コード例 #1
0
ファイル: cholmod_timing.cpp プロジェクト: jpanikulam/sba
int main (int argc, char **argv)
{
    /* ---------------------------------------------------------------------- */
    /* get the file containing the input matrix */
    /* ---------------------------------------------------------------------- */

    FILE *ff = NULL ;
    FILE *fb = NULL ;
    if (argc <= 1)
      {
        printf("Usage is: cholmod_simple A.tri [B.txt (dense)]\n");
        exit(0);
      }
    if (argc > 1)
      ff = fopen(argv[1],"r");
    if (argc > 2)
      fb = fopen(argv[2], "r");

    cholmod_sparse *A ;
    cholmod_dense *x, *b, *r ;
    cholmod_factor *L ;
    double one [2] = {1,0}, m1 [2] = {-1,0} ; // basic scalars 
    cholmod_common c ;
    cholmod_start (&c) ;			    /* start CHOLMOD */
    A = cholmod_read_sparse (ff, &c) ;              /* read in a matrix */
    cholmod_print_sparse (A, (char *)"A", &c) ; /* print the matrix */
    if (A->dtype) printf("A is float\n");
    else printf("A is double\n");
    if (A == NULL || A->stype == 0)		    /* A must be symmetric */
    {
	cholmod_free_sparse (&A, &c) ;
	cholmod_finish (&c) ;
        if (ff) fclose(ff);
        if (fb) fclose(fb);
	return (0) ;
    }
    if (fb)
      b = cholmod_read_dense(fb, &c);
    else
      b = cholmod_ones (A->nrow, 1, A->xtype, &c) ; /* b = ones(n,1) */
    double t0 = CPUTIME;
    L = cholmod_analyze (A, &c) ;		    /* analyze */
    cholmod_factorize (A, L, &c) ;		    /* factorize */
    x = cholmod_solve (CHOLMOD_A, L, b, &c) ;	    /* solve Ax=b */
    double t1 = CPUTIME;
    if (c.dtype) printf("Compute is float\n");
    else printf("Compute is double\n");
    printf("Time: %12.4f \n", t1-t0);
    r = cholmod_copy_dense (b, &c) ;		    /* r = b */
    cholmod_sdmult (A, 0, m1, one, x, r, &c) ;	    /* r = r-Ax */
    printf ("norm(b-Ax) %8.1e\n",
	    cholmod_norm_dense (r, 0, &c)) ;	    /* print norm(r) */
    cholmod_free_factor (&L, &c) ;		    /* free matrices */
    cholmod_free_sparse (&A, &c) ;
    cholmod_free_dense (&r, &c) ;
    cholmod_free_dense (&x, &c) ;
    cholmod_free_dense (&b, &c) ;
    cholmod_finish (&c) ;			    /* finish CHOLMOD */
    return (0) ;
}
コード例 #2
0
ファイル: cholmod_simple.c プロジェクト: Al-th/matlab
int main (void)
{
    cholmod_sparse *A ;
    cholmod_dense *x, *b, *r ;
    cholmod_factor *L ;
    double one [2] = {1,0}, m1 [2] = {-1,0} ;	    /* basic scalars */
    cholmod_common c ;
    cholmod_start (&c) ;			    /* start CHOLMOD */
    A = cholmod_read_sparse (stdin, &c) ;	    /* read in a matrix */
    cholmod_print_sparse (A, "A", &c) ;		    /* print the matrix */
    if (A == NULL || A->stype == 0)		    /* A must be symmetric */
    {
	cholmod_free_sparse (&A, &c) ;
	cholmod_finish (&c) ;
	return (0) ;
    }
    b = cholmod_ones (A->nrow, 1, A->xtype, &c) ;   /* b = ones(n,1) */
    L = cholmod_analyze (A, &c) ;		    /* analyze */
    cholmod_factorize (A, L, &c) ;		    /* factorize */
    x = cholmod_solve (CHOLMOD_A, L, b, &c) ;	    /* solve Ax=b */
    r = cholmod_copy_dense (b, &c) ;		    /* r = b */
    cholmod_sdmult (A, 0, m1, one, x, r, &c) ;	    /* r = r-Ax */
    printf ("norm(b-Ax) %8.1e\n",
	    cholmod_norm_dense (r, 0, &c)) ;	    /* print norm(r) */
    cholmod_free_factor (&L, &c) ;		    /* free matrices */
    cholmod_free_sparse (&A, &c) ;
    cholmod_free_dense (&r, &c) ;
    cholmod_free_dense (&x, &c) ;
    cholmod_free_dense (&b, &c) ;
    cholmod_finish (&c) ;			    /* finish CHOLMOD */
    return (0) ;
}
コード例 #3
0
  cholmod_sparse *MultivariateFNormalSufficientSparse::compute_PTP() const
{
  IMP_LOG(TERSE, "MVNsparse:   computing PTP" << std::endl);
  cholmod_sparse *eps = cholmod_dense_to_sparse(epsilon_, true, c_);
  cholmod_sparse *tmp = cholmod_spsolve(CHOLMOD_A, L_, eps, c_);
  cholmod_sparse *ptp = cholmod_aat(tmp, nullptr, 0, 1, c_);
  cholmod_free_sparse(&eps, c_);
  cholmod_free_sparse(&tmp, c_);
  return ptp;
}
コード例 #4
0
ファイル: appopt_block.cpp プロジェクト: vcbradley/appopt
void get_ordering(cholmod_sparse* const NNE,
                  const int MIS_method,
                  const bool directed,
                  std::list<int>& ordering,
                  cholmod_common* const cholmod_c) {

  cholmod_sparse* adja_mat;
  switch(MIS_method) {
    case FSTPOWORDER:
      if (directed) {
        // adja_mat = NNE | t(NNE)
        cholmod_sparse* NNEt = cholmod_transpose(NNE, CHOLMOD_PATTERN, cholmod_c);
        adja_mat = cholmod_add(NNE, NNEt, NULL, NULL, false, false, cholmod_c);
        cholmod_free_sparse(&NNEt, cholmod_c);
      } else {
        // adja_mat = NNE
        adja_mat = cholmod_copy_sparse(NNE, cholmod_c);
      }
      break;

    case SNDPOWORDER:
    case HEURISTIC:
      adja_mat = get_second_power(NNE, directed, cholmod_c);
      break;

    default:
      error("Unknown MIS method.");
  }

  // adja_mat_p: array with pointer to elements for each column
  // where `i' is start and `i+1' is finish.
  // Can thus be used to get col sums.
  const int* const adja_mat_p = static_cast<const int*>(adja_mat->p);
  std::list<std::pair<int,int> > tmp_order;

  int n_vertices = static_cast<int>(NNE->ncol);
  for (int i = 0; i < n_vertices; ++i) {
    tmp_order.push_back(std::make_pair(adja_mat_p[i + 1] - adja_mat_p[i], i));
  }
  cholmod_free_sparse(&adja_mat, cholmod_c);

  // sorts first according to colsum (i.e., first el)
  // then by vertex id. As ID is unique, sorting is stable.
  tmp_order.sort();

  for (std::list<std::pair<int,int> >::const_iterator it = tmp_order.begin();
       it != tmp_order.end(); ++it) {
    ordering.push_back(it->second);
  }
}
コード例 #5
0
  cholmod_sparse *MultivariateFNormalSufficientSparse::compute_PWP() const
{
      // PWP = PW
      IMP_LOG(TERSE, "MVNsparse:   computing PWP" << std::endl);
      //solve for X in Sigma*X=W
      cholmod_sparse *tmp = cholmod_spsolve(CHOLMOD_A, L_, W_, c_);
      //and then Y in trans(X)=Sigma*Y
      cholmod_sparse *tx = cholmod_transpose(tmp, 1, c_);
      cholmod_free_sparse(&tmp, c_);
      cholmod_sparse *R = cholmod_spsolve(CHOLMOD_A, L_, tx, c_);
      cholmod_free_sparse(&tx, c_);
      IMP_LOG(TERSE, "MVNsparse:   done" << std::endl);
      return R;
}
コード例 #6
0
ファイル: Csparse.c プロジェクト: rforge/matrix
/**
 * "Indexing" aka subsetting : Compute  x[i,j], also for vectors i and j
 * Working via CHOLMOD_submatrix, see ./CHOLMOD/MatrixOps/cholmod_submatrix.c
 * @param x CsparseMatrix
 * @param i row     indices (0-origin), or NULL (R's)
 * @param j columns indices (0-origin), or NULL
 *
 * @return x[i,j]  still CsparseMatrix --- currently, this loses dimnames
 */
SEXP Csparse_submatrix(SEXP x, SEXP i, SEXP j)
{
    CHM_SP chx = AS_CHM_SP(x); /* << does diagU2N() when needed */
    int rsize = (isNull(i)) ? -1 : LENGTH(i),
	csize = (isNull(j)) ? -1 : LENGTH(j);
    int Rkind = (chx->xtype != CHOLMOD_PATTERN) ? Real_kind(x) : 0;
    R_CheckStack();

    if (rsize >= 0 && !isInteger(i))
	error(_("Index i must be NULL or integer"));
    if (csize >= 0 && !isInteger(j))
	error(_("Index j must be NULL or integer"));

    if (!chx->stype) {/* non-symmetric Matrix */
	return chm_sparse_to_SEXP(cholmod_submatrix(chx,
						    (rsize < 0) ? NULL : INTEGER(i), rsize,
						    (csize < 0) ? NULL : INTEGER(j), csize,
						    TRUE, TRUE, &c),
				  1, 0, Rkind, "",
				  /* FIXME: drops dimnames */ R_NilValue);
    }
				/* for now, cholmod_submatrix() only accepts "generalMatrix" */
    CHM_SP tmp = cholmod_copy(chx, /* stype: */ 0, chx->xtype, &c);
    CHM_SP ans = cholmod_submatrix(tmp,
				   (rsize < 0) ? NULL : INTEGER(i), rsize,
				   (csize < 0) ? NULL : INTEGER(j), csize,
				   TRUE, TRUE, &c);
    cholmod_free_sparse(&tmp, &c);
    return chm_sparse_to_SEXP(ans, 1, 0, Rkind, "", R_NilValue);
}
コード例 #7
0
ファイル: dsCMatrix.c プロジェクト: rforge/matrix
SEXP dsCMatrix_chol(SEXP x, SEXP pivot)
{
    cholmod_factor
	*N = as_cholmod_factor(dsCMatrix_Cholesky(x, pivot,
						  ScalarLogical(FALSE),
						  ScalarLogical(FALSE)));
    /* Must use a copy; cholmod_factor_to_sparse modifies first arg. */
    cholmod_factor *Ncp = cholmod_copy_factor(N, &c);
    cholmod_sparse *L, *R;
    SEXP ans;
    
    L = cholmod_factor_to_sparse(Ncp, &c); cholmod_free_factor(&Ncp, &c);
    R = cholmod_transpose(L, /*values*/ 1, &c); cholmod_free_sparse(&L, &c);
    ans = PROTECT(chm_sparse_to_SEXP(R, /*cholmod_free*/ 1,
				     /*uploT*/ 1, /*diag*/ "N",
				     GET_SLOT(x, Matrix_DimNamesSym)));
    if (asLogical(pivot)) {
	SEXP piv = PROTECT(allocVector(INTSXP, N->n));
	int *dest = INTEGER(piv), *src = (int*)N->Perm, i;
	
	for (i = 0; i < N->n; i++) dest[i] = src[i] + 1;
	setAttrib(ans, install("pivot"), piv);
	/* FIXME: Because of the cholmod_factor -> S4 obj ->
	 * cholmod_factor conversions, the value of N->minor will
	 * always be N->n.  Change as_cholmod_factor and
	 * chm_factor_as_SEXP to keep track of Minor.
	 */
	setAttrib(ans, install("rank"), ScalarInteger((size_t) N->minor));
	UNPROTECT(1);
    }
    Free(N);
    UNPROTECT(1);
    return ans;
}
コード例 #8
0
  void MultivariateFNormalSufficientSparse::set_W(const SparseMatrix<double>& W)
{
    if (W_) cholmod_free_sparse(&W_, c_);
    cholmod_sparse Wtmp = Eigen::viewAsCholmod(
            W.selfadjointView<Eigen::Upper>());
    //W_ = cholmod_copy_sparse(&Wtmp, c_);
    W_ = cholmod_copy(&Wtmp, 0, 1, c_); //unsym for spsolve
}
コード例 #9
0
 cholmod_sparse *
 MultivariateFNormalSufficientSparse::evaluate_derivative_Sigma() const
 {
     //d(-log(p))/dSigma = 1/2 (N P - N P epsilon transpose(epsilon) P - P W P)
     IMP_LOG(TERSE, "MVNsparse: evaluate_derivative_Sigma() = " << std::endl);
     cholmod_sparse *ptp(compute_PTP());
     cholmod_sparse *pwp(compute_PWP());
     //std::cout << " ptp " << std::endl << ptp << std::endl << std::endl;
     //std::cout << " pwp " << std::endl << pwp << std::endl << std::endl;
     static double one[2]={1,0};
     static double minusone[2]={-1,0};
     cholmod_sparse *tmp =
         cholmod_add(P_, ptp, one, minusone, true, false, c_);
     double enn[2]={0.5*N_,0};
     static double ptfive[2]={-0.5,0};
     cholmod_sparse *R = cholmod_add(tmp, pwp, enn, ptfive, true, false, c_);
     cholmod_free_sparse(&ptp, c_);
     cholmod_free_sparse(&pwp, c_);
     cholmod_free_sparse(&tmp, c_);
     return R;
 }
コード例 #10
0
ファイル: dsCMatrix.c プロジェクト: rforge/matrix
/* FIXME: Create a more general version of this operation */
SEXP dsCMatrix_to_dgTMatrix(SEXP x)
{
    cholmod_sparse *A = as_cholmod_sparse(x);
    cholmod_sparse *Afull = cholmod_copy(A, /*stype*/ 0, /*mode*/ 1, &c);
    cholmod_triplet *At = cholmod_sparse_to_triplet(Afull, &c);

