dim_t )    m_input;
		if ( n_input < 0 ) n = p * ( dim_t )abs(n_input);
		else               n =     ( dim_t )    n_input;


		bli_obj_create( dt_alpha, 1, 1, 0, 0, &alpha );
		bli_obj_create( dt_beta,  1, 1, 0, 0, &beta );

		if ( bli_is_left( side ) )
			bli_obj_create( dt_a, m, m, 0, 0, &a );
		else
			bli_obj_create( dt_a, n, n, 0, 0, &a );
		bli_obj_create( dt_b, m, n, 0, 0, &b );
		bli_obj_create( dt_c, m, n, 0, 0, &c );
		bli_obj_create( dt_c, m, n, 0, 0, &c_save );

		bli_obj_set_struc( BLIS_TRIANGULAR, a );
		bli_obj_set_uplo( uplo, a );

		bli_randm( &a );
		bli_randm( &c );
		bli_randm( &b );


		bli_setsc(  (2.0/1.0), 0.0, &alpha );
		bli_setsc( -(1.0/1.0), 0.0, &beta );


		bli_copym( &c, &c_save );
	
		dtime_save = 1.0e9;

		for ( r = 0; r < n_repeats; ++r )
		{
			bli_copym( &c_save, &c );

			dtime = bli_clock();


#ifdef PRINT
			bli_printm( "a", &a, "%11.8f", "" );
			bli_printm( "c", &c, "%14.11f", "" );
#endif

#ifdef BLIS
			//bli_error_checking_level_set( BLIS_NO_ERROR_CHECKING );

			bli_trmm( side,
			          &alpha,
			          &a,
			          &c );

#else

			f77_char side   = 'L';
			f77_char uplo   = 'L';
			f77_char transa = 'N';
			f77_char diag   = 'N';
			f77_int  mm     = bli_obj_length( c );
			f77_int  nn     = bli_obj_width( c );
			f77_int  lda    = bli_obj_col_stride( a );
			f77_int  ldc    = bli_obj_col_stride( c );
			double*  alphap = bli_obj_buffer( alpha );
			double*  ap     = bli_obj_buffer( a );
			double*  cp     = bli_obj_buffer( c );

			dtrmm_( &side,
			        &uplo,
			        &transa,
			        &diag,
			        &mm,
			        &nn,
			        alphap,
			        ap, &lda,
			        cp, &ldc );
#endif

#ifdef PRINT
			bli_printm( "c after", &c, "%14.11f", "" );
			exit(1);
#endif



			dtime_save = bli_clock_min_diff( dtime_save, dtime );
		}

		if ( bli_is_left( side ) )
			gflops = ( 1.0 * m * m * n ) / ( dtime_save * 1.0e9 );
		else
			gflops = ( 1.0 * m * n * n ) / ( dtime_save * 1.0e9 );

#ifdef BLIS
		printf( "data_trmm_blis" );
#else
		printf( "data_trmm_%s", BLAS );
#endif
		printf( "( %2lu, 1:4 ) = [ %4lu %4lu  %10.3e  %6.3f ];\n",
		        ( unsigned long )(p - p_begin + 1)/p_inc + 1,
		        ( unsigned long )m,
		        ( unsigned long )n, dtime_save, gflops );


		bli_obj_free( &alpha );
		bli_obj_free( &beta );

		bli_obj_free( &a );
		bli_obj_free( &b );
		bli_obj_free( &c );
		bli_obj_free( &c_save );
	}

	bli_finalize();

	return 0;
}
コード例 #22
0
ファイル: test_trmm3.c プロジェクト: audiofilter/blis
void libblis_test_trmm3_check( side_t  side,
                               obj_t*  alpha,
                               obj_t*  a,
                               obj_t*  b,
                               obj_t*  beta,
                               obj_t*  c,
                               obj_t*  c_orig,
                               double* resid )
{
	num_t  dt      = bli_obj_datatype( *c );
	num_t  dt_real = bli_obj_datatype_proj_to_real( *c );

	dim_t  m       = bli_obj_length( *c );
	dim_t  n       = bli_obj_width( *c );

	obj_t  kappa, norm;
	obj_t  t, v, w, z;

	double junk;

	//
	// Pre-conditions:
	// - a is randomized and triangular.
	// - b is randomized.
	// - c_orig is randomized.
	// Note:
	// - alpha and beta should have non-zero imaginary components in the
	//   complex cases in order to more fully exercise the implementation.
	//
	// Under these conditions, we assume that the implementation for
	//
	//   C := beta * C_orig + alpha * transa(A) * transb(B)    (side = left)
	//   C := beta * C_orig + alpha * transb(B) * transa(A)    (side = right)
	//
	// is functioning correctly if
	//
	//   fnorm( v - z )
	//
	// is negligible, where
	//
	//   v = C * t
	//
	//   z = ( beta * C_orig + alpha * transa(A) * transb(B) ) * t     (side = left)
	//     = beta * C_orig * t + alpha * transa(A) * transb(B) * t
	//     = beta * C_orig * t + alpha * transa(A) * w
	//     = beta * C_orig * t + z
	//
	//   z = ( beta * C_orig + alpha * transb(B) * transa(A) ) * t     (side = right)
	//     = beta * C_orig * t + alpha * transb(B) * transa(A) * t
	//     = beta * C_orig * t + alpha * transb(B) * w
	//     = beta * C_orig * t + z

	bli_obj_scalar_init_detached( dt,      &kappa );
	bli_obj_scalar_init_detached( dt_real, &norm );

