コード例 #1
0
bool SpectrumAnalyzer::processAudioBuffer( sampleFrame* _buf, const fpp_t _frames )
{
    if( !isEnabled() || !isRunning () )
    {
        return false;
    }

    if( !m_saControls.isViewVisible() )
    {
        return true;
    }

    fpp_t f = 0;
    if( _frames > FFT_BUFFER_SIZE )
    {
        m_framesFilledUp = 0;
        f = _frames - FFT_BUFFER_SIZE;
    }

    const int cm = m_saControls.m_channelMode.value();

    switch( cm )
    {
    case MergeChannels:
        for( ; f < _frames; ++f )
        {
            m_buffer[m_framesFilledUp] =
                ( _buf[f][0] + _buf[f][1] ) * 0.5;
            ++m_framesFilledUp;
        }
        break;
    case LeftChannel:
        for( ; f < _frames; ++f )
        {
            m_buffer[m_framesFilledUp] = _buf[f][0];
            ++m_framesFilledUp;
        }
        break;
    case RightChannel:
        for( ; f < _frames; ++f )
        {
            m_buffer[m_framesFilledUp] = _buf[f][1];
            ++m_framesFilledUp;
        }
        break;
    }

    if( m_framesFilledUp < FFT_BUFFER_SIZE )
    {
        return isRunning();
    }


//	hanming( m_buffer, FFT_BUFFER_SIZE, HAMMING );

    const sample_rate_t sr = Engine::mixer()->processingSampleRate();
    const int LOWEST_FREQ = 0;
    const int HIGHEST_FREQ = sr / 2;

    fftwf_execute( m_fftPlan );
    absspec( m_specBuf, m_absSpecBuf, FFT_BUFFER_SIZE+1 );
    if( m_saControls.m_linearSpec.value() )
    {
        compressbands( m_absSpecBuf, m_bands, FFT_BUFFER_SIZE+1,
                       MAX_BANDS,
                       (int)(LOWEST_FREQ*(FFT_BUFFER_SIZE+1)/(float)(sr/2)),
                       (int)(HIGHEST_FREQ*(FFT_BUFFER_SIZE+1)/(float)(sr/2)));
        m_energy = maximum( m_bands, MAX_BANDS ) / maximum( m_buffer, FFT_BUFFER_SIZE );
    }
    else
    {
        calc13octaveband31( m_absSpecBuf, m_bands, FFT_BUFFER_SIZE+1, sr/2.0 );
        m_energy = signalpower( m_buffer, FFT_BUFFER_SIZE ) / maximum( m_buffer, FFT_BUFFER_SIZE );
    }


    m_framesFilledUp = 0;

    checkGate( 1 );

    return isRunning();
}
コード例 #2
0
ファイル: EqEffect.cpp プロジェクト: Umcaruje/lmms
bool EqEffect::processAudioBuffer( sampleFrame *buf, const fpp_t frames )
{
	// setup sample exact controls
	float hpRes = m_eqControls.m_hpResModel.value();
	float lowShelfRes = m_eqControls.m_lowShelfResModel.value();
	float para1Bw = m_eqControls.m_para1BwModel.value();
	float para2Bw = m_eqControls.m_para2BwModel.value();
	float para3Bw = m_eqControls.m_para3BwModel.value();
	float para4Bw = m_eqControls.m_para4BwModel.value();
	float highShelfRes = m_eqControls.m_highShelfResModel.value();
	float lpRes = m_eqControls.m_lpResModel.value();

	float hpFreq = m_eqControls.m_hpFeqModel.value();
	float lowShelfFreq = m_eqControls.m_lowShelfFreqModel.value();
	float para1Freq = m_eqControls.m_para1FreqModel.value();
	float para2Freq = m_eqControls.m_para2FreqModel.value();
	float para3Freq = m_eqControls.m_para3FreqModel.value();
	float para4Freq = m_eqControls.m_para4FreqModel.value();
	float highShelfFreq = m_eqControls.m_highShelfFreqModel.value();
	float lpFreq = m_eqControls.m_lpFreqModel.value();

	ValueBuffer *hpResBuffer = m_eqControls.m_hpResModel.valueBuffer();
	ValueBuffer *lowShelfResBuffer = m_eqControls.m_lowShelfResModel.valueBuffer();
	ValueBuffer *para1BwBuffer = m_eqControls.m_para1BwModel.valueBuffer();
	ValueBuffer *para2BwBuffer = m_eqControls.m_para2BwModel.valueBuffer();
	ValueBuffer *para3BwBuffer = m_eqControls.m_para3BwModel.valueBuffer();
	ValueBuffer *para4BwBuffer = m_eqControls.m_para4BwModel.valueBuffer();
	ValueBuffer *highShelfResBuffer = m_eqControls.m_highShelfResModel.valueBuffer();
	ValueBuffer *lpResBuffer = m_eqControls.m_lpResModel.valueBuffer();