    if (!A->stype)
	error("Non-symmetric matrix passed to dsCMatrix_to_dgTMatrix");
    Free(A); cholmod_free_sparse(&Afull, &c);
    return chm_triplet_to_SEXP(At, 1, /*uploT*/ 0, "",
			       GET_SLOT(x, Matrix_DimNamesSym));
}
コード例 #11
0
/**
 * Return a SuiteSparse QR factorization of the sparse matrix A
 *
 * @param Ap (pointer to) a [m x n] dgCMatrix
 * @param ordering integer SEXP specifying the ordering strategy to be used
 *	see SPQR/Include/SuiteSparseQR_definitions.h
 * @param econ integer SEXP ("economy"): number of rows of R and columns of Q
 *      to return. The default is m. Using n gives the standard economy form.
 *      A value less than the estimated rank r is set to r, so econ=0 gives the
 *      "rank-sized" factorization, where nrow(R)==nnz(diag(R))==r.
 * @param tol double SEXP: if tol <= -2 use SPQR's default,
 *                         if -2 < tol < 0, then no tol is used; otherwise,
 *      tol > 0, use as tolerance: columns with 2-norm <= tol treated as 0
 *
 *
 * @return SEXP  "SPQR" object with slots (Q, R, p, rank, Dim):
 *	Q: dgCMatrix; R: dgCMatrix  [subject to change to dtCMatrix FIXME ?]
 *	p: integer: 0-based permutation (or length 0 <=> identity);
 *	rank: integer, the "revealed" rank   Dim: integer, original matrix dim.
 */
SEXP dgCMatrix_SPQR(SEXP Ap, SEXP ordering, SEXP econ, SEXP tol)
{
/* SEXP ans = PROTECT(allocVector(VECSXP, 4)); */
    SEXP ans = PROTECT(NEW_OBJECT(MAKE_CLASS("SPQR")));

    CHM_SP A = AS_CHM_SP(Ap), Q, R;
    SuiteSparse_long *E, rank;/* not always = int   FIXME  (Windows_64 ?) */

    if ((rank = SuiteSparseQR_C_QR(asInteger(ordering),
				   asReal(tol),/* originally had SPQR_DEFAULT_TOL */
				   (SuiteSparse_long)asInteger(econ),/* originally had 0 */
				   A, &Q, &R, &E, &cl)) == -1)
	error(_("SuiteSparseQR_C_QR returned an error code"));

    slot_dup(ans, Ap, Matrix_DimSym);
/*     SET_VECTOR_ELT(ans, 0, */
/* 		   chm_sparse_to_SEXP(Q, 0, 0, 0, "", R_NilValue)); */
    SET_SLOT(ans, install("Q"),
	     chm_sparse_to_SEXP(Q, 0, 0, 0, "", R_NilValue));

    /* Also gives a dgCMatrix (not a dtC* *triangular*) :
     * may make sense if to be used in the "spqr_solve" routines .. ?? */
/*     SET_VECTOR_ELT(ans, 1, */
/* 		   chm_sparse_to_SEXP(R, 0, 0, 0, "", R_NilValue)); */
    SET_SLOT(ans, install("R"),
	     chm_sparse_to_SEXP(R, 0, 0, 0, "", R_NilValue));
    cholmod_free_sparse(&Al, &cl);
    cholmod_free_sparse(&R, &cl);
    cholmod_free_sparse(&Q, &cl);
    if (E) {
	int *Er;
	SET_VECTOR_ELT(ans, 2, allocVector(INTSXP, A->ncol));
	Er = INTEGER(VECTOR_ELT(ans, 2));
	for (int i = 0; i < A->ncol; i++) Er[i] = (int) E[i];
	Free(E);
    } else SET_VECTOR_ELT(ans, 2, allocVector(INTSXP, 0));
    SET_VECTOR_ELT(ans, 3, ScalarInteger((int)rank));
    UNPROTECT(1);
    return ans;
}
コード例 #12
0
ファイル: Csparse.c プロジェクト: rforge/matrix
/* Computes   x'x  or  x x' -- *also* for Tsparse (triplet = TRUE)
   see Csparse_Csparse_crossprod above for  x'y and x y' */
SEXP Csparse_crossprod(SEXP x, SEXP trans, SEXP triplet)
{
    int trip = asLogical(triplet),
	tr   = asLogical(trans); /* gets reversed because _aat is tcrossprod */
#ifdef AS_CHM_DIAGU2N_FIXED_FINALLY
    CHM_TR cht = trip ? AS_CHM_TR(x) : (CHM_TR) NULL;
#else /* workaround needed:*/
    SEXP xx = PROTECT(Tsparse_diagU2N(x));
    CHM_TR cht = trip ? AS_CHM_TR__(xx) : (CHM_TR) NULL;
#endif
    CHM_SP chcp, chxt,
	chx = (trip ?
	       cholmod_triplet_to_sparse(cht, cht->nnz, &c) :
	       AS_CHM_SP(x));
    SEXP dn = PROTECT(allocVector(VECSXP, 2));
    R_CheckStack();

    if (!tr) chxt = cholmod_transpose(chx, chx->xtype, &c);
    chcp = cholmod_aat((!tr) ? chxt : chx, (int *) NULL, 0, chx->xtype, &c);
    if(!chcp) {
	UNPROTECT(1);
	error(_("Csparse_crossprod(): error return from cholmod_aat()"));
    }
    cholmod_band_inplace(0, chcp->ncol, chcp->xtype, chcp, &c);
    chcp->stype = 1;
    if (trip) cholmod_free_sparse(&chx, &c);
    if (!tr) cholmod_free_sparse(&chxt, &c);
    SET_VECTOR_ELT(dn, 0,	/* establish dimnames */
		   duplicate(VECTOR_ELT(GET_SLOT(x, Matrix_DimNamesSym),
					(tr) ? 0 : 1)));
    SET_VECTOR_ELT(dn, 1, duplicate(VECTOR_ELT(dn, 0)));
#ifdef AS_CHM_DIAGU2N_FIXED_FINALLY
    UNPROTECT(1);
#else
    UNPROTECT(2);
#endif
    return chm_sparse_to_SEXP(chcp, 1, 0, 0, "", dn);
}
コード例 #13
0
ファイル: appopt_block.cpp プロジェクト: vcbradley/appopt
cholmod_sparse* get_second_power(cholmod_sparse* const NNE,
                                 const bool directed,
                                 cholmod_common* const cholmod_c) {

  cholmod_sparse* out;
  if (directed) {
    // out = (NNE | t(NNE) | t(NNE) %*% NNE) & !I
    cholmod_sparse* NNEt = cholmod_transpose(NNE, CHOLMOD_PATTERN, cholmod_c);
    cholmod_sparse* NNEtNNE = cholmod_aat(NNEt, NULL, 0, -1, cholmod_c); // -1 = no diagnol
    cholmod_sparse* tmp = cholmod_add(NNE, NNEt, NULL, NULL, false, false, cholmod_c);
    cholmod_free_sparse(&NNEt, cholmod_c);
    out = cholmod_add(tmp, NNEtNNE, NULL, NULL, false, false, cholmod_c);
    cholmod_free_sparse(&NNEtNNE, cholmod_c);
    cholmod_free_sparse(&tmp, cholmod_c);

  } else {
    // out = (NNE | t(NNE) %*% NNE) & !I
    cholmod_sparse* NNEtNNE = cholmod_aat(NNE, NULL, 0, -1, cholmod_c); // -1 = no diagnol
    out = cholmod_add(NNE, NNEtNNE, NULL, NULL, false, false, cholmod_c);
    cholmod_free_sparse(&NNEtNNE, cholmod_c);
  }

  return out;
}
コード例 #14
0
double GaussianProcessInterpolationRestraintSparse::unprotected_evaluate(
                         DerivativeAccumulator *accum) const
{
    //check if the functions have changed
    const_cast<GaussianProcessInterpolationRestraintSparse*>(this)->
        update_mean_and_covariance();

    double ene = mvn_->evaluate();

    if (accum)
    {
        cholmod_dense *dmv = mvn_->evaluate_derivative_FM();
        if (dmv->xtype != CHOLMOD_REAL)
            IMP_THROW("matrix type is not real, update code here first",
                    ModelException);
        double *dmvx=(double*) dmv->x;
        //derivatives for mean particles
        for (size_t i=0; i<M_; i++)
        {
            DerivativeAccumulator a(*accum, dmvx[i]);
            gpi_->mean_function_->add_to_derivatives(gpi_->x_[i], a);
        }
        cholmod_free_dense(&dmv, c_);

        //derivatives for covariance particles
        cholmod_sparse *tmp(mvn_->evaluate_derivative_Sigma());
        cholmod_triplet *dmvS = cholmod_sparse_to_triplet(tmp, c_);
        cholmod_free_sparse(&tmp, c_);
        if ((dmvS->itype != CHOLMOD_INT) && (dmvS->xtype != CHOLMOD_REAL))
            IMP_THROW("matrix type is not real or coefficients are not int!",
                    ModelException);
        int *dmvi=(int*) dmvS->i;
        int *dmvj=(int*) dmvS->j;
        dmvx=(double*) dmvS->x;
        for (size_t p=0; p<dmvS->nzmax; ++p)
        {
            int i=dmvi[p];
            int j=dmvj[p];
            double val=dmvx[p];
            DerivativeAccumulator a(*accum, val);
            gpi_->covariance_function_->add_to_derivatives(
                    gpi_->x_[i],gpi_->x_[j], a);
        }
        cholmod_free_triplet(&dmvS,c_);
    }
    return ene;
}
コード例 #15
0
 double MultivariateFNormalSufficientSparse::trace_WP() const
 {
     //solve for Sigma.X=W
     //cholmod_print_sparse(PW_,"PW",c_);
     //isolate diagonal
     cholmod_sparse *tmp = cholmod_band(PW_, 0, 0, 1, c_);
     //cholmod_print_sparse(tmp,"diag(PW)",c_);
     double trace=0;
     if ((tmp->itype != CHOLMOD_INT) || (tmp->xtype != CHOLMOD_REAL))
         IMP_THROW("matrix types different from int and double",
                 ModelException);
     double *x = (double *) tmp->x;
     for (size_t i=0; i < tmp->nzmax; ++i) trace += x[i];
     cholmod_free_sparse(&tmp, c_);
     IMP_LOG(TERSE, "MVNsparse:   trace(WP) = " << trace << std::endl);
     return trace;
 }
コード例 #16
0
ファイル: appopt_block.cpp プロジェクト: vcbradley/appopt
void findMaxIS_in_sp(cholmod_sparse* const NNE,
                     const bool directed,
                     std::list<int>& MaxIs,
                     cholmod_common* const cholmod_c) {

  cholmod_sparse* second_power = get_second_power(NNE, directed, cholmod_c);
  const int* const sp_p = static_cast<const int*>(second_power->p);
  const int* const sp_i = static_cast<const int*>(second_power->i);
  bool inSetI[NNE->ncol];
  std::fill_n(inSetI, NNE->ncol, true);
  int removed_indices[NNE->ncol];
  int sizeMaxIS = 0;

  recur_MaxIS(inSetI, 0, removed_indices,
              removed_indices + NNE->ncol,
              sp_p, sp_i, 0, &sizeMaxIS, MaxIs);

  cholmod_free_sparse(&second_power, cholmod_c);
}
コード例 #17
0
ファイル: algebra.cpp プロジェクト: Ting2003/pad_mg
// doing cholesky decomposition
void Algebra::CK_decomp(Matrix &A, cholmod_factor *&L, cholmod_common *cm, size_t &peak_mem, size_t & CK_mem){
	// doing factorization first
	cholmod_triplet * T;
	size_t n_row = A.get_row();
	size_t n_col = A.get_row();
	size_t nnz = A.size();
	int *Ti;
	int *Tj;
	double *Tx;
	int stype = -1;// lower triangular storage
	T = cholmod_allocate_triplet(n_row, n_col, nnz, stype, 
			CHOLMOD_REAL, cm);
	Ti = static_cast<int *>(T->i);
	Tj = static_cast<int *>(T->j);
	Tx = static_cast<double *>(T->x);
	// copy data into T
	for(size_t k=0;k<nnz;k++){
		Ti[k] = A.Ti[k];
		Tj[k] = A.Tj[k];
		Tx[k] = A.Tx[k];
	}
	T->nnz = nnz;
	A.Ti.clear();
	A.Tj.clear();
	A.Tx.clear();
	cholmod_sparse * A_cholmod;
	A_cholmod = cholmod_triplet_to_sparse(T, nnz, cm);

	// free the triplet pointer
	cholmod_free_triplet(&T, cm);

