コード例 #1
0
ファイル: mul.c プロジェクト: 0x64616E69656C/boringssl
// bn_abs_sub_part_words computes |r| = |a| - |b|, storing the absolute value
// and returning a mask of all ones if the result was negative and all zeros if
// the result was positive. |cl| and |dl| follow the |bn_sub_part_words| calling
// convention.
//
// TODO(davidben): Make this take |size_t|. The |cl| + |dl| calling convention
// is confusing. The trouble is 32-bit x86 implements |bn_sub_part_words| in
// assembly, but we can probably just delete it?
static BN_ULONG bn_abs_sub_part_words(BN_ULONG *r, const BN_ULONG *a,
                                      const BN_ULONG *b, int cl, int dl,
                                      BN_ULONG *tmp) {
  BN_ULONG borrow = bn_sub_part_words(tmp, a, b, cl, dl);
  bn_sub_part_words(r, b, a, cl, -dl);
  int r_len = cl + (dl < 0 ? -dl : dl);
  borrow = 0 - borrow;
  bn_select_words(r, borrow, r /* tmp < 0 */, tmp /* tmp >= 0 */, r_len);
  return borrow;
}
コード例 #2
0
ファイル: bn_mul.c プロジェクト: dgervais/openssl
/* tnX may not be negative but less than n */
void bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n,
                           int tna, int tnb, BN_ULONG *t)
{
    int i, j, n2 = n * 2;
    int c1, c2, neg;
    BN_ULONG ln, lo, *p;

    if (n < 8) {
        bn_mul_normal(r, a, n + tna, b, n + tnb);
        return;
    }

    /* r=(a[0]-a[1])*(b[1]-b[0]) */
    c1 = bn_cmp_part_words(a, &(a[n]), tna, n - tna);
    c2 = bn_cmp_part_words(&(b[n]), b, tnb, tnb - n);
    neg = 0;
    switch (c1 * 3 + c2) {
    case -4:
        bn_sub_part_words(t, &(a[n]), a, tna, tna - n); /* - */
        bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb); /* - */
        break;
    case -3:
    case -2:
        bn_sub_part_words(t, &(a[n]), a, tna, tna - n); /* - */
        bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n); /* + */
        neg = 1;
        break;
    case -1:
    case 0:
    case 1:
    case 2:
        bn_sub_part_words(t, a, &(a[n]), tna, n - tna); /* + */
        bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb); /* - */
        neg = 1;
        break;
    case 3:
    case 4:
        bn_sub_part_words(t, a, &(a[n]), tna, n - tna);
        bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n);
        break;
    }
    /*
     * The zero case isn't yet implemented here. The speedup would probably
     * be negligible.
     */
# if 0
    if (n == 4) {
        bn_mul_comba4(&(t[n2]), t, &(t[n]));
        bn_mul_comba4(r, a, b);
        bn_mul_normal(&(r[n2]), &(a[n]), tn, &(b[n]), tn);
        memset(&r[n2 + tn * 2], 0, sizeof(*r) * (n2 - tn * 2));
    } else
# endif
    if (n == 8) {
        bn_mul_comba8(&(t[n2]), t, &(t[n]));
        bn_mul_comba8(r, a, b);
        bn_mul_normal(&(r[n2]), &(a[n]), tna, &(b[n]), tnb);
        memset(&r[n2 + tna + tnb], 0, sizeof(*r) * (n2 - tna - tnb));
    } else {
        p = &(t[n2 * 2]);
        bn_mul_recursive(&(t[n2]), t, &(t[n]), n, 0, 0, p);
        bn_mul_recursive(r, a, b, n, 0, 0, p);
        i = n / 2;
        /*
         * If there is only a bottom half to the number, just do it
         */
        if (tna > tnb)
            j = tna - i;
        else
            j = tnb - i;
        if (j == 0) {
            bn_mul_recursive(&(r[n2]), &(a[n]), &(b[n]),
                             i, tna - i, tnb - i, p);
            memset(&r[n2 + i * 2], 0, sizeof(*r) * (n2 - i * 2));
        } else if (j > 0) {     /* eg, n == 16, i == 8 and tn == 11 */
            bn_mul_part_recursive(&(r[n2]), &(a[n]), &(b[n]),
                                  i, tna - i, tnb - i, p);
            memset(&(r[n2 + tna + tnb]), 0,
                   sizeof(BN_ULONG) * (n2 - tna - tnb));
        } else {                /* (j < 0) eg, n == 16, i == 8 and tn == 5 */