	ValueBuffer *hpFreqBuffer = m_eqControls.m_hpFeqModel.valueBuffer();
	ValueBuffer *lowShelfFreqBuffer = m_eqControls.m_lowShelfFreqModel.valueBuffer();
	ValueBuffer *para1FreqBuffer = m_eqControls.m_para1FreqModel.valueBuffer();
	ValueBuffer *para2FreqBuffer = m_eqControls.m_para2FreqModel.valueBuffer();
	ValueBuffer *para3FreqBuffer = m_eqControls.m_para3FreqModel.valueBuffer();
	ValueBuffer *para4FreqBuffer = m_eqControls.m_para4FreqModel.valueBuffer();
	ValueBuffer *highShelfFreqBuffer = m_eqControls.m_highShelfFreqModel.valueBuffer();
	ValueBuffer *lpFreqBuffer = m_eqControls.m_lpFreqModel.valueBuffer();

	int hpResInc = hpResBuffer ? 1 : 0;
	int lowShelfResInc = lowShelfResBuffer ? 1 : 0;
	int para1BwInc = para1BwBuffer ? 1 : 0;
	int para2BwInc = para2BwBuffer ? 1 : 0;
	int para3BwInc = para3BwBuffer ? 1 : 0;
	int para4BwInc = para4BwBuffer ? 1 : 0;
	int highShelfResInc = highShelfResBuffer ? 1 : 0;
	int lpResInc = lpResBuffer ? 1 : 0;

	int hpFreqInc = hpFreqBuffer ? 1 : 0;
	int lowShelfFreqInc = lowShelfFreqBuffer ? 1 : 0;
	int para1FreqInc = para1FreqBuffer ? 1 : 0;
	int para2FreqInc = para2FreqBuffer ? 1 : 0;
	int para3FreqInc = para3FreqBuffer ? 1 : 0;
	int para4FreqInc = para4FreqBuffer ? 1 : 0;
	int highShelfFreqInc = highShelfFreqBuffer ? 1 : 0;
	int lpFreqInc = lpFreqBuffer ? 1 : 0;

	float *hpResPtr = hpResBuffer ? &( hpResBuffer->values()[ 0 ] ) : &hpRes;
	float *lowShelfResPtr = lowShelfResBuffer ? &( lowShelfResBuffer->values()[ 0 ] ) : &lowShelfRes;
	float *para1BwPtr = para1BwBuffer ? &( para1BwBuffer->values()[ 0 ] ) : &para1Bw;
	float *para2BwPtr = para2BwBuffer ? &( para2BwBuffer->values()[ 0 ] ) : &para2Bw;
	float *para3BwPtr = para3BwBuffer ? &( para3BwBuffer->values()[ 0 ] ) : &para3Bw;
	float *para4BwPtr = para4BwBuffer ? &( para4BwBuffer->values()[ 0 ] ) : &para4Bw;
	float *highShelfResPtr = highShelfResBuffer ? &( highShelfResBuffer->values()[ 0 ] ) : &highShelfRes;
	float *lpResPtr = lpResBuffer ? &( lpResBuffer->values()[ 0 ] ) : &lpRes;

	float *hpFreqPtr = hpFreqBuffer ? &( hpFreqBuffer->values()[ 0 ] ) : &hpFreq;
	float *lowShelfFreqPtr = lowShelfFreqBuffer ? &( lowShelfFreqBuffer->values()[ 0 ] ) : &lowShelfFreq;
	float *para1FreqPtr = para1FreqBuffer ? &(para1FreqBuffer->values()[ 0 ] ) : &para1Freq;
	float *para2FreqPtr = para2FreqBuffer ? &(para2FreqBuffer->values()[ 0 ] ) : &para2Freq;
	float *para3FreqPtr = para3FreqBuffer ? &(para3FreqBuffer->values()[ 0 ] ) : &para3Freq;
	float *para4FreqPtr = para4FreqBuffer ? &(para4FreqBuffer->values()[ 0 ] ) : &para4Freq;
	float *hightShelfFreqPtr = highShelfFreqBuffer ? &(highShelfFreqBuffer->values()[ 0 ] ) : &highShelfFreq;
	float *lpFreqPtr = lpFreqBuffer ? &(lpFreqBuffer ->values()[ 0 ] ) : &lpFreq;

