コード例 #1
0
ファイル: relic_fpx_srt.c プロジェクト: Arash-Afshar/relic
int fp3_srt(fp3_t c, fp3_t a) {
	int r = 0;
	fp3_t t0, t1, t2, t3;
	bn_t e;

	fp3_null(t0);
	fp3_null(t1);
	fp3_null(t2);
	fp3_null(t3);
	bn_null(e);

	TRY {
		fp3_new(t0);
		fp3_new(t1);
		fp3_new(t2);
		fp3_new(t3);
		bn_new(e);

		fp3_dbl(t3, a);
		fp3_frb(t0, t3, 1);

		fp3_sqr(t1, t0);
		fp3_mul(t2, t1, t0);
		fp3_mul(t1, t1, t2);

		fp3_frb(t0, t0, 1);
		fp3_mul(t3, t3, t1);
		fp3_mul(t0, t0, t3);

		e->used = FP_DIGS;
		dv_copy(e->dp, fp_prime_get(), FP_DIGS);
		bn_sub_dig(e, e, 5);
		bn_div_dig(e, e, 8);
		fp3_exp(t0, t0, e);

		fp3_mul(t0, t0, t2);
		fp3_sqr(t1, t0);
		fp3_mul(t1, t1, a);
		fp3_dbl(t1, t1);

		fp3_mul(t0, t0, a);
		fp_sub_dig(t1[0], t1[0], 1);
		fp3_mul(c, t0, t1);

		fp3_sqr(t0, c);
		if (fp3_cmp(t0, a) == CMP_EQ) {
			r = 1;
		}
	} CATCH_ANY {
		THROW(ERR_CAUGHT);
	} FINALLY {
		fp3_free(t0);
		fp3_free(t1);
		fp3_free(t2);
		fp3_free(t3);
		bn_free(e);
	}

	return r;
}
コード例 #2
0
ファイル: relic_cp_bdpe.c プロジェクト: Arash-Afshar/relic
int cp_bdpe_dec(dig_t *out, uint8_t *in, int in_len, bdpe_t prv) {
	bn_t m, t, z;
	unsigned i;
	int size, result = STS_OK;

	size = bn_size_bin(prv->n);

	if (in_len < 0 || in_len != size) {
		return STS_ERR;
	}

	bn_null(m);
	bn_null(t);
	bn_null(z);

	TRY {
		bn_new(m);
		bn_new(t);
		bn_new(z);

		/* Compute t = (p-1)(q-1)/block. */
		bn_mul(t, prv->p, prv->q);
		bn_sub(t, t, prv->p);
		bn_sub(t, t, prv->q);
		bn_add_dig(t, t, 1);
		bn_div_dig(t, t, prv->t);
		bn_read_bin(m, in, in_len);
		bn_mxp(m, m, t, prv->n);
		bn_mxp(t, prv->y, t, prv->n);

		for (i = 0; i < prv->t; i++) {
			bn_mxp_dig(z, t, i, prv->n);
			if (bn_cmp(z, m) == CMP_EQ) {
				*out = i;
				break;
			}
		}

		if (i == prv->t) {
			result = STS_ERR;
		}
	} CATCH_ANY {
		result = STS_ERR;
	}
	FINALLY {
		bn_free(m);
		bn_free(t);
		bn_free(z);
	}

	return result;
}
コード例 #3
0
ファイル: relic_bn_util.c プロジェクト: lucamelis/relic
int bn_size_str(const bn_t a, int radix) {
	int digits = 0;
	bn_t t;

	bn_null(t);

	/* Binary case requires the bits, a sign and the null terminator. */
	if (radix == 2) {
		return bn_bits(a) + (a->sign == BN_NEG ? 1 : 0) + 1;
	}

	/* Check the radix. */
	if (radix < 2 || radix > 64) {
		THROW(ERR_NO_VALID);
	}

	if (bn_is_zero(a)) {
		return 2;
	}

	if (a->sign == BN_NEG) {
		digits++;
	}

	TRY {
		bn_new(t);
		bn_copy(t, a);

		t->sign = BN_POS;

		while (!bn_is_zero(t)) {
			bn_div_dig(t, t, (dig_t)radix);
			digits++;
		}
	} CATCH_ANY {
		THROW(ERR_CAUGHT);
	} FINALLY {
		bn_free(t);
	}

	return digits + 1;
}
コード例 #4
0
ファイル: relic_cp_bdpe.c プロジェクト: Gesine/relic
int cp_bdpe_gen(bdpe_t pub, bdpe_t prv, dig_t block, int bits) {
	bn_t t, r;
	int result = STS_OK;

	bn_null(t);
	bn_null(r);

