コード例 #1
0
ファイル: test_axpbyv.c プロジェクト: skbaum/blis
void libblis_test_axpbyv_check( obj_t*  alpha,
                                obj_t*  x,
                                obj_t*  beta,
                                obj_t*  y,
                                obj_t*  y_orig,
                                double* resid )
{
	num_t  dt      = bli_obj_datatype( *y );
	num_t  dt_real = bli_obj_datatype_proj_to_real( *y );

	dim_t  m       = bli_obj_vector_dim( *y );

	obj_t  x_temp, y_temp;
	obj_t  norm;

	double junk;

	//
	// Pre-conditions:
	// - x is randomized.
	// - y_orig is randomized.
	// Note:
	// - alpha should have a non-zero imaginary component in the complex
	//   cases in order to more fully exercise the implementation.
	//
	// Under these conditions, we assume that the implementation for
	//
	//   y := beta * y_orig + alpha * conjx(x)
	//
	// is functioning correctly if
	//
	//   normf( y - ( beta * y_orig + alpha * conjx(x) ) )
	//
	// is negligible.
	//

	bli_obj_scalar_init_detached( dt_real, &norm );

	bli_obj_create( dt, m, 1, 0, 0, &x_temp );
	bli_obj_create( dt, m, 1, 0, 0, &y_temp );

	bli_copyv( x,      &x_temp );
	bli_copyv( y_orig, &y_temp );

	bli_scalv( alpha, &x_temp );
	bli_scalv(  beta, &y_temp );
	bli_addv( &x_temp, &y_temp );

	bli_subv( &y_temp, y );
	bli_normfv( y, &norm );
	bli_getsc( &norm, resid, &junk );

	bli_obj_free( &x_temp );
	bli_obj_free( &y_temp );
}
コード例 #2
0
ファイル: test_scalv.c プロジェクト: figual/blis
void libblis_test_scalv_check
     (
       test_params_t* params,
       obj_t*         beta,
       obj_t*         y,
       obj_t*         y_orig,
       double*        resid
     )
{
	num_t  dt      = bli_obj_dt( y );
	num_t  dt_real = bli_obj_dt_proj_to_real( y );

	dim_t  m       = bli_obj_vector_dim( y );

	obj_t  norm_y_r;
	obj_t  nbeta;

	obj_t  y2;

	double junk;

	//
	// Pre-conditions:
	// - y_orig is randomized.
	// Note:
	// - beta should have a non-zero imaginary component in the complex
	//   cases in order to more fully exercise the implementation.
	//
	// Under these conditions, we assume that the implementation for
	//
	//   y := conjbeta(beta) * y_orig
	//
	// is functioning correctly if
	//
	//   normf( y + -conjbeta(beta) * y_orig )
	//
	// is negligible.
	//

	bli_obj_create( dt, m, 1, 0, 0, &y2 );
    bli_copyv( y_orig, &y2 );

	bli_obj_scalar_init_detached( dt,      &nbeta );
	bli_obj_scalar_init_detached( dt_real, &norm_y_r );

	bli_copysc( beta, &nbeta );
	bli_mulsc( &BLIS_MINUS_ONE, &nbeta );

	bli_scalv( &nbeta, &y2 );
    bli_addv( &y2, y );

    bli_normfv( y, &norm_y_r );

    bli_getsc( &norm_y_r, resid, &junk );

    bli_obj_free( &y2 );
}
コード例 #3
0
ファイル: test_scalv.c プロジェクト: figual/blis
void libblis_test_scalv_impl
     (
       iface_t   iface,
       obj_t*    beta,
       obj_t*    y
     )
{
	switch ( iface )
	{
		case BLIS_TEST_SEQ_FRONT_END:
		bli_scalv( beta, y );
		break;

		default:
		libblis_test_printf_error( "Invalid interface type.\n" );
	}
}
コード例 #4
0
ファイル: test_trmv.c プロジェクト: tlrmchlsmth/blis-mt
void libblis_test_trmv_experiment( test_params_t* params,
                                   test_op_t*     op,
                                   mt_impl_t      impl,
                                   num_t          datatype,
                                   char*          pc_str,
                                   char*          sc_str,
                                   unsigned int   p_cur,
                                   double*        perf,
                                   double*        resid )
{
	unsigned int n_repeats = params->n_repeats;
	unsigned int i;

	double       time_min  = 1e9;
	double       time;

	dim_t        m;

	uplo_t       uploa;
	trans_t      transa;
	diag_t       diaga;

	obj_t        kappa;
	obj_t        alpha, a, x;
	obj_t        x_save;