	if ( bli_is_left( side ) )
	{
		bli_obj_create( dt, n, 1, 0, 0, &t );
		bli_obj_create( dt, m, 1, 0, 0, &v );
		bli_obj_create( dt, m, 1, 0, 0, &w );
		bli_obj_create( dt, m, 1, 0, 0, &z );
	}
	else // else if ( bli_is_left( side ) )
	{
		bli_obj_create( dt, n, 1, 0, 0, &t );
		bli_obj_create( dt, m, 1, 0, 0, &v );
		bli_obj_create( dt, n, 1, 0, 0, &w );
		bli_obj_create( dt, m, 1, 0, 0, &z );
	}

	bli_randv( &t );
	bli_setsc( 1.0/( double )n, 0.0, &kappa );
	bli_scalv( &kappa, &t );

	bli_gemv( &BLIS_ONE, c, &t, &BLIS_ZERO, &v );

	if ( bli_is_left( side ) )
	{
		bli_gemv( &BLIS_ONE, b, &t, &BLIS_ZERO, &w );
		bli_trmv( alpha, a, &w );
		bli_copyv( &w, &z );
	}
	else
	{
		bli_copyv( &t, &w );
		bli_trmv( &BLIS_ONE, a, &w );
		bli_gemv( alpha, b, &w, &BLIS_ZERO, &z );
	}

	bli_gemv( beta, c_orig, &t, &BLIS_ONE, &z );
	
	bli_subv( &z, &v );
	bli_fnormv( &v, &norm );
	bli_getsc( &norm, resid, &junk );

	bli_obj_free( &t );
	bli_obj_free( &v );
	bli_obj_free( &w );
	bli_obj_free( &z );
}
コード例 #23
0
ファイル: test_trsm.c プロジェクト: figual/blis
int main( int argc, char** argv )
{
	obj_t a, b, c;
	obj_t c_save;
	obj_t alpha, beta;
	dim_t m, n;
	dim_t p;
	dim_t p_begin, p_end, p_inc;
	int   m_input, n_input;
	num_t dt_a, dt_b, dt_c;
	num_t dt_alpha, dt_beta;
	int   r, n_repeats;
	side_t side;
	uplo_t uplo;

	double dtime;
	double dtime_save;
	double gflops;

	bli_init();

	n_repeats = 3;

    if( argc < 7 ) 
    {   
        printf("Usage:\n");
        printf("test_foo.x m n k p_begin p_inc p_end:\n");
        exit;
    }   

    int world_size, world_rank, provided;
    MPI_Init_thread( NULL, NULL, MPI_THREAD_FUNNELED, &provided );
    MPI_Comm_size( MPI_COMM_WORLD, &world_size );
    MPI_Comm_rank( MPI_COMM_WORLD, &world_rank );

    m_input = strtol( argv[1], NULL, 10 );
    n_input = strtol( argv[2], NULL, 10 );
    p_begin = strtol( argv[4], NULL, 10 );
    p_inc   = strtol( argv[5], NULL, 10 );
    p_end   = strtol( argv[6], NULL, 10 );

#if 1
	dt_a = BLIS_DOUBLE;
	dt_b = BLIS_DOUBLE;
	dt_c = BLIS_DOUBLE;
	dt_alpha = BLIS_DOUBLE;
	dt_beta = BLIS_DOUBLE;
#else
	dt_a = dt_b = dt_c = dt_alpha = dt_beta = BLIS_FLOAT; 
	//dt_a = dt_b = dt_c = dt_alpha = dt_beta = BLIS_SCOMPLEX; 
#endif

	side = BLIS_LEFT;
	//side = BLIS_RIGHT;

	uplo = BLIS_LOWER;
	//uplo = BLIS_UPPER;

    for ( p = p_begin + world_rank * p_inc; p <= p_end; p += p_inc * world_size )
	{

		if ( m_input < 0 ) m = p * ( dim_t )abs(m_input);
		else               m =     ( dim_t )    m_input;
		if ( n_input < 0 ) n = p * ( dim_t )abs(n_input);
		else               n =     ( dim_t )    n_input;


		bli_obj_create( dt_alpha, 1, 1, 0, 0, &alpha );
		bli_obj_create( dt_beta,  1, 1, 0, 0, &beta );

		if ( bli_is_left( side ) )
			bli_obj_create( dt_a, m, m, 0, 0, &a );
		else
			bli_obj_create( dt_a, n, n, 0, 0, &a );
		bli_obj_create( dt_b, m, n, 0, 0, &b );
		bli_obj_create( dt_c, m, n, 0, 0, &c );
		bli_obj_create( dt_c, m, n, 0, 0, &c_save );

		bli_obj_set_struc( BLIS_TRIANGULAR, &a );
		bli_obj_set_uplo( uplo, &a );
		//bli_obj_set_diag( BLIS_UNIT_DIAG, &a );

		bli_randm( &a );
		bli_randm( &c );
		bli_randm( &b );

/*
		{ 
			obj_t a2;

			bli_obj_alias_to( &a, &a2 );
			bli_obj_toggle_uplo( &a2 );
			bli_obj_inc_diag_offset( 1, &a2 );
			bli_setm( &BLIS_ZERO, &a2 );
			bli_obj_inc_diag_offset( -2, &a2 );
			bli_obj_toggle_uplo( &a2 );
			bli_obj_set_diag( BLIS_NONUNIT_DIAG, &a2 );
			bli_scalm( &BLIS_TWO, &a2 );
			//bli_scalm( &BLIS_TWO, &a );
		} 
*/

		bli_setsc(  (2.0/1.0), 0.0, &alpha );
		bli_setsc(  (1.0/1.0), 0.0, &beta );


		bli_copym( &c, &c_save );
	
		dtime_save = 1.0e9;

		for ( r = 0; r < n_repeats; ++r )
		{
			bli_copym( &c_save, &c );

			dtime = bli_clock();