            memset(&r[n2], 0, sizeof(*r) * n2);
            if (tna < BN_MUL_RECURSIVE_SIZE_NORMAL
                && tnb < BN_MUL_RECURSIVE_SIZE_NORMAL) {
                bn_mul_normal(&(r[n2]), &(a[n]), tna, &(b[n]), tnb);
            } else {
                for (;;) {
                    i /= 2;
                    /*
                     * these simplified conditions work exclusively because
                     * difference between tna and tnb is 1 or 0
                     */
                    if (i < tna || i < tnb) {
                        bn_mul_part_recursive(&(r[n2]),
                                              &(a[n]), &(b[n]),
                                              i, tna - i, tnb - i, p);
                        break;
                    } else if (i == tna || i == tnb) {
                        bn_mul_recursive(&(r[n2]),
                                         &(a[n]), &(b[n]),
                                         i, tna - i, tnb - i, p);
                        break;
                    }
                }
            }
        }
    }

    /*-
     * t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign
     * r[10] holds (a[0]*b[0])
     * r[32] holds (b[1]*b[1])
     */

    c1 = (int)(bn_add_words(t, r, &(r[n2]), n2));

    if (neg) {                  /* if t[32] is negative */
        c1 -= (int)(bn_sub_words(&(t[n2]), t, &(t[n2]), n2));
    } else {
        /* Might have a carry */
        c1 += (int)(bn_add_words(&(t[n2]), &(t[n2]), t, n2));
    }

    /*-
     * t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1])
     * r[10] holds (a[0]*b[0])
     * r[32] holds (b[1]*b[1])
     * c1 holds the carry bits
     */
    c1 += (int)(bn_add_words(&(r[n]), &(r[n]), &(t[n2]), n2));
    if (c1) {
        p = &(r[n + n2]);
        lo = *p;
        ln = (lo + c1) & BN_MASK2;
        *p = ln;

        /*
         * The overflow will stop before we over write words we should not
         * overwrite
         */
        if (ln < (BN_ULONG)c1) {
            do {
                p++;
                lo = *p;
                ln = (lo + 1) & BN_MASK2;
                *p = ln;
            } while (ln == 0);
        }
    }
}
コード例 #3
0
ファイル: bn_mul.c プロジェクト: dgervais/openssl
/* dnX may not be positive, but n2/2+dnX has to be */
void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
                      int dna, int dnb, BN_ULONG *t)
{
    int n = n2 / 2, c1, c2;
    int tna = n + dna, tnb = n + dnb;
    unsigned int neg, zero;
    BN_ULONG ln, lo, *p;

# ifdef BN_MUL_COMBA
#  if 0
    if (n2 == 4) {
        bn_mul_comba4(r, a, b);
        return;
    }
#  endif
    /*
     * Only call bn_mul_comba 8 if n2 == 8 and the two arrays are complete
     * [steve]
     */
    if (n2 == 8 && dna == 0 && dnb == 0) {
        bn_mul_comba8(r, a, b);
        return;
    }
# endif                         /* BN_MUL_COMBA */
    /* Else do normal multiply */
    if (n2 < BN_MUL_RECURSIVE_SIZE_NORMAL) {
        bn_mul_normal(r, a, n2 + dna, b, n2 + dnb);
        if ((dna + dnb) < 0)
            memset(&r[2 * n2 + dna + dnb], 0,
                   sizeof(BN_ULONG) * -(dna + dnb));
        return;
    }
    /* r=(a[0]-a[1])*(b[1]-b[0]) */
    c1 = bn_cmp_part_words(a, &(a[n]), tna, n - tna);
    c2 = bn_cmp_part_words(&(b[n]), b, tnb, tnb - n);
    zero = neg = 0;
    switch (c1 * 3 + c2) {
    case -4:
        bn_sub_part_words(t, &(a[n]), a, tna, tna - n); /* - */
        bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb); /* - */
        break;
    case -3:
        zero = 1;
        break;
    case -2:
        bn_sub_part_words(t, &(a[n]), a, tna, tna - n); /* - */
        bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n); /* + */
        neg = 1;
        break;
    case -1:
    case 0:
    case 1:
        zero = 1;
        break;
    case 2:
        bn_sub_part_words(t, a, &(a[n]), tna, n - tna); /* + */
        bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb); /* - */
        neg = 1;
        break;
    case 3:
        zero = 1;
        break;
    case 4:
        bn_sub_part_words(t, a, &(a[n]), tna, n - tna);
        bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n);
        break;
    }

