コード例 #1
0
ProgramStateRef SimpleConstraintManager::assumeInclusiveRange(
    ProgramStateRef State, NonLoc Value, const llvm::APSInt &From,
    const llvm::APSInt &To, bool InRange) {

  assert(From.isUnsigned() == To.isUnsigned() &&
         From.getBitWidth() == To.getBitWidth() &&
         "Values should have same types!");

  if (!canReasonAbout(Value)) {
    // Just add the constraint to the expression without trying to simplify.
    SymbolRef Sym = Value.getAsSymExpr();
    assert(Sym);
    return assumeSymWithinInclusiveRange(State, Sym, From, To, InRange);
  }

  switch (Value.getSubKind()) {
  default:
    llvm_unreachable("'assumeInclusiveRange' is not implemented"
                     "for this NonLoc");

  case nonloc::LocAsIntegerKind:
  case nonloc::SymbolValKind: {
    if (SymbolRef Sym = Value.getAsSymbol())
      return assumeSymWithinInclusiveRange(State, Sym, From, To, InRange);
    return State;
  } // end switch

  case nonloc::ConcreteIntKind: {
    const llvm::APSInt &IntVal = Value.castAs<nonloc::ConcreteInt>().getValue();
    bool IsInRange = IntVal >= From && IntVal <= To;
    bool isFeasible = (IsInRange == InRange);
    return isFeasible ? State : nullptr;
  }
  } // end switch
}
コード例 #2
0
ファイル: SimpleConstraintManager.cpp プロジェクト: aaasz/SHP
const GRState *SimpleConstraintManager::AssumeAux(const GRState *state,
                                                  NonLoc Cond,
                                                  bool Assumption) {

  // We cannot reason about SymIntExpr and SymSymExpr.
  if (!canReasonAbout(Cond)) {
    // Just return the current state indicating that the path is feasible.
    // This may be an over-approximation of what is possible.
    return state;
  }

  BasicValueFactory &BasicVals = state->getBasicVals();
  SymbolManager &SymMgr = state->getSymbolManager();

  switch (Cond.getSubKind()) {
  default:
    assert(false && "'Assume' not implemented for this NonLoc");

  case nonloc::SymbolValKind: {
    nonloc::SymbolVal& SV = cast<nonloc::SymbolVal>(Cond);
    SymbolRef sym = SV.getSymbol();
    QualType T =  SymMgr.getType(sym);
    const llvm::APSInt &zero = BasicVals.getValue(0, T);

    return Assumption ? AssumeSymNE(state, sym, zero)
                      : AssumeSymEQ(state, sym, zero);
  }

  case nonloc::SymExprValKind: {
    nonloc::SymExprVal V = cast<nonloc::SymExprVal>(Cond);
    if (const SymIntExpr *SE = dyn_cast<SymIntExpr>(V.getSymbolicExpression())){
      // FIXME: This is a hack.  It silently converts the RHS integer to be
      // of the same type as on the left side.  This should be removed once
      // we support truncation/extension of symbolic values.      
      GRStateManager &StateMgr = state->getStateManager();
      ASTContext &Ctx = StateMgr.getContext();
      QualType LHSType = SE->getLHS()->getType(Ctx);
      BasicValueFactory &BasicVals = StateMgr.getBasicVals();
      const llvm::APSInt &RHS = BasicVals.Convert(LHSType, SE->getRHS());
      SymIntExpr SENew(SE->getLHS(), SE->getOpcode(), RHS, SE->getType(Ctx));

      return AssumeSymInt(state, Assumption, &SENew);
    }

    // For all other symbolic expressions, over-approximate and consider
    // the constraint feasible.
    return state;
  }

  case nonloc::ConcreteIntKind: {
    bool b = cast<nonloc::ConcreteInt>(Cond).getValue() != 0;
    bool isFeasible = b ? Assumption : !Assumption;
    return isFeasible ? state : NULL;
  }

  case nonloc::LocAsIntegerKind:
    return AssumeAux(state, cast<nonloc::LocAsInteger>(Cond).getLoc(),
                     Assumption);
  } // end switch
}
コード例 #3
0
const GRState*
SimpleConstraintManager::AssumeAux(const GRState* St,NonLoc Cond,
                                   bool Assumption, bool& isFeasible) {
  // We cannot reason about SymIntExpr and SymSymExpr.
  if (!canReasonAbout(Cond)) {
    isFeasible = true;
    return St;
  }  

