bool DRC::doTrackDrc( TRACK* aRefSeg, TRACK* aStart, bool testPads )
{
    TRACK*    track;
    wxPoint   delta;           // length on X and Y axis of segments
    LSET layerMask;
    int       net_code_ref;
    wxPoint   shape_pos;

    NETCLASSPTR netclass = aRefSeg->GetNetClass();
    BOARD_DESIGN_SETTINGS& dsnSettings = m_pcb->GetDesignSettings();

    /* In order to make some calculations more easier or faster,
     * pads and tracks coordinates will be made relative to the reference segment origin
     */
    wxPoint origin = aRefSeg->GetStart();  // origin will be the origin of other coordinates

    m_segmEnd   = delta = aRefSeg->GetEnd() - origin;
    m_segmAngle = 0;

    layerMask    = aRefSeg->GetLayerSet();
    net_code_ref = aRefSeg->GetNetCode();

    // Phase 0 : Test vias
    if( aRefSeg->Type() == PCB_VIA_T )
    {
        const VIA *refvia = static_cast<const VIA*>( aRefSeg );
        // test if the via size is smaller than minimum
        if( refvia->GetViaType() == VIA_MICROVIA )
        {
            if( refvia->GetWidth() < dsnSettings.m_MicroViasMinSize )
            {
                m_currentMarker = fillMarker( refvia, NULL,
                                              DRCE_TOO_SMALL_MICROVIA, m_currentMarker );
                return false;
            }
            if( refvia->GetDrillValue() < dsnSettings.m_MicroViasMinDrill )
            {
                m_currentMarker = fillMarker( refvia, NULL,
                                              DRCE_TOO_SMALL_MICROVIA_DRILL, m_currentMarker );
                return false;
            }
        }
        else
        {
            if( refvia->GetWidth() < dsnSettings.m_ViasMinSize )
            {
                m_currentMarker = fillMarker( refvia, NULL,
                                              DRCE_TOO_SMALL_VIA, m_currentMarker );
                return false;
            }
            if( refvia->GetDrillValue() < dsnSettings.m_ViasMinDrill )
            {
                m_currentMarker = fillMarker( refvia, NULL,
                                              DRCE_TOO_SMALL_VIA_DRILL, m_currentMarker );
                return false;
            }
        }

        // test if via's hole is bigger than its diameter
        // This test is necessary since the via hole size and width can be modified
        // and a default via hole can be bigger than some vias sizes
        if( refvia->GetDrillValue() > refvia->GetWidth() )
        {
            m_currentMarker = fillMarker( refvia, NULL,
                                          DRCE_VIA_HOLE_BIGGER, m_currentMarker );
            return false;
        }

        // For microvias: test if they are blind vias and only between 2 layers
        // because they are used for very small drill size and are drill by laser
        // and **only one layer** can be drilled
        if( refvia->GetViaType() == VIA_MICROVIA )
        {
            LAYER_ID    layer1, layer2;
            bool        err = true;

            refvia->LayerPair( &layer1, &layer2 );

            if( layer1 > layer2 )
                std::swap( layer1, layer2 );

            if( layer2 == B_Cu && layer1 == m_pcb->GetDesignSettings().GetCopperLayerCount() - 2 )
                err = false;
            else if( layer1 == F_Cu  &&  layer2 == In1_Cu  )
                err = false;

            if( err )
            {
                m_currentMarker = fillMarker( refvia, NULL,
                                              DRCE_MICRO_VIA_INCORRECT_LAYER_PAIR, m_currentMarker );
                return false;
            }
        }
    }
    else    // This is a track segment
    {
        if( aRefSeg->GetWidth() < dsnSettings.m_TrackMinWidth )
        {
            m_currentMarker = fillMarker( aRefSeg, NULL,
                                          DRCE_TOO_SMALL_TRACK_WIDTH, m_currentMarker );
            return false;
        }
    }

    // for a non horizontal or vertical segment Compute the segment angle
    // in tenths of degrees and its length
    if( delta.x || delta.y )
    {
        // Compute the segment angle in 0,1 degrees
        m_segmAngle = ArcTangente( delta.y, delta.x );