	TRY {
		bn_new(t);
		bn_new(r);

		prv->t = pub->t = block;

		/* Make sure that block size is prime. */
		bn_set_dig(t, block);
		if (bn_is_prime_basic(t) == 0) {
			THROW(ERR_NO_VALID);
		}

		/* Generate prime q such that gcd(block, (q - 1)) = 1. */
		do {
			bn_gen_prime(prv->q, bits / 2);
			bn_sub_dig(prv->q, prv->q, 1);
			bn_gcd_dig(t, prv->q, block);
			bn_add_dig(prv->q, prv->q, 1);
		} while (bn_cmp_dig(t, 1) != CMP_EQ);

		/* Generate different primes p and q. */
		do {
			/* Compute p = block * (x * block + b) + 1, 0 < b < block random. */
			bn_rand(prv->p, BN_POS, bits / 2 - 2 * util_bits_dig(block));
			bn_mul_dig(prv->p, prv->p, block);
			bn_rand(t, BN_POS, util_bits_dig(block));
			bn_add_dig(prv->p, prv->p, t->dp[0]);

			/* We know that block divides (p-1). */
			bn_gcd_dig(t, prv->p, block);
			bn_mul_dig(prv->p, prv->p, block);
			bn_add_dig(prv->p, prv->p, 1);
		} while (bn_cmp_dig(t, 1) != CMP_EQ || bn_is_prime(prv->p) == 0);

		/* Compute t = (p-1)*(q-1). */
		bn_sub_dig(prv->q, prv->q, 1);
		bn_sub_dig(prv->p, prv->p, 1);
		bn_mul(t, prv->p, prv->q);
		bn_div_dig(t, t, block);

		/* Restore factors p and q and compute n = p * q. */
		bn_add_dig(prv->p, prv->p, 1);
		bn_add_dig(prv->q, prv->q, 1);
		bn_mul(pub->n, prv->p, prv->q);
		bn_copy(prv->n, pub->n);

		/* Select random y such that y^{(p-1)(q-1)}/block \neq 1 mod N. */
		do {
			bn_rand(pub->y, BN_POS, bits);
			bn_mxp(r, pub->y, t, pub->n);
		} while (bn_cmp_dig(r, 1) == CMP_EQ);

		bn_copy(prv->y, pub->y);
	}
	CATCH_ANY {
		result = STS_ERR;
	}
	FINALLY {
		bn_free(t);
		bn_free(r);
	}

	return result;
}
コード例 #5
0
ファイル: relic_fp_prime.c プロジェクト: ace0/relic
/**
 * Computes the constants required for evaluating Frobenius maps.
 */
static void fp3_calc() {
	bn_t e;
	fp3_t t0, t1, t2;
	ctx_t *ctx = core_get();

	bn_null(e);
	fp3_null(t0);
	fp3_null(t1);
	fp3_null(t2);

	TRY {
		bn_new(e);
		fp3_new(t0);
		fp3_new(t1);
		fp3_new(t2);

		fp_set_dig(ctx->fp3_base[0], -fp_prime_get_cnr());
		fp_neg(ctx->fp3_base[0], ctx->fp3_base[0]);
		e->used = FP_DIGS;
		dv_copy(e->dp, fp_prime_get(), FP_DIGS);
		bn_sub_dig(e, e, 1);
		bn_div_dig(e, e, 3);
		fp_exp(ctx->fp3_base[0], ctx->fp3_base[0], e);
		fp_sqr(ctx->fp3_base[1], ctx->fp3_base[0]);

		fp3_zero(t0);
		fp_set_dig(t0[1], 1);
		dv_copy(e->dp, fp_prime_get(), FP_DIGS);
		bn_sub_dig(e, e, 1);
		bn_div_dig(e, e, 6);