# ifdef BN_MUL_COMBA
    if (n == 4 && dna == 0 && dnb == 0) { /* XXX: bn_mul_comba4 could take
                                           * extra args to do this well */
        if (!zero)
            bn_mul_comba4(&(t[n2]), t, &(t[n]));
        else
            memset(&t[n2], 0, sizeof(*t) * 8);

        bn_mul_comba4(r, a, b);
        bn_mul_comba4(&(r[n2]), &(a[n]), &(b[n]));
    } else if (n == 8 && dna == 0 && dnb == 0) { /* XXX: bn_mul_comba8 could
                                                  * take extra args to do
                                                  * this well */
        if (!zero)
            bn_mul_comba8(&(t[n2]), t, &(t[n]));
        else
            memset(&t[n2], 0, sizeof(*t) * 16);

        bn_mul_comba8(r, a, b);
        bn_mul_comba8(&(r[n2]), &(a[n]), &(b[n]));
    } else
# endif                         /* BN_MUL_COMBA */
    {
        p = &(t[n2 * 2]);
        if (!zero)
            bn_mul_recursive(&(t[n2]), t, &(t[n]), n, 0, 0, p);
        else
            memset(&t[n2], 0, sizeof(*t) * n2);
        bn_mul_recursive(r, a, b, n, 0, 0, p);
        bn_mul_recursive(&(r[n2]), &(a[n]), &(b[n]), n, dna, dnb, p);
    }

    /*-
     * t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign
     * r[10] holds (a[0]*b[0])
     * r[32] holds (b[1]*b[1])
     */

    c1 = (int)(bn_add_words(t, r, &(r[n2]), n2));

    if (neg) {                  /* if t[32] is negative */
        c1 -= (int)(bn_sub_words(&(t[n2]), t, &(t[n2]), n2));
    } else {
        /* Might have a carry */
        c1 += (int)(bn_add_words(&(t[n2]), &(t[n2]), t, n2));
    }

    /*-
     * t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1])
     * r[10] holds (a[0]*b[0])
     * r[32] holds (b[1]*b[1])
     * c1 holds the carry bits
     */
    c1 += (int)(bn_add_words(&(r[n]), &(r[n]), &(t[n2]), n2));
    if (c1) {
        p = &(r[n + n2]);
        lo = *p;
        ln = (lo + c1) & BN_MASK2;
        *p = ln;

        /*
         * The overflow will stop before we over write words we should not
         * overwrite
         */
        if (ln < (BN_ULONG)c1) {
            do {
                p++;
                lo = *p;
                ln = (lo + 1) & BN_MASK2;
                *p = ln;
            } while (ln == 0);
        }
    }
}
コード例 #4
0
ファイル: mul.c プロジェクト: AxiomaAbsurdo/time_web_app
// n+tn is the word length
// t needs to be n*4 is size, as does r
// tnX may not be negative but less than n
static void bn_mul_part_recursive(BN_ULONG *r, const BN_ULONG *a,
                                  const BN_ULONG *b, int n, int tna, int tnb,
                                  BN_ULONG *t) {
  int i, j, n2 = n * 2;
  int c1, c2, neg;
  BN_ULONG ln, lo, *p;

  if (n < 8) {
    bn_mul_normal(r, a, n + tna, b, n + tnb);
    return;
  }

  // r=(a[0]-a[1])*(b[1]-b[0])
  c1 = bn_cmp_part_words(a, &(a[n]), tna, n - tna);
  c2 = bn_cmp_part_words(&(b[n]), b, tnb, tnb - n);
  neg = 0;
  switch (c1 * 3 + c2) {
    case -4:
      bn_sub_part_words(t, &(a[n]), a, tna, tna - n);        // -
      bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb);  // -
      break;
    case -3:
      // break;
    case -2:
      bn_sub_part_words(t, &(a[n]), a, tna, tna - n);        // -
      bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n);  // +
      neg = 1;
      break;
    case -1:
    case 0:
    case 1:
      // break;
    case 2:
      bn_sub_part_words(t, a, &(a[n]), tna, n - tna);        // +
      bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb);  // -
      neg = 1;
      break;
    case 3:
      // break;
    case 4:
      bn_sub_part_words(t, a, &(a[n]), tna, n - tna);
      bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n);
      break;
  }