	//cm->supernodal = -1;
	L = cholmod_analyze(A_cholmod, cm);
	//L->ordering = CHOLMOD_NATURAL;
	cholmod_factorize(A_cholmod, L, cm);
	//cholmod_print_factor(L, "L", cm);
	//if(peak_mem < cm->memory_usage)
		//peak_mem = cm->memory_usage;
	//CK_mem += cm->lnz;
	cholmod_free_sparse(&A_cholmod, cm);
}
コード例 #18
0
ファイル: Csparse.c プロジェクト: rforge/matrix
SEXP Csparse_diagU2N(SEXP x)
{
    const char *cl = class_P(x);
    /* dtCMatrix, etc; [1] = the second character =?= 't' for triangular */
    if (cl[1] != 't' || *diag_P(x) != 'U') {
	/* "trivially fast" when not triangular (<==> no 'diag' slot),
	   or not *unit* triangular */
	return (x);
    }
    else { /* unit triangular (diag='U'): "fill the diagonal" & diag:= "N" */
	CHM_SP chx = AS_CHM_SP__(x);
	CHM_SP eye = cholmod_speye(chx->nrow, chx->ncol, chx->xtype, &c);
	double one[] = {1, 0};
	CHM_SP ans = cholmod_add(chx, eye, one, one, TRUE, TRUE, &c);
	int uploT = (*uplo_P(x) == 'U') ? 1 : -1;
	int Rkind = (chx->xtype != CHOLMOD_PATTERN) ? Real_kind(x) : 0;

	R_CheckStack();
	cholmod_free_sparse(&eye, &c);
	return chm_sparse_to_SEXP(ans, 1, uploT, Rkind, "N",
				  GET_SLOT(x, Matrix_DimNamesSym));
    }
}
コード例 #19
0
ファイル: Csparse.c プロジェクト: rforge/matrix
SEXP Csparse_Csparse_crossprod(SEXP a, SEXP b, SEXP trans)
{
    int tr = asLogical(trans);
    CHM_SP
	cha = AS_CHM_SP(a),
	chb = AS_CHM_SP(b),
	chTr, chc;
    const char *cl_a = class_P(a), *cl_b = class_P(b);
    char diag[] = {'\0', '\0'};
    int uploT = 0;
    SEXP dn = PROTECT(allocVector(VECSXP, 2));
    R_CheckStack();

    chTr = cholmod_transpose((tr) ? chb : cha, chb->xtype, &c);
    chc = cholmod_ssmult((tr) ? cha : chTr, (tr) ? chTr : chb,
			 /*out_stype:*/ 0, cha->xtype, /*out sorted:*/ 1, &c);
    cholmod_free_sparse(&chTr, &c);

    /* Preserve triangularity and unit-triangularity if appropriate;
     * see Csparse_Csparse_prod() for comments */
    if (cl_a[1] == 't' && cl_b[1] == 't')
	if(*uplo_P(a) != *uplo_P(b)) { /* one 'U', the other 'L' */
	    uploT = (*uplo_P(b) == 'U') ? 1 : -1;
	    if(*diag_P(a) == 'U' && *diag_P(b) == 'U') { /* return UNIT-triag. */
		chm_diagN2U(chc, uploT, /* do_realloc */ FALSE);
		diag[0]= 'U';
	    }
	    else diag[0]= 'N';
	}
    SET_VECTOR_ELT(dn, 0,	/* establish dimnames */
		   duplicate(VECTOR_ELT(GET_SLOT(a, Matrix_DimNamesSym), (tr) ? 0 : 1)));
    SET_VECTOR_ELT(dn, 1,
		   duplicate(VECTOR_ELT(GET_SLOT(b, Matrix_DimNamesSym), (tr) ? 0 : 1)));
    UNPROTECT(1);
    return chm_sparse_to_SEXP(chc, 1, uploT, /*Rkind*/0, diag, dn);
}
コード例 #20
0
ファイル: t_gCMatrix_colSums.c プロジェクト: rforge/matrix
SEXP gCMatrix_colSums(SEXP x, SEXP NArm, SEXP spRes, SEXP trans, SEXP means)
{
    int mn = asLogical(means), sp = asLogical(spRes), tr = asLogical(trans);
    /* cholmod_sparse: drawback of coercing lgC to double: */
    CHM_SP cx = AS_CHM_SP(x);
    R_CheckStack();

    if (tr) {
	cholmod_sparse *cxt = cholmod_transpose(cx, (int)cx->xtype, &c);
	cx = cxt;
    }

    /* everything else *after* the above potential transpose : */
    /* Don't declarations here require the C99 standard?  Can we assume C99? */

    int j, nc = cx->ncol;
    int *xp = (int *)(cx -> p);
#ifdef _has_x_slot_
    int na_rm = asLogical(NArm), i, dnm = 0/*Wall*/;
    double *xx = (double *)(cx -> x);
#endif
    SEXP ans = PROTECT(sp ? NEW_OBJECT(MAKE_CLASS(SparseResult_class))
			  : allocVector(SXP_ans, nc));

    if (sp) { /* sparseResult - never allocating length-nc ... */
	int nza, i1, i2, p, *ai;
	Type_ans *ax;

	for (j = 0, nza = 0; j < nc; j++)
	    if(xp[j] < xp[j + 1])
		nza++;

	ai =  INTEGER(ALLOC_SLOT(ans, Matrix_iSym, INTSXP,  nza));
	ax = STYP_ans(ALLOC_SLOT(ans, Matrix_xSym, SXP_ans, nza));

	SET_SLOT(ans, Matrix_lengthSym, ScalarInteger(nc));

	i2 = xp[0];
	for (j = 1, p = 0; j <= nc; j++) {
	    /* j' =j+1, since 'i' slot will be 1-based */
	    i1 = i2; i2 = xp[j];
	    if(i1 < i2) {
		Type_ans sum;
		ColSUM_column(i1,i2, sum);

		ai[p]	= j;
		ax[p++] = sum;
	    }
	}
    }
    else { /* "numeric" (non sparse) result */
	Type_ans *a = STYP_ans(ans);
	for (j = 0; j < nc; j++) {
	    ColSUM_column(xp[j], xp[j + 1], a[j]);
	}
    }

    if (tr) cholmod_free_sparse(&cx, &c);
    UNPROTECT(1);
    return ans;
}
コード例 #21
0
int main (int argc, char **argv)
{
    double resid [4], t, ta, tf, ts [3], tot, bnorm, xnorm, anorm, rnorm, fl,
        anz, axbnorm, rnorm2, resid2, rcond ;
    FILE *f ;
    cholmod_sparse *A ;
    cholmod_dense *X = NULL, *B, *W, *R ;
    double one [2], zero [2], minusone [2], beta [2], xlnz ;
    cholmod_common Common, *cm ;
    cholmod_factor *L ;
    double *Bx, *Rx, *Xx ;
    int i, n, isize, xsize, ordering, xtype, s, ss, lnz ;
    int trial, method, L_is_super ;
    int ver [3] ;

    ts[0] = 0.;
    ts[1] = 0.;
    ts[2] = 0.;

    /* ---------------------------------------------------------------------- */
    /* get the file containing the input matrix */
    /* ---------------------------------------------------------------------- */

    ff = NULL ;
    if (argc > 1)
    {
	if ((f = fopen (argv [1], "r")) == NULL)
	{
	    my_handler (CHOLMOD_INVALID, __FILE__, __LINE__,
		    "unable to open file") ;
	}
	ff = f ;
    }
    else
    {
	f = stdin ;
    }

    /* ---------------------------------------------------------------------- */
    /* start CHOLMOD and set parameters */
    /* ---------------------------------------------------------------------- */

    cm = &Common ;
    cholmod_start (cm) ;
    CHOLMOD_FUNCTION_DEFAULTS (cm) ;    /* just for testing (not required) */

    /* use default parameter settings, except for the error handler.  This
     * demo program terminates if an error occurs (out of memory, not positive
     * definite, ...).  It makes the demo program simpler (no need to check
     * CHOLMOD error conditions).  This non-default parameter setting has no
     * effect on performance. */
    cm->error_handler = my_handler ;

    /* Note that CHOLMOD will do a supernodal LL' or a simplicial LDL' by
     * default, automatically selecting the latter if flop/nnz(L) < 40. */

    /* ---------------------------------------------------------------------- */
    /* create basic scalars */
    /* ---------------------------------------------------------------------- */

    zero [0] = 0 ;
    zero [1] = 0 ;
    one [0] = 1 ;
    one [1] = 0 ;
    minusone [0] = -1 ;
    minusone [1] = 0 ;
    beta [0] = 1e-6 ;
    beta [1] = 0 ;

    /* ---------------------------------------------------------------------- */
    /* read in a matrix */
    /* ---------------------------------------------------------------------- */

    printf ("\n---------------------------------- cholmod_demo:\n") ;
    cholmod_version (ver) ;
    printf ("cholmod version %d.%d.%d\n", ver [0], ver [1], ver [2]) ;
    SuiteSparse_version (ver) ;
    printf ("SuiteSparse version %d.%d.%d\n", ver [0], ver [1], ver [2]) ;
    A = cholmod_read_sparse (f, cm) ;
    if (ff != NULL)
    {
        fclose (ff) ;
        ff = NULL ;
    }
    anorm = cholmod_norm_sparse (A, 0, cm) ;
    xtype = A->xtype ;
    printf ("norm (A,inf) = %g\n", anorm) ;
    printf ("norm (A,1)   = %g\n", cholmod_norm_sparse (A, 1, cm)) ;
    cholmod_print_sparse (A, "A", cm) ;

    if (A->nrow > A->ncol)
    {
	/* Transpose A so that A'A+beta*I will be factorized instead */
	cholmod_sparse *C = cholmod_transpose (A, 2, cm) ;
	cholmod_free_sparse (&A, cm) ;
	A = C ;
	printf ("transposing input matrix\n") ;
    }

    /* ---------------------------------------------------------------------- */
    /* create an arbitrary right-hand-side */
    /* ---------------------------------------------------------------------- */

    n = A->nrow ;
    B = cholmod_zeros (n, 1, xtype, cm) ;
    Bx = B->x ;

#if GHS
    {
	/* b = A*ones(n,1), used by Gould, Hu, and Scott in their experiments */
	cholmod_dense *X0 ;
	X0 = cholmod_ones (A->ncol, 1, xtype, cm) ;
	cholmod_sdmult (A, 0, one, zero, X0, B, cm) ;
	cholmod_free_dense (&X0, cm) ;
    }
#else
    if (xtype == CHOLMOD_REAL)
    {
	/* real case */
	for (i = 0 ; i < n ; i++)
	{
	    double x = n ;
	    Bx [i] = 1 + i / x ;
	}
    }
    else
    {
	/* complex case */
	for (i = 0 ; i < n ; i++)
	{
	    double x = n ;
	    Bx [2*i  ] = 1 + i / x ;		/* real part of B(i) */
	    Bx [2*i+1] = (x/2 - i) / (3*x) ;	/* imag part of B(i) */
	}
    }
#endif

    cholmod_print_dense (B, "B", cm) ;
    bnorm = cholmod_norm_dense (B, 0, cm) ;	/* max norm */
    printf ("bnorm %g\n", bnorm) ;

    /* ---------------------------------------------------------------------- */
    /* analyze and factorize */
    /* ---------------------------------------------------------------------- */

    t = CPUTIME ;
    L = cholmod_analyze (A, cm) ;
    ta = CPUTIME - t ;
    ta = MAX (ta, 0) ;

    printf ("Analyze: flop %g lnz %g\n", cm->fl, cm->lnz) ;

    if (A->stype == 0)
    {
	printf ("Factorizing A*A'+beta*I\n") ;
	t = CPUTIME ;
	cholmod_factorize_p (A, beta, NULL, 0, L, cm) ;
	tf = CPUTIME - t ;
	tf = MAX (tf, 0) ;
    }
    else
    {
	printf ("Factorizing A\n") ;
	t = CPUTIME ;
	cholmod_factorize (A, L, cm) ;
	tf = CPUTIME - t ;
	tf = MAX (tf, 0) ;
    }

    cholmod_print_factor (L, "L", cm) ;

    /* determine the # of integers's and reals's in L.  See cholmod_free */
    if (L->is_super)
    {
	s = L->nsuper + 1 ;
	xsize = L->xsize ;
	ss = L->ssize ;
	isize =
	    n	/* L->Perm */
	    + n	/* L->ColCount, nz in each column of 'pure' L */
	    + s	/* L->pi, column pointers for L->s */
	    + s	/* L->px, column pointers for L->x */
	    + s	/* L->super, starting column index of each supernode */
	    + ss ;	/* L->s, the pattern of the supernodes */
    }
    else
    {
	/* this space can increase if you change parameters to their non-
	 * default values (cm->final_pack, for example). */
	lnz = L->nzmax ;
	xsize = lnz ;
	isize =
	    n	/* L->Perm */
	    + n	/* L->ColCount, nz in each column of 'pure' L */
	    + n+1	/* L->p, column pointers */
	    + lnz	/* L->i, integer row indices */
	    + n	/* L->nz, nz in each column of L */
	    + n+2	/* L->next, link list */
	    + n+2 ;	/* L->prev, link list */
    }

    /* solve with Bset will change L from simplicial to supernodal */
    rcond = cholmod_rcond (L, cm) ;
    L_is_super = L->is_super ;