		/* t0 = u^((p-1)/6). */
		fp3_exp(t0, t0, e);
		fp_copy(ctx->fp3_p[0], t0[2]);
		fp3_sqr(t1, t0);
		fp_copy(ctx->fp3_p[1], t1[1]);
		fp3_mul(t2, t1, t0);
		fp_copy(ctx->fp3_p[2], t2[0]);
		fp3_sqr(t2, t1);
		fp_copy(ctx->fp3_p[3], t2[2]);
		fp3_mul(t2, t2, t0);
		fp_copy(ctx->fp3_p[4], t2[1]);

		fp_mul(ctx->fp3_p2[0], ctx->fp3_p[0], ctx->fp3_base[1]);
		fp_mul(t0[0], ctx->fp3_p2[0], ctx->fp3_p[0]);
		fp_neg(ctx->fp3_p2[0], t0[0]);
		for (int i = -1; i > fp_prime_get_cnr(); i--) {
			fp_sub(ctx->fp3_p2[0], ctx->fp3_p2[0], t0[0]);
		}
		fp_mul(ctx->fp3_p2[1], ctx->fp3_p[1], ctx->fp3_base[0]);
		fp_mul(ctx->fp3_p2[1], ctx->fp3_p2[1], ctx->fp3_p[1]);
		fp_sqr(ctx->fp3_p2[2], ctx->fp3_p[2]);
		fp_mul(ctx->fp3_p2[3], ctx->fp3_p[3], ctx->fp3_base[1]);
		fp_mul(t0[0], ctx->fp3_p2[3], ctx->fp3_p[3]);
		fp_neg(ctx->fp3_p2[3], t0[0]);
		for (int i = -1; i > fp_prime_get_cnr(); i--) {
			fp_sub(ctx->fp3_p2[3], ctx->fp3_p2[3], t0[0]);
		}
		fp_mul(ctx->fp3_p2[4], ctx->fp3_p[4], ctx->fp3_base[0]);
		fp_mul(ctx->fp3_p2[4], ctx->fp3_p2[4], ctx->fp3_p[4]);

		fp_mul(ctx->fp3_p3[0], ctx->fp3_p[0], ctx->fp3_base[0]);
		fp_mul(t0[0], ctx->fp3_p3[0], ctx->fp3_p2[0]);
		fp_neg(ctx->fp3_p3[0], t0[0]);
		for (int i = -1; i > fp_prime_get_cnr(); i--) {
			fp_sub(ctx->fp3_p3[0], ctx->fp3_p3[0], t0[0]);
		}
		fp_mul(ctx->fp3_p3[1], ctx->fp3_p[1], ctx->fp3_base[1]);
		fp_mul(t0[0], ctx->fp3_p3[1], ctx->fp3_p2[1]);
		fp_neg(ctx->fp3_p3[1], t0[0]);
		for (int i = -1; i > fp_prime_get_cnr(); i--) {
			fp_sub(ctx->fp3_p3[1], ctx->fp3_p3[1], t0[0]);
		}
		fp_mul(ctx->fp3_p3[2], ctx->fp3_p[2], ctx->fp3_p2[2]);
		fp_mul(ctx->fp3_p3[3], ctx->fp3_p[3], ctx->fp3_base[0]);
		fp_mul(t0[0], ctx->fp3_p3[3], ctx->fp3_p2[3]);
		fp_neg(ctx->fp3_p3[3], t0[0]);
		for (int i = -1; i > fp_prime_get_cnr(); i--) {
			fp_sub(ctx->fp3_p3[3], ctx->fp3_p3[3], t0[0]);
		}
		fp_mul(ctx->fp3_p3[4], ctx->fp3_p[4], ctx->fp3_base[1]);
		fp_mul(t0[0], ctx->fp3_p3[4], ctx->fp3_p2[4]);
		fp_neg(ctx->fp3_p3[4], t0[0]);
		for (int i = -1; i > fp_prime_get_cnr(); i--) {
			fp_sub(ctx->fp3_p3[4], ctx->fp3_p3[4], t0[0]);
		}
		for (int i = 0; i < 5; i++) {
			fp_mul(ctx->fp3_p4[i], ctx->fp3_p[i], ctx->fp3_p3[i]);
			fp_mul(ctx->fp3_p5[i], ctx->fp3_p2[i], ctx->fp3_p3[i]);
		}
	} CATCH_ANY {
		THROW(ERR_CAUGHT);
	} FINALLY {
		bn_free(e);
		fp3_free(t0);
		fp3_free(t1);
		fp3_free(t2);
	}
}
コード例 #6
0
ファイル: relic_fp_prime.c プロジェクト: ace0/relic
/**
 * Computes the constantes required for evaluating Frobenius maps.
 */
static void fp2_calc() {
	bn_t e;
	fp2_t t0;
	fp2_t t1;
	ctx_t *ctx = core_get();

	bn_null(e);
	fp2_null(t0);
	fp2_null(t1);