	// Map the dimension specifier to an actual dimension.
	m = libblis_test_get_dim_from_prob_size( op->dim_spec[0], p_cur );

	// Map parameter characters to BLIS constants.
	bli_param_map_char_to_blis_uplo( pc_str[0], &uploa );
	bli_param_map_char_to_blis_trans( pc_str[1], &transa );
	bli_param_map_char_to_blis_diag( pc_str[2], &diaga );

	// Create test scalars.
	bli_obj_init_scalar( datatype, &alpha );
	bli_obj_init_scalar( datatype, &kappa );

	// Create test operands (vectors and/or matrices).
	libblis_test_mobj_create( params, datatype, BLIS_NO_TRANSPOSE,
	                          sc_str[0], m, m, &a );
	libblis_test_vobj_create( params, datatype,
	                          sc_str[1], m,    &x );
	libblis_test_vobj_create( params, datatype,
	                          sc_str[1], m,    &x_save );

	// Set alpha.
	if ( bli_obj_is_real( x ) )
		bli_setsc( -1.0,  0.0, &alpha );
	else
		bli_setsc(  0.0, -1.0, &alpha );

	// Set the structure and uplo properties of A.
	bli_obj_set_struc( BLIS_TRIANGULAR, a );
	bli_obj_set_uplo( uploa, a );

	// Randomize A, make it densely triangular.
	bli_randm( &a );
	bli_mktrim( &a );

	// Randomize x and save.
	bli_randv( &x );
	bli_copyv( &x, &x_save );

	// Normalize vectors by m.
	bli_setsc( 1.0/( double )m, 0.0, &kappa );
	bli_scalv( &kappa, &x );
	bli_scalv( &kappa, &x_save );

	// Apply the remaining parameters.
	bli_obj_set_conjtrans( transa, a );
	bli_obj_set_diag( diaga, a );

	// Repeat the experiment n_repeats times and record results. 
	for ( i = 0; i < n_repeats; ++i )
	{
		bli_copym( &x_save, &x );

		time = bli_clock();

		libblis_test_trmv_impl( impl, &alpha, &a, &x );

		time_min = bli_clock_min_diff( time_min, time );
	}

	// Estimate the performance of the best experiment repeat.
	*perf = ( 1.0 * m * m ) / time_min / FLOPS_PER_UNIT_PERF;
	if ( bli_obj_is_complex( x ) ) *perf *= 4.0;

	// Perform checks.
	libblis_test_trmv_check( &alpha, &a, &x, &x_save, resid );

	// Zero out performance and residual if output vector is empty.
	libblis_test_check_empty_problem( &x, perf, resid );

	// Free the test objects.
	bli_obj_free( &a );
	bli_obj_free( &x );
	bli_obj_free( &x_save );
}
コード例 #5
0
ファイル: 05level1v.c プロジェクト: devinamatthews/blis
int main( int argc, char** argv )
{
	obj_t alpha, beta, gamma;
	obj_t x, y, z, w, a;
	num_t dt;
	dim_t m, n;
	inc_t rs, cs;

	//
	// This file demonstrates working with vector objects and the level-1v
	// operations.
	//

	//
	// Example 1: Create vector objects and then broadcast (copy) scalar
	//            values to all elements.
	//

	printf( "\n#\n#  -- Example 1 --\n#\n\n" );

	// Create a few vectors to work with. We make them all of the same length
	// so that we can perform operations between them.
	// NOTE: We've chosen to use row vectors here (1x4) instead of column
	// vectors (4x1) to allow for easier reading of standard output (less
	// scrolling).
	dt = BLIS_DOUBLE;
	m = 1; n = 4; rs = 0; cs = 0;
	bli_obj_create( dt, m, n, rs, cs, &x );
	bli_obj_create( dt, m, n, rs, cs, &y );
	bli_obj_create( dt, m, n, rs, cs, &z );
	bli_obj_create( dt, m, n, rs, cs, &w );
	bli_obj_create( dt, m, n, rs, cs, &a );