#ifdef PRINT
/*
			obj_t ar, ai;
			bli_obj_alias_to( &a, &ar );
			bli_obj_alias_to( &a, &ai );
			bli_obj_set_dt( BLIS_DOUBLE, &ar ); ar.rs *= 2; ar.cs *= 2;
			bli_obj_set_dt( BLIS_DOUBLE, &ai ); ai.rs *= 2; ai.cs *= 2; ai.buffer = ( double* )ai.buffer + 1;

			bli_printm( "ar", &ar, "%4.1f", "" );
			bli_printm( "ai", &ai, "%4.1f", "" );
*/

			bli_invertd( &a );
			bli_printm( "a", &a, "%4.1f", "" );
			bli_invertd( &a );
			bli_printm( "c", &c, "%4.1f", "" );
#endif

#ifdef BLIS
			//bli_error_checking_level_set( BLIS_NO_ERROR_CHECKING );

			bli_trsm( side,
			//bli_trsm4m( side,
			//bli_trsm3m( side,
			          &alpha,
			          &a,
			          &c );
#else

		if ( bli_is_real( dt_a ) )
		{
			f77_char side   = 'L';
			f77_char uplo   = 'L';
			f77_char transa = 'N';
			f77_char diag   = 'N';
			f77_int  mm     = bli_obj_length( &c );
			f77_int  nn     = bli_obj_width( &c );
			f77_int  lda    = bli_obj_col_stride( &a );
			f77_int  ldc    = bli_obj_col_stride( &c );
			float *  alphap = bli_obj_buffer( &alpha );
			float *  ap     = bli_obj_buffer( &a );
			float *  cp     = bli_obj_buffer( &c );

			strsm_( &side,
			        &uplo,
			        &transa,
			        &diag,
			        &mm,
			        &nn,
			        alphap,
			        ap, &lda,
			        cp, &ldc );
		}
		else // if ( bli_is_complex( dt_a ) )
		{
			f77_char  side   = 'L';
			f77_char  uplo   = 'L';
			f77_char  transa = 'N';
			f77_char  diag   = 'N';
			f77_int   mm     = bli_obj_length( &c );
			f77_int   nn     = bli_obj_width( &c );
			f77_int   lda    = bli_obj_col_stride( &a );
			f77_int   ldc    = bli_obj_col_stride( &c );
			scomplex* alphap = bli_obj_buffer( &alpha );
			scomplex* ap     = bli_obj_buffer( &a );
			scomplex* cp     = bli_obj_buffer( &c );

			ctrsm_( &side,
			//ztrsm_( &side,
			        &uplo,
			        &transa,
			        &diag,
			        &mm,
			        &nn,
			        alphap,
			        ap, &lda,
			        cp, &ldc );
		}
		
#endif

#ifdef PRINT
			bli_printm( "c after", &c, "%4.1f", "" );
			exit(1);
#endif


			dtime_save = bli_clock_min_diff( dtime_save, dtime );
		}

		if ( bli_is_left( side ) )
			gflops = ( 1.0 * m * m * n ) / ( dtime_save * 1.0e9 );
		else
			gflops = ( 1.0 * m * n * n ) / ( dtime_save * 1.0e9 );

		if ( bli_is_complex( dt_a ) ) gflops *= 4.0;

#ifdef BLIS
		printf( "data_trsm_blis" );
#else
		printf( "data_trsm_%s", BLAS );
#endif
		printf( "( %2lu, 1:4 ) = [ %4lu %4lu  %10.3e  %6.3f ];\n",
		        ( unsigned long )(p - p_begin + 1)/p_inc + 1,
		        ( unsigned long )m,
		        ( unsigned long )n, dtime_save, gflops );


		bli_obj_free( &alpha );
		bli_obj_free( &beta );

		bli_obj_free( &a );
		bli_obj_free( &b );
		bli_obj_free( &c );
		bli_obj_free( &c_save );
	}

	bli_finalize();

	return 0;
}
コード例 #24
0
ファイル: test_her.c プロジェクト: ShawnLess/blis
void libblis_test_her_check( obj_t*  alpha,
                             obj_t*  x,
                             obj_t*  a,
                             obj_t*  a_orig,
                             double* resid )
{
	num_t  dt      = bli_obj_datatype( *a );
	num_t  dt_real = bli_obj_datatype_proj_to_real( *a );

	dim_t  m_a     = bli_obj_length( *a );

	obj_t  xh, t, v, w;
	obj_t  tau, rho, norm;

	double junk;

	//
	// Pre-conditions:
	// - x is randomized.
	// - a is randomized and Hermitian.
	// Note:
	// - alpha must be real-valued.
	//
	// Under these conditions, we assume that the implementation for
	//
	//   A := A_orig + alpha * conjx(x) * conjx(x)^H
	//
	// is functioning correctly if
	//
	//   normf( v - w )
	//
	// is negligible, where
	//
	//   v = A * t
	//   w = ( A_orig + alpha * conjx(x) * conjx(x)^H ) * t
	//     =   A_orig * t + alpha * conjx(x) * conjx(x)^H * t
	//     =   A_orig * t + alpha * conjx(x) * rho
	//     =   A_orig * t + w
	//

	bli_mkherm( a );
	bli_mkherm( a_orig );
	bli_obj_set_struc( BLIS_GENERAL, *a );
	bli_obj_set_struc( BLIS_GENERAL, *a_orig );
	bli_obj_set_uplo( BLIS_DENSE, *a );
	bli_obj_set_uplo( BLIS_DENSE, *a_orig );