    /* ---------------------------------------------------------------------- */
    /* solve */
    /* ---------------------------------------------------------------------- */

    for (method = 0 ; method <= 3 ; method++)
    {
        double x = n ;

        if (method == 0)
        {
            /* basic solve, just once */
            t = CPUTIME ;
            X = cholmod_solve (CHOLMOD_A, L, B, cm) ;
            ts [0] = CPUTIME - t ;
            ts [0] = MAX (ts [0], 0) ;
        }
        else if (method == 1)
        {
            /* basic solve, many times, but keep the last one */
            t = CPUTIME ;
            for (trial = 0 ; trial < NTRIALS ; trial++)
            {
                cholmod_free_dense (&X, cm) ;
                Bx [0] = 1 + trial / x ;        /* tweak B each iteration */
                X = cholmod_solve (CHOLMOD_A, L, B, cm) ;
            }
            ts [1] = CPUTIME - t ;
            ts [1] = MAX (ts [1], 0) / NTRIALS ;
        }
        else if (method == 2)
        {
            /* solve with reused workspace */
            cholmod_dense *Ywork = NULL, *Ework = NULL ;
            cholmod_free_dense (&X, cm) ;

            t = CPUTIME ;
            for (trial = 0 ; trial < NTRIALS ; trial++)
            {
                Bx [0] = 1 + trial / x ;        /* tweak B each iteration */
                cholmod_solve2 (CHOLMOD_A, L, B, NULL, &X, NULL,
                    &Ywork, &Ework, cm) ;
            }
            cholmod_free_dense (&Ywork, cm) ;
            cholmod_free_dense (&Ework, cm) ;
            ts [2] = CPUTIME - t ;
            ts [2] = MAX (ts [2], 0) / NTRIALS ;
        }
        else
        {
            /* solve with reused workspace and sparse Bset */
            cholmod_dense *Ywork = NULL, *Ework = NULL ;
            cholmod_dense *X2 = NULL, *B2 = NULL ;
            cholmod_sparse *Bset, *Xset = NULL ;
            int *Bsetp, *Bseti, *Xsetp, *Xseti, xlen, j, k, *Lnz ;
            double *X1x, *X2x, *B2x, err ;
            FILE *timelog = fopen ("timelog.m", "w") ;
            if (timelog) fprintf (timelog, "results = [\n") ;

            B2 = cholmod_zeros (n, 1, xtype, cm) ;
            B2x = B2->x ;

            Bset = cholmod_allocate_sparse (n, 1, 1, FALSE, TRUE, 0,
                CHOLMOD_PATTERN, cm) ;
            Bsetp = Bset->p ;
            Bseti = Bset->i ;
            Bsetp [0] = 0 ;     /* nnz(B) is 1 (it can be anything) */
            Bsetp [1] = 1 ;
            resid [3] = 0 ;

            for (i = 0 ; i < MIN (100,n) ; i++)
            {
                /* B (i) is nonzero, all other entries are ignored
                   (implied to be zero) */
                Bseti [0] = i ;
                if (xtype == CHOLMOD_REAL)
                {
                    B2x [i] = 3.1 * i + 0.9 ;
                }
                else
                {
                    B2x [2*i  ] = i + 0.042 ;
                    B2x [2*i+1] = i - 92.7 ;
                }

                /* first get the entire solution, to compare against */
                cholmod_solve2 (CHOLMOD_A, L, B2, NULL, &X, NULL,
                    &Ywork, &Ework, cm) ;

                /* now get the sparse solutions; this will change L from
                   supernodal to simplicial */

                if (i == 0)
                {
                    /* first solve can be slower because it has to allocate
                       space for X2, Xset, etc, and change L.
                       So don't time it */
                    cholmod_solve2 (CHOLMOD_A, L, B2, Bset, &X2, &Xset,
                        &Ywork, &Ework, cm) ;
                }

                t = CPUTIME ;
                for (trial = 0 ; trial < NTRIALS ; trial++)
                {
                    /* solve Ax=b but only to get x(i).
                       b is all zero except for b(i).
                       This takes O(xlen) time */
                    cholmod_solve2 (CHOLMOD_A, L, B2, Bset, &X2, &Xset,
                        &Ywork, &Ework, cm) ;
                }
                t = CPUTIME - t ;
                t = MAX (t, 0) / NTRIALS ;

                /* check the solution and log the time */
                Xsetp = Xset->p ;
                Xseti = Xset->i ;
                xlen = Xsetp [1] ;
                X1x = X->x ;
                X2x = X2->x ;
                Lnz = L->nz ;

                /*
                printf ("\ni %d xlen %d  (%p %p)\n", i, xlen, X1x, X2x) ;
                */

                if (xtype == CHOLMOD_REAL)
                {
                    fl = 2 * xlen ;
                    for (k = 0 ; k < xlen ; k++)
                    {
                        j = Xseti [k] ;
                        fl += 4 * Lnz [j] ;
                        err = X1x [j] - X2x [j] ;
                        err = ABS (err) ;
                        resid [3] = MAX (resid [3], err) ;
                    }
                }
                else
                {
                    fl = 16 * xlen ;
                    for (k = 0 ; k < xlen ; k++)
                    {
                        j = Xseti [k] ;
                        fl += 16 * Lnz [j] ;
                        err = X1x [2*j  ] - X2x [2*j  ] ;
                        err = ABS (err) ;
                        resid [3] = MAX (resid [3], err) ;
                        err = X1x [2*j+1] - X2x [2*j+1] ;
                        err = ABS (err) ;
                        resid [3] = MAX (resid [3], err) ;
                    }
                }
                if (timelog) fprintf (timelog, "%g %g %g %g\n",
                    (double) i, (double) xlen, fl, t);

                /* clear B for the next test */
                if (xtype == CHOLMOD_REAL)
                {
                    B2x [i] = 0 ;
                }
                else
                {
                    B2x [2*i  ] = 0 ;
                    B2x [2*i+1] = 0 ;
                }

            }

            if (timelog)
            {
                fprintf (timelog, "] ; resid = %g ;\n", resid [3]) ;
                fprintf (timelog, "lnz = %g ;\n", cm->lnz) ;
                fprintf (timelog, "t = %g ;   %% dense solve time\n", ts [2]) ;
                fclose (timelog) ;
            }

            resid [3] = resid [3] / cholmod_norm_dense (X, 1, cm) ;

            cholmod_free_dense (&Ywork, cm) ;
            cholmod_free_dense (&Ework, cm) ;
            cholmod_free_dense (&X2, cm) ;
            cholmod_free_dense (&B2, cm) ;
            cholmod_free_sparse (&Xset, cm) ;
            cholmod_free_sparse (&Bset, cm) ;
        }

        /* ------------------------------------------------------------------ */
        /* compute the residual */
        /* ------------------------------------------------------------------ */

        if (method < 3)
        {

            if (A->stype == 0)
            {
                /* (AA'+beta*I)x=b is the linear system that was solved */
                /* W = A'*X */
                W = cholmod_allocate_dense (A->ncol, 1, A->ncol, xtype, cm) ;
                cholmod_sdmult (A, 2, one, zero, X, W, cm) ;
                /* R = B - beta*X */
                R = cholmod_zeros (n, 1, xtype, cm) ;
                Rx = R->x ;
                Xx = X->x ;
                if (xtype == CHOLMOD_REAL)
                {
                    for (i = 0 ; i < n ; i++)
                    {
                        Rx [i] = Bx [i] - beta [0] * Xx [i] ;
                    }
                }
                else
                {
                    /* complex case */
                    for (i = 0 ; i < n ; i++)
                    {
                        Rx [2*i  ] = Bx [2*i  ] - beta [0] * Xx [2*i  ] ;
                        Rx [2*i+1] = Bx [2*i+1] - beta [0] * Xx [2*i+1] ;
                    }
                }
                /* R = A*W - R */
                cholmod_sdmult (A, 0, one, minusone, W, R, cm) ;
                cholmod_free_dense (&W, cm) ;
            }
            else
            {
                /* Ax=b was factorized and solved, R = B-A*X */
                R = cholmod_copy_dense (B, cm) ;
                cholmod_sdmult (A, 0, minusone, one, X, R, cm) ;
            }
            rnorm = cholmod_norm_dense (R, 0, cm) ;	    /* max abs. entry */
            xnorm = cholmod_norm_dense (X, 0, cm) ;	    /* max abs. entry */

            axbnorm = (anorm * xnorm + bnorm + ((n == 0) ? 1 : 0)) ;
            resid [method] = rnorm / axbnorm ;
        }
    }

    tot = ta + tf + ts [0] ;

    /* ---------------------------------------------------------------------- */
    /* iterative refinement (real symmetric case only) */
    /* ---------------------------------------------------------------------- */

    resid2 = -1 ;
    if (A->stype != 0 && A->xtype == CHOLMOD_REAL)
    {
	cholmod_dense *R2 ;

	/* R2 = A\(B-A*X) */
	R2 = cholmod_solve (CHOLMOD_A, L, R, cm) ;
	/* compute X = X + A\(B-A*X) */
	Xx = X->x ;
	Rx = R2->x ;
	for (i = 0 ; i < n ; i++)
	{
	    Xx [i] = Xx [i] + Rx [i] ;
	}
	cholmod_free_dense (&R2, cm) ;
	cholmod_free_dense (&R, cm) ;

	/* compute the new residual, R = B-A*X */
	R = cholmod_copy_dense (B, cm) ;
	cholmod_sdmult (A, 0, minusone, one, X, R, cm) ;
	rnorm2 = cholmod_norm_dense (R, 0, cm) ;
	resid2 = rnorm2 / axbnorm ;
    }

    cholmod_free_dense (&R, cm) ;

    /* ---------------------------------------------------------------------- */
    /* print results */
    /* ---------------------------------------------------------------------- */

    anz = cm->anz ;
    for (i = 0 ; i < CHOLMOD_MAXMETHODS ; i++)
    {
	fl = cm->method [i].fl ;
	xlnz = cm->method [i].lnz ;
	cm->method [i].fl = -1 ;
	cm->method [i].lnz = -1 ;
	ordering = cm->method [i].ordering ;
	if (fl >= 0)
	{
	    printf ("Ordering: ") ;
	    if (ordering == CHOLMOD_POSTORDERED) printf ("postordered ") ;
	    if (ordering == CHOLMOD_NATURAL)     printf ("natural ") ;
	    if (ordering == CHOLMOD_GIVEN)	     printf ("user    ") ;
	    if (ordering == CHOLMOD_AMD)	     printf ("AMD     ") ;
	    if (ordering == CHOLMOD_METIS)	     printf ("METIS   ") ;
	    if (ordering == CHOLMOD_NESDIS)      printf ("NESDIS  ") ;
	    if (xlnz > 0)
	    {
		printf ("fl/lnz %10.1f", fl / xlnz) ;
	    }
	    if (anz > 0)
	    {
		printf ("  lnz/anz %10.1f", xlnz / anz) ;
	    }
	    printf ("\n") ;
	}
    }

    printf ("ints in L: %15.0f, doubles in L: %15.0f\n",
        (double) isize, (double) xsize) ;
    printf ("factor flops %g nnz(L) %15.0f (w/no amalgamation)\n",
	    cm->fl, cm->lnz) ;
    if (A->stype == 0)
    {
	printf ("nnz(A):    %15.0f\n", cm->anz) ;
    }
    else
    {
	printf ("nnz(A*A'): %15.0f\n", cm->anz) ;
    }
    if (cm->lnz > 0)
    {
	printf ("flops / nnz(L):  %8.1f\n", cm->fl / cm->lnz) ;
    }
    if (anz > 0)
    {
	printf ("nnz(L) / nnz(A): %8.1f\n", cm->lnz / cm->anz) ;
    }
    printf ("analyze cputime:  %12.4f\n", ta) ;
    printf ("factor  cputime:   %12.4f mflop: %8.1f\n", tf,
	(tf == 0) ? 0 : (1e-6*cm->fl / tf)) ;
    printf ("solve   cputime:   %12.4f mflop: %8.1f\n", ts [0],
	(ts [0] == 0) ? 0 : (1e-6*4*cm->lnz / ts [0])) ;
    printf ("overall cputime:   %12.4f mflop: %8.1f\n", 
	    tot, (tot == 0) ? 0 : (1e-6 * (cm->fl + 4 * cm->lnz) / tot)) ;
    printf ("solve   cputime:   %12.4f mflop: %8.1f (%d trials)\n", ts [1],
	(ts [1] == 0) ? 0 : (1e-6*4*cm->lnz / ts [1]), NTRIALS) ;
    printf ("solve2  cputime:   %12.4f mflop: %8.1f (%d trials)\n", ts [2],
	(ts [2] == 0) ? 0 : (1e-6*4*cm->lnz / ts [2]), NTRIALS) ;
    printf ("peak memory usage: %12.0f (MB)\n",
	    (double) (cm->memory_usage) / 1048576.) ;
    printf ("residual (|Ax-b|/(|A||x|+|b|)): ") ;
    for (method = 0 ; method <= 3 ; method++)
    {
        printf ("%8.2e ", resid [method]) ;
    }
    printf ("\n") ;
    if (resid2 >= 0)
    {
	printf ("residual %8.1e (|Ax-b|/(|A||x|+|b|))"
		" after iterative refinement\n", resid2) ;
    }

    printf ("rcond    %8.1e\n\n", rcond) ;

    if (L_is_super)
    {
        cholmod_gpu_stats (cm) ;
    }

    cholmod_free_factor (&L, cm) ;
    cholmod_free_dense (&X, cm) ;