	bool hpActive = m_eqControls.m_hpActiveModel.value();
	bool hp24Active = m_eqControls.m_hp24Model.value();
	bool hp48Active = m_eqControls.m_hp48Model.value();
	bool lowShelfActive = m_eqControls.m_lowShelfActiveModel.value();
	bool para1Active = m_eqControls.m_para1ActiveModel.value();
	bool para2Active = m_eqControls.m_para2ActiveModel.value();
	bool para3Active = m_eqControls.m_para3ActiveModel.value();
	bool para4Active = m_eqControls.m_para4ActiveModel.value();
	bool highShelfActive = m_eqControls.m_highShelfActiveModel.value();
	bool lpActive = m_eqControls.m_lpActiveModel.value();
	bool lp24Active = m_eqControls.m_lp24Model.value();
	bool lp48Active = m_eqControls.m_lp48Model.value();

	float lowShelfGain = m_eqControls.m_lowShelfGainModel.value();
	float para1Gain = m_eqControls.m_para1GainModel.value();
	float para2Gain = m_eqControls.m_para2GainModel.value();
	float para3Gain = m_eqControls.m_para3GainModel.value();
	float para4Gain = m_eqControls.m_para4GainModel.value();
	float highShelfGain = m_eqControls.m_highShelfGainModel.value();

	if( !isEnabled() || !isRunning () )
	{
		return( false );
	}

	if( m_eqControls.m_outGainModel.isValueChanged() )
	{
		m_outGain = dbfsToAmp(m_eqControls.m_outGainModel.value());
	}

	if( m_eqControls.m_inGainModel.isValueChanged() )
	{
		m_inGain = dbfsToAmp(m_eqControls.m_inGainModel.value());
	}

	m_eqControls.m_inProgress = true;
	double outSum = 0.0;

	for( fpp_t f = 0; f < frames; ++f )
	{
		outSum += buf[f][0]*buf[f][0] + buf[f][1]*buf[f][1];
	}

	const float outGain =  m_outGain;
	const int sampleRate = Engine::mixer()->processingSampleRate();
	sampleFrame m_inPeak = { 0, 0 };

	if(m_eqControls.m_analyseInModel.value( true ) &&  outSum > 0 )
	{
		m_eqControls.m_inFftBands.analyze( buf, frames );
	}
	else
	{
		m_eqControls.m_inFftBands.clear();
	}

	gain( buf, frames, m_inGain, &m_inPeak );
	m_eqControls.m_inPeakL = m_eqControls.m_inPeakL < m_inPeak[0] ? m_inPeak[0] : m_eqControls.m_inPeakL;
	m_eqControls.m_inPeakR = m_eqControls.m_inPeakR < m_inPeak[1] ? m_inPeak[1] : m_eqControls.m_inPeakR;

	for( fpp_t f = 0; f < frames; f++)
	{
		if( hpActive )
		{
			m_hp12.setParameters( sampleRate, *hpFreqPtr, *hpResPtr, 1 );
			buf[f][0] = m_hp12.update( buf[f][0], 0 );
			buf[f][1] = m_hp12.update( buf[f][1], 1 );

			if( hp24Active || hp48Active )
			{
				m_hp24.setParameters( sampleRate, *hpFreqPtr, *hpResPtr, 1 );
				buf[f][0] = m_hp24.update( buf[f][0], 0 );
				buf[f][1] = m_hp24.update( buf[f][1], 1 );
			}

			if( hp48Active )
			{
				m_hp480.setParameters( sampleRate, *hpFreqPtr, *hpResPtr, 1 );
				buf[f][0] = m_hp480.update( buf[f][0], 0 );
				buf[f][1] = m_hp480.update( buf[f][1], 1 );

				m_hp481.setParameters( sampleRate, *hpFreqPtr, *hpResPtr, 1 );
				buf[f][0] = m_hp481.update( buf[f][0], 0 );
				buf[f][1] = m_hp481.update( buf[f][1], 1 );
			}
		}

		if( lowShelfActive )
		{
			m_lowShelf.setParameters( sampleRate, *lowShelfFreqPtr, *lowShelfResPtr, lowShelfGain );
			buf[f][0] = m_lowShelf.update( buf[f][0], 0 );
			buf[f][1] = m_lowShelf.update( buf[f][1], 1 );
		}

		if( para1Active )
		{
			m_para1.setParameters( sampleRate, *para1FreqPtr, *para1BwPtr, para1Gain );
			buf[f][0] = m_para1.update( buf[f][0], 0 );
			buf[f][1] = m_para1.update( buf[f][1], 1 );
		}

		if( para2Active )
		{
			m_para2.setParameters( sampleRate, *para2FreqPtr, *para2BwPtr, para2Gain );
			buf[f][0] = m_para2.update( buf[f][0], 0 );
			buf[f][1] = m_para2.update( buf[f][1], 1 );
		}

		if( para3Active )
		{
			m_para3.setParameters( sampleRate, *para3FreqPtr, *para3BwPtr, para3Gain );
			buf[f][0] = m_para3.update( buf[f][0], 0 );
			buf[f][1] = m_para3.update( buf[f][1], 1 );
		}