	bli_obj_scalar_init_detached( dt,      &tau );
	bli_obj_scalar_init_detached( dt,      &rho );
	bli_obj_scalar_init_detached( dt_real, &norm );

	bli_obj_create( dt, m_a, 1, 0, 0, &t );
	bli_obj_create( dt, m_a, 1, 0, 0, &v );
	bli_obj_create( dt, m_a, 1, 0, 0, &w );

	bli_obj_alias_with_conj( BLIS_CONJUGATE, *x, xh );

	bli_setsc( 1.0/( double )m_a, -1.0/( double )m_a, &tau );
	bli_setv( &tau, &t );

	bli_gemv( &BLIS_ONE, a, &t, &BLIS_ZERO, &v );

	bli_dotv( &xh, &t, &rho );
	bli_mulsc( alpha, &rho );
	bli_scal2v( &rho, x, &w );
	bli_gemv( &BLIS_ONE, a_orig, &t, &BLIS_ONE, &w );

	bli_subv( &w, &v );
	bli_normfv( &v, &norm );
	bli_getsc( &norm, resid, &junk );

	bli_obj_free( &t );
	bli_obj_free( &v );
	bli_obj_free( &w );
}
コード例 #25
0
void libblis_test_dotxaxpyf_check
     (
       test_params_t* params,
       obj_t*         alpha,
       obj_t*         at,
       obj_t*         a,
       obj_t*         w,
       obj_t*         x,
       obj_t*         beta,
       obj_t*         y,
       obj_t*         z,
       obj_t*         y_orig,
       obj_t*         z_orig,
       double*        resid
     )
{
	num_t  dt      = bli_obj_datatype( *y );
	num_t  dt_real = bli_obj_datatype_proj_to_real( *y );

	dim_t  m       = bli_obj_vector_dim( *z );
	dim_t  b_n     = bli_obj_vector_dim( *y );

	dim_t  i;

	obj_t  a1, chi1, psi1, v, q;
	obj_t  alpha_chi1;
	obj_t  norm;

	double resid1, resid2;
	double junk;

	//
	// Pre-conditions:
	// - a is randomized.
	// - w is randomized.
	// - x is randomized.
	// - y is randomized.
	// - z is randomized.
	// - at is an alias to a.
	// Note:
	// - alpha and beta should have a non-zero imaginary component in the
	//   complex cases in order to more fully exercise the implementation.
	//
	// Under these conditions, we assume that the implementation for
	//
	//   y := beta * y_orig + alpha * conjat(A^T) * conjw(w)
	//   z :=        z_orig + alpha * conja(A)    * conjx(x)
	//
	// is functioning correctly if
	//
	//   normf( y - v )
	//
	// and
	//
	//   normf( z - q )
	//
	// are negligible, where v and q contain y and z as computed by repeated
	// calls to dotxv and axpyv, respectively.
	//

	bli_obj_scalar_init_detached( dt_real, &norm );
	bli_obj_scalar_init_detached( dt,      &alpha_chi1 );

	bli_obj_create( dt, b_n, 1, 0, 0, &v );
	bli_obj_create( dt, m,   1, 0, 0, &q );

	bli_copyv( y_orig, &v );
	bli_copyv( z_orig, &q );

	// v := beta * v + alpha * conjat(at) * conjw(w)
	for ( i = 0; i < b_n; ++i )
	{
		bli_acquire_mpart_l2r( BLIS_SUBPART1, i, 1, at, &a1 );
		bli_acquire_vpart_f2b( BLIS_SUBPART1, i, 1, &v, &psi1 );

		bli_dotxv( alpha, &a1, w, beta, &psi1 );
	}

	// q := q + alpha * conja(a) * conjx(x)
	for ( i = 0; i < b_n; ++i )
	{
		bli_acquire_mpart_l2r( BLIS_SUBPART1, i, 1, a, &a1 );
		bli_acquire_vpart_f2b( BLIS_SUBPART1, i, 1, x, &chi1 );

		bli_copysc( &chi1, &alpha_chi1 );
		bli_mulsc( alpha, &alpha_chi1 );

		bli_axpyv( &alpha_chi1, &a1, &q );
	}


	bli_subv( y, &v );
	bli_normfv( &v, &norm );
	bli_getsc( &norm, &resid1, &junk );

	bli_subv( z, &q );
	bli_normfv( &q, &norm );
	bli_getsc( &norm, &resid2, &junk );


	*resid = bli_fmaxabs( resid1, resid2 );

	bli_obj_free( &v );
	bli_obj_free( &q );
}
コード例 #26
0
ファイル: test_ger.c プロジェクト: jeffhammond/blis
int main( int argc, char** argv )
{
	obj_t a, x, y;
	obj_t a_save;
	obj_t alpha;
	dim_t m, n;
	dim_t p;
	dim_t p_begin, p_end, p_inc;
	int   m_input, n_input;
	num_t dt_a, dt_x, dt_y;
	num_t dt_alpha;
	int   r, n_repeats;

	double dtime;
	double dtime_save;
	double gflops;

	bli_init();

	n_repeats = 3;