  BasicValueFactory& BasicVals = StateMgr.getBasicVals();
  SymbolManager& SymMgr = StateMgr.getSymbolManager();

  switch (Cond.getSubKind()) {
  default:
    assert(false && "'Assume' not implemented for this NonLoc");

  case nonloc::SymbolValKind: {
    nonloc::SymbolVal& SV = cast<nonloc::SymbolVal>(Cond);
    SymbolRef sym = SV.getSymbol();
    QualType T =  SymMgr.getType(sym);
    
    if (Assumption)
      return AssumeSymNE(St, sym, BasicVals.getValue(0, T), isFeasible);
    else
      return AssumeSymEQ(St, sym, BasicVals.getValue(0, T), isFeasible);
  }

  case nonloc::SymExprValKind: {
    nonloc::SymExprVal V = cast<nonloc::SymExprVal>(Cond);
    if (const SymIntExpr *SE = dyn_cast<SymIntExpr>(V.getSymbolicExpression()))
      return AssumeSymInt(St, Assumption, SE, isFeasible);
    
    isFeasible = true;
    return St;
  }

  case nonloc::ConcreteIntKind: {
    bool b = cast<nonloc::ConcreteInt>(Cond).getValue() != 0;
    isFeasible = b ? Assumption : !Assumption;
    return St;
  }

  case nonloc::LocAsIntegerKind:
    return AssumeAux(St, cast<nonloc::LocAsInteger>(Cond).getLoc(),
                     Assumption, isFeasible);
  } // end switch
}
コード例 #4
0
ProgramStateRef SimpleConstraintManager::assumeAux(ProgramStateRef State,
                                                   NonLoc Cond,
                                                   bool Assumption) {

  // We cannot reason about SymSymExprs, and can only reason about some
  // SymIntExprs.
  if (!canReasonAbout(Cond)) {
    // Just add the constraint to the expression without trying to simplify.
    SymbolRef Sym = Cond.getAsSymExpr();
    return assumeAuxForSymbol(State, Sym, Assumption);
  }

  switch (Cond.getSubKind()) {
  default:
    llvm_unreachable("'Assume' not implemented for this NonLoc");

  case nonloc::SymbolValKind: {
    nonloc::SymbolVal SV = Cond.castAs<nonloc::SymbolVal>();
    SymbolRef Sym = SV.getSymbol();
    assert(Sym);

    // Handle SymbolData.
    if (!SV.isExpression()) {
      return assumeAuxForSymbol(State, Sym, Assumption);

      // Handle symbolic expression.
    } else if (const SymIntExpr *SE = dyn_cast<SymIntExpr>(Sym)) {
      // We can only simplify expressions whose RHS is an integer.

      BinaryOperator::Opcode Op = SE->getOpcode();
      if (BinaryOperator::isComparisonOp(Op)) {
        if (!Assumption)
          Op = BinaryOperator::negateComparisonOp(Op);

        return assumeSymRel(State, SE->getLHS(), Op, SE->getRHS());
      }

    } else if (const SymSymExpr *SSE = dyn_cast<SymSymExpr>(Sym)) {
      // Translate "a != b" to "(b - a) != 0".
      // We invert the order of the operands as a heuristic for how loop
      // conditions are usually written ("begin != end") as compared to length
      // calculations ("end - begin"). The more correct thing to do would be to
      // canonicalize "a - b" and "b - a", which would allow us to treat
      // "a != b" and "b != a" the same.
      SymbolManager &SymMgr = getSymbolManager();
      BinaryOperator::Opcode Op = SSE->getOpcode();
      assert(BinaryOperator::isComparisonOp(Op));

      // For now, we only support comparing pointers.
      assert(Loc::isLocType(SSE->getLHS()->getType()));
      assert(Loc::isLocType(SSE->getRHS()->getType()));
      QualType DiffTy = SymMgr.getContext().getPointerDiffType();
      SymbolRef Subtraction =
          SymMgr.getSymSymExpr(SSE->getRHS(), BO_Sub, SSE->getLHS(), DiffTy);

      const llvm::APSInt &Zero = getBasicVals().getValue(0, DiffTy);
      Op = BinaryOperator::reverseComparisonOp(Op);
      if (!Assumption)
        Op = BinaryOperator::negateComparisonOp(Op);
      return assumeSymRel(State, Subtraction, Op, Zero);
    }

    // If we get here, there's nothing else we can do but treat the symbol as
    // opaque.
    return assumeAuxForSymbol(State, Sym, Assumption);
  }

  case nonloc::ConcreteIntKind: {
    bool b = Cond.castAs<nonloc::ConcreteInt>().getValue() != 0;
    bool isFeasible = b ? Assumption : !Assumption;
    return isFeasible ? State : nullptr;
  }

  case nonloc::PointerToMemberKind: {
    bool IsNull = !Cond.castAs<nonloc::PointerToMember>().isNullMemberPointer();
    bool IsFeasible = IsNull ? Assumption : !Assumption;
    return IsFeasible ? State : nullptr;
  }

  case nonloc::LocAsIntegerKind:
    return assume(State, Cond.castAs<nonloc::LocAsInteger>().getLoc(),
                  Assumption);
  } // end switch
}
コード例 #5
0
ファイル: SimpleConstraintManager.cpp プロジェクト: CPFL/guc
const GRState *SimpleConstraintManager::AssumeAux(const GRState *state,
                                                  NonLoc Cond,
                                                  bool Assumption) {

