TR::Register * TR::AMD64SystemLinkage::buildIndirectDispatch(TR::Node *callNode) { TR::SymbolReference *methodSymRef = callNode->getSymbolReference(); TR_ASSERT(methodSymRef->getSymbol()->castToMethodSymbol()->isComputed(), "system linkage only supports computed indirect call for now %p\n", callNode); // Evaluate VFT // TR::Register *vftRegister; TR::Node *vftNode = callNode->getFirstChild(); if (vftNode->getRegister()) { vftRegister = vftNode->getRegister(); } else { vftRegister = cg()->evaluate(vftNode); } // Allocate adequate register dependencies. // // pre = number of argument registers + 1 for VFT register // post = number of volatile + VMThread + return register // uint32_t pre = getProperties().getNumIntegerArgumentRegisters() + getProperties().getNumFloatArgumentRegisters() + 1; uint32_t post = getProperties().getNumVolatileRegisters() + 1 + (callNode->getDataType() == TR::NoType ? 0 : 1); #if defined (PYTHON) && 0 // Treat all preserved GP regs as volatile until register map support available. // post += getProperties().getNumberOfPreservedGPRegisters(); #endif TR::RegisterDependencyConditions *callDeps = generateRegisterDependencyConditions(pre, 1, cg()); TR::RealRegister::RegNum scratchRegIndex = getProperties().getIntegerScratchRegister(1); callDeps->addPostCondition(vftRegister, scratchRegIndex, cg()); callDeps->stopAddingPostConditions(); // Evaluate outgoing arguments on the system stack and build pre-conditions. // int32_t memoryArgSize = buildArgs(callNode, callDeps); // Dispatch // generateRegInstruction(CALLReg, callNode, vftRegister, callDeps, cg()); cg()->resetIsLeafMethod(); // Build label post-conditions // TR::RegisterDependencyConditions *postDeps = generateRegisterDependencyConditions(0, post, cg()); TR::Register *returnReg = buildVolatileAndReturnDependencies(callNode, postDeps); postDeps->stopAddingPostConditions(); TR::LabelSymbol *postDepLabel = generateLabelSymbol(cg()); generateLabelInstruction(LABEL, callNode, postDepLabel, postDeps, cg()); return returnReg; }
TR::Register *TR::IA32SystemLinkage::buildDirectDispatch(TR::Node *callNode, bool spillFPRegs) { TR::RealRegister *stackPointerReg = machine()->getX86RealRegister(TR::RealRegister::esp); TR::SymbolReference *methodSymRef = callNode->getSymbolReference(); TR::MethodSymbol *methodSymbol = callNode->getSymbol()->castToMethodSymbol(); TR::ILOpCodes callOpCodeValue = callNode->getOpCodeValue(); if (!methodSymbol->isHelper()) diagnostic("Building call site for %s\n", methodSymbol->getMethod()->signature(trMemory())); TR::RegisterDependencyConditions *deps; deps = generateRegisterDependencyConditions((uint8_t)0, (uint8_t)6, cg()); TR::Register *returnReg = buildVolatileAndReturnDependencies(callNode, deps); deps->stopAddingConditions(); TR::RegisterDependencyConditions *dummy = generateRegisterDependencyConditions((uint8_t)0, (uint8_t)0, cg()); uint32_t argSize = buildArgs(callNode, dummy); TR::Register* targetAddressReg = NULL; TR::MemoryReference* targetAddressMem = NULL; // Call-out int32_t stackAdjustment = cg()->getProperties().getCallerCleanup() ? 