		if( para4Active )
		{
			m_para4.setParameters( sampleRate, *para4FreqPtr, *para4BwPtr, para4Gain );
			buf[f][0] = m_para4.update( buf[f][0], 0 );
			buf[f][1] = m_para4.update( buf[f][1], 1 );
		}

		if( highShelfActive )
		{
			m_highShelf.setParameters( sampleRate, *hightShelfFreqPtr, *highShelfResPtr, highShelfGain );
			buf[f][0] = m_highShelf.update( buf[f][0], 0 );
			buf[f][1] = m_highShelf.update( buf[f][1], 1 );
		}

		if( lpActive ){
			m_lp12.setParameters( sampleRate, *lpFreqPtr, *lpResPtr, 1 );
			buf[f][0] = m_lp12.update( buf[f][0], 0 );
			buf[f][1] = m_lp12.update( buf[f][1], 1 );

			if( lp24Active || lp48Active )
			{
				m_lp24.setParameters( sampleRate, *lpFreqPtr, *lpResPtr, 1 );
				buf[f][0] = m_lp24.update( buf[f][0], 0 );
				buf[f][1] = m_lp24.update( buf[f][1], 1 );
			}

			if( lp48Active )
			{
				m_lp480.setParameters( sampleRate, *lpFreqPtr, *lpResPtr, 1 );
				buf[f][0] = m_lp480.update( buf[f][0], 0 );
				buf[f][1] = m_lp480.update( buf[f][1], 1 );

				m_lp481.setParameters( sampleRate, *lpFreqPtr, *lpResPtr, 1 );
				buf[f][0] = m_lp481.update( buf[f][0], 0 );
				buf[f][1] = m_lp481.update( buf[f][1], 1 );
			}
		}

		//increment pointers if needed
		hpResPtr += hpResInc;
		lowShelfResPtr += lowShelfResInc;
		para1BwPtr += para1BwInc;
		para2BwPtr += para2BwInc;
		para3BwPtr += para3BwInc;
		para4BwPtr += para4BwInc;
		highShelfResPtr += highShelfResInc;
		lpResPtr += lpResInc;

		hpFreqPtr += hpFreqInc;
		lowShelfFreqPtr += lowShelfFreqInc;
		para1FreqPtr += para1FreqInc;
		para2FreqPtr += para2FreqInc;
		para3FreqPtr += para3FreqInc;
		para4FreqPtr += para4FreqInc;
		hightShelfFreqPtr += highShelfFreqInc;
		lpFreqPtr += lpFreqInc;
	}

	sampleFrame outPeak = { 0, 0 };
	gain( buf, frames, outGain, &outPeak );
	m_eqControls.m_outPeakL = m_eqControls.m_outPeakL < outPeak[0] ? outPeak[0] : m_eqControls.m_outPeakL;
	m_eqControls.m_outPeakR = m_eqControls.m_outPeakR < outPeak[1] ? outPeak[1] : m_eqControls.m_outPeakR;

	checkGate( outSum / frames );

	if(m_eqControls.m_analyseOutModel.value( true ) && outSum > 0 )
	{
		m_eqControls.m_outFftBands.analyze( buf, frames );
		setBandPeaks( &m_eqControls.m_outFftBands , ( int )( sampleRate ) );
	}
	else
	{
		m_eqControls.m_outFftBands.clear();
	}

	m_eqControls.m_inProgress = false;
	return isRunning();
}
コード例 #3
0
ファイル: DualFilter.cpp プロジェクト: JohannesLorenz/lmms
bool DualFilterEffect::processAudioBuffer( sampleFrame* buf, const fpp_t frames )
{
	if( !isEnabled() || !isRunning () )
	{
		return( false );
	}

	double outSum = 0.0;
	const float d = dryLevel();
	const float w = wetLevel();

    if( m_dfControls.m_filter1Model.isValueChanged() || m_filter1changed )
	{
		m_filter1->setFilterType( m_dfControls.m_filter1Model.value() );
		m_filter1changed = true;
	}
    if( m_dfControls.m_filter2Model.isValueChanged() || m_filter2changed )
	{
		m_filter2->setFilterType( m_dfControls.m_filter2Model.value() );
		m_filter2changed = true;
	}

	float cut1 = m_dfControls.m_cut1Model.value();
	float res1 = m_dfControls.m_res1Model.value();
	float gain1 = m_dfControls.m_gain1Model.value();
	float cut2 = m_dfControls.m_cut2Model.value();
	float res2 = m_dfControls.m_res2Model.value();
	float gain2 = m_dfControls.m_gain2Model.value();
	float mix = m_dfControls.m_mixModel.value();