#ifndef PRINT
	p_begin = 40;
	p_end   = 2000;
	p_inc   = 40;

	m_input = -1;
	n_input = -1;
#else
	p_begin = 16;
	p_end   = 16;
	p_inc   = 1;

	m_input = 15;
	n_input = 15;
#endif

	dt_alpha = dt_x = dt_y = dt_a = BLIS_DOUBLE;

	for ( p = p_begin; p <= p_end; p += p_inc )
	{

		if ( m_input < 0 ) m = p * ( dim_t )abs(m_input);
		else               m =     ( dim_t )    m_input;
		if ( n_input < 0 ) n = p * ( dim_t )abs(n_input);
		else               n =     ( dim_t )    n_input;


		bli_obj_create( dt_alpha, 1, 1, 0, 0, &alpha );

		bli_obj_create( dt_x, m, 1, 0, 0, &x );
		bli_obj_create( dt_y, n, 1, 0, 0, &y );
		bli_obj_create( dt_a, m, n, 0, 0, &a );
		bli_obj_create( dt_a, m, n, 0, 0, &a_save );

		bli_randm( &x );
		bli_randm( &y );
		bli_randm( &a );


		bli_setsc(  (2.0/1.0), 0.0, &alpha );


		bli_copym( &a, &a_save );
	
		dtime_save = DBL_MAX;

		for ( r = 0; r < n_repeats; ++r )
		{
			bli_copym( &a_save, &a );


			dtime = bli_clock();

#ifdef PRINT
			bli_printm( "x", &x, "%4.1f", "" );
			bli_printm( "y", &y, "%4.1f", "" );
			bli_printm( "a", &a, "%4.1f", "" );
#endif

#ifdef BLIS

			bli_ger( &alpha,
			         &x,
			         &y,
			         &a );
#else

			f77_int  mm     = bli_obj_length( a );
			f77_int  nn     = bli_obj_width( a );
			f77_int  incx   = bli_obj_vector_inc( x );
			f77_int  incy   = bli_obj_vector_inc( y );
			f77_int  lda    = bli_obj_col_stride( a );
			double*  alphap = bli_obj_buffer( alpha );
			double*  xp     = bli_obj_buffer( x );
			double*  yp     = bli_obj_buffer( y );
			double*  ap     = bli_obj_buffer( a );

			dger_( &mm,
			       &nn,
			       alphap,
			       xp, &incx,
			       yp, &incy,
			       ap, &lda );
#endif

#ifdef PRINT
			bli_printm( "a after", &a, "%4.1f", "" );
			exit(1);
#endif


			dtime_save = bli_clock_min_diff( dtime_save, dtime );
		}

		gflops = ( 2.0 * m * n ) / ( dtime_save * 1.0e9 );

#ifdef BLIS
		printf( "data_ger_blis" );
#else
		printf( "data_ger_%s", BLAS );
#endif
		printf( "( %2lu, 1:4 ) = [ %4lu %4lu  %10.3e  %6.3f ];\n",
		        ( unsigned long )(p - p_begin + 1)/p_inc + 1,
		        ( unsigned long )m,
		        ( unsigned long )n, dtime_save, gflops );

		bli_obj_free( &alpha );

		bli_obj_free( &x );
		bli_obj_free( &y );
		bli_obj_free( &a );
		bli_obj_free( &a_save );
	}

	bli_finalize();

	return 0;
}
コード例 #27
0
ファイル: test_trsm.c プロジェクト: santanu-thangaraj/blis
void libblis_test_trsm_check
     (
       test_params_t* params,
       side_t         side,
       obj_t*         alpha,
       obj_t*         a,
       obj_t*         b,
       obj_t*         b_orig,
       double*        resid
     )
{
	num_t  dt      = bli_obj_datatype( *b );
	num_t  dt_real = bli_obj_datatype_proj_to_real( *b );

	dim_t  m       = bli_obj_length( *b );
	dim_t  n       = bli_obj_width( *b );

	obj_t  norm;
	obj_t  t, v, w, z;

	double junk;

	//
	// Pre-conditions:
	// - a is randomized and triangular.
	// - b_orig is randomized.
	// Note:
	// - alpha should have a non-zero imaginary component in the
	//   complex cases in order to more fully exercise the implementation.
	//
	// Under these conditions, we assume that the implementation for
	//
	//   B := alpha * inv(transa(A)) * B_orig    (side = left)
	//   B := alpha * B_orig * inv(transa(A))    (side = right)
	//
	// is functioning correctly if
	//
	//   normf( v - z )
	//
	// is negligible, where
	//
	//   v = B * t
	//
	//   z = ( alpha * inv(transa(A)) * B ) * t     (side = left)
	//     = alpha * inv(transa(A)) * B * t
	//     = alpha * inv(transa(A)) * w
	//
	//   z = ( alpha * B * inv(transa(A)) ) * t     (side = right)
	//     = alpha * B * tinv(ransa(A)) * t
	//     = alpha * B * w

	bli_obj_scalar_init_detached( dt_real, &norm );

	if ( bli_is_left( side ) )
	{
		bli_obj_create( dt, n, 1, 0, 0, &t );
		bli_obj_create( dt, m, 1, 0, 0, &v );
		bli_obj_create( dt, m, 1, 0, 0, &w );
		bli_obj_create( dt, m, 1, 0, 0, &z );
	}
	else // else if ( bli_is_left( side ) )
	{
		bli_obj_create( dt, n, 1, 0, 0, &t );
		bli_obj_create( dt, m, 1, 0, 0, &v );
		bli_obj_create( dt, n, 1, 0, 0, &w );
		bli_obj_create( dt, m, 1, 0, 0, &z );
	}

	libblis_test_vobj_randomize( params, TRUE, &t );

	bli_gemv( &BLIS_ONE, b, &t, &BLIS_ZERO, &v );

	if ( bli_is_left( side ) )
	{
		bli_gemv( alpha, b_orig, &t, &BLIS_ZERO, &w );
		bli_trsv( &BLIS_ONE, a, &w );
		bli_copyv( &w, &z );
	}
	else
	{
		bli_copyv( &t, &w );
		bli_trsv( &BLIS_ONE, a, &w );
		bli_gemv( alpha, b_orig, &w, &BLIS_ZERO, &z );
	}