0 : -argSize; TR::X86ImmInstruction* instr = generateImmSymInstruction(CALLImm4, callNode, (uintptr_t)methodSymbol->getMethodAddress(), methodSymRef, cg()); instr->setAdjustsFramePointerBy(stackAdjustment); if (cg()->getProperties().getCallerCleanup() && argSize > 0) { // Clean up arguments // generateRegImmInstruction( (argSize <= 127) ? ADD4RegImms : ADD4RegImm4, callNode, stackPointerReg, argSize, cg() ); } // Label denoting end of dispatch code sequence; dependencies are on // this label rather than on the call // TR::LabelSymbol *endSystemCallSequence = generateLabelSymbol(cg()); generateLabelInstruction(LABEL, callNode, endSystemCallSequence, deps, cg()); // Stop using the killed registers that are not going to persist // if (deps) stopUsingKilledRegisters(deps, returnReg); // If the method returns a floating point value that is not used, insert a dummy store to // eventually pop the value from the floating point stack. // if ((callNode->getDataType() == TR::Float || callNode->getDataType() == TR::Double) && callNode->getReferenceCount() == 1) { generateFPSTiST0RegRegInstruction(FSTRegReg, callNode, returnReg, returnReg, cg()); } if (cg()->enableRegisterAssociations()) associatePreservedRegisters(deps, returnReg); return returnReg; }
TR::Register *TR::AMD64SystemLinkage::buildDirectDispatch( TR::Node *callNode, bool spillFPRegs) { TR::SymbolReference *methodSymRef = callNode->getSymbolReference(); TR::MethodSymbol *methodSymbol = methodSymRef->getSymbol()->castToMethodSymbol(); TR::Register *returnReg; // Allocate adequate register dependencies. // // pre = number of argument registers // post = number of volatile + return register // uint32_t pre = getProperties().getNumIntegerArgumentRegisters() + getProperties().getNumFloatArgumentRegisters(); uint32_t post = getProperties().getNumVolatileRegisters() + (callNode->getDataType() == TR::NoType ? 0 : 1); #if defined (PYTHON) && 0 // Treat all preserved GP regs as volatile until register map support available. // post += getProperties().getNumberOfPreservedGPRegisters(); #endif TR::RegisterDependencyConditions *preDeps = generateRegisterDependencyConditions(pre, 0, cg()); TR::RegisterDependencyConditions *postDeps = generateRegisterDependencyConditions(0, post, cg()); // Evaluate outgoing arguments on the system stack and build pre-conditions. // int32_t memoryArgSize = buildArgs(callNode, preDeps); // Build post-conditions. // returnReg = buildVolatileAndReturnDependencies(callNode, postDeps); postDeps->stopAddingPostConditions(); // Find the second scratch register in the post dependency list. // TR::Register *scratchReg = NULL; TR::RealRegister::RegNum scratchRegIndex = getProperties().getIntegerScratchRegister(1); for (int32_t i=0; i<post; i++) { if (postDeps->getPostConditions()->getRegisterDependency(i)->getRealRegister() == scratchRegIndex) { scratchReg = postDeps->getPostConditions()->getRegisterDependency(i)->getRegister(); break; } } #if defined(PYTHON) && 0 // For Python, store the instruction that contains the GC map at this site into // the frame object. // TR::SymbolReference *frameObjectSymRef = comp()->getSymRefTab()->findOrCreateAutoSymbol(comp()->getMethodSymbol(), 0, TR::Address, true, false, true); TR::Register *frameObjectRegister = cg()->allocateRegister(); generateRegMemInstruction( L8RegMem, callNode, frameObjectRegister, generateX86MemoryReference(frameObjectSymRef, cg()), cg()); TR::RealRegister *espReal = cg()->machine()->getX86RealRegister(TR::RealRegister::esp); TR::Register *gcMapPCRegister = cg()->allocateRegister(); generateRegMemInstruction( LEA8RegMem, callNode, gcMapPCRegister, generateX86MemoryReference(espReal, -8, cg()), cg()); // Use "volatile" registers across the call. Once proper register map support // is implemented, r14 and r15 will no longer be volatile and a different pair // should be chosen. // TR::RegisterDependencyConditions *gcMapDeps = generateRegisterDependencyConditions(0, 