	TRY {
		bn_new(e);
		fp2_new(t0);
		fp2_new(t1);

		fp2_zero(t0);
		fp_set_dig(t0[0], 1);
		fp2_mul_nor(t0, t0);
		e->used = FP_DIGS;
		dv_copy(e->dp, fp_prime_get(), FP_DIGS);
		bn_sub_dig(e, e, 1);
		bn_div_dig(e, e, 6);
		fp2_exp(t0, t0, e);
#if ALLOC == AUTO
		fp2_copy(ctx->fp2_p[0], t0);
		fp2_sqr(ctx->fp2_p[1], ctx->fp2_p[0]);
		fp2_mul(ctx->fp2_p[2], ctx->fp2_p[1], ctx->fp2_p[0]);
		fp2_sqr(ctx->fp2_p[3], ctx->fp2_p[1]);
		fp2_mul(ctx->fp2_p[4], ctx->fp2_p[3], ctx->fp2_p[0]);
#else
		fp_copy(ctx->fp2_p[0][0], t0[0]);
		fp_copy(ctx->fp2_p[0][1], t0[1]);
		fp2_sqr(t1, t0);
		fp_copy(ctx->fp2_p[1][0], t1[0]);
		fp_copy(ctx->fp2_p[1][1], t1[1]);
		fp2_mul(t1, t1, t0);
		fp_copy(ctx->fp2_p[2][0], t1[0]);
		fp_copy(ctx->fp2_p[2][1], t1[1]);
		fp2_sqr(t1, t0);
		fp2_sqr(t1, t1);
		fp_copy(ctx->fp2_p[3][0], t1[0]);
		fp_copy(ctx->fp2_p[3][1], t1[1]);
		fp2_mul(t1, t1, t0);
		fp_copy(ctx->fp2_p[4][0], t1[0]);
		fp_copy(ctx->fp2_p[4][1], t1[1]);
#endif
		fp2_frb(t1, t0, 1);
		fp2_mul(t0, t1, t0);
		fp_copy(ctx->fp2_p2[0], t0[0]);
		fp_sqr(ctx->fp2_p2[1], ctx->fp2_p2[0]);
		fp_mul(ctx->fp2_p2[2], ctx->fp2_p2[1], ctx->fp2_p2[0]);
		fp_sqr(ctx->fp2_p2[3], ctx->fp2_p2[1]);

		for (int i = 0; i < 5; i++) {
			fp_mul(ctx->fp2_p3[i][0], ctx->fp2_p2[i % 3], ctx->fp2_p[i][0]);
			fp_mul(ctx->fp2_p3[i][1], ctx->fp2_p2[i % 3], ctx->fp2_p[i][1]);
		}
	} CATCH_ANY {
		THROW(ERR_CAUGHT);
	} FINALLY {
		bn_free(e);
		fp2_free(t0);
		fp2_free(t1);
	}
}
コード例 #7
0
ファイル: relic_fp_param.c プロジェクト: ekr/hacrypto
void fp_param_set(int param) {
	bn_t t0, t1, t2, p;
	int f[10] = { 0 };

	bn_null(t0);
	bn_null(t1);
	bn_null(t2);
	bn_null(p);

	/* Suppress possible unused parameter warning. */
	(void) f;

	TRY {
		bn_new(t0);
		bn_new(t1);
		bn_new(t2);
		bn_new(p);

		core_get()->fp_id = param;