	// Let's also create and initialize some scalar objects.
	bli_obj_create_1x1( dt, &alpha );
	bli_obj_create_1x1( dt, &beta );
	bli_obj_create_1x1( dt, &gamma );

	bli_setsc( 2.0, 0.0, &alpha );
	bli_setsc( 0.2, 0.0, &beta );
	bli_setsc( 3.0, 0.0, &gamma );

	bli_printm( "alpha:", &alpha, "%4.1f", "" );
	bli_printm( "beta:", &beta, "%4.1f", "" );
	bli_printm( "gamma:", &gamma, "%4.1f", "" );

	// Vectors can set by "broadcasting" a constant to every element.
	bli_setv( &BLIS_ONE, &x );
	bli_setv( &alpha, &y );
	bli_setv( &BLIS_ZERO, &z );

	// Note that we can use printv or printm to print vectors since vectors
	// are also matrices. We choose to use printm because it honors the
	// orientation of the vector (row or column) when printing, whereas
	// printv always prints vectors as column vectors regardless of their
	// they are 1 x n or n x 1.
	bli_printm( "x := 1.0", &x, "%4.1f", "" );
	bli_printm( "y := alpha", &y, "%4.1f", "" );
	bli_printm( "z := 0.0", &z, "%4.1f", "" );

	//
	// Example 2: Randomize a vector object.
	//

	printf( "\n#\n#  -- Example 2 --\n#\n\n" );

	// Set a vector to random values.
	bli_randv( &w );

	bli_printm( "w := randv()", &w, "%4.1f", "" );

	//
	// Example 3: Perform various element-wise operations on vector objects.
	//

	printf( "\n#\n#  -- Example 3 --\n#\n\n" );

	// Copy a vector.
	bli_copyv( &w, &a );
	bli_printm( "a := w", &a, "%4.1f", "" );

	// Add and subtract vectors.
	bli_addv( &y, &a );
	bli_printm( "a := a + y", &a, "%4.1f", "" );

	bli_subv( &w, &a );
	bli_printm( "a := a - w", &a, "%4.1f", "" );

	// Scale a vector (destructive).
	bli_scalv( &beta, &a );
	bli_printm( "a := beta * a", &a, "%4.1f", "" );

	// Scale a vector (non-destructive).
	bli_scal2v( &gamma, &a, &z );
	bli_printm( "z := gamma * a", &z, "%4.1f", "" );

	// Scale and accumulate between vectors.
	bli_axpyv( &alpha, &w, &x );
	bli_printm( "x := x + alpha * w", &x, "%4.1f", "" );

	bli_xpbyv( &w, &BLIS_MINUS_ONE, &x );
	bli_printm( "x := -1.0 * x + w", &x, "%4.1f", "" );

	// Invert a vector element-wise.
	bli_invertv( &y );
	bli_printm( "y := 1 / y", &y, "%4.1f", "" );

	// Swap two vectors.
	bli_swapv( &x, &y );
	bli_printm( "x (after swapping with y)", &x, "%4.1f", "" );
	bli_printm( "y (after swapping with x)", &y, "%4.1f", "" );

	//
	// Example 4: Perform contraction-like operations on vector objects.
	//

	printf( "\n#\n#  -- Example 4 --\n#\n\n" );

	// Perform a dot product.
	bli_dotv( &a, &z, &gamma );
	bli_printm( "gamma := a * z (dot product)", &gamma, "%5.2f", "" );

	// Perform an extended dot product.
	bli_dotxv( &alpha, &a, &z, &BLIS_ONE, &gamma );
	bli_printm( "gamma := 1.0 * gamma + alpha * a * z (accumulate scaled dot product)", &gamma, "%5.2f", "" );


	// Free the objects.
	bli_obj_free( &alpha );
	bli_obj_free( &beta );
	bli_obj_free( &gamma );
	bli_obj_free( &x );
	bli_obj_free( &y );
	bli_obj_free( &z );
	bli_obj_free( &w );
	bli_obj_free( &a );

	return 0;
}
コード例 #6
0
ファイル: test_gemmtrsm_ukr.c プロジェクト: audiofilter/blis
void libblis_test_gemmtrsm_ukr_check( side_t  side,
                                      obj_t*  alpha,
                                      obj_t*  a1x,
                                      obj_t*  a11,
                                      obj_t*  bx1,
                                      obj_t*  b11,
                                      obj_t*  c11,
                                      obj_t*  c11_orig,
                                      double* resid )
{
	num_t  dt      = bli_obj_datatype( *b11 );
	num_t  dt_real = bli_obj_datatype_proj_to_real( *b11 );

	dim_t  m       = bli_obj_length( *b11 );
	dim_t  n       = bli_obj_width( *b11 );
	dim_t  k       = bli_obj_width( *a1x );

	obj_t  kappa, norm;
	obj_t  t, v, w, z;

	double junk;