    /* ---------------------------------------------------------------------- */
    /* free matrices and finish CHOLMOD */
    /* ---------------------------------------------------------------------- */

    cholmod_free_sparse (&A, cm) ;
    cholmod_free_dense (&B, cm) ;
    cholmod_finish (cm) ;
    
    return (0) ;
}
コード例 #22
0
ファイル: Cholmod.hpp プロジェクト: AliAlawieh/kalibr
 static int free_sparse(cholmod_sparse** A, cholmod_common* c) {
   return cholmod_free_sparse(A, c);
 }
コード例 #23
0
  void MultivariateFNormalSufficientSparse::set_Sigma(
          const SparseMatrix<double>& Sigma)
  {
        if (Sigma.cols() != Sigma.rows()) {
            IMP_THROW("need a square matrix!", ModelException);
            }
        //std::cout << "set_sigma" << std::endl;
        if (Sigma_) cholmod_free_sparse(&Sigma_, c_);
        cholmod_sparse A(Eigen::viewAsCholmod(
                            Sigma.selfadjointView<Eigen::Upper>()));
        Sigma_=cholmod_copy_sparse(&A, c_);
        //cholmod_print_sparse(Sigma_,"Sigma",c_);
        IMP_LOG(TERSE, "MVNsparse:   set Sigma to new matrix" << std::endl);
        IMP_LOG(TERSE, "MVNsparse:   computing Cholesky decomposition"
                << std::endl);
        // compute Cholesky decomposition for determinant and inverse
        //c_->final_asis=1; // setup LDLT calculation
        //c_->supernodal = CHOLMOD_SIMPLICIAL;
        // convert matrix to cholmod format
        //symbolic and numeric factorization
        L_ = cholmod_analyze(Sigma_, c_);
        int success = cholmod_factorize(Sigma_, L_, c_);
        //cholmod_print_factor(L_,"L",c_);

        if (success == 0 || L_->minor < L_->n)
            IMP_THROW("Sigma matrix is not positive semidefinite!",
                    ModelException);
        // determinant and derived constants
        cholmod_factor *Lcp(cholmod_copy_factor(L_, c_));
        cholmod_sparse *Lsp(cholmod_factor_to_sparse(Lcp,c_));
        double logDetSigma=0;
        if ((Lsp->itype != CHOLMOD_INT) &&
                (Lsp->xtype != CHOLMOD_REAL))
            IMP_THROW("types are not int and real, update them here first",
                    ModelException);
        int *p=(int*) Lsp->p;
        double *x=(double*) Lsp->x;
        for (size_t i=0; i < (size_t) M_; ++i)
            logDetSigma += std::log(x[p[i]]);
        cholmod_free_sparse(&Lsp,c_);
        cholmod_free_factor(&Lcp,c_);
        IMP_LOG(TERSE, "MVNsparse:   log det(Sigma) = "
                << logDetSigma << std::endl);
        IMP_LOG(TERSE, "MVNsparse:   det(Sigma) = "
                << exp(logDetSigma) << std::endl);
        norm_= std::pow(2*IMP::PI, -double(N_*M_)/2.0)
                    * exp(-double(N_)/2.0*logDetSigma);
        lnorm_=double(N_*M_)/2 * log(2*IMP::PI) + double(N_)/2 * logDetSigma;
        IMP_LOG(TERSE, "MVNsparse:   norm = " << norm_ << " lnorm = "
                << lnorm_ << std::endl);
        //inverse
        IMP_LOG(TERSE, "MVNsparse:   solving for inverse" << std::endl);
        cholmod_sparse* id = cholmod_speye(M_,M_,CHOLMOD_REAL,c_);
        if (P_) cholmod_free_sparse(&P_, c_);
        P_ = cholmod_spsolve(CHOLMOD_A, L_, id, c_);
        cholmod_free_sparse(&id, c_);
        if (!P_) IMP_THROW("Unable to solve for inverse!", ModelException);
        //WP
        IMP_LOG(TERSE, "MVNsparse:   solving for PW" << std::endl);
        if (PW_) cholmod_free_sparse(&PW_, c_);
        PW_ = cholmod_spsolve(CHOLMOD_A, L_, W_, c_);
        if (!PW_) IMP_THROW("Unable to solve for PW!", ModelException);
        IMP_LOG(TERSE, "MVNsparse:   done" << std::endl);
  }
コード例 #24
0
/**
 * colSums(), colMeans(),  rowSums() and rowMeans() for all sparce *gCMatrix()es
 * @param x a ?gCMatrix, i.e. sparse column-compressed Matrix
 * @param NArm logical indicating if NA's should be remove 'na.rm' in R
 * @param spRes logical = 'sparseResult' indicating if result should be sparse
 * @param trans logical: TRUE <==> row[Sums/Means] <==> compute col*s( t(x) )
 * @param means logical: TRUE <==> compute [row/col]Means() , not *Sums()
 */
SEXP gCMatrix_colSums(SEXP x, SEXP NArm, SEXP spRes, SEXP trans, SEXP means)
{
    int mn = asLogical(means), sp = asLogical(spRes), tr = asLogical(trans);
    /* cholmod_sparse: drawback of coercing lgC to double: */
    CHM_SP cx = AS_CHM_SP__(x);
    R_CheckStack();

    if (tr) {
	cholmod_sparse *cxt = cholmod_transpose(cx, (int)cx->xtype, &c);
	cx = cxt;
    }

    /* everything else *after* the above potential transpose : */

    int j, nc = cx->ncol;
    int *xp = (int *)(cx -> p);
#ifdef _has_x_slot_
    int na_rm = asLogical(NArm), // can have NAs only with an 'x' slot
	i, dnm = 0/*Wall*/;
    double *xx = (double *)(cx -> x);
#endif
    // result value:  sparseResult (==> "*sparseVector") or dense (atomic)vector
    SEXP ans = PROTECT(sp ? NEW_OBJECT(MAKE_CLASS(SparseResult_class))
		       : allocVector(SXP_ans, nc));
    if (sp) { // sparseResult, i.e. *sparseVector (never allocating length-nc)
	int nza, i1, i2, p, *ai;
	Type_ans *ax;

	for (j = 0, nza = 0; j < nc; j++)
	    if(xp[j] < xp[j + 1])
		nza++;

	ai =  INTEGER(ALLOC_SLOT(ans, Matrix_iSym, INTSXP,  nza));
	ax = STYP_ans(ALLOC_SLOT(ans, Matrix_xSym, SXP_ans, nza));

	SET_SLOT(ans, Matrix_lengthSym, ScalarInteger(nc));

	i2 = xp[0];
	for (j = 1, p = 0; j <= nc; j++) {
	    /* j' =j+1, since 'i' slot will be 1-based */
	    i1 = i2; i2 = xp[j];
	    if(i1 < i2) {
		Type_ans sum;
		ColSUM_column(i1,i2, sum);

		ai[p]	= j;
		ax[p++] = sum;
	    }
	}
    }
    else { /* "numeric" (non sparse) result */
	Type_ans *a = STYP_ans(ans);
	for (j = 0; j < nc; j++) {
	    ColSUM_column(xp[j], xp[j + 1], a[j]);
	}
    }

    if (tr) cholmod_free_sparse(&cx, &c);
    if (!sp) {
	SEXP nms = VECTOR_ELT(GET_SLOT(x, Matrix_DimNamesSym), tr ? 0 : 1);
	if (!isNull(nms))
	    setAttrib(ans, R_NamesSymbol, duplicate(nms));
    }
    UNPROTECT(1);
    return ans;
}
コード例 #25
0
ファイル: klu_cholmod.c プロジェクト: cuihantao/klusolve
int klu_cholmod
(
    /* inputs */
    int n,		    /* A is n-by-n */
    int Ap [ ],		    /* column pointers */
    int Ai [ ],		    /* row indices */
    /* outputs */
    int Perm [ ],	    /* fill-reducing permutation */
    /* user-defined */
    klu_common *Common	    /* user-defined data is in Common->user_data */
)
{
    double one [2] = {1,0}, zero [2] = {0,0}, lnz = 0 ;
    cholmod_sparse Amatrix, *A, *AT, *S ;
    cholmod_factor *L ;
    cholmod_common cm ;
    int *P ;
    int k, symmetric ;

    if (Ap == NULL || Ai == NULL || Perm == NULL || n < 0)
    {
	/* invalid inputs */
	return (0) ;
    }

    /* start CHOLMOD */
    cholmod_start (&cm) ;
    cm.supernodal = CHOLMOD_SIMPLICIAL ;
    cm.print = 0 ;

    /* use KLU memory management routines for CHOLMOD */
    cm.malloc_memory = Common->malloc_memory ;
    cm.realloc_memory = Common->realloc_memory ;
    cm.calloc_memory = Common->calloc_memory ;
    cm.free_memory = Common->free_memory ;

    /* construct a CHOLMOD version of the input matrix A */
    A = &Amatrix ;
    A->nrow = n ;		    /* A is n-by-n */
    A->ncol = n ;
    A->nzmax = Ap [n] ;		    /* with nzmax entries */
    A->packed = TRUE ;		    /* there is no A->nz array */
    A->stype = 0 ;		    /* A is unsymmetric */
    A->itype = CHOLMOD_INT ;
    A->xtype = CHOLMOD_PATTERN ;
    A->dtype = CHOLMOD_DOUBLE ;
    A->nz = NULL ;
    A->p = Ap ;			    /* column pointers */
    A->i = Ai ;			    /* row indices */
    A->x = NULL ;		    /* no numerical values */
    A->z = NULL ;
    A->sorted = FALSE ;		    /* columns of A are not sorted */

    /* get the user_data; default is symmetric if user_data is NULL */
    symmetric = (Common->user_data == NULL) ? TRUE :
	(((int *) (Common->user_data)) [0] != 0) ;

    /* AT = pattern of A' */
    AT = cholmod_transpose (A, 0, &cm) ;
    if (symmetric)
    {
	/* S = the symmetric pattern of A+A' */
	S = cholmod_add (A, AT, one, zero, FALSE, FALSE, &cm) ;
	cholmod_free_sparse (&AT, &cm) ;
	if (S != NULL)
	{
	    S->stype = 1 ;
	}
    }
    else
    {
	/* S = A'.  CHOLMOD will order S*S', which is A'*A */
	S = AT ;
    }

    /* order and analyze S or S*S' */
    L = cholmod_analyze (S, &cm) ;

    /* copy the permutation from L to the output */
    if (L != NULL)
    {
	P = L->Perm ;
	for (k = 0 ; k < n ; k++)
	{
	    Perm [k] = P [k] ;
	}
	lnz = cm.lnz ;
    }

    cholmod_free_sparse (&S, &cm) ;
    cholmod_free_factor (&L, &cm) ;
    cholmod_finish (&cm) ;
    return (lnz) ;
}
コード例 #26
0
ファイル: appopt_block.cpp プロジェクト: vcbradley/appopt
int get_blocking_internal(const int n_vertices,
                          const int n_edges,
                          const SEXP NNE_R,
                          const bool directed,
                          const int MIS_method,
                          const int unassinged_method,
                          std::list<int>& seeds,
                          int* const blocks) {

  cholmod_common cholmod_c;
  cholmod_start(&cholmod_c);

  cholmod_sparse* NNE = get_cholmod_NNE(n_vertices, n_edges, NNE_R, &cholmod_c);

  if (!directed) {
    // NNE = NNE | t(NNE)
    cholmod_sparse* NNEt = cholmod_transpose(NNE, CHOLMOD_PATTERN, &cholmod_c);
    cholmod_sparse* NNE_tmp = cholmod_add(NNE, NNEt, NULL, NULL, false, false, &cholmod_c);
    cholmod_free_sparse(&NNEt, &cholmod_c);
    NNE->i = NULL; // Remove pointer to R object before freeing memory
    cholmod_free_sparse(&NNE, &cholmod_c);
    NNE = NNE_tmp;
  }

  switch(MIS_method) {
    case LEXICAL:
      findMIS_in_sp_lex(NNE, seeds);
      break;

    case FSTPOWORDER:
    case SNDPOWORDER:
    case HEURISTIC:
      {
        std::list<int> ordering;
        get_ordering(NNE, MIS_method, directed, ordering, &cholmod_c);
        if (MIS_method == HEURISTIC) {
          heuristic_search(NNE, ordering, seeds);
        } else {
          findMIS_in_sp_order(NNE, ordering, seeds);
        }
      }
      break;

    case MAXIS:
      findMaxIS_in_sp(NNE, directed, seeds, &cholmod_c);
      break;

    default:
      error("Unknown MIS method.");
  }

  const int* const NNE_p = static_cast<const int*>(NNE->p);
  const int* const NNE_i = static_cast<const int*>(NNE->i);
  int n_unassigned = n_vertices;

  int block_label = 1;
  for (std::list<int>::const_iterator it = seeds.begin();
       it != seeds.end(); ++it, ++block_label) {
    // Set block for seed
    blocks[*it] = block_label;
    --n_unassigned;

    // Set block for adjacent to seed
    const int* const a_stop = NNE_i + NNE_p[*it + 1];
    for (const int* a = NNE_i + NNE_p[*it]; a != a_stop; ++a) {
      blocks[*a] = block_label;
      --n_unassigned;
    }
  }


  if (unassinged_method == ADJACENT_S) {
    // Assign unassigned to the block that contains
    // a neighbor in the NNE. Set to negative first as
    // unassigned cannot be match to another unassigned
    // that just been assigned.