	ValueBuffer *cut1Buffer = m_dfControls.m_cut1Model.valueBuffer();
	ValueBuffer *res1Buffer = m_dfControls.m_res1Model.valueBuffer();
	ValueBuffer *gain1Buffer = m_dfControls.m_gain1Model.valueBuffer();
	ValueBuffer *cut2Buffer = m_dfControls.m_cut2Model.valueBuffer();
	ValueBuffer *res2Buffer = m_dfControls.m_res2Model.valueBuffer();
	ValueBuffer *gain2Buffer = m_dfControls.m_gain2Model.valueBuffer();
	ValueBuffer *mixBuffer = m_dfControls.m_mixModel.valueBuffer();

	int cut1Inc = cut1Buffer ? 1 : 0;
	int res1Inc = res1Buffer ? 1 : 0;
	int gain1Inc = gain1Buffer ? 1 : 0;
	int cut2Inc = cut2Buffer ? 1 : 0;
	int res2Inc = res2Buffer ? 1 : 0;
	int gain2Inc = gain2Buffer ? 1 : 0;
	int mixInc = mixBuffer ? 1 : 0;

	float *cut1Ptr = cut1Buffer ? &( cut1Buffer->values()[ 0 ] ) : &cut1;
	float *res1Ptr = res1Buffer ? &( res1Buffer->values()[ 0 ] ) : &res1;
	float *gain1Ptr = gain1Buffer ? &( gain1Buffer->values()[ 0 ] ) : &gain1;
	float *cut2Ptr = cut2Buffer ? &( cut2Buffer->values()[ 0 ] ) : &cut2;
	float *res2Ptr = res2Buffer ? &( res2Buffer->values()[ 0 ] ) : &res2;
	float *gain2Ptr = gain2Buffer ? &( gain2Buffer->values()[ 0 ] ) : &gain2;
	float *mixPtr = mixBuffer ? &( mixBuffer->values()[ 0 ] ) : &mix;

	const bool enabled1 = m_dfControls.m_enabled1Model.value();
	const bool enabled2 = m_dfControls.m_enabled2Model.value();

	
	

	// buffer processing loop
	for( fpp_t f = 0; f < frames; ++f )
	{
		// get mix amounts for wet signals of both filters
		const float mix2 = ( ( *mixPtr + 1.0f ) * 0.5f );
		const float mix1 = 1.0f - mix2;
		const float gain1 = *gain1Ptr * 0.01f;
		const float gain2 = *gain2Ptr * 0.01f;
		sample_t s[2] = { 0.0f, 0.0f };	// mix
		sample_t s1[2] = { buf[f][0], buf[f][1] };	// filter 1
		sample_t s2[2] = { buf[f][0], buf[f][1] };	// filter 2

		// update filter 1
		if( enabled1 )
		{
			//update filter 1 params here
			// recalculate only when necessary: either cut/res is changed, or the changed-flag is set (filter type or samplerate changed)
			if( ( ( *cut1Ptr != m_currentCut1 ||
				*res1Ptr != m_currentRes1 ) ) || m_filter1changed )
			{
				m_filter1->calcFilterCoeffs( *cut1Ptr, *res1Ptr );
				m_filter1changed = false;
				m_currentCut1 = *cut1Ptr;
				m_currentRes1 = *res1Ptr;
			}
			s1[0] = m_filter1->update( s1[0], 0 );
			s1[1] = m_filter1->update( s1[1], 1 );

			// apply gain
			s1[0] *= gain1;
			s1[1] *= gain1;

			// apply mix
			s[0] += ( s1[0] * mix1 );
			s[1] += ( s1[1] * mix1 );
		}

		// update filter 2
		if( enabled2 )
		{
			//update filter 2 params here
			if( ( ( *cut2Ptr != m_currentCut2 ||
								*res2Ptr != m_currentRes2 ) ) || m_filter2changed )
			{
				m_filter2->calcFilterCoeffs( *cut2Ptr, *res2Ptr );
				m_filter2changed = false;
				m_currentCut2 = *cut2Ptr;
				m_currentRes2 = *res2Ptr;
			}
			s2[0] = m_filter2->update( s2[0], 0 );
			s2[1] = m_filter2->update( s2[1], 1 );

			//apply gain
			s2[0] *= gain2;
			s2[1] *= gain2;

			// apply mix
			s[0] += ( s2[0] * mix2 );
			s[1] += ( s2[1] * mix2 );
		}
		outSum += buf[f][0]*buf[f][0] + buf[f][1]*buf[f][1];

		// do another mix with dry signal
		buf[f][0] = d * buf[f][0] + w * s[0];
		buf[f][1] = d * buf[f][1] + w * s[1];