	//
	// Pre-conditions:
	// - a1x, a11, bx1, c11_orig are randomized; a11 is triangular.
	// - contents of b11 == contents of c11.
	// - side == BLIS_LEFT.
	//
	// Under these conditions, we assume that the implementation for
	//
	//   B := inv(A11) * ( alpha * B11 - A1x * Bx1 )       (side = left)
	//
	// is functioning correctly if
	//
	//   fnorm( v - z )
	//
	// is negligible, where
	//
	//   v = B11 * t
	//
	//   z = ( inv(A11) * ( alpha * B11_orig - A1x * Bx1 ) ) * t
	//     = inv(A11) * ( alpha * B11_orig * t - A1x * Bx1 * t )
	//     = inv(A11) * ( alpha * B11_orig * t - A1x * w )
	//

	bli_obj_scalar_init_detached( dt,      &kappa );
	bli_obj_scalar_init_detached( dt_real, &norm );

	if ( bli_is_left( side ) )
	{
		bli_obj_create( dt, n, 1, 0, 0, &t );
		bli_obj_create( dt, m, 1, 0, 0, &v );
		bli_obj_create( dt, k, 1, 0, 0, &w );
		bli_obj_create( dt, m, 1, 0, 0, &z );
	}
	else // else if ( bli_is_left( side ) )
	{
		// BLIS does not currently support right-side micro-kernels.
		bli_check_error_code( BLIS_NOT_YET_IMPLEMENTED );
	}

	bli_randv( &t );
	bli_setsc( 1.0/( double )n, 0.0, &kappa );
	bli_scalv( &kappa, &t );

	bli_gemv( &BLIS_ONE, b11, &t, &BLIS_ZERO, &v );

	// Restore the diagonal of a11 to its original, un-inverted state
	// (needed for trsv).
	bli_invertd( a11 );

	if ( bli_is_left( side ) )
	{
		bli_gemv( &BLIS_ONE, bx1, &t, &BLIS_ZERO, &w );
		bli_gemv( alpha, c11_orig, &t, &BLIS_ZERO, &z );
		bli_gemv( &BLIS_MINUS_ONE, a1x, &w, &BLIS_ONE, &z );
		bli_trsv( &BLIS_ONE, a11, &z );
	}
	else // else if ( bli_is_left( side ) )
	{
		// BLIS does not currently support right-side micro-kernels.
		bli_check_error_code( BLIS_NOT_YET_IMPLEMENTED );
	}

	bli_subv( &z, &v );
	bli_fnormv( &v, &norm );
	bli_getsc( &norm, resid, &junk );

	bli_obj_free( &t );
	bli_obj_free( &v );
	bli_obj_free( &w );
	bli_obj_free( &z );
}
コード例 #7
0
ファイル: test_gemv.c プロジェクト: jmhautbois/blis
void libblis_test_gemv_check( obj_t*  kappa,
                              obj_t*  alpha,
                              obj_t*  a,
                              obj_t*  x,
                              obj_t*  beta,
                              obj_t*  y,
                              obj_t*  y_orig,
                              double* resid )
{
	num_t  dt      = bli_obj_datatype( *y );
	num_t  dt_real = bli_obj_datatype_proj_to_real( *y );

	conj_t conja   = bli_obj_conj_status( *a );

	dim_t  n_x     = bli_obj_vector_dim( *x );
	dim_t  m_y     = bli_obj_vector_dim( *y );

	dim_t  min_m_n = bli_min( m_y, n_x );

	obj_t  x_temp, y_temp;
	obj_t  kappac, norm;
	obj_t  xT_temp, yT_temp, yT;

	double junk;