        // Compute the segment length: we build an equivalent rotated segment,
        // this segment is horizontal, therefore dx = length
        RotatePoint( &delta, m_segmAngle );    // delta.x = length, delta.y = 0
    }

    m_segmLength = delta.x;

    /******************************************/
    /* Phase 1 : test DRC track to pads :     */
    /******************************************/

    /* Use a dummy pad to test DRC tracks versus holes, for pads not on all copper layers
     * but having a hole
     * This dummy pad has the size and shape of the hole
     * to test tracks to pad hole DRC, using checkClearanceSegmToPad test function.
     * Therefore, this dummy pad is a circle or an oval.
     * A pad must have a parent because some functions expect a non null parent
     * to find the parent board, and some other data
     */
    MODULE  dummymodule( m_pcb );    // Creates a dummy parent
    D_PAD   dummypad( &dummymodule );

    dummypad.SetLayerSet( LSET::AllCuMask() );     // Ensure the hole is on all layers

    // Compute the min distance to pads
    if( testPads )
    {
        unsigned pad_count = m_pcb->GetPadCount();

        for( unsigned ii = 0;  ii<pad_count;  ++ii )
        {
            D_PAD* pad = m_pcb->GetPad( ii );

            /* No problem if pads are on an other layer,
             * But if a drill hole exists	(a pad on a single layer can have a hole!)
             * we must test the hole
             */
            if( !( pad->GetLayerSet() & layerMask ).any() )
            {
                /* We must test the pad hole. In order to use the function
                 * checkClearanceSegmToPad(),a pseudo pad is used, with a shape and a
                 * size like the hole
                 */
                if( pad->GetDrillSize().x == 0 )
                    continue;

                dummypad.SetSize( pad->GetDrillSize() );
                dummypad.SetPosition( pad->GetPosition() );
                dummypad.SetShape( pad->GetDrillShape()  == PAD_DRILL_SHAPE_OBLONG ?
                                   PAD_SHAPE_OVAL : PAD_SHAPE_CIRCLE );
                dummypad.SetOrientation( pad->GetOrientation() );

                m_padToTestPos = dummypad.GetPosition() - origin;

                if( !checkClearanceSegmToPad( &dummypad, aRefSeg->GetWidth(),
                                              netclass->GetClearance() ) )
                {
                    m_currentMarker = fillMarker( aRefSeg, pad,
                                                  DRCE_TRACK_NEAR_THROUGH_HOLE, m_currentMarker );
                    return false;
                }

                continue;
            }

            // The pad must be in a net (i.e pt_pad->GetNet() != 0 )
            // but no problem if the pad netcode is the current netcode (same net)
            if( pad->GetNetCode()                       // the pad must be connected
               && net_code_ref == pad->GetNetCode() )   // the pad net is the same as current net -> Ok
                continue;

            // DRC for the pad
            shape_pos = pad->ShapePos();
            m_padToTestPos = shape_pos - origin;

            if( !checkClearanceSegmToPad( pad, aRefSeg->GetWidth(), aRefSeg->GetClearance( pad ) ) )
            {
                m_currentMarker = fillMarker( aRefSeg, pad,
                                              DRCE_TRACK_NEAR_PAD, m_currentMarker );
                return false;
            }
        }
    }

    /***********************************************/
    /* Phase 2: test DRC with other track segments */
    /***********************************************/

    // At this point the reference segment is the X axis

    // Test the reference segment with other track segments
    wxPoint segStartPoint;
    wxPoint segEndPoint;
    for( track = aStart; track; track = track->Next() )
    {
        // No problem if segments have the same net code:
        if( net_code_ref == track->GetNetCode() )
            continue;

        // No problem if segment are on different layers :
        if( !( layerMask & track->GetLayerSet() ).any() )
            continue;

        // the minimum distance = clearance plus half the reference track
        // width plus half the other track's width
        int w_dist = aRefSeg->GetClearance( track );
        w_dist += (aRefSeg->GetWidth() + track->GetWidth()) / 2;