  if (n == 8) {
    bn_mul_comba8(&(t[n2]), t, &(t[n]));
    bn_mul_comba8(r, a, b);
    bn_mul_normal(&(r[n2]), &(a[n]), tna, &(b[n]), tnb);
    OPENSSL_memset(&(r[n2 + tna + tnb]), 0, sizeof(BN_ULONG) * (n2 - tna - tnb));
  } else {
    p = &(t[n2 * 2]);
    bn_mul_recursive(&(t[n2]), t, &(t[n]), n, 0, 0, p);
    bn_mul_recursive(r, a, b, n, 0, 0, p);
    i = n / 2;
    // If there is only a bottom half to the number,
    // just do it
    if (tna > tnb) {
      j = tna - i;
    } else {
      j = tnb - i;
    }

    if (j == 0) {
      bn_mul_recursive(&(r[n2]), &(a[n]), &(b[n]), i, tna - i, tnb - i, p);
      OPENSSL_memset(&(r[n2 + i * 2]), 0, sizeof(BN_ULONG) * (n2 - i * 2));
    } else if (j > 0) {
      // eg, n == 16, i == 8 and tn == 11
      bn_mul_part_recursive(&(r[n2]), &(a[n]), &(b[n]), i, tna - i, tnb - i, p);
      OPENSSL_memset(&(r[n2 + tna + tnb]), 0,
                     sizeof(BN_ULONG) * (n2 - tna - tnb));
    } else {
      // (j < 0) eg, n == 16, i == 8 and tn == 5
      OPENSSL_memset(&(r[n2]), 0, sizeof(BN_ULONG) * n2);
      if (tna < BN_MUL_RECURSIVE_SIZE_NORMAL &&
          tnb < BN_MUL_RECURSIVE_SIZE_NORMAL) {
        bn_mul_normal(&(r[n2]), &(a[n]), tna, &(b[n]), tnb);
      } else {
        for (;;) {
          i /= 2;
          // these simplified conditions work
          // exclusively because difference
          // between tna and tnb is 1 or 0
          if (i < tna || i < tnb) {
            bn_mul_part_recursive(&(r[n2]), &(a[n]), &(b[n]), i, tna - i,
                                  tnb - i, p);
            break;
          } else if (i == tna || i == tnb) {
            bn_mul_recursive(&(r[n2]), &(a[n]), &(b[n]), i, tna - i, tnb - i,
                             p);
            break;
          }
        }
      }
    }
  }

  // t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign
  // r[10] holds (a[0]*b[0])
  // r[32] holds (b[1]*b[1])

  c1 = (int)(bn_add_words(t, r, &(r[n2]), n2));

  if (neg) {
    // if t[32] is negative
    c1 -= (int)(bn_sub_words(&(t[n2]), t, &(t[n2]), n2));
  } else {
    // Might have a carry
    c1 += (int)(bn_add_words(&(t[n2]), &(t[n2]), t, n2));
  }

  // t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1])
  // r[10] holds (a[0]*b[0])
  // r[32] holds (b[1]*b[1])
  // c1 holds the carry bits
  c1 += (int)(bn_add_words(&(r[n]), &(r[n]), &(t[n2]), n2));
  if (c1) {
    p = &(r[n + n2]);
    lo = *p;
    ln = lo + c1;
    *p = ln;

    // The overflow will stop before we over write
    // words we should not overwrite
    if (ln < (BN_ULONG)c1) {
      do {
        p++;
        lo = *p;
        ln = lo + 1;
        *p = ln;
      } while (ln == 0);
    }
  }
}
コード例 #5
0
ファイル: mul.c プロジェクト: AxiomaAbsurdo/time_web_app
// r is 2*n2 words in size,
// a and b are both n2 words in size.
// n2 must be a power of 2.
// We multiply and return the result.
// t must be 2*n2 words in size
// We calculate
// a[0]*b[0]
// a[0]*b[0]+a[1]*b[1]+(a[0]-a[1])*(b[1]-b[0])
// a[1]*b[1]
// dnX may not be positive, but n2/2+dnX has to be
static void bn_mul_recursive(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b,
                             int n2, int dna, int dnb, BN_ULONG *t) {
  int n = n2 / 2, c1, c2;
  int tna = n + dna, tnb = n + dnb;
  unsigned int neg, zero;
  BN_ULONG ln, lo, *p;