	bli_subv( &z, &v );
	bli_normfv( &v, &norm );
	bli_getsc( &norm, resid, &junk );

	bli_obj_free( &t );
	bli_obj_free( &v );
	bli_obj_free( &w );
	bli_obj_free( &z );
}
コード例 #28
0
ファイル: test_her2k.c プロジェクト: jeffhammond/blis
void libblis_test_her2k_check
     (
       test_params_t* params,
       obj_t*         alpha,
       obj_t*         a,
       obj_t*         b,
       obj_t*         beta,
       obj_t*         c,
       obj_t*         c_orig,
       double*        resid
     )
{
	num_t  dt      = bli_obj_datatype( *c );
	num_t  dt_real = bli_obj_datatype_proj_to_real( *c );

	dim_t  m       = bli_obj_length( *c );
	dim_t  k       = bli_obj_width_after_trans( *a );

	obj_t  alphac, ah, bh;
	obj_t  norm;
	obj_t  t, v, w1, w2, z;

	double junk;

	//
	// Pre-conditions:
	// - a is randomized.
	// - b is randomized.
	// - c_orig is randomized and Hermitian.
	// Note:
	// - alpha should have a non-zero imaginary component in the
	//   complex cases in order to more fully exercise the implementation.
	// - beta must be real-valued.
	//
	// Under these conditions, we assume that the implementation for
	//
	//   C := beta * C_orig + alpha * transa(A) * transb(B)^H + conj(alpha) * transb(B) * transa(A)^H
	//
	// is functioning correctly if
	//
	//   normf( v - z )
	//
	// is negligible, where
	//
	//   v = C * t
	//   z = ( beta * C_orig + alpha * transa(A) * transb(B)^H + conj(alpha) * transb(B) * transa(A)^H ) * t
	//     = beta * C_orig * t + alpha * transa(A) * transb(B)^H * t + conj(alpha) * transb(B) * transa(A)^H * t
	//     = beta * C_orig * t + alpha * transa(A) * transb(B)^H * t + conj(alpha) * transb(B) * w2
	//     = beta * C_orig * t + alpha * transa(A) * w1              + conj(alpha) * transb(B) * w2
	//     = beta * C_orig * t + alpha * transa(A) * w1              + z
	//     = beta * C_orig * t + z
	//

	bli_obj_alias_with_trans( BLIS_CONJ_TRANSPOSE, *a, ah );
	bli_obj_alias_with_trans( BLIS_CONJ_TRANSPOSE, *b, bh );

	bli_obj_scalar_init_detached( dt_real, &norm );
	bli_obj_scalar_init_detached_copy_of( dt, BLIS_CONJUGATE, alpha, &alphac );

	bli_obj_create( dt, m, 1, 0, 0, &t );
	bli_obj_create( dt, m, 1, 0, 0, &v );
	bli_obj_create( dt, k, 1, 0, 0, &w1 );
	bli_obj_create( dt, k, 1, 0, 0, &w2 );
	bli_obj_create( dt, m, 1, 0, 0, &z );

	libblis_test_vobj_randomize( params, TRUE, &t );

	bli_hemv( &BLIS_ONE, c, &t, &BLIS_ZERO, &v );

	bli_gemv( &BLIS_ONE, &ah, &t, &BLIS_ZERO, &w2 );
	bli_gemv( &BLIS_ONE, &bh, &t, &BLIS_ZERO, &w1 );
	bli_gemv( alpha, a, &w1, &BLIS_ZERO, &z );
	bli_gemv( &alphac, b, &w2, &BLIS_ONE, &z );
	bli_hemv( beta, c_orig, &t, &BLIS_ONE, &z );

	bli_subv( &z, &v );
	bli_normfv( &v, &norm );
	bli_getsc( &norm, resid, &junk );

	bli_obj_free( &t );
	bli_obj_free( &v );
	bli_obj_free( &w1 );
	bli_obj_free( &w2 );
	bli_obj_free( &z );
}
コード例 #29
0
ファイル: test_trmv.c プロジェクト: tlrmchlsmth/blis-mt
void libblis_test_trmv_check( obj_t*  alpha,
                              obj_t*  a,
                              obj_t*  x,
                              obj_t*  x_orig,
                              double* resid )
{
	num_t   dt      = bli_obj_datatype( *x );
	num_t   dt_real = bli_obj_datatype_proj_to_real( *x );

	dim_t   m       = bli_obj_vector_dim( *x );

	uplo_t  uploa   = bli_obj_uplo( *a );
	trans_t transa  = bli_obj_conjtrans_status( *a );

	obj_t   a_local, y;
	obj_t   norm;

	double  junk;

	//
	// Pre-conditions:
	// - a is randomized and triangular.
	// - x is randomized.
	// Note:
	// - alpha should have a non-zero imaginary component in the
	//   complex cases in order to more fully exercise the implementation.
	//
	// Under these conditions, we assume that the implementation for
	//
	//   x := alpha * transa(A) * x_orig
	//
	// is functioning correctly if
	//
	//   fnorm( y - x )
	//
	// is negligible, where
	//
	//   y = alpha * conja(A_dense) * x_orig
	//

	bli_obj_init_scalar( dt_real, &norm );

	bli_obj_create( dt, m, 1, 0, 0, &y );
	bli_obj_create( dt, m, m, 0, 0, &a_local );

	bli_obj_set_struc( BLIS_TRIANGULAR, a_local );
	bli_obj_set_uplo( uploa, a_local );
	bli_obj_toggle_uplo_if_trans( transa, a_local );
	bli_copym( a, &a_local );
	bli_mktrim( &a_local );

	bli_obj_set_struc( BLIS_GENERAL, a_local );
	bli_obj_set_uplo( BLIS_DENSE, a_local );

	bli_gemv( alpha, &a_local, x_orig, &BLIS_ZERO, &y );

	bli_subv( x, &y );
	bli_fnormv( &y, &norm );
	bli_getsc( &norm, resid, &junk );

	bli_obj_free( &y );
	bli_obj_free( &a_local );
}
コード例 #30
0
ファイル: test_ranges.c プロジェクト: ShawnLess/blis
int main( int argc, char** argv )
{
	bli_init();

