// bn_abs_sub_part_words computes |r| = |a| - |b|, storing the absolute value // and returning a mask of all ones if the result was negative and all zeros if // the result was positive. |cl| and |dl| follow the |bn_sub_part_words| calling // convention. // // TODO(davidben): Make this take |size_t|. The |cl| + |dl| calling convention // is confusing. The trouble is 32-bit x86 implements |bn_sub_part_words| in // assembly, but we can probably just delete it? static BN_ULONG bn_abs_sub_part_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, int cl, int dl, BN_ULONG *tmp) { BN_ULONG borrow = bn_sub_part_words(tmp, a, b, cl, dl); bn_sub_part_words(r, b, a, cl, -dl); int r_len = cl + (dl < 0 ? -dl : dl); borrow = 0 - borrow; bn_select_words(r, borrow, r /* tmp < 0 */, tmp /* tmp >= 0 */, r_len); return borrow; }
/* tnX may not be negative but less than n */ void bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n, int tna, int tnb, BN_ULONG *t) { int i, j, n2 = n * 2; int c1, c2, neg; BN_ULONG ln, lo, *p; if (n < 8) { bn_mul_normal(r, a, n + tna, b, n + tnb); return; } /* r=(a[0]-a[1])*(b[1]-b[0]) */ c1 = bn_cmp_part_words(a, &(a[n]), tna, n - tna); c2 = bn_cmp_part_words(&(b[n]), b, tnb, tnb - n); neg = 0; switch (c1 * 3 + c2) { case -4: bn_sub_part_words(t, &(a[n]), a, tna, tna - n); /* - */ bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb); /* - */ break; case -3: case -2: bn_sub_part_words(t, &(a[n]), a, tna, tna - n); /* - */ bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n); /* + */ neg = 1; break; case -1: case 0: case 1: case 2: bn_sub_part_words(t, a, &(a[n]), tna, n - tna); /* + */ bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb); /* - */ neg = 1; break; case 3: case 4: bn_sub_part_words(t, a, &(a[n]), tna, n - tna); bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n); break; } /* * The zero case isn't yet implemented here. The speedup would probably * be negligible. */ # if 0 if (n == 4) { bn_mul_comba4(&(t[n2]), t, &(t[n])); bn_mul_comba4(r, a, b); bn_mul_normal(&(r[n2]), &(a[n]), tn, &(b[n]), tn); memset(&r[n2 + tn * 2], 0, sizeof(*r) * (n2 - tn * 2)); } else # endif if (n == 8) { bn_mul_comba8(&(t[n2]), t, &(t[n])); bn_mul_comba8(r, a, b); bn_mul_normal(&(r[n2]), &(a[n]), tna, &(b[n]), tnb); memset(&r[n2 + tna + tnb], 0, sizeof(*r) * (n2 - tna - tnb)); } else { p = &(t[n2 * 2]); bn_mul_recursive(&(t[n2]), t, &(t[n]), n, 0, 0, p); bn_mul_recursive(r, a, b, n, 0, 0, p); i = n / 2; /* * If there is only a bottom half to the number, just do it */ if (tna > tnb) j = tna - i; else j = tnb - i; if (j == 0) { bn_mul_recursive(&(r[n2]), &(a[n]), &(b[n]), i, tna - i, tnb - i, p); memset(&r[n2 + i * 2], 0, sizeof(*r) * (n2 - i * 2)); } else if (j > 0) { /* eg, n == 16, i == 8 and tn == 11 */ bn_mul_part_recursive(&(r[n2]), &(a[n]), &(b[n]), i, tna - i, tnb - i, p); memset(&(r[n2 + tna + tnb]), 0, sizeof(BN_ULONG) * (n2 - tna - tnb)); } else { /* (j < 0) eg, n == 16, i == 8 and tn == 5 */ memset(&r[n2], 0, sizeof(*r) * n2); if (tna < BN_MUL_RECURSIVE_SIZE_NORMAL && tnb < BN_MUL_RECURSIVE_SIZE_NORMAL) { bn_mul_normal(&(r[n2]), &(a[n]), tna, &(b[n]), tnb); } else { for (;;) { i /= 2; /* * these simplified conditions work exclusively because * difference between tna and tnb is 1 or 0 */ if (i < tna || i < tnb) { bn_mul_part_recursive(&(r[n2]), &(a[n]), &(b[n]), i, tna - i, tnb - i, p); break; } else if (i == tna || i == tnb) { bn_mul_recursive(&(r[n2]), &(a[n]), &(b[n]), i, tna - i, tnb - i, p); break; } } } } } /*- * t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign * r[10] holds (a[0]*b[0]) * r[32] holds (b[1]*b[1]) */ c1 = (int)(bn_add_words(t, r, &(r[n2]), n2)); if (neg) { /* if t[32] is negative */ c1 -= (int)(bn_sub_words(&(t[n2]), t, &(t[n2]), n2)); } else { /* Might have a carry */ c1 += (int)(bn_add_words(&(t[n2]), &(t[n2]), t, n2)); } /*- * t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1]) * r[10] holds (a[0]*b[0]) * r[32] holds (b[1]*b[1]) * c1 holds the carry bits */ c1 += (int)(bn_add_words(&(r[n]), &(r[n]), &(t[n2]), n2)); if (c1) { p = &(r[n + n2]); lo = *p; ln = (lo + c1) & BN_MASK2; *p = ln; /* * The overflow will stop before we over write words we should not * overwrite */ if (ln < (BN_ULONG)c1) { do { p++; lo = *p; ln = (lo + 1) & BN_MASK2; *p = ln; } while (ln == 0); } } }
/* dnX may not be positive, but n2/2+dnX has to be */ void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2, int dna, int dnb, BN_ULONG *t) { int n = n2 / 2, c1, c2; int tna = n + dna, tnb = n + dnb; unsigned int neg, zero; BN_ULONG ln, lo, *p; # ifdef BN_MUL_COMBA # if 0 if (n2 == 4) { bn_mul_comba4(r, a, b); return; } # endif /* * Only call bn_mul_comba 8 if n2 == 8 and the two arrays are complete * [steve] */ if (n2 == 8 && dna == 0 && dnb == 0) { bn_mul_comba8(r, a, b); return; } # endif /* BN_MUL_COMBA */ /* Else do normal multiply */ if (n2 < BN_MUL_RECURSIVE_SIZE_NORMAL) { bn_mul_normal(r, a, n2 + dna, b, n2 + dnb); if ((dna + dnb) < 0) memset(&r[2 * n2 + dna + dnb], 0, sizeof(BN_ULONG) * -(dna + dnb)); return; } /* r=(a[0]-a[1])*(b[1]-b[0]) */ c1 = bn_cmp_part_words(a, &(a[n]), tna, n - tna); c2 = bn_cmp_part_words(&(b[n]), b, tnb, tnb - n); zero = neg = 0; switch (c1 * 3 + c2) { case -4: bn_sub_part_words(t, &(a[n]), a, tna, tna - n); /* - */ bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb); /* - */ break; case -3: zero = 1; break; case -2: bn_sub_part_words(t, &(a[n]), a, tna, tna - n); /* - */ bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n); /* + */ neg = 1; break; case -1: case 0: case 1: zero = 1; break; case 2: bn_sub_part_words(t, a, &(a[n]), tna, n - tna); /* + */ bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb); /* - */ neg = 1; break; case 3: zero = 1; break; case 4: bn_sub_part_words(t, a, &(a[n]), tna, n - tna); bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n); break; } # ifdef BN_MUL_COMBA if (n == 4 && dna == 0 && dnb == 0) { /* XXX: bn_mul_comba4 could take * extra args to do this well */ if (!zero) bn_mul_comba4(&(t[n2]), t, &(t[n])); else memset(&t[n2], 0, sizeof(*t) * 8); bn_mul_comba4(r, a, b); bn_mul_comba4(&(r[n2]), &(a[n]), &(b[n])); } else if (n == 8 && dna == 0 && dnb == 0) { /* XXX: bn_mul_comba8 could * take extra args to do * this well */ if (!zero) bn_mul_comba8(&(t[n2]), t, &(t[n])); else memset(&t[n2], 0, sizeof(*t) * 16); bn_mul_comba8(r, a, b); bn_mul_comba8(&(r[n2]), &(a[n]), &(b[n])); } else # endif /* BN_MUL_COMBA */ { p = &(t[n2 * 2]); if (!zero) bn_mul_recursive(&(t[n2]), t, &(t[n]), n, 0, 0, p); else memset(&t[n2], 0, sizeof(*t) * n2); bn_mul_recursive(r, a, b, n, 0, 0, p); bn_mul_recursive(&(r[n2]), &(a[n]), &(b[n]), n, dna, dnb, p); } /*- * t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign * r[10] holds (a[0]*b[0]) * r[32] holds (b[1]*b[1]) */ c1 = (int)(bn_add_words(t, r, &(r[n2]), n2)); if (neg) { /* if t[32] is negative */ c1 -= (int)(bn_sub_words(&(t[n2]), t, &(t[n2]), n2)); } else { /* Might have a carry */ c1 += (int)(bn_add_words(&(t[n2]), &(t[n2]), t, n2)); } /*- * t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1]) * r[10] holds (a[0]*b[0]) * r[32] holds (b[1]*b[1]) * c1 holds the carry bits */ c1 += (int)(bn_add_words(&(r[n]), &(r[n]), &(t[n2]), n2)); if (c1) { p = &(r[n + n2]); lo = *p; ln = (lo + c1) & BN_MASK2; *p = ln; /* * The overflow will stop before we over write words we should not * overwrite */ if (ln < (BN_ULONG)c1) { do { p++; lo = *p; ln = (lo + 1) & BN_MASK2; *p = ln; } while (ln == 0); } } }