2, cg()); gcMapDeps->addPostCondition(frameObjectRegister, TR::RealRegister::r14, cg()); gcMapDeps->addPostCondition(gcMapPCRegister, TR::RealRegister::r15, cg()); gcMapDeps->stopAddingPostConditions(); generateMemRegInstruction( S8MemReg, callNode, generateX86MemoryReference(frameObjectRegister, fe()->getPythonGCMapPCOffsetInFrame(), cg()), gcMapPCRegister, gcMapDeps, cg()); cg()->stopUsingRegister(frameObjectRegister); cg()->stopUsingRegister(gcMapPCRegister); #endif TR::Instruction *instr; if (methodSymbol->getMethodAddress()) { TR_ASSERT(scratchReg, "could not find second scratch register"); auto LoadRegisterInstruction = generateRegImm64SymInstruction( MOV8RegImm64, callNode, scratchReg, (uintptr_t)methodSymbol->getMethodAddress(), methodSymRef, cg()); if (TR::Options::getCmdLineOptions()->getOption(TR_EmitRelocatableELFFile)) { LoadRegisterInstruction->setReloKind(TR_NativeMethodAbsolute); } instr = generateRegInstruction(CALLReg, callNode, scratchReg, preDeps, cg()); } else { instr = generateImmSymInstruction(CALLImm4, callNode, (uintptrj_t)methodSymbol->getMethodAddress(), methodSymRef, preDeps, cg()); } cg()->resetIsLeafMethod(); instr->setNeedsGCMap(getProperties().getPreservedRegisterMapForGC()); cg()->stopUsingRegister(scratchReg); TR::LabelSymbol *postDepLabel = generateLabelSymbol(cg()); generateLabelInstruction(LABEL, callNode, postDepLabel, postDeps, cg()); return returnReg; }
TR::Register *TR::AMD64SystemLinkage::buildDirectDispatch( TR::Node *callNode, bool spillFPRegs) { TR::SymbolReference *methodSymRef = callNode->getSymbolReference(); TR::MethodSymbol *methodSymbol = methodSymRef->getSymbol()->castToMethodSymbol(); TR::Register *returnReg; // Allocate adequate register dependencies. // // pre = number of argument registers // post = number of volatile + return register // uint32_t pre = getProperties().getNumIntegerArgumentRegisters() + getProperties().getNumFloatArgumentRegisters(); uint32_t post = getProperties().getNumVolatileRegisters() + (callNode->getDataType() == TR::NoType ? 0 : 1); TR::RegisterDependencyConditions *preDeps = generateRegisterDependencyConditions(pre, 0, cg()); TR::RegisterDependencyConditions *postDeps = generateRegisterDependencyConditions(0, post, cg()); // Evaluate outgoing arguments on the system stack and build pre-conditions. // int32_t memoryArgSize = buildArgs(callNode, preDeps); // Build post-conditions. // returnReg = buildVolatileAndReturnDependencies(callNode, postDeps); postDeps->stopAddingPostConditions(); // Find the second scratch register in the post dependency list. // TR::Register *scratchReg = NULL; TR::RealRegister::RegNum scratchRegIndex = getProperties().getIntegerScratchRegister(1); for (int32_t i=0; i<post; i++) { if (postDeps->getPostConditions()->getRegisterDependency(i)->getRealRegister() == scratchRegIndex) { scratchReg = postDeps->getPostConditions()->getRegisterDependency(i)->getRegister(); break; } } TR::Instruction *instr; if (methodSymbol->getMethodAddress()) { TR_ASSERT(scratchReg, "could not find second scratch register"); auto LoadRegisterInstruction = generateRegImm64SymInstruction( MOV8RegImm64, callNode, scratchReg, (uintptr_t)methodSymbol->getMethodAddress(), methodSymRef, cg()); if (comp()->getOption(TR_EmitRelocatableELFFile)) { LoadRegisterInstruction->setReloKind(TR_NativeMethodAbsolute); } instr = generateRegInstruction(CALLReg, callNode, scratchReg, preDeps, cg()); } else { instr = generateImmSymInstruction(CALLImm4, callNode, (uintptrj_t)methodSymbol->getMethodAddress(), methodSymRef, preDeps, cg()); } cg()->resetIsLeafMethod(); instr->setNeedsGCMap(getProperties().getPreservedRegisterMapForGC()); cg()->stopUsingRegister(scratchReg); TR::LabelSymbol *postDepLabel = generateLabelSymbol(cg()); generateLabelInstruction(LABEL, callNode, postDepLabel, postDeps, cg()); return returnReg; }