#if 0
	obj_t a, b, c;
	obj_t aa, bb, cc;
	dim_t m, n, k;
	num_t dt;
	uplo_t uploa, uplob, uploc;

	{
		dt = BLIS_DOUBLE;

		m = 6;
		k = 6;
		n = 6;

		bli_obj_create( dt, m, k, 0, 0, &a );
		bli_obj_create( dt, k, n, 0, 0, &b );
		bli_obj_create( dt, m, n, 0, 0, &c );

		uploa = BLIS_UPPER;
		uploa = BLIS_LOWER;
		bli_obj_set_struc( BLIS_TRIANGULAR, a );
		bli_obj_set_uplo( uploa, a );
		bli_obj_set_diag_offset( -2, a );

		uplob = BLIS_UPPER;
		uplob = BLIS_LOWER;
		bli_obj_set_struc( BLIS_TRIANGULAR, b );
		bli_obj_set_uplo( uplob, b );
		bli_obj_set_diag_offset( -2, b );

		uploc = BLIS_UPPER;
		//uploc = BLIS_LOWER;
		//uploc = BLIS_ZEROS;
		//uploc = BLIS_DENSE;
		bli_obj_set_struc( BLIS_HERMITIAN, c );
		//bli_obj_set_struc( BLIS_TRIANGULAR, c );
		bli_obj_set_uplo( uploc, c );
		bli_obj_set_diag_offset(  1, c );

		bli_obj_alias_to( a, aa ); (void)aa;
		bli_obj_alias_to( b, bb ); (void)bb;
		bli_obj_alias_to( c, cc ); (void)cc;

		bli_randm( &a );
		bli_randm( &b );
		bli_randm( &c );
		//bli_mkherm( &a );
		//bli_mktrim( &a );

		bli_prune_unref_mparts( &cc, BLIS_M,
		                        &aa, BLIS_N );

		bli_printm( "c orig", &c, "%4.1f", "" );
		bli_printm( "c alias", &cc, "%4.1f", "" );
		bli_printm( "a orig", &a, "%4.1f", "" );
		bli_printm( "a alias", &aa, "%4.1f", "" );
		//bli_obj_print( "a struct", &a );
	}
#endif

	dim_t  p_begin, p_max, p_inc;
	gint_t m_input, n_input;
	char   uploa_ch;
	doff_t diagoffa;
	dim_t  bf;
	dim_t  n_way;
	char   part_dim_ch;
	bool_t go_fwd;
	char   out_ch;

	obj_t  a;

	thrinfo_t thrinfo;
	dim_t  m, n;
	uplo_t uploa;
	bool_t part_m_dim, part_n_dim;
	bool_t go_bwd;
	dim_t  p;
	num_t  dt;
	dim_t  start, end;

	dim_t  width;
	siz_t  area;

	gint_t t_begin, t_stop, t_inc;
	dim_t  t;

	if ( argc == 13 )
	{
		sscanf( argv[1], "%lu", &p_begin );
		sscanf( argv[2], "%lu", &p_max );
		sscanf( argv[3], "%lu", &p_inc );
		sscanf( argv[4], "%ld", &m_input );
		sscanf( argv[5], "%ld", &n_input );
		sscanf( argv[6], "%c",  &uploa_ch );
		sscanf( argv[7], "%ld", &diagoffa );
		sscanf( argv[8], "%lu", &bf );
		sscanf( argv[9], "%lu", &n_way );
		sscanf( argv[10], "%c", &part_dim_ch );
		sscanf( argv[11], "%lu", &go_fwd );
		sscanf( argv[12], "%c", &out_ch );
	}
	else
	{
		printf( "\n" );
		printf( " %s\n", argv[0] );
		printf( "\n" );
		printf( "  Simulate the dimension ranges assigned to threads when\n" );
		printf( "  partitioning a matrix for parallelism in BLIS.\n" );
		printf( "\n" );
		printf( " Usage:\n" );
		printf( "\n" );
		printf( "  %s p_beg p_max p_inc m n uplo doff bf n_way part_dim go_fwd out\n", argv[0] );
		printf( "\n" );
		printf( "  p_beg:    the first problem size p to test.\n" );
		printf( "  p_max:    the maximum problem size p to test.\n" );
		printf( "  p_inc:    the increase in problem size p between tests.\n" );
		printf( "  m:        the m dimension:\n" );
		printf( "  n:        the n dimension:\n" );
		printf( "            if m,n = -1: bind m,n to problem size p.\n" );
		printf( "            if m,n =  0: bind m,n to p_max.\n" );
		printf( "            if m,n >  0: hold m,n = c constant for all p.\n" );
		printf( "  uplo:     the uplo field of the matrix being partitioned:\n" );
		printf( "            'l': lower-stored (BLIS_LOWER)\n" );
		printf( "            'u': upper-stored (BLIS_UPPER)\n" );
		printf( "            'd': densely-stored (BLIS_DENSE)\n" );
		printf( "  doff:     the diagonal offset of the matrix being partitioned.\n" );
		printf( "  bf:       the simulated blocking factor. all thread ranges must\n" );
		printf( "            be a multiple of bf, except for the range that contains\n" );
		printf( "            the edge case (if one exists). the blocking factor\n" );
		printf( "            would typically correspond to a register blocksize.\n" );
		printf( "  n_way:    the number of ways of parallelism for which we are\n" );
		printf( "            partitioning (i.e.: the number of threads, or thread\n" );
		printf( "            groups).\n" );
		printf( "  part_dim: the dimension to partition:\n" );
		printf( "            'm': partition the m dimension.\n" );
		printf( "            'n': partition the n dimension.\n" );
		printf( "  go_fwd:   the direction to partition:\n" );
		printf( "            '1': forward, e.g. left-to-right (part_dim = 'm') or\n" );
		printf( "                 top-to-bottom (part_dim = 'n')\n" );
		printf( "            '0': backward, e.g. right-to-left (part_dim = 'm') or\n" );
		printf( "                 bottom-to-top (part_dim = 'n')\n" );
		printf( "            NOTE: reversing the direction does not change the\n" );
		printf( "            subpartitions' widths, but it does change which end of\n" );
		printf( "            the index range receives the edge case, if it exists.\n" );
		printf( "  out:      the type of output per thread-column:\n" );
		printf( "            'w': the width (and area) of the thread's subpartition\n" );
		printf( "            'r': the actual ranges of the thread's subpartition\n" );
		printf( "                 where the start and end points of each range are\n" );
		printf( "                 inclusive and exclusive, respectively.\n" );
		printf( "\n" );