  // Only call bn_mul_comba 8 if n2 == 8 and the
  // two arrays are complete [steve]
  if (n2 == 8 && dna == 0 && dnb == 0) {
    bn_mul_comba8(r, a, b);
    return;
  }

  // Else do normal multiply
  if (n2 < BN_MUL_RECURSIVE_SIZE_NORMAL) {
    bn_mul_normal(r, a, n2 + dna, b, n2 + dnb);
    if ((dna + dnb) < 0) {
      OPENSSL_memset(&r[2 * n2 + dna + dnb], 0,
                     sizeof(BN_ULONG) * -(dna + dnb));
    }
    return;
  }

  // r=(a[0]-a[1])*(b[1]-b[0])
  c1 = bn_cmp_part_words(a, &(a[n]), tna, n - tna);
  c2 = bn_cmp_part_words(&(b[n]), b, tnb, tnb - n);
  zero = neg = 0;
  switch (c1 * 3 + c2) {
    case -4:
      bn_sub_part_words(t, &(a[n]), a, tna, tna - n);        // -
      bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb);  // -
      break;
    case -3:
      zero = 1;
      break;
    case -2:
      bn_sub_part_words(t, &(a[n]), a, tna, tna - n);        // -
      bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n);  // +
      neg = 1;
      break;
    case -1:
    case 0:
    case 1:
      zero = 1;
      break;
    case 2:
      bn_sub_part_words(t, a, &(a[n]), tna, n - tna);        // +
      bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb);  // -
      neg = 1;
      break;
    case 3:
      zero = 1;
      break;
    case 4:
      bn_sub_part_words(t, a, &(a[n]), tna, n - tna);
      bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n);
      break;
  }

  if (n == 4 && dna == 0 && dnb == 0) {
    // XXX: bn_mul_comba4 could take extra args to do this well
    if (!zero) {
      bn_mul_comba4(&(t[n2]), t, &(t[n]));
    } else {
      OPENSSL_memset(&(t[n2]), 0, 8 * sizeof(BN_ULONG));
    }

    bn_mul_comba4(r, a, b);
    bn_mul_comba4(&(r[n2]), &(a[n]), &(b[n]));
  } else if (n == 8 && dna == 0 && dnb == 0) {
    // XXX: bn_mul_comba8 could take extra args to do this well
    if (!zero) {
      bn_mul_comba8(&(t[n2]), t, &(t[n]));
    } else {
      OPENSSL_memset(&(t[n2]), 0, 16 * sizeof(BN_ULONG));
    }

    bn_mul_comba8(r, a, b);
    bn_mul_comba8(&(r[n2]), &(a[n]), &(b[n]));
  } else {
    p = &(t[n2 * 2]);
    if (!zero) {
      bn_mul_recursive(&(t[n2]), t, &(t[n]), n, 0, 0, p);
    } else {
      OPENSSL_memset(&(t[n2]), 0, n2 * sizeof(BN_ULONG));
    }
    bn_mul_recursive(r, a, b, n, 0, 0, p);
    bn_mul_recursive(&(r[n2]), &(a[n]), &(b[n]), n, dna, dnb, p);
  }

  // t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign
  // r[10] holds (a[0]*b[0])
  // r[32] holds (b[1]*b[1])

  c1 = (int)(bn_add_words(t, r, &(r[n2]), n2));

  if (neg) {
    // if t[32] is negative
    c1 -= (int)(bn_sub_words(&(t[n2]), t, &(t[n2]), n2));
  } else {
    // Might have a carry
    c1 += (int)(bn_add_words(&(t[n2]), &(t[n2]), t, n2));
  }

  // t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1])
  // r[10] holds (a[0]*b[0])
  // r[32] holds (b[1]*b[1])
  // c1 holds the carry bits
  c1 += (int)(bn_add_words(&(r[n]), &(r[n]), &(t[n2]), n2));
  if (c1) {
    p = &(r[n + n2]);
    lo = *p;
    ln = lo + c1;
    *p = ln;

    // The overflow will stop before we over write
    // words we should not overwrite
    if (ln < (BN_ULONG)c1) {
      do {
        p++;
        lo = *p;
        ln = lo + 1;
        *p = ln;
      } while (ln == 0);
    }
  }
}