	//
	// Pre-conditions:
	// - a is initialized to kappa along the diagonal.
	// - x is randomized.
	// - y_orig is randomized.
	// Note:
	// - alpha, beta, and kappa should have non-zero imaginary components in
	//   the complex cases in order to more fully exercise the implementation.
	//
	// Under these conditions, we assume that the implementation for
	//
	//   y := beta * y_orig + alpha * transa(A) * conjx(x)
	//
	// is functioning correctly if
	//
	//   normf( y - z )
	//
	// is negligible, where
	//
	//   z = beta * y_orig + alpha * conja(kappa) * x
	//

	bli_obj_scalar_init_detached_copy_of( dt, conja, kappa, &kappac );
	bli_obj_scalar_init_detached( dt_real, &norm );

	bli_obj_create( dt, n_x, 1, 0, 0, &x_temp );
	bli_obj_create( dt, m_y, 1, 0, 0, &y_temp );

	bli_copyv( x,      &x_temp );
	bli_copyv( y_orig, &y_temp );

	bli_acquire_vpart_f2b( BLIS_SUBPART1, 0, min_m_n, 
	                       &x_temp, &xT_temp );
	bli_acquire_vpart_f2b( BLIS_SUBPART1, 0, min_m_n, 
	                       &y_temp, &yT_temp );
	bli_acquire_vpart_f2b( BLIS_SUBPART1, 0, min_m_n, 
	                       y, &yT );

	bli_scalv( &kappac, &xT_temp );
	bli_scalv( beta, &yT_temp );
	bli_axpyv( alpha, &xT_temp, &yT_temp );

	bli_subv( &yT_temp, &yT );
	bli_normfv( &yT, &norm );
	bli_getsc( &norm, resid, &junk );

	bli_obj_free( &x_temp );
	bli_obj_free( &y_temp );
}
コード例 #8
0
ファイル: test_trmm3.c プロジェクト: audiofilter/blis
void libblis_test_trmm3_check( side_t  side,
                               obj_t*  alpha,
                               obj_t*  a,
                               obj_t*  b,
                               obj_t*  beta,
                               obj_t*  c,
                               obj_t*  c_orig,
                               double* resid )
{
	num_t  dt      = bli_obj_datatype( *c );
	num_t  dt_real = bli_obj_datatype_proj_to_real( *c );

	dim_t  m       = bli_obj_length( *c );
	dim_t  n       = bli_obj_width( *c );

	obj_t  kappa, norm;
	obj_t  t, v, w, z;

	double junk;

	//
	// Pre-conditions:
	// - a is randomized and triangular.
	// - b is randomized.
	// - c_orig is randomized.
	// Note:
	// - alpha and beta should have non-zero imaginary components in the
	//   complex cases in order to more fully exercise the implementation.
	//
	// Under these conditions, we assume that the implementation for
	//
	//   C := beta * C_orig + alpha * transa(A) * transb(B)    (side = left)
	//   C := beta * C_orig + alpha * transb(B) * transa(A)    (side = right)
	//
	// is functioning correctly if
	//
	//   fnorm( v - z )
	//
	// is negligible, where
	//
	//   v = C * t
	//
	//   z = ( beta * C_orig + alpha * transa(A) * transb(B) ) * t     (side = left)
	//     = beta * C_orig * t + alpha * transa(A) * transb(B) * t
	//     = beta * C_orig * t + alpha * transa(A) * w
	//     = beta * C_orig * t + z
	//
	//   z = ( beta * C_orig + alpha * transb(B) * transa(A) ) * t     (side = right)
	//     = beta * C_orig * t + alpha * transb(B) * transa(A) * t
	//     = beta * C_orig * t + alpha * transb(B) * w
	//     = beta * C_orig * t + z

	bli_obj_scalar_init_detached( dt,      &kappa );
	bli_obj_scalar_init_detached( dt_real, &norm );

	if ( bli_is_left( side ) )
	{
		bli_obj_create( dt, n, 1, 0, 0, &t );
		bli_obj_create( dt, m, 1, 0, 0, &v );
		bli_obj_create( dt, m, 1, 0, 0, &w );
		bli_obj_create( dt, m, 1, 0, 0, &z );
	}
	else // else if ( bli_is_left( side ) )
	{
		bli_obj_create( dt, n, 1, 0, 0, &t );
		bli_obj_create( dt, m, 1, 0, 0, &v );
		bli_obj_create( dt, n, 1, 0, 0, &w );
		bli_obj_create( dt, m, 1, 0, 0, &z );
	}

	bli_randv( &t );
	bli_setsc( 1.0/( double )n, 0.0, &kappa );
	bli_scalv( &kappa, &t );

	bli_gemv( &BLIS_ONE, c, &t, &BLIS_ZERO, &v );