		exit(1);
	}

	if ( m_input == 0 ) m_input = p_max;
	if ( n_input == 0 ) n_input = p_max;

	if ( part_dim_ch == 'm' ) { part_m_dim = TRUE;  part_n_dim = FALSE; }
	else                      { part_m_dim = FALSE; part_n_dim = TRUE;  }

	go_bwd = !go_fwd;

	if      ( uploa_ch == 'l' ) uploa = BLIS_LOWER;
	else if ( uploa_ch == 'u' ) uploa = BLIS_UPPER;
	else                        uploa = BLIS_DENSE;

	if ( part_n_dim )
	{
		if ( bli_is_upper( uploa ) ) { t_begin = n_way-1; t_stop = -1;    t_inc = -1; }
		else /* if lower or dense */ { t_begin = 0;       t_stop = n_way; t_inc =  1; }
	}
	else // if ( part_m_dim )
	{
		if ( bli_is_lower( uploa ) ) { t_begin = n_way-1; t_stop = -1;    t_inc = -1; }
		else /* if upper or dense */ { t_begin = 0;       t_stop = n_way; t_inc =  1; }
	}

	printf( "\n" );
	printf( "  part: %3s   doff: %3ld   bf: %3ld   output: %s\n",
	        ( part_n_dim ? ( go_fwd ? "l2r" : "r2l" )
	                     : ( go_fwd ? "t2b" : "b2t" ) ),
	        diagoffa, bf,
            ( out_ch == 'w' ? "width(area)" : "ranges" ) );
	printf( "              uplo: %3c   nt: %3ld\n", uploa_ch, n_way );
	printf( "\n" );

	printf( "             " );
	for ( t = t_begin; t != t_stop; t += t_inc )
	{
		if ( part_n_dim )
		{
			if      ( t == t_begin      ) printf( "left...      " );
			else if ( t == t_stop-t_inc ) printf( "     ...right" );
			else                          printf( "             " );
		}
		else // if ( part_m_dim )
		{
			if      ( t == t_begin      ) printf( "top...       " );
			else if ( t == t_stop-t_inc ) printf( "    ...bottom" );
			else                          printf( "             " );
		}
	}
	printf( "\n" );


	printf( "%4c x %4c  ", 'm', 'n' );
	for ( t = t_begin; t != t_stop; t += t_inc )
	{
		printf( "%9s %lu  ", "thread", t );
	}
	printf( "\n" );
	printf( "-------------" );
	for ( t = t_begin; t != t_stop; t += t_inc )
	{
		printf( "-------------" );
	}
	printf( "\n" );


	for ( p = p_begin; p <= p_max; p += p_inc )
	{
		if ( m_input < 0 ) m = ( dim_t )p;
		else               m = ( dim_t )m_input;
		if ( n_input < 0 ) n = ( dim_t )p;
		else               n = ( dim_t )n_input;

		dt = BLIS_DOUBLE;
		
		bli_obj_create( dt, m, n, 0, 0, &a );

		bli_obj_set_struc( BLIS_TRIANGULAR, a );
		bli_obj_set_uplo( uploa, a );
		bli_obj_set_diag_offset( diagoffa, a );

		bli_randm( &a );

		printf( "%4lu x %4lu  ", m, n );

		for ( t = t_begin; t != t_stop; t += t_inc )
		{
			thrinfo.n_way   = n_way;
			thrinfo.work_id = t;

			if      ( part_n_dim && go_fwd )
				area = bli_get_range_weighted_l2r( &thrinfo, &a, bf, &start, &end );
			else if ( part_n_dim && go_bwd )
				area = bli_get_range_weighted_r2l( &thrinfo, &a, bf, &start, &end );
			else if ( part_m_dim && go_fwd )
				area = bli_get_range_weighted_t2b( &thrinfo, &a, bf, &start, &end );
			else // ( part_m_dim && go_bwd )
				area = bli_get_range_weighted_b2t( &thrinfo, &a, bf, &start, &end );

			width = end - start;

			if ( out_ch == 'w' ) printf( "%4lu(%6lu) ", width, area );
			else                 printf( "[%4lu,%4lu)  ", start, end );
		}

		printf( "\n" );

		bli_obj_free( &a );
	}

	bli_finalize();

	return 0;
}