    // If NNE is directed, it is ordered by closeness.
    // I.e. the unassigned will be assigned to the blocks
    // that contain their closest neighbor.
    // When NNE is undirected, the matrix multiplication
    // has scrambled the ordering. Then the unassigned are
    // assigned to neighbors lexically.
    if (directed) {
      for (int i = 0; i < n_vertices; ++i) {
        if (blocks[i] == 0) {
          --n_unassigned;
          const int* const a_stop = NNE_i + NNE_p[i + 1];
          for (const int* a = NNE_i + NNE_p[i]; a != a_stop; ++a) {
            if (blocks[*a] > 0) {
              blocks[i] = -blocks[*a];
              break;
            }
          }
        }
      }

    } else {
      for (int i = 0; i < n_vertices; ++i) {
        if (blocks[i] == 0) {
          --n_unassigned;
          int lowest_adjacent = n_vertices;
          const int* const a_stop = NNE_i + NNE_p[i + 1];
          for (const int* a = NNE_i + NNE_p[i]; a != a_stop; ++a) {
            if (*a < lowest_adjacent && blocks[*a] > 0) {
              blocks[i] = -blocks[*a];
              lowest_adjacent = *a;
            }
          }
        }
      }
    }

    for (int i = 0; i < n_vertices; ++i) {
      if (blocks[i] < 0) {
        blocks[i] = -blocks[i];
      }
    }
  }

  if (directed) { // This is already done for undirected case
    NNE->i = NULL; // Remove pointer to R object before freeing memory
  }
  cholmod_free_sparse(&NNE, &cholmod_c);
  cholmod_finish(&cholmod_c);

  return n_unassigned;
}
コード例 #27
0
ファイル: chm_common.c プロジェクト: cran/Matrix
/**
 * Populate ans with the pointers from x and modify its scalar
 * elements accordingly. Note that later changes to the contents of
 * ans will change the contents of the SEXP.
 *
 * In most cases this function is called through the macros
 * AS_CHM_SP() or AS_CHM_SP__().  It is unusual to call it directly.
 *
 * @param ans a CHM_SP pointer
 * @param x pointer to an object that inherits from CsparseMatrix
 * @param check_Udiag boolean - should a check for (and consequent
 *  expansion of) a unit diagonal be performed.
 * @param sort_in_place boolean - if the i and x slots are to be sorted
 *  should they be sorted in place?  If the i and x slots are pointers
 *  to an input SEXP they should not be modified.
 *
 * @return ans containing pointers to the slots of x, *unless*
 *	check_Udiag and x is unitriangular.
 */
CHM_SP as_cholmod_sparse(CHM_SP ans, SEXP x,
			 Rboolean check_Udiag, Rboolean sort_in_place)
{
    static const char *valid[] = { MATRIX_VALID_Csparse, ""};
    int *dims = INTEGER(GET_SLOT(x, Matrix_DimSym)),
	ctype = R_check_class_etc(x, valid);
    SEXP islot = GET_SLOT(x, Matrix_iSym);

    if (ctype < 0) error(_("invalid class of object to as_cholmod_sparse"));
    if (!isValid_Csparse(x))
	error(_("invalid object passed to as_cholmod_sparse"));
    memset(ans, 0, sizeof(cholmod_sparse)); /* zero the struct */

    ans->itype = CHOLMOD_INT;	/* characteristics of the system */
    ans->dtype = CHOLMOD_DOUBLE;
    ans->packed = TRUE;
				/* slots always present */
    ans->i = INTEGER(islot);
    ans->p = INTEGER(GET_SLOT(x, Matrix_pSym));
				/* dimensions and nzmax */
    ans->nrow = dims[0];
    ans->ncol = dims[1];
    /* Allow for over-allocation of the i and x slots.  Needed for
     * sparse X form in lme4.  Right now it looks too difficult to
     * check for the length of the x slot, because of the xpt
     * utility, but the lengths of x and i should agree. */
    ans->nzmax = LENGTH(islot);
				/* values depending on ctype */
    ans->x = xpt(ctype, x);
    ans->stype = stype(ctype, x);
    ans->xtype = xtype(ctype);

    /* are the columns sorted (increasing row numbers) ?*/
    ans->sorted = check_sorted_chm(ans);
    if (!(ans->sorted)) { /* sort columns */
	if(sort_in_place) {
	    if (!cholmod_sort(ans, &c))
		error(_("in_place cholmod_sort returned an error code"));
	    ans->sorted = 1;
	}
	else {
	    CHM_SP tmp = cholmod_copy_sparse(ans, &c);
	    if (!cholmod_sort(tmp, &c))
		error(_("cholmod_sort returned an error code"));

#ifdef DEBUG_Matrix
	    /* This "triggers" exactly for return values of dtCMatrix_sparse_solve():*/
	    /* Don't want to translate this: want it report */
	    Rprintf("Note: as_cholmod_sparse() needed cholmod_sort()ing\n");
#endif
	    chm2Ralloc(ans, tmp);
	    cholmod_free_sparse(&tmp, &c);
	}
    }

    if (check_Udiag && ctype % 3 == 2 // triangular
	&& (*diag_P(x) == 'U')) { /* diagU2N(.)  "in place" : */
	double one[] = {1, 0};
	CHM_SP eye = cholmod_speye(ans->nrow, ans->ncol, ans->xtype, &c);
	CHM_SP tmp = cholmod_add(ans, eye, one, one, TRUE, TRUE, &c);

#ifdef DEBUG_Matrix_verbose /* happens quite often, e.g. in ../tests/indexing.R : */
	Rprintf("Note: as_cholmod_sparse(<ctype=%d>) - diagU2N\n", ctype);
#endif
	chm2Ralloc(ans, tmp);
	cholmod_free_sparse(&tmp, &c);
	cholmod_free_sparse(&eye, &c);
    } /* else :
       * NOTE: if(*diag_P(x) == 'U'), the diagonal is lost (!);
       * ---- that may be ok, e.g. if we are just converting from/to Tsparse,
       *      but is *not* at all ok, e.g. when used before matrix products */

    return ans;
}
コード例 #28
0
ファイル: cholmod_demo.c プロジェクト: Ascronia/fieldtrip
int main (int argc, char **argv)
{
    double resid, t, ta, tf, ts, tot, bnorm, xnorm, anorm, rnorm, fl, anz, 
	axbnorm, rnorm2, resid2 ;
    FILE *f ;
    cholmod_sparse *A ;
    cholmod_dense *X, *B, *W, *R ;
    double one [2], zero [2], minusone [2], beta [2], xlnz ;
    cholmod_common Common, *cm ;
    cholmod_factor *L ;
    double *Bx, *Rx, *Xx ;
    int i, n, isize, xsize, ordering, xtype, s, ss, lnz ;

    /* ---------------------------------------------------------------------- */
    /* get the file containing the input matrix */
    /* ---------------------------------------------------------------------- */

    ff = NULL ;
    if (argc > 1)
    {
	if ((f = fopen (argv [1], "r")) == NULL)
	{
	    my_handler (CHOLMOD_INVALID, __FILE__, __LINE__,
		    "unable to open file") ;
	}
	ff = f ;
    }
    else
    {
	f = stdin ;
    }

    /* ---------------------------------------------------------------------- */
    /* start CHOLMOD and set parameters */
    /* ---------------------------------------------------------------------- */

    cm = &Common ;
    cholmod_start (cm) ;

    /* use default parameter settings, except for the error handler.  This
     * demo program terminates if an error occurs (out of memory, not positive
     * definite, ...).  It makes the demo program simpler (no need to check
     * CHOLMOD error conditions).  This non-default parameter setting has no
     * effect on performance. */
    cm->error_handler = my_handler ;

    /* Note that CHOLMOD will do a supernodal LL' or a simplicial LDL' by
     * default, automatically selecting the latter if flop/nnz(L) < 40. */

    /* ---------------------------------------------------------------------- */
    /* create basic scalars */
    /* ---------------------------------------------------------------------- */

    zero [0] = 0 ;
    zero [1] = 0 ;
    one [0] = 1 ;
    one [1] = 0 ;
    minusone [0] = -1 ;
    minusone [1] = 0 ;
    beta [0] = 1e-6 ;
    beta [1] = 0 ;

    /* ---------------------------------------------------------------------- */
    /* read in a matrix */
    /* ---------------------------------------------------------------------- */

    printf ("\n---------------------------------- cholmod_demo:\n") ;
    A = cholmod_read_sparse (f, cm) ;
    if (ff != NULL) fclose (ff) ;
    anorm = cholmod_norm_sparse (A, 0, cm) ;
    xtype = A->xtype ;
    printf ("norm (A,inf) = %g\n", anorm) ;
    printf ("norm (A,1)   = %g\n", cholmod_norm_sparse (A, 1, cm)) ;
    cholmod_print_sparse (A, "A", cm) ;

    if (A->nrow > A->ncol)
    {
	/* Transpose A so that A'A+beta*I will be factorized instead */
	cholmod_sparse *C = cholmod_transpose (A, 2, cm) ;
	cholmod_free_sparse (&A, cm) ;
	A = C ;
	printf ("transposing input matrix\n") ;
    }

    /* ---------------------------------------------------------------------- */
    /* create an arbitrary right-hand-side */
    /* ---------------------------------------------------------------------- */

    n = A->nrow ;
    B = cholmod_zeros (n, 1, xtype, cm) ;
    Bx = B->x ;

#if GHS
    {
	/* b = A*ones(n,1), used by Gould, Hu, and Scott in their experiments */
	cholmod_dense *X0 ;
	X0 = cholmod_ones (A->ncol, 1, xtype, cm) ;
	cholmod_sdmult (A, 0, one, zero, X0, B, cm) ;
	cholmod_free_dense (&X0, cm) ;
    }
#else
    if (xtype == CHOLMOD_REAL)
    {
	/* real case */
	for (i = 0 ; i < n ; i++)
	{
	    double x = n ;
	    Bx [i] = 1 + i / x ;
	}
    }
    else
    {
	/* complex case */
	for (i = 0 ; i < n ; i++)
	{
	    double x = n ;
	    Bx [2*i  ] = 1 + i / x ;		/* real part of B(i) */
	    Bx [2*i+1] = (x/2 - i) / (3*x) ;	/* imag part of B(i) */
	}
    }
#endif

    cholmod_print_dense (B, "B", cm) ;
    bnorm = cholmod_norm_dense (B, 0, cm) ;	/* max norm */
    printf ("bnorm %g\n", bnorm) ;

    /* ---------------------------------------------------------------------- */
    /* analyze, factorize, and solve */
    /* ---------------------------------------------------------------------- */

    t = CPUTIME ;
    L = cholmod_analyze (A, cm) ;
    ta = CPUTIME - t ;
    ta = MAX (ta, 0) ;

    printf ("Analyze: flop %g lnz %g\n", cm->fl, cm->lnz) ;

    if (A->stype == 0)
    {
	printf ("Factorizing A*A'+beta*I\n") ;
	t = CPUTIME ;
	cholmod_factorize_p (A, beta, NULL, 0, L, cm) ;
	tf = CPUTIME - t ;
	tf = MAX (tf, 0) ;
    }
    else
    {
	printf ("Factorizing A\n") ;
	t = CPUTIME ;
	cholmod_factorize (A, L, cm) ;
	tf = CPUTIME - t ;
	tf = MAX (tf, 0) ;
    }

    t = CPUTIME ;

    X = cholmod_solve (CHOLMOD_A, L, B, cm) ;
    ts = CPUTIME - t ;
    ts = MAX (ts, 0) ;
    tot = ta + tf + ts ;

    /* ---------------------------------------------------------------------- */
    /* compute the residual */
    /* ---------------------------------------------------------------------- */

    if (A->stype == 0)
    {
	/* (AA'+beta*I)x=b is the linear system that was solved */
	/* W = A'*X */
	W = cholmod_allocate_dense (A->ncol, 1, A->ncol, xtype, cm) ;
	cholmod_sdmult (A, 2, one, zero, X, W, cm) ;
	/* R = B - beta*X */
	R = cholmod_zeros (n, 1, xtype, cm) ;
	Rx = R->x ;
	Xx = X->x ;
	if (xtype == CHOLMOD_REAL)
	{
	    for (i = 0 ; i < n ; i++)
	    {
		Rx [i] = Bx [i] - beta [0] * Xx [i] ;
	    }
	}
	else
	{
	    /* complex case */
	    for (i = 0 ; i < n ; i++)
	    {
		Rx [2*i  ] = Bx [2*i  ] - beta [0] * Xx [2*i  ] ;
		Rx [2*i+1] = Bx [2*i+1] - beta [0] * Xx [2*i+1] ;
	    }
	}
	/* R = A*W - R */
	cholmod_sdmult (A, 0, one, minusone, W, R, cm) ;
	cholmod_free_dense (&W, cm) ;
    }
    else
    {
	/* Ax=b was factorized and solved, R = B-A*X */
	R = cholmod_copy_dense (B, cm) ;
	cholmod_sdmult (A, 0, minusone, one, X, R, cm) ;
    }
    rnorm = cholmod_norm_dense (R, 0, cm) ;	    /* max abs. entry */
    xnorm = cholmod_norm_dense (X, 0, cm) ;	    /* max abs. entry */

    axbnorm = (anorm * xnorm + bnorm + ((n == 0) ? 1 : 0)) ;
    resid = rnorm / axbnorm ;

    /* ---------------------------------------------------------------------- */
    /* iterative refinement (real symmetric case only) */
    /* ---------------------------------------------------------------------- */

    resid2 = -1 ;
    if (A->stype != 0 && A->xtype == CHOLMOD_REAL)
    {
	cholmod_dense *R2 ;