		//increment pointers
		cut1Ptr += cut1Inc;
		res1Ptr += res1Inc;
		gain1Ptr += gain1Inc;
		cut2Ptr += cut2Inc;
		res2Ptr += res2Inc;
		gain2Ptr += gain2Inc;
		mixPtr += mixInc;
	}

	checkGate( outSum / frames );

	return isRunning();
}
コード例 #4
0
ファイル: DelayEffect.cpp プロジェクト: hufitzpatr/lmms
bool DelayEffect::processAudioBuffer( sampleFrame* buf, const fpp_t frames )
{
	if( !isEnabled() || !isRunning () )
	{
		return( false );
	}
	double outSum = 0.0;
	const float sr = Engine::mixer()->processingSampleRate();
	const float d = dryLevel();
	const float w = wetLevel();
	sample_t dryS[2];
	float lPeak = 0.0;
	float rPeak = 0.0;
	float length = m_delayControls.m_delayTimeModel.value();
	float amplitude = m_delayControls.m_lfoAmountModel.value() * sr;
	float lfoTime = 1.0 / m_delayControls.m_lfoTimeModel.value();
	float feedback =  m_delayControls.m_feedbackModel.value();
	ValueBuffer *lengthBuffer = m_delayControls.m_delayTimeModel.valueBuffer();
	ValueBuffer *feedbackBuffer = m_delayControls.m_feedbackModel.valueBuffer();
	ValueBuffer *lfoTimeBuffer = m_delayControls.m_lfoTimeModel.valueBuffer();
	ValueBuffer *lfoAmountBuffer = m_delayControls.m_lfoAmountModel.valueBuffer();
	int lengthInc = lengthBuffer ? 1 : 0;
	int amplitudeInc = lfoAmountBuffer ? 1 : 0;
	int lfoTimeInc = lfoTimeBuffer ? 1 : 0;
	int feedbackInc = feedbackBuffer ? 1 : 0;
	float *lengthPtr = lengthBuffer ? &( lengthBuffer->values()[ 0 ] ) : &length;
	float *amplitudePtr = lfoAmountBuffer ? &( lfoAmountBuffer->values()[ 0 ] ) : &amplitude;
	float *lfoTimePtr = lfoTimeBuffer ? &( lfoTimeBuffer->values()[ 0 ] ) : &lfoTime;
	float *feedbackPtr = feedbackBuffer ? &( feedbackBuffer->values()[ 0 ] ) : &feedback;

	if( m_delayControls.m_outGainModel.isValueChanged() )
	{
		m_outGain = dbvToAmp( m_delayControls.m_outGainModel.value() );
	}
	int sampleLength;
	for( fpp_t f = 0; f < frames; ++f )
	{
		dryS[0] = buf[f][0];
		dryS[1] = buf[f][1];

		m_delay->setFeedback( *feedbackPtr );
		m_lfo->setFrequency( *lfoTimePtr );
		sampleLength = *lengthPtr * Engine::mixer()->processingSampleRate();
		m_currentLength = linearInterpolate( sampleLength, m_currentLength, 0.9999 );
		m_delay->setLength( m_currentLength + ( *amplitudePtr * ( float )m_lfo->tick() ) );
		m_delay->tick( buf[f] );

		buf[f][0] *= m_outGain;
		buf[f][1] *= m_outGain;

		lPeak = buf[f][0] > lPeak ? buf[f][0] : lPeak;
		rPeak = buf[f][1] > rPeak ? buf[f][1] : rPeak;

		buf[f][0] = ( d * dryS[0] ) + ( w * buf[f][0] );
		buf[f][1] = ( d * dryS[1] ) + ( w * buf[f][1] );
		outSum += buf[f][0]*buf[f][0] + buf[f][1]*buf[f][1];

		lengthPtr += lengthInc;
		amplitudePtr += amplitudeInc;
		lfoTimePtr += lfoTimeInc;
		feedbackPtr += feedbackInc;
	}
	checkGate( outSum / frames );
	m_delayControls.m_outPeakL = lPeak;
	m_delayControls.m_outPeakR = rPeak;

	return isRunning();
}
コード例 #5
0
ファイル: stereo_enhancer.cpp プロジェクト: uro5h/lmms
bool stereoEnhancerEffect::processAudioBuffer( sampleFrame * _buf,
							const fpp_t _frames )
{
	
	// This appears to be used for determining whether or not to continue processing
	// audio with this effect	
	double out_sum = 0.0;
	
	float width;
	int frameIndex = 0;
	
	
	if( !isEnabled() || !isRunning() )
	{
		return( false );
	}

	const float d = dryLevel();
	const float w = wetLevel();

	for( fpp_t f = 0; f < _frames; ++f )
	{
		
		// copy samples into the delay buffer
		m_delayBuffer[m_currFrame][0] = _buf[f][0];
		m_delayBuffer[m_currFrame][1] = _buf[f][1];

		// Get the width knob value from the Stereo Enhancer effect
		width = m_seFX.wideCoeff();