        // Due to many double to int conversions during calculations, which
        // create rounding issues,
        // the exact clearance margin cannot be really known.
        // To avoid false bad DRC detection due to these rounding issues,
        // slightly decrease the w_dist (remove one nanometer is enough !)
        w_dist -= 1;

        // If the reference segment is a via, we test it here
        if( aRefSeg->Type() == PCB_VIA_T )
        {
            delta = track->GetEnd() - track->GetStart();
            segStartPoint = aRefSeg->GetStart() - track->GetStart();

            if( track->Type() == PCB_VIA_T )
            {
                // Test distance between two vias, i.e. two circles, trivial case
                if( EuclideanNorm( segStartPoint ) < w_dist )
                {
                    m_currentMarker = fillMarker( aRefSeg, track,
                                                  DRCE_VIA_NEAR_VIA, m_currentMarker );
                    return false;
                }
            }
            else    // test via to segment
            {
                // Compute l'angle du segment a tester;
                double angle = ArcTangente( delta.y, delta.x );

                // Compute new coordinates ( the segment become horizontal)
                RotatePoint( &delta, angle );
                RotatePoint( &segStartPoint, angle );

                if( !checkMarginToCircle( segStartPoint, w_dist, delta.x ) )
                {
                    m_currentMarker = fillMarker( track, aRefSeg,
                                                  DRCE_VIA_NEAR_TRACK, m_currentMarker );
                    return false;
                }
            }

            continue;
        }

        /* We compute segStartPoint, segEndPoint = starting and ending point coordinates for
         * the segment to test in the new axis : the new X axis is the
         * reference segment.  We must translate and rotate the segment to test
         */
        segStartPoint = track->GetStart() - origin;
        segEndPoint   = track->GetEnd() - origin;
        RotatePoint( &segStartPoint, m_segmAngle );
        RotatePoint( &segEndPoint, m_segmAngle );
        if( track->Type() == PCB_VIA_T )
        {
            if( checkMarginToCircle( segStartPoint, w_dist, m_segmLength ) )
                continue;

            m_currentMarker = fillMarker( aRefSeg, track,
                                          DRCE_TRACK_NEAR_VIA, m_currentMarker );
            return false;
        }

        /*	We have changed axis:
         *  the reference segment is Horizontal.
         *  3 cases : the segment to test can be parallel, perpendicular or have an other direction
         */
        if( segStartPoint.y == segEndPoint.y ) // parallel segments
        {
            if( abs( segStartPoint.y ) >= w_dist )
                continue;

            // Ensure segStartPoint.x <= segEndPoint.x
            if( segStartPoint.x > segEndPoint.x )
                std::swap( segStartPoint.x, segEndPoint.x );

            if( segStartPoint.x > (-w_dist) && segStartPoint.x < (m_segmLength + w_dist) )    /* possible error drc */
            {
                // the start point is inside the reference range
                //      X........
                //    O--REF--+

                // Fine test : we consider the rounded shape of each end of the track segment:
                if( segStartPoint.x >= 0 && segStartPoint.x <= m_segmLength )
                {
                    m_currentMarker = fillMarker( aRefSeg, track,
                                                  DRCE_TRACK_ENDS1, m_currentMarker );
                    return false;
                }

                if( !checkMarginToCircle( segStartPoint, w_dist, m_segmLength ) )
                {
                    m_currentMarker = fillMarker( aRefSeg, track,
                                                  DRCE_TRACK_ENDS2, m_currentMarker );
                    return false;
                }
            }

            if( segEndPoint.x > (-w_dist) && segEndPoint.x < (m_segmLength + w_dist) )
            {
                // the end point is inside the reference range
                //  .....X
                //    O--REF--+
                // Fine test : we consider the rounded shape of the ends
                if( segEndPoint.x >= 0 && segEndPoint.x <= m_segmLength )
                {
                    m_currentMarker = fillMarker( aRefSeg, track,
                                                  DRCE_TRACK_ENDS3, m_currentMarker );
                    return false;
                }

                if( !checkMarginToCircle( segEndPoint, w_dist, m_segmLength ) )
                {
                    m_currentMarker = fillMarker( aRefSeg, track,
                                                  DRCE_TRACK_ENDS4, m_currentMarker );
                    return false;
                }
            }