	/* R2 = A\(B-A*X) */
	R2 = cholmod_solve (CHOLMOD_A, L, R, cm) ;
	/* compute X = X + A\(B-A*X) */
	Xx = X->x ;
	Rx = R2->x ;
	for (i = 0 ; i < n ; i++)
	{
	    Xx [i] = Xx [i] + Rx [i] ;
	}
	cholmod_free_dense (&R2, cm) ;
	cholmod_free_dense (&R, cm) ;

	/* compute the new residual, R = B-A*X */
	R = cholmod_copy_dense (B, cm) ;
	cholmod_sdmult (A, 0, minusone, one, X, R, cm) ;
	rnorm2 = cholmod_norm_dense (R, 0, cm) ;
	resid2 = rnorm2 / axbnorm ;
    }

    cholmod_free_dense (&R, cm) ;

    /* ---------------------------------------------------------------------- */
    /* print results */
    /* ---------------------------------------------------------------------- */

    cholmod_print_factor (L, "L", cm) ;

    /* determine the # of integers's and reals's in L.  See cholmod_free */
    if (L->is_super)
    {
	s = L->nsuper + 1 ;
	xsize = L->xsize ;
	ss = L->ssize ;
	isize =
	    n	/* L->Perm */
	    + n	/* L->ColCount, nz in each column of 'pure' L */
	    + s	/* L->pi, column pointers for L->s */
	    + s	/* L->px, column pointers for L->x */
	    + s	/* L->super, starting column index of each supernode */
	    + ss ;	/* L->s, the pattern of the supernodes */
    }
    else
    {
	/* this space can increase if you change parameters to their non-
	 * default values (cm->final_pack, for example). */
	lnz = L->nzmax ;
	xsize = lnz ;
	isize =
	    n	/* L->Perm */
	    + n	/* L->ColCount, nz in each column of 'pure' L */
	    + n+1	/* L->p, column pointers */
	    + lnz	/* L->i, integer row indices */
	    + n	/* L->nz, nz in each column of L */
	    + n+2	/* L->next, link list */
	    + n+2 ;	/* L->prev, link list */
    }

    anz = cm->anz ;
    for (i = 0 ; i < CHOLMOD_MAXMETHODS ; i++)
    {
	fl = cm->method [i].fl ;
	xlnz = cm->method [i].lnz ;
	cm->method [i].fl = -1 ;
	cm->method [i].lnz = -1 ;
	ordering = cm->method [i].ordering ;
	if (fl >= 0)
	{
	    printf ("Ordering: ") ;
	    if (ordering == CHOLMOD_POSTORDERED) printf ("postordered ") ;
	    if (ordering == CHOLMOD_NATURAL)     printf ("natural ") ;
	    if (ordering == CHOLMOD_GIVEN)	     printf ("user    ") ;
	    if (ordering == CHOLMOD_AMD)	     printf ("AMD     ") ;
	    if (ordering == CHOLMOD_METIS)	     printf ("METIS   ") ;
	    if (ordering == CHOLMOD_NESDIS)      printf ("NESDIS  ") ;
	    if (xlnz > 0)
	    {
		printf ("fl/lnz %10.1f", fl / xlnz) ;
	    }
	    if (anz > 0)
	    {
		printf ("  lnz/anz %10.1f", xlnz / anz) ;
	    }
	    printf ("\n") ;
	}
    }

    printf ("ints in L: %d, doubles in L: %d\n", isize, xsize) ;
    printf ("factor flops %g nnz(L) %15.0f (w/no amalgamation)\n",
	    cm->fl, cm->lnz) ;
    if (A->stype == 0)
    {
	printf ("nnz(A):    %15.0f\n", cm->anz) ;
    }
    else
    {
	printf ("nnz(A*A'): %15.0f\n", cm->anz) ;
    }
    if (cm->lnz > 0)
    {
	printf ("flops / nnz(L):  %8.1f\n", cm->fl / cm->lnz) ;
    }
    if (anz > 0)
    {
	printf ("nnz(L) / nnz(A): %8.1f\n", cm->lnz / cm->anz) ;
    }
    printf ("analyze cputime:  %12.4f\n", ta) ;
    printf ("factor  cputime:   %12.4f mflop: %8.1f\n", tf,
	(tf == 0) ? 0 : (1e-6*cm->fl / tf)) ;
    printf ("solve   cputime:   %12.4f mflop: %8.1f\n", ts,
	(ts == 0) ? 0 : (1e-6*4*cm->lnz / ts)) ;
    printf ("overall cputime:   %12.4f mflop: %8.1f\n", 
	    tot, (tot == 0) ? 0 : (1e-6 * (cm->fl + 4 * cm->lnz) / tot)) ;
    printf ("peak memory usage: %12.0f (MB)\n",
	    (double) (cm->memory_usage) / 1048576.) ;
    printf ("residual %8.1e (|Ax-b|/(|A||x|+|b|))\n", resid) ;
    if (resid2 >= 0)
    {
	printf ("residual %8.1e (|Ax-b|/(|A||x|+|b|))"
		" after iterative refinement\n", resid2) ;
    }
    printf ("rcond    %8.1e\n\n", cholmod_rcond (L, cm)) ;
    cholmod_free_factor (&L, cm) ;
    cholmod_free_dense (&X, cm) ;

    /* ---------------------------------------------------------------------- */
    /* free matrices and finish CHOLMOD */
    /* ---------------------------------------------------------------------- */

    cholmod_free_sparse (&A, cm) ;
    cholmod_free_dense (&B, cm) ;
    cholmod_finish (cm) ;
    return (0) ;
}
コード例 #29
0
  bool SparseOptimizerIncremental::updateInitialization(HyperGraph::VertexSet& vset, HyperGraph::EdgeSet& eset)
  {
    if (batchStep) {
      return SparseOptimizerOnline::updateInitialization(vset, eset);
    }

    for (HyperGraph::VertexSet::iterator it = vset.begin(); it != vset.end(); ++it) {
      OptimizableGraph::Vertex* v = static_cast<OptimizableGraph::Vertex*>(*it);
      v->clearQuadraticForm(); // be sure that b is zero for this vertex
    }

    // get the touched vertices
    _touchedVertices.clear();
    for (HyperGraph::EdgeSet::iterator it = eset.begin(); it != eset.end(); ++it) {
      OptimizableGraph::Edge* e = static_cast<OptimizableGraph::Edge*>(*it);
      OptimizableGraph::Vertex* v1 = static_cast<OptimizableGraph::Vertex*>(e->vertices()[0]);
      OptimizableGraph::Vertex* v2 = static_cast<OptimizableGraph::Vertex*>(e->vertices()[1]);
      if (! v1->fixed())
        _touchedVertices.insert(v1);
      if (! v2->fixed())
        _touchedVertices.insert(v2);
    }
    //cerr << PVAR(_touchedVertices.size()) << endl;

    // updating the internal structures
    std::vector<HyperGraph::Vertex*> newVertices;
    newVertices.reserve(vset.size());
    _activeVertices.reserve(_activeVertices.size() + vset.size());
    _activeEdges.reserve(_activeEdges.size() + eset.size());
    for (HyperGraph::EdgeSet::iterator it = eset.begin(); it != eset.end(); ++it)
      _activeEdges.push_back(static_cast<OptimizableGraph::Edge*>(*it));
    //cerr << "updating internal done." << endl;

    // update the index mapping
    size_t next = _ivMap.size();
    for (HyperGraph::VertexSet::iterator it = vset.begin(); it != vset.end(); ++it) {
      OptimizableGraph::Vertex* v=static_cast<OptimizableGraph::Vertex*>(*it);
      if (! v->fixed()){
        if (! v->marginalized()){
          v->setHessianIndex(next);
          _ivMap.push_back(v);
          newVertices.push_back(v);
          _activeVertices.push_back(v);
          next++;
        } 
        else // not supported right now
          abort();
      }
      else {
        v->setHessianIndex(-1);
      }
    }
    //cerr << "updating index mapping done." << endl;

    // backup the tempindex and prepare sorting structure
    VertexBackup backupIdx[_touchedVertices.size()];
    memset(backupIdx, 0, sizeof(VertexBackup) * _touchedVertices.size());
    int idx = 0;
    for (HyperGraph::VertexSet::iterator it = _touchedVertices.begin(); it != _touchedVertices.end(); ++it) {
      OptimizableGraph::Vertex* v = static_cast<OptimizableGraph::Vertex*>(*it);
      backupIdx[idx].hessianIndex = v->hessianIndex();
      backupIdx[idx].vertex = v;
      backupIdx[idx].hessianData = v->hessianData();
      ++idx;
    }
    sort(backupIdx, backupIdx + _touchedVertices.size()); // sort according to the hessianIndex which is the same order as used later by the optimizer
    for (int i = 0; i < idx; ++i) {
      backupIdx[i].vertex->setHessianIndex(i);
    }
    //cerr << "backup tempindex done." << endl;

    // building the structure of the update
    _updateMat.clear(true); // get rid of the old matrix structure
    _updateMat.rowBlockIndices().clear();
    _updateMat.colBlockIndices().clear();
    _updateMat.blockCols().clear();

    // placing the current stuff in _updateMat
    MatrixXd* lastBlock = 0;
    int sizePoses = 0;
    for (int i = 0; i < idx; ++i) {
      OptimizableGraph::Vertex* v = backupIdx[i].vertex;
      int dim = v->dimension();
      sizePoses+=dim;
      _updateMat.rowBlockIndices().push_back(sizePoses);
      _updateMat.colBlockIndices().push_back(sizePoses);
      _updateMat.blockCols().push_back(SparseBlockMatrix<MatrixXd>::IntBlockMap());
      int ind = v->hessianIndex();
      //cerr << PVAR(ind) << endl;
      if (ind >= 0) {
        MatrixXd* m = _updateMat.block(ind, ind, true);
        v->mapHessianMemory(m->data());
        lastBlock = m;
      }
    }
    lastBlock->diagonal().array() += 1e-6; // HACK to get Eigen value > 0


    for (HyperGraph::EdgeSet::const_iterator it = eset.begin(); it != eset.end(); ++it) {
      OptimizableGraph::Edge* e = static_cast<OptimizableGraph::Edge*>(*it);
      OptimizableGraph::Vertex* v1 = (OptimizableGraph::Vertex*) e->vertices()[0];
      OptimizableGraph::Vertex* v2 = (OptimizableGraph::Vertex*) e->vertices()[1];

      int ind1 = v1->hessianIndex();
      if (ind1 == -1)
        continue;
      int ind2 = v2->hessianIndex();
      if (ind2 == -1)
        continue;
      bool transposedBlock = ind1 > ind2;
      if (transposedBlock) // make sure, we allocate the upper triangular block
        swap(ind1, ind2);

      MatrixXd* m = _updateMat.block(ind1, ind2, true);
      e->mapHessianMemory(m->data(), 0, 1, transposedBlock);
    }

    // build the system into _updateMat
    for (HyperGraph::EdgeSet::iterator it = eset.begin(); it != eset.end(); ++it) {
      OptimizableGraph::Edge * e = static_cast<OptimizableGraph::Edge*>(*it);
      e->computeError();
    }
    for (HyperGraph::EdgeSet::iterator it = eset.begin(); it != eset.end(); ++it) {
      OptimizableGraph::Edge* e = static_cast<OptimizableGraph::Edge*>(*it);
      e->linearizeOplus();
    }
    for (HyperGraph::EdgeSet::iterator it = eset.begin(); it != eset.end(); ++it) {
      OptimizableGraph::Edge* e = static_cast<OptimizableGraph::Edge*>(*it);
      e->constructQuadraticForm();
    }

    // restore the original data for the vertex
    for (int i = 0; i < idx; ++i) {
      backupIdx[i].vertex->setHessianIndex(backupIdx[i].hessianIndex);
      if (backupIdx[i].hessianData)
        backupIdx[i].vertex->mapHessianMemory(backupIdx[i].hessianData);
    }

    // update the structure of the real block matrix
    bool solverStatus = _algorithm->updateStructure(newVertices, eset);

    bool updateStatus = computeCholeskyUpdate();
    if (! updateStatus) {
      cerr << "Error while computing update" << endl;
    }

    cholmod_sparse* updateAsSparseFactor = cholmod_factor_to_sparse(_cholmodFactor, &_cholmodCommon);

    // convert CCS update by permuting back to the permutation of L
    if (updateAsSparseFactor->nzmax > _permutedUpdate->nzmax) {
      //cerr << "realloc _permutedUpdate" << endl;
      cholmod_reallocate_triplet(updateAsSparseFactor->nzmax, _permutedUpdate, &_cholmodCommon);
    }
    _permutedUpdate->nnz = 0;
    _permutedUpdate->nrow = _permutedUpdate->ncol = _L->n;
    {
      int* Ap = (int*)updateAsSparseFactor->p;
      int* Ai = (int*)updateAsSparseFactor->i;
      double* Ax = (double*)updateAsSparseFactor->x;
      int* Bj = (int*)_permutedUpdate->j;
      int* Bi = (int*)_permutedUpdate->i;
      double* Bx = (double*)_permutedUpdate->x;
      for (size_t c = 0; c < updateAsSparseFactor->ncol; ++c) {
        const int& rbeg = Ap[c];
        const int& rend = Ap[c+1];
        int cc = c / slamDimension;
        int coff = c % slamDimension;
        const int& cbase = backupIdx[cc].vertex->colInHessian();
        const int& ccol = _perm(cbase + coff);
        for (int j = rbeg; j < rend; j++) {
          const int& r = Ai[j];
          const double& val = Ax[j];

          int rr = r / slamDimension;
          int roff = r % slamDimension;
          const int& rbase = backupIdx[rr].vertex->colInHessian();
          
          int row = _perm(rbase + roff);
          int col = ccol;
          if (col > row) // lower triangular entry
            swap(col, row);
          Bi[_permutedUpdate->nnz] = row;
          Bj[_permutedUpdate->nnz] = col;
          Bx[_permutedUpdate->nnz] = val;
          ++_permutedUpdate->nnz;
        }
      }
    }
    cholmod_free_sparse(&updateAsSparseFactor, &_cholmodCommon);