	if ( bli_is_left( side ) )
	{
		bli_gemv( &BLIS_ONE, b, &t, &BLIS_ZERO, &w );
		bli_trmv( alpha, a, &w );
		bli_copyv( &w, &z );
	}
	else
	{
		bli_copyv( &t, &w );
		bli_trmv( &BLIS_ONE, a, &w );
		bli_gemv( alpha, b, &w, &BLIS_ZERO, &z );
	}

	bli_gemv( beta, c_orig, &t, &BLIS_ONE, &z );
	
	bli_subv( &z, &v );
	bli_fnormv( &v, &norm );
	bli_getsc( &norm, resid, &junk );

	bli_obj_free( &t );
	bli_obj_free( &v );
	bli_obj_free( &w );
	bli_obj_free( &z );
}
コード例 #9
0
ファイル: test_syr2k.c プロジェクト: jmhautbois/blis
void libblis_test_syr2k_check( obj_t*  alpha,
                               obj_t*  a,
                               obj_t*  b,
                               obj_t*  beta,
                               obj_t*  c,
                               obj_t*  c_orig,
                               double* resid )
{
	num_t  dt      = bli_obj_datatype( *c );
	num_t  dt_real = bli_obj_datatype_proj_to_real( *c );

	dim_t  m       = bli_obj_length( *c );
	dim_t  k       = bli_obj_width_after_trans( *a );

	obj_t  at, bt;
	obj_t  kappa, norm;
	obj_t  t, v, w1, w2, z;

	double junk;

	//
	// Pre-conditions:
	// - a is randomized.
	// - b is randomized.
	// - c_orig is randomized and symmetric.
	// Note:
	// - alpha and beta should have non-zero imaginary components in the
	//   complex cases in order to more fully exercise the implementation.
	//
	// Under these conditions, we assume that the implementation for
	//
	//   C := beta * C_orig + alpha * transa(A) * transb(B)^T + alpha * transb(B) * transa(A)^T
	//
	// is functioning correctly if
	//
	//   normf( v - z )
	//
	// is negligible, where
	//
	//   v = C * t
	//   z = ( beta * C_orig + alpha * transa(A) * transb(B)^T + alpha * transb(B) * transa(A)^T ) * t
	//     = beta * C_orig * t + alpha * transa(A) * transb(B)^T * t + alpha * transb(B) * transa(A)^T * t
	//     = beta * C_orig * t + alpha * transa(A) * transb(B)^T * t + alpha * transb(B) * w2
	//     = beta * C_orig * t + alpha * transa(A) * w1              + alpha * transb(B) * w2
	//     = beta * C_orig * t + alpha * transa(A) * w1              + z
	//     = beta * C_orig * t + z
	//

	bli_obj_alias_with_trans( BLIS_TRANSPOSE, *a, at );
	bli_obj_alias_with_trans( BLIS_TRANSPOSE, *b, bt );

	bli_obj_scalar_init_detached( dt,      &kappa );
	bli_obj_scalar_init_detached( dt_real, &norm );

	bli_obj_create( dt, m, 1, 0, 0, &t );
	bli_obj_create( dt, m, 1, 0, 0, &v );
	bli_obj_create( dt, k, 1, 0, 0, &w1 );
	bli_obj_create( dt, k, 1, 0, 0, &w2 );
	bli_obj_create( dt, m, 1, 0, 0, &z );

	bli_randv( &t );
	bli_setsc( 1.0/( double )m, 0.0, &kappa );
	bli_scalv( &kappa, &t );

	bli_symv( &BLIS_ONE, c, &t, &BLIS_ZERO, &v );

	bli_gemv( &BLIS_ONE, &at, &t, &BLIS_ZERO, &w2 );
	bli_gemv( &BLIS_ONE, &bt, &t, &BLIS_ZERO, &w1 );
	bli_gemv( alpha, a, &w1, &BLIS_ZERO, &z );
	bli_gemv( alpha, b, &w2, &BLIS_ONE, &z );
	bli_symv( beta, c_orig, &t, &BLIS_ONE, &z );

	bli_subv( &z, &v );
	bli_normfv( &v, &norm );
	bli_getsc( &norm, resid, &junk );

	bli_obj_free( &t );
	bli_obj_free( &v );
	bli_obj_free( &w1 );
	bli_obj_free( &w2 );
	bli_obj_free( &z );
}
コード例 #10
0
ファイル: test_axpy2v.c プロジェクト: ShawnLess/blis
void libblis_test_axpy2v_check( obj_t*  alpha1,
                                obj_t*  alpha2,
                                obj_t*  x,
                                obj_t*  y,
                                obj_t*  z,
                                obj_t*  z_orig,
                                double* resid )
{
	num_t  dt      = bli_obj_datatype( *z );
	num_t  dt_real = bli_obj_datatype_proj_to_real( *z );

	dim_t  m       = bli_obj_vector_dim( *z );

	obj_t  x_temp, y_temp, z_temp;
	obj_t  norm;

	double junk;