            if( segStartPoint.x <=0 && segEndPoint.x >= 0 )
            {
            // the segment straddles the reference range (this actually only
            // checks if it straddles the origin, because the other cases where already
            // handled)
            //  X.............X
            //    O--REF--+
                m_currentMarker = fillMarker( aRefSeg, track,
                                              DRCE_TRACK_SEGMENTS_TOO_CLOSE, m_currentMarker );
                return false;
            }
        }
        else if( segStartPoint.x == segEndPoint.x ) // perpendicular segments
        {
            if( ( segStartPoint.x <= (-w_dist) ) || ( segStartPoint.x >= (m_segmLength + w_dist) ) )
                continue;

            // Test if segments are crossing
            if( segStartPoint.y > segEndPoint.y )
                std::swap( segStartPoint.y, segEndPoint.y );

            if( (segStartPoint.y < 0) && (segEndPoint.y > 0) )
            {
                m_currentMarker = fillMarker( aRefSeg, track,
                                              DRCE_TRACKS_CROSSING, m_currentMarker );
                return false;
            }

            // At this point the drc error is due to an end near a reference segm end
            if( !checkMarginToCircle( segStartPoint, w_dist, m_segmLength ) )
            {
                m_currentMarker = fillMarker( aRefSeg, track,
                                              DRCE_ENDS_PROBLEM1, m_currentMarker );
                return false;
            }
            if( !checkMarginToCircle( segEndPoint, w_dist, m_segmLength ) )
            {
                m_currentMarker = fillMarker( aRefSeg, track,
                                              DRCE_ENDS_PROBLEM2, m_currentMarker );
                return false;
            }
        }
        else    // segments quelconques entre eux
        {
            // calcul de la "surface de securite du segment de reference
            // First rought 'and fast) test : the track segment is like a rectangle

            m_xcliplo = m_ycliplo = -w_dist;
            m_xcliphi = m_segmLength + w_dist;
            m_ycliphi = w_dist;

            // A fine test is needed because a serment is not exactly a
            // rectangle, it has rounded ends
            if( !checkLine( segStartPoint, segEndPoint ) )
            {
                /* 2eme passe : the track has rounded ends.
                 * we must a fine test for each rounded end and the
                 * rectangular zone
                 */

                m_xcliplo = 0;
                m_xcliphi = m_segmLength;

                if( !checkLine( segStartPoint, segEndPoint ) )
                {
                    m_currentMarker = fillMarker( aRefSeg, track,
                                                  DRCE_ENDS_PROBLEM3, m_currentMarker );
                    return false;
                }
                else    // The drc error is due to the starting or the ending point of the reference segment
                {
                    // Test the starting and the ending point
                    segStartPoint = track->GetStart();
                    segEndPoint   = track->GetEnd();
                    delta = segEndPoint - segStartPoint;

                    // Compute the segment orientation (angle) en 0,1 degre
                    double angle = ArcTangente( delta.y, delta.x );

                    // Compute the segment length: delta.x = length after rotation
                    RotatePoint( &delta, angle );

                    /* Comute the reference segment coordinates relatives to a
                     *  X axis = current tested segment
                     */
                    wxPoint relStartPos = aRefSeg->GetStart() - segStartPoint;
                    wxPoint relEndPos   = aRefSeg->GetEnd() - segStartPoint;

                    RotatePoint( &relStartPos, angle );
                    RotatePoint( &relEndPos, angle );

                    if( !checkMarginToCircle( relStartPos, w_dist, delta.x ) )
                    {
                        m_currentMarker = fillMarker( aRefSeg, track,
                                                      DRCE_ENDS_PROBLEM4, m_currentMarker );
                        return false;
                    }

                    if( !checkMarginToCircle( relEndPos, w_dist, delta.x ) )
                    {
                        m_currentMarker = fillMarker( aRefSeg, track,
                                                      DRCE_ENDS_PROBLEM5, m_currentMarker );
                        return false;
                    }
                }
            }
        }
    }