// n+tn is the word length // t needs to be n*4 is size, as does r // tnX may not be negative but less than n static void bn_mul_part_recursive(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, int n, int tna, int tnb, BN_ULONG *t) { int i, j, n2 = n * 2; int c1, c2, neg; BN_ULONG ln, lo, *p; if (n < 8) { bn_mul_normal(r, a, n + tna, b, n + tnb); return; } // r=(a[0]-a[1])*(b[1]-b[0]) c1 = bn_cmp_part_words(a, &(a[n]), tna, n - tna); c2 = bn_cmp_part_words(&(b[n]), b, tnb, tnb - n); neg = 0; switch (c1 * 3 + c2) { case -4: bn_sub_part_words(t, &(a[n]), a, tna, tna - n); // - bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb); // - break; case -3: // break; case -2: bn_sub_part_words(t, &(a[n]), a, tna, tna - n); // - bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n); // + neg = 1; break; case -1: case 0: case 1: // break; case 2: bn_sub_part_words(t, a, &(a[n]), tna, n - tna); // + bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb); // - neg = 1; break; case 3: // break; case 4: bn_sub_part_words(t, a, &(a[n]), tna, n - tna); bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n); break; } if (n == 8) { bn_mul_comba8(&(t[n2]), t, &(t[n])); bn_mul_comba8(r, a, b); bn_mul_normal(&(r[n2]), &(a[n]), tna, &(b[n]), tnb); OPENSSL_memset(&(r[n2 + tna + tnb]), 0, sizeof(BN_ULONG) * (n2 - tna - tnb)); } else { p = &(t[n2 * 2]); bn_mul_recursive(&(t[n2]), t, &(t[n]), n, 0, 0, p); bn_mul_recursive(r, a, b, n, 0, 0, p); i = n / 2; // If there is only a bottom half to the number, // just do it if (tna > tnb) { j = tna - i; } else { j = tnb - i; } if (j == 0) { bn_mul_recursive(&(r[n2]), &(a[n]), &(b[n]), i, tna - i, tnb - i, p); OPENSSL_memset(&(r[n2 + i * 2]), 0, sizeof(BN_ULONG) * (n2 - i * 2)); } else if (j > 0) { // eg, n == 16, i == 8 and tn == 11 bn_mul_part_recursive(&(r[n2]), &(a[n]), &(b[n]), i, tna - i, tnb - i, p); OPENSSL_memset(&(r[n2 + tna + tnb]), 0, sizeof(BN_ULONG) * (n2 - tna - tnb)); } else { // (j < 0) eg, n == 16, i == 8 and tn == 5 OPENSSL_memset(&(r[n2]), 0, sizeof(BN_ULONG) * n2); if (tna < BN_MUL_RECURSIVE_SIZE_NORMAL && tnb < BN_MUL_RECURSIVE_SIZE_NORMAL) { bn_mul_normal(&(r[n2]), &(a[n]), tna, &(b[n]), tnb); } else { for (;;) { i /= 2; // these simplified conditions work // exclusively because difference // between tna and tnb is 1 or 0 if (i < tna || i < tnb) { bn_mul_part_recursive(&(r[n2]), &(a[n]), &(b[n]), i, tna - i, tnb - i, p); break; } else if (i == tna || i == tnb) { bn_mul_recursive(&(r[n2]), &(a[n]), &(b[n]), i, tna - i, tnb - i, p); break; } } } } } // t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign // r[10] holds (a[0]*b[0]) // r[32] holds (b[1]*b[1]) c1 = (int)(bn_add_words(t, r, &(r[n2]), n2)); if (neg) { // if t[32] is negative c1 -= (int)(bn_sub_words(&(t[n2]), t, &(t[n2]), n2)); } else { // Might have a carry c1 += (int)(bn_add_words(&(t[n2]), &(t[n2]), t, n2)); } // t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1]) // r[10] holds (a[0]*b[0]) // r[32] holds (b[1]*b[1]) // c1 holds the carry bits c1 += (int)(bn_add_words(&(r[n]), &(r[n]), &(t[n2]), n2)); if (c1) { p = &(r[n + n2]); lo = *p; ln = lo + c1; *p = ln; // The overflow will stop before we over write // words we should not overwrite if (ln < (BN_ULONG)c1) { do { p++; lo = *p; ln = lo + 1; *p = ln; } while (ln == 0); } } }