	//
	// Pre-conditions:
	// - x is randomized.
	// - y is randomized.
	// - z_orig is randomized.
	// Note:
	// - alpha1, alpha2 should have a non-zero imaginary component in the
	//   complex cases in order to more fully exercise the implementation.
	//
	// Under these conditions, we assume that the implementation for
	//
	//   z := z_orig + alpha1 * conjx(x) + alpha2 * conjy(y)
	//
	// is functioning correctly if
	//
	//   normf( z - v )
	//
	// is negligible, where v contains z as computed by two calls to axpyv.
	//

	bli_obj_scalar_init_detached( dt_real, &norm );

	bli_obj_create( dt, m, 1, 0, 0, &x_temp );
	bli_obj_create( dt, m, 1, 0, 0, &y_temp );
	bli_obj_create( dt, m, 1, 0, 0, &z_temp );

	bli_copyv( x,      &x_temp );
	bli_copyv( y,      &y_temp );
	bli_copyv( z_orig, &z_temp );

	bli_scalv( alpha1, &x_temp );
	bli_scalv( alpha2, &y_temp );
	bli_addv( &x_temp, &z_temp );
	bli_addv( &y_temp, &z_temp );

	bli_subv( &z_temp, z );
	bli_normfv( z, &norm );
	bli_getsc( &norm, resid, &junk );

	bli_obj_free( &x_temp );
	bli_obj_free( &y_temp );
	bli_obj_free( &z_temp );
}
コード例 #11
0
ファイル: test_herk.c プロジェクト: audiofilter/blis
void libblis_test_herk_check( obj_t*  alpha,
                              obj_t*  a,
                              obj_t*  beta,
                              obj_t*  c,
                              obj_t*  c_orig,
                              double* resid )
{
	num_t  dt      = bli_obj_datatype( *c );
	num_t  dt_real = bli_obj_datatype_proj_to_real( *c );

	dim_t  m       = bli_obj_length( *c );
	dim_t  k       = bli_obj_width_after_trans( *a );

	obj_t  ah;
	obj_t  kappa, norm;
	obj_t  t, v, w, z;

	double junk;

	//
	// Pre-conditions:
	// - a is randomized.
	// - c_orig is randomized and Hermitian.
	// Note:
	// - alpha and beta must be real-valued.
	//
	// Under these conditions, we assume that the implementation for
	//
	//   C := beta * C_orig + alpha * transa(A) * transa(A)^H
	//
	// is functioning correctly if
	//
	//   fnorm( v - z )
	//
	// is negligible, where
	//
	//   v = C * t
	//   z = ( beta * C_orig + alpha * transa(A) * transa(A)^H ) * t
	//     = beta * C_orig * t + alpha * transa(A) * transa(A)^H * t
	//     = beta * C_orig * t + alpha * transa(A) * w
	//     = beta * C_orig * t + z
	//

	bli_obj_alias_with_trans( BLIS_CONJ_TRANSPOSE, *a, ah );

	bli_obj_scalar_init_detached( dt,      &kappa );
	bli_obj_scalar_init_detached( dt_real, &norm );

	bli_obj_create( dt, m, 1, 0, 0, &t );
	bli_obj_create( dt, m, 1, 0, 0, &v );
	bli_obj_create( dt, k, 1, 0, 0, &w );
	bli_obj_create( dt, m, 1, 0, 0, &z );

	bli_randv( &t );
	bli_setsc( 1.0/( double )m, 0.0, &kappa );
	bli_scalv( &kappa, &t );

	bli_hemv( &BLIS_ONE, c, &t, &BLIS_ZERO, &v );

	bli_gemv( &BLIS_ONE, &ah, &t, &BLIS_ZERO, &w );
	bli_gemv( alpha, a, &w, &BLIS_ZERO, &z );
	bli_hemv( beta, c_orig, &t, &BLIS_ONE, &z );