    return true;
}
/* test if distance between a segment is > aMinDist
 * segment start point is assumed in (0,0) and  segment start point in m_segmEnd
 * and its orientation is m_segmAngle (m_segmAngle must be already initialized)
 * and have aSegmentWidth.
 */
bool DRC::checkClearanceSegmToPad( const D_PAD* aPad, int aSegmentWidth, int aMinDist )
{
    wxSize  padHalfsize;            // half dimension of the pad
    int     r;

    int segmHalfWidth = aSegmentWidth / 2;
    int distToLine = segmHalfWidth + aMinDist;

    padHalfsize.x = aPad->GetSize().x >> 1;
    padHalfsize.y = aPad->GetSize().y >> 1;

    if( aPad->GetShape() == PAD_SHAPE_TRAPEZOID )     // The size is bigger, due to GetDelta() extra size
    {
        padHalfsize.x += std::abs(aPad->GetDelta().y) / 2;   // Remember: GetDelta().y is the GetSize().x change
        padHalfsize.y += std::abs(aPad->GetDelta().x) / 2;   // Remember: GetDelta().x is the GetSize().y change
    }

    if( aPad->GetShape() == PAD_SHAPE_CIRCLE )
    {
        /* Easy case: just test the distance between segment and pad centre
         * calculate pad coordinates in the X,Y axis with X axis = segment to test
         */
        RotatePoint( &m_padToTestPos, m_segmAngle );
        return checkMarginToCircle( m_padToTestPos, distToLine + padHalfsize.x, m_segmLength );
    }

    /* calculate the bounding box of the pad, including the clearance and the segment width
     * if the line from 0 to m_segmEnd does not intersect this bounding box,
     * the clearance is always OK
     * But if intersect, a better analysis of the pad shape must be done.
     */
    m_xcliplo = m_padToTestPos.x - distToLine - padHalfsize.x;
    m_ycliplo = m_padToTestPos.y - distToLine - padHalfsize.y;
    m_xcliphi = m_padToTestPos.x + distToLine + padHalfsize.x;
    m_ycliphi = m_padToTestPos.y + distToLine + padHalfsize.y;

    wxPoint startPoint;
    wxPoint endPoint = m_segmEnd;

    double orient = aPad->GetOrientation();

    RotatePoint( &startPoint, m_padToTestPos, -orient );
    RotatePoint( &endPoint, m_padToTestPos, -orient );

    if( checkLine( startPoint, endPoint ) )
        return true;

    /* segment intersects the bounding box. But there is not always a DRC error.
     * A fine analysis of the pad shape must be done.
     */
    switch( aPad->GetShape() )
    {
    default:
        return false;

    case PAD_SHAPE_OVAL:
    {
        /* an oval is a complex shape, but is a rectangle and 2 circles
         * these 3 basic shapes are more easy to test.
         *
         * In calculations we are using a vertical oval shape
         * (i.e. a vertical rounded segment)
         * for horizontal oval shapes, swap x and y size and rotate the shape
         */
        if( padHalfsize.x > padHalfsize.y )
        {
            std::swap( padHalfsize.x, padHalfsize.y );
            orient = AddAngles( orient, 900 );
        }

        // here, padHalfsize.x is the radius of rounded ends.

        int deltay = padHalfsize.y - padHalfsize.x;
        // here: padHalfsize.x = radius,
        // deltay = dist between the centre pad and the centre of a rounded end

        // Test the rectangular area between the two circles (the rounded ends)
        m_xcliplo = m_padToTestPos.x - distToLine - padHalfsize.x;
        m_ycliplo = m_padToTestPos.y - deltay;
        m_xcliphi = m_padToTestPos.x + distToLine + padHalfsize.x;
        m_ycliphi = m_padToTestPos.y + deltay;

        if( !checkLine( startPoint, endPoint ) )
        {
            return false;
        }

        // test the first circle
        startPoint.x = m_padToTestPos.x;         // startPoint = centre of the upper circle of the oval shape
        startPoint.y = m_padToTestPos.y + deltay;

        // Calculate the actual position of the circle, given the pad orientation:
        RotatePoint( &startPoint, m_padToTestPos, orient );