  // We cannot reason about SymSymExprs,
  // and can only reason about some SymIntExprs.
  if (!canReasonAbout(Cond)) {
    // Just return the current state indicating that the path is feasible.
    // This may be an over-approximation of what is possible.
    return state;
  }

  BasicValueFactory &BasicVals = state->getBasicVals();
  SymbolManager &SymMgr = state->getSymbolManager();

  switch (Cond.getSubKind()) {
  default:
    assert(false && "'Assume' not implemented for this NonLoc");

  case nonloc::SymbolValKind: {
    nonloc::SymbolVal& SV = cast<nonloc::SymbolVal>(Cond);
    SymbolRef sym = SV.getSymbol();
    QualType T =  SymMgr.getType(sym);
    const llvm::APSInt &zero = BasicVals.getValue(0, T);
    if (Assumption)
      return AssumeSymNE(state, sym, zero, zero);
    else
      return AssumeSymEQ(state, sym, zero, zero);
  }

  case nonloc::SymExprValKind: {
    nonloc::SymExprVal V = cast<nonloc::SymExprVal>(Cond);

    // For now, we only handle expressions whose RHS is an integer.
    // All other expressions are assumed to be feasible.
    const SymIntExpr *SE = dyn_cast<SymIntExpr>(V.getSymbolicExpression());
    if (!SE)
      return state;

    BinaryOperator::Opcode op = SE->getOpcode();
    // Implicitly compare non-comparison expressions to 0.
    if (!BinaryOperator::isComparisonOp(op)) {
      QualType T = SymMgr.getType(SE);
      const llvm::APSInt &zero = BasicVals.getValue(0, T);
      op = (Assumption ? BO_NE : BO_EQ);
      return AssumeSymRel(state, SE, op, zero);
    }

    // From here on out, op is the real comparison we'll be testing.
    if (!Assumption)
      op = NegateComparison(op);
  
    return AssumeSymRel(state, SE->getLHS(), op, SE->getRHS());
  }

  case nonloc::ConcreteIntKind: {
    bool b = cast<nonloc::ConcreteInt>(Cond).getValue() != 0;
    bool isFeasible = b ? Assumption : !Assumption;
    return isFeasible ? state : NULL;
  }

  case nonloc::LocAsIntegerKind:
    return AssumeAux(state, cast<nonloc::LocAsInteger>(Cond).getLoc(),
                     Assumption);
  } // end switch
}
コード例 #6
0
ProgramStateRef SimpleConstraintManager::assumeAux(ProgramStateRef state,
                                                  NonLoc Cond,
                                                  bool Assumption) {

  // We cannot reason about SymSymExprs, and can only reason about some
  // SymIntExprs.
  if (!canReasonAbout(Cond)) {
    // Just add the constraint to the expression without trying to simplify.
    SymbolRef sym = Cond.getAsSymExpr();
    return assumeAuxForSymbol(state, sym, Assumption);
  }

  BasicValueFactory &BasicVals = getBasicVals();

  switch (Cond.getSubKind()) {
  default:
    llvm_unreachable("'Assume' not implemented for this NonLoc");

  case nonloc::SymbolValKind: {
    nonloc::SymbolVal& SV = cast<nonloc::SymbolVal>(Cond);
    SymbolRef sym = SV.getSymbol();
    assert(sym);

    // Handle SymbolData.
    if (!SV.isExpression()) {
      return assumeAuxForSymbol(state, sym, Assumption);

    // Handle symbolic expression.
    } else {
      // We can only simplify expressions whose RHS is an integer.
      const SymIntExpr *SE = dyn_cast<SymIntExpr>(sym);
      if (!SE)
        return assumeAuxForSymbol(state, sym, Assumption);

      BinaryOperator::Opcode op = SE->getOpcode();
      // Implicitly compare non-comparison expressions to 0.
      if (!BinaryOperator::isComparisonOp(op)) {
        QualType T = SE->getType(BasicVals.getContext());
        const llvm::APSInt &zero = BasicVals.getValue(0, T);
        op = (Assumption ? BO_NE : BO_EQ);
        return assumeSymRel(state, SE, op, zero);
      }
      // From here on out, op is the real comparison we'll be testing.
      if (!Assumption)
        op = NegateComparison(op);

      return assumeSymRel(state, SE->getLHS(), op, SE->getRHS());
    }
  }

  case nonloc::ConcreteIntKind: {
    bool b = cast<nonloc::ConcreteInt>(Cond).getValue() != 0;
    bool isFeasible = b ? Assumption : !Assumption;
    return isFeasible ? state : NULL;
  }

  case nonloc::LocAsIntegerKind:
    return assumeAux(state, cast<nonloc::LocAsInteger>(Cond).getLoc(),
                     Assumption);
  } // end switch
}