	bli_subv( &z, &v );
	bli_fnormv( &v, &norm );
	bli_getsc( &norm, resid, &junk );

	bli_obj_free( &t );
	bli_obj_free( &v );
	bli_obj_free( &w );
	bli_obj_free( &z );
}
コード例 #12
0
ファイル: test_hemv.c プロジェクト: jmhautbois/blis
void libblis_test_hemv_experiment( test_params_t* params,
                                   test_op_t*     op,
                                   iface_t        iface,
                                   num_t          datatype,
                                   char*          pc_str,
                                   char*          sc_str,
                                   unsigned int   p_cur,
                                   double*        perf,
                                   double*        resid )
{
    unsigned int n_repeats = params->n_repeats;
    unsigned int i;

    double       time_min  = 1e9;
    double       time;

    dim_t        m;

    uplo_t       uploa;
    conj_t       conja;
    conj_t       conjx;

    obj_t        kappa;
    obj_t        alpha, a, x, beta, y;
    obj_t        y_save;


    // Map the dimension specifier to an actual dimension.
    m = libblis_test_get_dim_from_prob_size( op->dim_spec[0], p_cur );

    // Map parameter characters to BLIS constants.
    bli_param_map_char_to_blis_uplo( pc_str[0], &uploa );
    bli_param_map_char_to_blis_conj( pc_str[1], &conja );
    bli_param_map_char_to_blis_conj( pc_str[2], &conjx );

    // Create test scalars.
    bli_obj_scalar_init_detached( datatype, &alpha );
    bli_obj_scalar_init_detached( datatype, &beta );
    bli_obj_scalar_init_detached( datatype, &kappa );

    // Create test operands (vectors and/or matrices).
    libblis_test_mobj_create( params, datatype, BLIS_NO_TRANSPOSE,
                              sc_str[0], m, m, &a );
    libblis_test_vobj_create( params, datatype,
                              sc_str[1], m,    &x );
    libblis_test_vobj_create( params, datatype,
                              sc_str[2], m,    &y );
    libblis_test_vobj_create( params, datatype,
                              sc_str[2], m,    &y_save );

    // Set alpha and beta.
    if ( bli_obj_is_real( y ) )
    {
        bli_setsc(  1.0,  0.0, &alpha );
        bli_setsc( -1.0,  0.0, &beta );
    }
    else
    {
        bli_setsc(  0.0,  1.0, &alpha );
        bli_setsc(  0.0, -1.0, &beta );
    }

    // Set the structure and uplo properties of A.
    bli_obj_set_struc( BLIS_HERMITIAN, a );
    bli_obj_set_uplo( uploa, a );

    // Randomize A, make it densely Hermitian, and zero the unstored triangle
    // to ensure the implementation reads only from the stored region.
    bli_randm( &a );
    bli_mkherm( &a );
    bli_mktrim( &a );

    // Randomize x and y, and save y.
    bli_randv( &x );
    bli_randv( &y );
    bli_copyv( &y, &y_save );

    // Normalize vectors by m.
    bli_setsc( 1.0/( double )m, 0.0, &kappa );
    bli_scalv( &kappa, &x );
    bli_scalv( &kappa, &y );
    bli_scalv( &kappa, &y_save );

    // Apply the remaining parameters.
    bli_obj_set_conj( conja, a );
    bli_obj_set_conj( conjx, x );

    // Repeat the experiment n_repeats times and record results.
    for ( i = 0; i < n_repeats; ++i )
    {
        bli_copym( &y_save, &y );

        time = bli_clock();

        libblis_test_hemv_impl( iface, &alpha, &a, &x, &beta, &y );

        time_min = bli_clock_min_diff( time_min, time );
    }

    // Estimate the performance of the best experiment repeat.
    *perf = ( 1.0 * m * m ) / time_min / FLOPS_PER_UNIT_PERF;
    if ( bli_obj_is_complex( y ) ) *perf *= 4.0;

    // Perform checks.
    libblis_test_hemv_check( &alpha, &a, &x, &beta, &y, &y_save, resid );

    // Zero out performance and residual if output vector is empty.
    libblis_test_check_empty_problem( &y, perf, resid );

    // Free the test objects.
    bli_obj_free( &a );
    bli_obj_free( &x );
    bli_obj_free( &y );
    bli_obj_free( &y_save );
}