        // Calculate the actual position of the circle in the new X,Y axis:
        RotatePoint( &startPoint, m_segmAngle );

        if( !checkMarginToCircle( startPoint, padHalfsize.x + distToLine, m_segmLength ) )
        {
            return false;
        }

        // test the second circle
        startPoint.x = m_padToTestPos.x;         // startPoint = centre of the lower circle of the oval shape
        startPoint.y = m_padToTestPos.y - deltay;
        RotatePoint( &startPoint, m_padToTestPos, orient );
        RotatePoint( &startPoint, m_segmAngle );

        if( !checkMarginToCircle( startPoint, padHalfsize.x + distToLine, m_segmLength ) )
        {
            return false;
        }
    }
        break;

    case PAD_SHAPE_ROUNDRECT:
        // a round rect is a smaller rect, with a clearance augmented by the corners radius
        r = aPad->GetRoundRectCornerRadius();
        padHalfsize.x -= r;
        padHalfsize.y -= r;
        distToLine += r;
        // Fall through
    case PAD_SHAPE_RECT:
        // the area to test is a rounded rectangle.
        // this can be done by testing 2 rectangles and 4 circles (the corners)

        // Testing the first rectangle dimx + distToLine, dimy:
        m_xcliplo = m_padToTestPos.x - padHalfsize.x - distToLine;
        m_ycliplo = m_padToTestPos.y - padHalfsize.y;
        m_xcliphi = m_padToTestPos.x + padHalfsize.x + distToLine;
        m_ycliphi = m_padToTestPos.y + padHalfsize.y;

        if( !checkLine( startPoint, endPoint ) )
            return false;

        // Testing the second rectangle dimx , dimy + distToLine
        m_xcliplo = m_padToTestPos.x - padHalfsize.x;
        m_ycliplo = m_padToTestPos.y - padHalfsize.y - distToLine;
        m_xcliphi = m_padToTestPos.x + padHalfsize.x;
        m_ycliphi = m_padToTestPos.y + padHalfsize.y + distToLine;

        if( !checkLine( startPoint, endPoint ) )
            return false;

        // testing the 4 circles which are the clearance area of each corner:

        // testing the left top corner of the rectangle
        startPoint.x = m_padToTestPos.x - padHalfsize.x;
        startPoint.y = m_padToTestPos.y - padHalfsize.y;
        RotatePoint( &startPoint, m_padToTestPos, orient );
        RotatePoint( &startPoint, m_segmAngle );

        if( !checkMarginToCircle( startPoint, distToLine, m_segmLength ) )
            return false;

        // testing the right top corner of the rectangle
        startPoint.x = m_padToTestPos.x + padHalfsize.x;
        startPoint.y = m_padToTestPos.y - padHalfsize.y;
        RotatePoint( &startPoint, m_padToTestPos, orient );
        RotatePoint( &startPoint, m_segmAngle );

        if( !checkMarginToCircle( startPoint, distToLine, m_segmLength ) )
            return false;

        // testing the left bottom corner of the rectangle
        startPoint.x = m_padToTestPos.x - padHalfsize.x;
        startPoint.y = m_padToTestPos.y + padHalfsize.y;
        RotatePoint( &startPoint, m_padToTestPos, orient );
        RotatePoint( &startPoint, m_segmAngle );

        if( !checkMarginToCircle( startPoint, distToLine, m_segmLength ) )
            return false;

        // testing the right bottom corner of the rectangle
        startPoint.x = m_padToTestPos.x + padHalfsize.x;
        startPoint.y = m_padToTestPos.y + padHalfsize.y;
        RotatePoint( &startPoint, m_padToTestPos, orient );
        RotatePoint( &startPoint, m_segmAngle );

        if( !checkMarginToCircle( startPoint, distToLine, m_segmLength ) )
            return false;

        break;

    case PAD_SHAPE_TRAPEZOID:
    {
        wxPoint poly[4];
        aPad->BuildPadPolygon( poly, wxSize( 0, 0 ), orient );