// r is 2*n2 words in size, // a and b are both n2 words in size. // n2 must be a power of 2. // We multiply and return the result. // t must be 2*n2 words in size // We calculate // a[0]*b[0] // a[0]*b[0]+a[1]*b[1]+(a[0]-a[1])*(b[1]-b[0]) // a[1]*b[1] // dnX may not be positive, but n2/2+dnX has to be static void bn_mul_recursive(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, int n2, int dna, int dnb, BN_ULONG *t) { int n = n2 / 2, c1, c2; int tna = n + dna, tnb = n + dnb; unsigned int neg, zero; BN_ULONG ln, lo, *p; // Only call bn_mul_comba 8 if n2 == 8 and the // two arrays are complete [steve] if (n2 == 8 && dna == 0 && dnb == 0) { bn_mul_comba8(r, a, b); return; } // Else do normal multiply if (n2 < BN_MUL_RECURSIVE_SIZE_NORMAL) { bn_mul_normal(r, a, n2 + dna, b, n2 + dnb); if ((dna + dnb) < 0) { OPENSSL_memset(&r[2 * n2 + dna + dnb], 0, sizeof(BN_ULONG) * -(dna + dnb)); } return; } // r=(a[0]-a[1])*(b[1]-b[0]) c1 = bn_cmp_part_words(a, &(a[n]), tna, n - tna); c2 = bn_cmp_part_words(&(b[n]), b, tnb, tnb - n); zero = neg = 0; switch (c1 * 3 + c2) { case -4: bn_sub_part_words(t, &(a[n]), a, tna, tna - n); // - bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb); // - break; case -3: zero = 1; break; case -2: bn_sub_part_words(t, &(a[n]), a, tna, tna - n); // - bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n); // + neg = 1; break; case -1: case 0: case 1: zero = 1; break; case 2: bn_sub_part_words(t, a, &(a[n]), tna, n - tna); // + bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb); // - neg = 1; break; case 3: zero = 1; break; case 4: bn_sub_part_words(t, a, &(a[n]), tna, n - tna); bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n); break; } if (n == 4 && dna == 0 && dnb == 0) { // XXX: bn_mul_comba4 could take extra args to do this well if (!zero) { bn_mul_comba4(&(t[n2]), t, &(t[n])); } else { OPENSSL_memset(&(t[n2]), 0, 8 * sizeof(BN_ULONG)); } bn_mul_comba4(r, a, b); bn_mul_comba4(&(r[n2]), &(a[n]), &(b[n])); } else if (n == 8 && dna == 0 && dnb == 0) { // XXX: bn_mul_comba8 could take extra args to do this well if (!zero) { bn_mul_comba8(&(t[n2]), t, &(t[n])); } else { OPENSSL_memset(&(t[n2]), 0, 16 * sizeof(BN_ULONG)); } bn_mul_comba8(r, a, b); bn_mul_comba8(&(r[n2]), &(a[n]), &(b[n])); } else { p = &(t[n2 * 2]); if (!zero) { bn_mul_recursive(&(t[n2]), t, &(t[n]), n, 0, 0, p); } else { OPENSSL_memset(&(t[n2]), 0, n2 * sizeof(BN_ULONG)); } bn_mul_recursive(r, a, b, n, 0, 0, p); bn_mul_recursive(&(r[n2]), &(a[n]), &(b[n]), n, dna, dnb, p); } // t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign // r[10] holds (a[0]*b[0]) // r[32] holds (b[1]*b[1]) c1 = (int)(bn_add_words(t, r, &(r[n2]), n2)); if (neg) { // if t[32] is negative c1 -= (int)(bn_sub_words(&(t[n2]), t, &(t[n2]), n2)); } else { // Might have a carry c1 += (int)(bn_add_words(&(t[n2]), &(t[n2]), t, n2)); } // t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1]) // r[10] holds (a[0]*b[0]) // r[32] holds (b[1]*b[1]) // c1 holds the carry bits c1 += (int)(bn_add_words(&(r[n]), &(r[n]), &(t[n2]), n2)); if (c1) { p = &(r[n + n2]); lo = *p; ln = lo + c1; *p = ln; // The overflow will stop before we over write // words we should not overwrite if (ln < (BN_ULONG)c1) { do { p++; lo = *p; ln = lo + 1; *p = ln; } while (ln == 0); } } }