		// Calculate the correct sample frame for processing
		frameIndex = m_currFrame - width;

		if( frameIndex < 0 )
		{
			// e.g. difference = -10, frameIndex = DBS - 10
			frameIndex += DEFAULT_BUFFER_SIZE;
		}

		//sample_t s[2] = { _buf[f][0], _buf[f][1] };	//Vanilla
		sample_t s[2] = { _buf[f][0], m_delayBuffer[frameIndex][1] };	//Chocolate

		m_seFX.nextSample( s[0], s[1] );

		_buf[f][0] = d * _buf[f][0] + w * s[0];
		_buf[f][1] = d * _buf[f][1] + w * s[1];
		out_sum += _buf[f][0]*_buf[f][0] + _buf[f][1]*_buf[f][1];

		// Update currFrame
		m_currFrame += 1;
		m_currFrame %= DEFAULT_BUFFER_SIZE;
	}

	checkGate( out_sum / _frames );
	if( !isRunning() )
	{
		clearMyBuffer();
	}

	return( isRunning() );
}
コード例 #6
0
ファイル: LadspaEffect.cpp プロジェクト: Penguinum/lmms
bool LadspaEffect::processAudioBuffer( sampleFrame * _buf, 
							const fpp_t _frames )
{
	m_pluginMutex.lock();
	if( !isOkay() || dontRun() || !isRunning() || !isEnabled() )
	{
		m_pluginMutex.unlock();
		return( false );
	}

	int frames = _frames;
	sampleFrame * o_buf = NULL;
	sampleFrame sBuf [_frames];

	if( m_maxSampleRate < Engine::mixer()->processingSampleRate() )
	{
		o_buf = _buf;
		_buf = &sBuf[0];
		sampleDown( o_buf, _buf, m_maxSampleRate );
		frames = _frames * m_maxSampleRate /
				Engine::mixer()->processingSampleRate();
	}

	// Copy the LMMS audio buffer to the LADSPA input buffer and initialize
	// the control ports.  
	ch_cnt_t channel = 0;
	for( ch_cnt_t proc = 0; proc < processorCount(); ++proc )
	{
		for( int port = 0; port < m_portCount; ++port )
		{
			port_desc_t * pp = m_ports.at( proc ).at( port );
			switch( pp->rate )
			{
				case CHANNEL_IN:
					for( fpp_t frame = 0; 
						frame < frames; ++frame )
					{
						pp->buffer[frame] = 
							_buf[frame][channel];
					}
					++channel;
					break;
				case AUDIO_RATE_INPUT:
				{
					ValueBuffer * vb = pp->control->valueBuffer();
					if( vb )
					{
						memcpy( pp->buffer, vb->values(), frames * sizeof(float) );
					}
					else
					{
						pp->value = static_cast<LADSPA_Data>( 
											pp->control->value() / pp->scale );
						// This only supports control rate ports, so the audio rates are
						// treated as though they were control rate by setting the
						// port buffer to all the same value.
						for( fpp_t frame = 0; 
							frame < frames; ++frame )
						{
							pp->buffer[frame] = 
								pp->value;
						}
					}
					break;
				}
				case CONTROL_RATE_INPUT:
					if( pp->control == NULL )
					{
						break;
					}
					pp->value = static_cast<LADSPA_Data>( 
										pp->control->value() / pp->scale );
					pp->buffer[0] = 
						pp->value;
					break;
				case CHANNEL_OUT:
				case AUDIO_RATE_OUTPUT:
				case CONTROL_RATE_OUTPUT:
					break;
				default:
					break;
			}
		}
	}


	// Process the buffers.
	for( ch_cnt_t proc = 0; proc < processorCount(); ++proc )
	{
		(m_descriptor->run)( m_handles[proc], frames );
	}

	// Copy the LADSPA output buffers to the LMMS buffer.
	double out_sum = 0.0;
	channel = 0;
	const float d = dryLevel();
	const float w = wetLevel();
	for( ch_cnt_t proc = 0; proc < processorCount(); ++proc )
	{
		for( int port = 0; port < m_portCount; ++port )
		{
			port_desc_t * pp = m_ports.at( proc ).at( port );
			switch( pp->rate )
			{
				case CHANNEL_IN:
				case AUDIO_RATE_INPUT:
				case CONTROL_RATE_INPUT:
					break;
				case CHANNEL_OUT:
					for( fpp_t frame = 0; 
						frame < frames; ++frame )
					{
						_buf[frame][channel] = d * _buf[frame][channel] + w * pp->buffer[frame];
						out_sum += _buf[frame][channel] * _buf[frame][channel];
					}
					++channel;
					break;
				case AUDIO_RATE_OUTPUT:
				case CONTROL_RATE_OUTPUT:
					break;
				default:
					break;
			}
		}
	}

	if( o_buf != NULL )
	{
		sampleBack( _buf, o_buf, m_maxSampleRate );
	}

	checkGate( out_sum / frames );


	bool is_running = isRunning();
	m_pluginMutex.unlock();
	return( is_running );
}
コード例 #7
0
bool CrossoverEQEffect::processAudioBuffer( sampleFrame* buf, const fpp_t frames )
{
	if( !isEnabled() || !isRunning () )
	{
		return( false );
	}
	