        // Move shape to m_padToTestPos
        for( int ii = 0; ii < 4; ii++ )
        {
            poly[ii] += m_padToTestPos;
            RotatePoint( &poly[ii], m_segmAngle );
        }

        if( !poly2segmentDRC( poly, 4, wxPoint( 0, 0 ), wxPoint(m_segmLength,0), distToLine ) )
            return false;

        break;
    }
    }

    return true;
}
コード例 #3
0
/* test if distance between a segment is > aMinDist
 * segment start point is assumed in (0,0) and  segment start point in m_segmEnd
 * and its orientation is m_segmAngle (m_segmAngle must be already initialized)
 * and have aSegmentWidth.
 */
bool DRC::checkClearanceSegmToPad( const D_PAD* aPad, int aSegmentWidth, int aMinDist )
{
    wxSize  padHalfsize;        // half the dimension of the pad
    wxPoint startPoint, endPoint;
    int     seuil;
    int     deltay;

    int     segmHalfWidth = aSegmentWidth / 2;

    seuil = segmHalfWidth + aMinDist;
    padHalfsize.x = aPad->GetSize().x >> 1;
    padHalfsize.y = aPad->GetSize().y >> 1;

    if( aPad->GetShape() == PAD_TRAPEZOID ) // The size is bigger, due to GetDelta() extra size
    {
        padHalfsize.x += std::abs(aPad->GetDelta().y) / 2;   // Remember: GetDelta().y is the GetSize().x change
        padHalfsize.y += std::abs(aPad->GetDelta().x) / 2;   // Remember: GetDelta().x is the GetSize().y change
    }

    if( aPad->GetShape() == PAD_CIRCLE )
    {
        /* Easy case: just test the distance between segment and pad centre
         * calculate pad coordinates in the X,Y axis with X axis = segment to test
         */
        RotatePoint( &m_padToTestPos, m_segmAngle );
        return checkMarginToCircle( m_padToTestPos, seuil + padHalfsize.x, m_segmLength );
    }

    /* calculate the bounding box of the pad, including the clearance and the segment width
     * if the line from 0 to m_segmEnd does not intersect this bounding box,
     * the clearance is always OK
     * But if intersect, a better analysis of the pad shape must be done.
     */
    m_xcliplo = m_padToTestPos.x - seuil - padHalfsize.x;
    m_ycliplo = m_padToTestPos.y - seuil - padHalfsize.y;
    m_xcliphi = m_padToTestPos.x + seuil + padHalfsize.x;
    m_ycliphi = m_padToTestPos.y + seuil + padHalfsize.y;

    startPoint.x = startPoint.y = 0;
    endPoint     = m_segmEnd;

    double orient = aPad->GetOrientation();

    RotatePoint( &startPoint, m_padToTestPos, -orient );
    RotatePoint( &endPoint, m_padToTestPos, -orient );

    if( checkLine( startPoint, endPoint ) )
        return true;

    /* segment intersects the bounding box. But there is not always a DRC error.
     * A fine analysis of the pad shape must be done.
     */
    switch( aPad->GetShape() )
    {
    default:
        return false;

    case PAD_OVAL:

        /* an oval is a complex shape, but is a rectangle and 2 circles
         * these 3 basic shapes are more easy to test.
         */
        /* We use a vertical oval shape. for horizontal ovals, swap x and y size and rotate the shape*/
        if( padHalfsize.x > padHalfsize.y )
        {
            EXCHG( padHalfsize.x, padHalfsize.y );
            orient = AddAngles( orient, 900 );
        }

        deltay = padHalfsize.y - padHalfsize.x;

        // here: padHalfsize.x = radius, delta = dist centre cercles a centre pad

        // Test the rectangle area between the two circles
        m_xcliplo = m_padToTestPos.x - seuil - padHalfsize.x;
        m_ycliplo = m_padToTestPos.y - segmHalfWidth - deltay;
        m_xcliphi = m_padToTestPos.x + seuil + padHalfsize.x;
        m_ycliphi = m_padToTestPos.y + segmHalfWidth + deltay;

        if( !checkLine( startPoint, endPoint ) )
        {
            return false;
        }

        // test the first circle
        startPoint.x = m_padToTestPos.x;         // startPoint = centre of the upper circle of the oval shape
        startPoint.y = m_padToTestPos.y + deltay;