		switch (param) {
#if FP_PRIME == 158
			case BN_158:
				/* x = 4000000031. */
				fp_param_get_var(t0);
				/* p = 36 * x^4 + 36 * x^3 + 24 * x^2 + 6 * x + 1. */
				bn_set_dig(p, 1);
				bn_mul_dig(t1, t0, 6);
				bn_add(p, p, t1);
				bn_mul(t1, t0, t0);
				bn_mul_dig(t1, t1, 24);
				bn_add(p, p, t1);
				bn_mul(t1, t0, t0);
				bn_mul(t1, t1, t0);
				bn_mul_dig(t1, t1, 36);
				bn_add(p, p, t1);
				bn_mul(t0, t0, t0);
				bn_mul(t1, t0, t0);
				bn_mul_dig(t1, t1, 36);
				bn_add(p, p, t1);
				fp_prime_set_dense(p);
				break;
#elif FP_PRIME == 160
			case SECG_160:
				/* p = 2^160 - 2^31 + 1. */
				f[0] = -1;
				f[1] = -31;
				f[2] = 160;
				fp_prime_set_pmers(f, 3);
				break;
			case SECG_160D:
				/* p = 2^160 - 2^32 - 2^14 - 2^12 - 2^9 - 2^8 - 2^7 - 2^3 - 2^2 - 1.*/
				f[0] = -1;
				f[1] = -2;
				f[2] = -3;
				f[3] = -7;
				f[4] = -8;
				f[5] = -9;
				f[6] = -12;
				f[7] = -14;
				f[8] = -32;
				f[9] = 160;
				fp_prime_set_pmers(f, 10);
				break;
#elif FP_PRIME == 192
			case NIST_192:
				/* p = 2^192 - 2^64 - 1. */
				f[0] = -1;
				f[1] = -64;
				f[2] = 192;
				fp_prime_set_pmers(f, 3);
				break;
			case SECG_192:
				/* p = 2^192 - 2^32 - 2^12 - 2^8 - 2^7 - 2^6 - 2^3 - 1.*/
				f[0] = -1;
				f[1] = -3;
				f[2] = -6;
				f[3] = -7;
				f[4] = -8;
				f[5] = -12;
				f[6] = -32;
				f[7] = 192;
				fp_prime_set_pmers(f, 8);
				break;
#elif FP_PRIME == 224
			case NIST_224:
				/* p = 2^224 - 2^96 + 1. */
				f[0] = 1;
				f[1] = -96;
				f[2] = 224;
				fp_prime_set_pmers(f, 3);
				break;
			case SECG_224:
				/* p = 2^224 - 2^32 - 2^12 - 2^11 - 2^9 - 2^7 - 2^4 - 2 - 1.*/
				f[0] = -1;
				f[1] = -1;
				f[2] = -4;
				f[3] = -7;
				f[4] = -9;
				f[5] = -11;
				f[6] = -12;
				f[7] = -32;
				f[8] = 224;
				fp_prime_set_pmers(f, 9);
				break;
#elif FP_PRIME == 254
			case BN_254:
				/* x = -4080000000000001. */
				fp_param_get_var(t0);
				/* p = 36 * x^4 + 36 * x^3 + 24 * x^2 + 6 * x + 1. */
				bn_set_dig(p, 1);
				bn_mul_dig(t1, t0, 6);
				bn_add(p, p, t1);
				bn_mul(t1, t0, t0);
				bn_mul_dig(t1, t1, 24);
				bn_add(p, p, t1);
				bn_mul(t1, t0, t0);
				bn_mul(t1, t1, t0);
				bn_mul_dig(t1, t1, 36);
				bn_add(p, p, t1);
				bn_mul(t0, t0, t0);
				bn_mul(t1, t0, t0);
				bn_mul_dig(t1, t1, 36);
				bn_add(p, p, t1);
				fp_prime_set_dense(p);
				break;
#elif FP_PRIME == 256
			case NIST_256:
				/* p = 2^256 - 2^224 + 2^192 + 2^96 - 1. */
				f[0] = -1;
				f[1] = 96;
				f[2] = 192;
				f[3] = -224;
				f[4] = 256;
				fp_prime_set_pmers(f, 5);
				break;
			case SECG_256:
				/* p = 2^256 - 2^32 - 2^9 - 2^8 - 2^7 - 2^6 - 2^4 - 1. */
				f[0] = -1;
				f[1] = -4;
				f[2] = -6;
				f[3] = -7;
				f[4] = -8;
				f[5] = -9;
				f[6] = -32;
				f[7] = 256;
				fp_prime_set_pmers(f, 8);
				break;
			case BN_256:
				/* x = 6000000000001F2D. */
				fp_param_get_var(t0);
				/* p = 36 * x^4 + 36 * x^3 + 24 * x^2 + 6 * x + 1. */
				bn_set_dig(p, 1);
				bn_mul_dig(t1, t0, 6);
				bn_add(p, p, t1);
				bn_mul(t1, t0, t0);
				bn_mul_dig(t1, t1, 24);
				bn_add(p, p, t1);