	// filters update
	if( m_needsUpdate || m_controls.m_xover12.isValueChanged() )
	{
		m_lp1.setLowpass( m_controls.m_xover12.value() );
		m_lp1.clearHistory();
		m_hp2.setHighpass( m_controls.m_xover12.value() );
		m_hp2.clearHistory();
	}
	if( m_needsUpdate || m_controls.m_xover23.isValueChanged() )
	{
		m_lp2.setLowpass( m_controls.m_xover23.value() );
		m_lp2.clearHistory();
		m_hp3.setHighpass( m_controls.m_xover23.value() );
		m_hp3.clearHistory();
	}
	if( m_needsUpdate || m_controls.m_xover34.isValueChanged() )
	{
		m_lp3.setLowpass( m_controls.m_xover34.value() );
		m_lp3.clearHistory();
		m_hp4.setHighpass( m_controls.m_xover34.value() );
		m_hp4.clearHistory();
	}
	
	// gain values update
	if( m_needsUpdate || m_controls.m_gain1.isValueChanged() )
	{
		m_gain1 = dbvToAmp( m_controls.m_gain1.value() );
	}
	if( m_needsUpdate || m_controls.m_gain2.isValueChanged() )
	{
		m_gain2 = dbvToAmp( m_controls.m_gain2.value() );
	}
	if( m_needsUpdate || m_controls.m_gain3.isValueChanged() )
	{
		m_gain3 = dbvToAmp( m_controls.m_gain3.value() );
	}
	if( m_needsUpdate || m_controls.m_gain4.isValueChanged() )
	{
		m_gain4 = dbvToAmp( m_controls.m_gain4.value() );
	}
	
	// mute values update
	const bool mute1 = m_controls.m_mute1.value();
	const bool mute2 = m_controls.m_mute2.value();
	const bool mute3 = m_controls.m_mute3.value();
	const bool mute4 = m_controls.m_mute4.value();
	
	m_needsUpdate = false;
	
	memset( m_work, 0, sizeof( sampleFrame ) * frames );
	
	// run temp bands
	for( int f = 0; f < frames; ++f )
	{
		m_tmp1[f][0] = m_lp2.update( buf[f][0], 0 );
		m_tmp1[f][1] = m_lp2.update( buf[f][1], 1 );
		m_tmp2[f][0] = m_hp3.update( buf[f][0], 0 );
		m_tmp2[f][1] = m_hp3.update( buf[f][1], 1 );
	}

	// run band 1
	if( ! mute1 )
	{
		for( int f = 0; f < frames; ++f )
		{
			m_work[f][0] += m_lp1.update( m_tmp1[f][0], 0 ) * m_gain1;
			m_work[f][1] += m_lp1.update( m_tmp1[f][1], 1 ) * m_gain1;
		}
	}
	
	// run band 2
	if( ! mute2 )
	{
		for( int f = 0; f < frames; ++f )
		{
			m_work[f][0] += m_hp2.update( m_tmp1[f][0], 0 ) * m_gain2;
			m_work[f][1] += m_hp2.update( m_tmp1[f][1], 1 ) * m_gain2;
		}
	}
	
	// run band 3
	if( ! mute3 )
	{
		for( int f = 0; f < frames; ++f )
		{
			m_work[f][0] += m_lp3.update( m_tmp2[f][0], 0 ) * m_gain3;
			m_work[f][1] += m_lp3.update( m_tmp2[f][1], 1 ) * m_gain3;
		}
	}
	
	// run band 4
	if( ! mute4 )
	{
		for( int f = 0; f < frames; ++f )
		{
			m_work[f][0] += m_hp4.update( m_tmp2[f][0], 0 ) * m_gain4;
			m_work[f][1] += m_hp4.update( m_tmp2[f][1], 1 ) * m_gain4;
		}
	}
	
	const float d = dryLevel();
	const float w = wetLevel();
	double outSum = 0.0;
	for( int f = 0; f < frames; ++f )
	{
		outSum = buf[f][0] * buf[f][0] + buf[f][1] * buf[f][1];
		buf[f][0] = d * buf[f][0] + w * m_work[f][0];
		buf[f][1] = d * buf[f][1] + w * m_work[f][1];
	}
	
	checkGate( outSum );
	
	return isRunning();
}