        // Calculate the actual position of the circle, given the pad orientation:
        RotatePoint( &startPoint, m_padToTestPos, orient );

        // Calculate the actual position of the circle in the new X,Y axis:
        RotatePoint( &startPoint, m_segmAngle );

        if( !checkMarginToCircle( startPoint, padHalfsize.x + seuil, m_segmLength ) )
        {
            return false;
        }

        // test the second circle
        startPoint.x = m_padToTestPos.x;         // startPoint = centre of the lower circle of the oval shape
        startPoint.y = m_padToTestPos.y - deltay;
        RotatePoint( &startPoint, m_padToTestPos, orient );
        RotatePoint( &startPoint, m_segmAngle );

        if( !checkMarginToCircle( startPoint, padHalfsize.x + seuil, m_segmLength ) )
        {
            return false;
        }

        break;

    case PAD_RECT:          /* 2 rectangle + 4 1/4 cercles a tester */
        /* Test du rectangle dimx + seuil, dimy */
        m_xcliplo = m_padToTestPos.x - padHalfsize.x - seuil;
        m_ycliplo = m_padToTestPos.y - padHalfsize.y;
        m_xcliphi = m_padToTestPos.x + padHalfsize.x + seuil;
        m_ycliphi = m_padToTestPos.y + padHalfsize.y;

        if( !checkLine( startPoint, endPoint ) )
            return false;

        /* Test du rectangle dimx , dimy + seuil */
        m_xcliplo = m_padToTestPos.x - padHalfsize.x;
        m_ycliplo = m_padToTestPos.y - padHalfsize.y - seuil;
        m_xcliphi = m_padToTestPos.x + padHalfsize.x;
        m_ycliphi = m_padToTestPos.y + padHalfsize.y + seuil;

        if( !checkLine( startPoint, endPoint ) )
            return false;

        /* test des 4 cercles ( surface d'solation autour des sommets */
        /* test du coin sup. gauche du pad */
        startPoint.x = m_padToTestPos.x - padHalfsize.x;
        startPoint.y = m_padToTestPos.y - padHalfsize.y;
        RotatePoint( &startPoint, m_padToTestPos, orient );
        RotatePoint( &startPoint, m_segmAngle );

        if( !checkMarginToCircle( startPoint, seuil, m_segmLength ) )
            return false;

        /* test du coin sup. droit du pad */
        startPoint.x = m_padToTestPos.x + padHalfsize.x;
        startPoint.y = m_padToTestPos.y - padHalfsize.y;
        RotatePoint( &startPoint, m_padToTestPos, orient );
        RotatePoint( &startPoint, m_segmAngle );

        if( !checkMarginToCircle( startPoint, seuil, m_segmLength ) )
            return false;

        /* test du coin inf. gauche du pad */
        startPoint.x = m_padToTestPos.x - padHalfsize.x;
        startPoint.y = m_padToTestPos.y + padHalfsize.y;
        RotatePoint( &startPoint, m_padToTestPos, orient );
        RotatePoint( &startPoint, m_segmAngle );

        if( !checkMarginToCircle( startPoint, seuil, m_segmLength ) )
            return false;

        /* test du coin inf. droit du pad */
        startPoint.x = m_padToTestPos.x + padHalfsize.x;
        startPoint.y = m_padToTestPos.y + padHalfsize.y;
        RotatePoint( &startPoint, m_padToTestPos, orient );
        RotatePoint( &startPoint, m_segmAngle );

        if( !checkMarginToCircle( startPoint, seuil, m_segmLength ) )
            return false;

        break;

    case PAD_TRAPEZOID:
    {
        wxPoint poly[4];
        aPad->BuildPadPolygon( poly, wxSize( 0, 0 ), orient );

        // Move shape to m_padToTestPos
        for( int ii = 0; ii < 4; ii++ )
        {
            poly[ii] += m_padToTestPos;
            RotatePoint( &poly[ii], m_segmAngle );
        }

        if( !trapezoid2segmentDRC( poly, wxPoint( 0, 0 ), wxPoint(m_segmLength,0), seuil ) )
            return false;
    }
    break;
    }

    return true;
}