				bn_mul(t1, t0, t0);
				bn_mul(t1, t1, t0);
				bn_mul_dig(t1, t1, 36);
				bn_add(p, p, t1);
				bn_mul(t0, t0, t0);
				bn_mul(t1, t0, t0);
				bn_mul_dig(t1, t1, 36);
				bn_add(p, p, t1);
				fp_prime_set_dense(p);
				break;
#elif FP_PRIME == 384
			case NIST_384:
				/* p = 2^384 - 2^128 - 2^96 + 2^32 - 1. */
				f[0] = -1;
				f[1] = 32;
				f[2] = -96;
				f[3] = -128;
				f[4] = 384;
				fp_prime_set_pmers(f, 5);
				break;
#elif FP_PRIME == 477
			case B24_477:
				fp_param_get_var(t0);
				/* p = (u - 1)^2 * (u^8 - u^4 + 1) div 3 + u. */
				bn_sub_dig(p, t0, 1);
				bn_sqr(p, p);
				bn_sqr(t1, t0);
				bn_sqr(t1, t1);
				bn_sqr(t2, t1);
				bn_sub(t2, t2, t1);
				bn_add_dig(t2, t2, 1);
				bn_mul(p, p, t2);
				bn_div_dig(p, p, 3);
				bn_add(p, p, t0);
				fp_prime_set_dense(p);
				break;
#elif FP_PRIME == 508
			case KSS_508:
				fp_param_get_var(t0);
				/* h = (49*u^2 + 245 * u + 343)/3 */
				bn_mul_dig(p, t0, 245);
				bn_add_dig(p, p, 200);
				bn_add_dig(p, p, 143);
				bn_sqr(t1, t0);
				bn_mul_dig(t2, t1, 49);
				bn_add(p, p, t2);
				bn_div_dig(p, p, 3);
				/* n = (u^6 + 37 * u^3 + 343)/343. */
				bn_mul(t1, t1, t0);
				bn_mul_dig(t2, t1, 37);
				bn_sqr(t1, t1);
				bn_add(t2, t2, t1);
				bn_add_dig(t2, t2, 200);
				bn_add_dig(t2, t2, 143);
				bn_div_dig(t2, t2, 49);
				bn_div_dig(t2, t2, 7);
				bn_mul(p, p, t2);
				/* t = (u^4 + 16 * u + 7)/7. */
				bn_mul_dig(t1, t0, 16);
				bn_add_dig(t1, t1, 7);
				bn_sqr(t2, t0);
				bn_sqr(t2, t2);
				bn_add(t2, t2, t1);
				bn_div_dig(t2, t2, 7);
				bn_add(p, p, t2);
				bn_sub_dig(p, p, 1);
				fp_prime_set_dense(p);
				break;
#elif FP_PRIME == 521
			case NIST_521:
				/* p = 2^521 - 1. */
				f[0] = -1;
				f[1] = 521;
				fp_prime_set_pmers(f, 2);
				break;
#elif FP_PRIME == 638
			case BN_638:
				fp_param_get_var(t0);
				/* p = 36 * x^4 + 36 * x^3 + 24 * x^2 + 6 * x + 1. */
				bn_set_dig(p, 1);
				bn_mul_dig(t1, t0, 6);
				bn_add(p, p, t1);
				bn_mul(t1, t0, t0);
				bn_mul_dig(t1, t1, 24);
				bn_add(p, p, t1);
				bn_mul(t1, t0, t0);
				bn_mul(t1, t1, t0);
				bn_mul_dig(t1, t1, 36);
				bn_add(p, p, t1);
				bn_mul(t0, t0, t0);
				bn_mul(t1, t0, t0);
				bn_mul_dig(t1, t1, 36);
				bn_add(p, p, t1);
				fp_prime_set_dense(p);
				break;
			case B12_638:
				fp_param_get_var(t0);
				/* p = (x^2 - 2x + 1) * (x^4 - x^2 + 1)/3 + x. */
				bn_sqr(t1, t0);
				bn_sqr(p, t1);
				bn_sub(p, p, t1);
				bn_add_dig(p, p, 1);
				bn_sub(t1, t1, t0);
				bn_sub(t1, t1, t0);
				bn_add_dig(t1, t1, 1);
				bn_mul(p, p, t1);
				bn_div_dig(p, p, 3);
				bn_add(p, p, t0);
				fp_prime_set_dense(p);
				break;
#elif FP_PRIME == 1536
			case SS_1536:
				fp_param_get_var(t0);
				bn_read_str(p, SS_P1536, strlen(SS_P1536), 16);
				bn_mul(p, p, t0);
				bn_dbl(p, p);
				bn_sub_dig(p, p, 1);
				fp_prime_set_dense(p);
				break;
#else
			default:
				bn_gen_prime(p, FP_BITS);
				fp_prime_set_dense(p);
				core_get()->fp_id = 0;
				break;
#endif
		}
	}
	CATCH_ANY {
		THROW(ERR_CAUGHT);
	}
	FINALLY {
		bn_free(t0);
		bn_free(t1);
		bn_free(t2);
		bn_free(p);
	}
}