#if 0
    cholmod_sparse* updatePermuted = cholmod_triplet_to_sparse(_permutedUpdate, _permutedUpdate->nnz, &_cholmodCommon);
    //writeCCSMatrix("update-permuted.txt", updatePermuted->nrow, updatePermuted->ncol, (int*)updatePermuted->p, (int*)updatePermuted->i, (double*)updatePermuted->x, false);
    _solverInterface->choleskyUpdate(updatePermuted);
    cholmod_free_sparse(&updatePermuted, &_cholmodCommon);
#else
    convertTripletUpdateToSparse();
    _solverInterface->choleskyUpdate(_permutedUpdateAsSparse);
#endif

    return solverStatus;
  }
コード例 #30
0
void tele2d::computeVectorField(){

	unsigned time1, time2, time3 ;
	time1 = clock() ;

	std::vector<std::vector<double2>>  allcurves = curves ;
	vector_field.clear() ;
	vector_field.resize(resolution*resolution) ;

	// delete too short curves
	for( int i=0; i<allcurves.size(); ++i ){
		if( allcurves[i].size() < 5 )
			allcurves.erase( allcurves.begin() + i ) ;
	}

	if( allcurves.size() == 0 ){
		std::cout<<"no valid curves!" ;
		exit(1) ;
	}

	// mark constrained vertices
	constrained_vertices_mark.clear() ;
	for( int i=0; i<resolution; ++i ) {
		std::vector<int> a ;
		for( int j=0;j<resolution; ++j )
			a.push_back(0) ;
		constrained_vertices_mark.push_back(a) ;
	}
	for( int i=0; i<allcurves.size(); ++ i){
		for( int j =0; j<allcurves[i].size(); ++ j){
			// get x index of closest vertices
			float x = allcurves[i][j].x * resolution - 0.5 ;
			int ix ;
			if( x-floor(x) < 0.5 ) ix = floor(x) ;
			else	ix = ceil( x ) ;
			// get y index of closest vertices
			float y = allcurves[i][j].y * resolution - 0.5 ;
			int iy ;
			if( y-floor(y) < 0.5 ) iy = floor(y) ;
			else	iy = ceil( y ) ;

			if( ix < 0 ) ix = 0;
			if( ix > resolution-1) ix = resolution -1;
			if( iy < 0 ) iy = 0;
			if( iy > resolution-1) iy = resolution -1;

			constrained_vertices_mark[ix][iy] = 1 ;

		}
	}

	// compute b
	std::vector<double2> b ;
	b.resize(resolution*resolution) ;
	for( int i=0; i<resolution; ++i ){
		for( int j=0; j<resolution; ++j){
			
			if(constrained_vertices_mark[i][j] == 0 ){
				b[i+j*resolution].x = 0; 
				b[i+j*resolution].y = 0; 
				continue ;
			}

			// otherwise, the vertex indexed by (i,j) is constrained
			double vx = ((double)i+0.5)/(double)resolution ; 
			double vy = ((double)j+0.5)/(double)resolution ; 
			
			// search for the closest points
			int curveid_record = 0;
			int pointid_record = 0;
			double mindis = 1000.0f ;
			for( int curveid=0; curveid<allcurves.size(); ++curveid ){				
				for( int pointid=0; pointid<allcurves[curveid].size(); ++pointid  ){
					double quadratic_dis = ( allcurves[curveid][pointid].x - vx )*( allcurves[curveid][pointid].x - vx ) + ( allcurves[curveid][pointid].y - vy )*( allcurves[curveid][pointid].y - vy ) ;
					if( quadratic_dis < mindis ){
							mindis = quadratic_dis ;
							curveid_record = curveid ;
							pointid_record = pointid ;
					}
				}
			}

			// compute the vector of the vertex indexed by (i,j)
			int pid1 = pointid_record-1 > 0 ? pointid_record-1 : 0 ;
			int pid2 = pointid_record+1 <  allcurves[curveid_record].size()-1 ? pointid_record+1 : allcurves[curveid_record].size()-1;

			double2 vector_of_vertex ;
			vector_of_vertex.x = allcurves[curveid_record][pid2].x - allcurves[curveid_record][pid1].x ;
			vector_of_vertex.y = allcurves[curveid_record][pid2].y - allcurves[curveid_record][pid1].y ;
			double norm = sqrt( vector_of_vertex.x * vector_of_vertex.x + vector_of_vertex.y * vector_of_vertex.y) ;
			vector_of_vertex.x /= norm ;
			vector_of_vertex.y /= norm ;


			assert( norm > 0 && norm < 1) ;

			//std::cout<<"norm "<<norm<<std::endl;
			
			b[i+j*resolution ] = vector_of_vertex ;


		}
	}


	// compute Pb
	std::vector<double2> Pb = b ;
	for( int i=0; i<Pb.size(); ++i ){
		Pb[i].x *= 1.0e8 ;
		Pb[i].y *= 1.0e8 ;
	}

	// compute L+P
	int vnum =  resolution*resolution  ;
	sparse_matrix L_add_P(vnum) ;  // create a sparse matrix of vnum rows

	// L_add_P <- D - W
	for( int id_x =0; id_x<resolution; ++id_x ){
		for( int id_y =0; id_y<resolution; ++id_y ){
			int vid = id_x + id_y * resolution ;
			if( id_x != 0 && id_x != resolution-1 && id_y != 0 && id_y != resolution-1 ){ // inner area
				//L_add_P[ vid + vid*vnum] += 6.8284 ;
				L_add_P.pluse(vid,vid,6.8284 ) ;
				int neibour_id_1 =  id_x + id_y * resolution - 1 ;
				int neibour_id_2 =  id_x + id_y * resolution + 1 ;
				int neibour_id_3 =  id_x + (id_y-1) * resolution ;
				int neibour_id_4 =  id_x + (id_y+1) * resolution ;
				int neibour_id_5 =  id_x + (id_y+1) * resolution - 1 ;
				int neibour_id_6 =  id_x + (id_y+1) * resolution + 1 ;
				int neibour_id_7 =  id_x + (id_y-1) * resolution - 1 ;
				int neibour_id_8 =  id_x + (id_y-1) * resolution + 1 ;
				//L_add_P[neibour_id_1+vid*vnum] -= 1 ;
				L_add_P.pluse(vid,neibour_id_1, -1 ) ;
				//L_add_P[neibour_id_2+vid*vnum] -= 1 ;
				L_add_P.pluse(vid,neibour_id_2, -1 ) ;
				//L_add_P[neibour_id_3+vid*vnum] -= 1 ;
				L_add_P.pluse(vid,neibour_id_3, -1 ) ;
				//L_add_P[neibour_id_4+vid*vnum] -= 1 ;
				L_add_P.pluse(vid,neibour_id_4, -1 ) ;
				//L_add_P[neibour_id_5+vid*vnum] -=  0.7071;
				L_add_P.pluse(vid,neibour_id_5, -0.7071 ) ;
				//L_add_P[neibour_id_6+vid*vnum] -=  0.7071;
				L_add_P.pluse(vid,neibour_id_6, -0.7071 ) ;
				//L_add_P[neibour_id_7+vid*vnum] -=  0.7071;
				L_add_P.pluse(vid,neibour_id_7, -0.7071 ) ;
				//L_add_P[neibour_id_8+vid*vnum] -=  0.7071;
				L_add_P.pluse(vid,neibour_id_8, -0.7071 ) ;

			}
			else if((id_x == 0 || id_x==resolution-1) && (id_y == 0 || id_y==resolution-1)  ){  // coners
				//L_add_P[ vid + vid*vnum] += 2.7071 ;
				L_add_P.pluse(vid,vid, 2.7071 ) ;
				int neibour_id_1 =  ( id_x == 0 ? ( id_x+id_y * resolution+1) :  ( id_x+id_y * resolution - 1) );
				int neibour_id_2 =  ( id_y == 0 ? ( id_x+ (id_y+1) * resolution) : ( id_x+ (id_y-1) * resolution )) ;
				int neibour_id_3 =  ( id_x == 0 ? 1 : (resolution-2) ) + ( id_y == 0 ? 1 : (resolution - 2)) * resolution ;

				//L_add_P[neibour_id_1+vid*vnum] -= 1 ;
				L_add_P.pluse(vid,neibour_id_1, -1 ) ;
				//L_add_P[neibour_id_2+vid*vnum] -= 1 ;
				L_add_P.pluse(vid,neibour_id_2, -1 ) ;
				//L_add_P[neibour_id_3+vid*vnum] -=  0.7071;
				L_add_P.pluse(vid,neibour_id_3, -0.7071 ) ;

			}
			else {																		// boundaries
				//L_add_P[ vid + vid*vnum] += 4.4142 ;
				L_add_P.pluse(vid,vid, 4.4142 ) ;

				int neibour_id_1, neibour_id_2, neibour_id_3, neibour_id_4, neibour_id_5 ;
				if( id_x == 0){
					neibour_id_1 =  id_x + id_y * resolution + 1 ;
					neibour_id_2 =  id_x + (id_y+1) * resolution ;
					neibour_id_3 =  id_x + (id_y-1) * resolution ;
					neibour_id_4 =  id_x + (id_y+1) * resolution + 1;
					neibour_id_5 =  id_x + (id_y-1) * resolution + 1 ;
				}
				else if( id_x == resolution-1 ){
					neibour_id_1 =  id_x + id_y * resolution - 1 ;
					neibour_id_2 =  id_x + (id_y+1) * resolution ;
					neibour_id_3 =  id_x + (id_y-1) * resolution ;
					neibour_id_4 =  id_x + (id_y+1) * resolution - 1;
					neibour_id_5 =  id_x + (id_y-1) * resolution - 1 ;
				}
				else if( id_y == resolution-1 ){
					neibour_id_1 =  id_x + id_y * resolution + 1 ;
					neibour_id_2 =  id_x + id_y * resolution - 1 ;
					neibour_id_3 =  id_x + (id_y-1) * resolution ;
					neibour_id_4 =  id_x + (id_y-1) * resolution + 1;
					neibour_id_5 =  id_x + (id_y-1) * resolution - 1 ;
				}
				else {
					neibour_id_1 =  id_x + id_y * resolution + 1 ;
					neibour_id_2 =  id_x + id_y * resolution - 1 ;
					neibour_id_3 =  id_x + (id_y+1) * resolution ;
					neibour_id_4 =  id_x + (id_y+1) * resolution + 1;
					neibour_id_5 =  id_x + (id_y+1) * resolution - 1 ;
				}
				//L_add_P[neibour_id_1+vid*vnum] -= 1 ;
				L_add_P.pluse(vid,neibour_id_1, -1 ) ;
				//L_add_P[neibour_id_2+vid*vnum] -= 1 ;
				L_add_P.pluse(vid,neibour_id_2, -1 ) ;
				//L_add_P[neibour_id_3+vid*vnum] -= 1 ;
				L_add_P.pluse(vid,neibour_id_3, -1 ) ;
				//L_add_P[neibour_id_4+vid*vnum] -=  0.7071;
				L_add_P.pluse(vid,neibour_id_4, -0.7071) ;
				//L_add_P[neibour_id_5+vid*vnum] -=  0.7071;
				L_add_P.pluse(vid,neibour_id_5, -0.7071 ) ;

			}

		}
	}
	// L_add_P <- D - W + P
	for( int i=0; i<resolution; ++i ){
		for( int j=0; j<resolution; ++j){
			if(constrained_vertices_mark[i][j] == 1  ){
				int vid = i + j*resolution ;
				//L_add_P[vid+vid*vnum]+=1e8 ; 
				L_add_P.pluse(vid,vid, 1.0e8  ) ;

			}
		}
	}




	// solve the linear system with cholmod
	cholmod_sparse *A ;
	cholmod_dense *x, *y, *b1 ;
	double one [2] = {1,0}, m1 [2] = {-1,0} ; /* basic scalars */
	cholmod_factor *L ;
	cholmod_common c ;
	cholmod_start (&c) ;; /* start CHOLMOD */
	
	//A = cholmod_read_sparse (pFile, &c) ; /* read in a matrix */
	CMatrix  *SM = new CMatrix( vnum, true, &c) ;
	//for( int i=0; i<vnum; ++i ){
	//	for( int j=0; j<vnum; ++j ){
	//		if( L_add_P.getValue(j,i)!=0 )
	//			SM->set_coef(i, j,L_add_P.getValue(j,i) ) ;
	//	}
	//}
	for( int i=0; i<L_add_P.data.size(); ++i){
		for( int j=0; j<L_add_P.data[i].size(); ++j)
			SM->set_coef(L_add_P.data[i][j].row, i,  L_add_P.data[i][j].val ) ;
	}

	A =(cholmod_sparse *) SM->get_cholmod_sparse();


	time2 = clock() ;

	//cholmod_print_sparse (A, "A", &c) ; /* print the matrix */

	if (A == NULL || A->stype == 0) /* A must be symmetric */
	{
		cholmod_free_sparse (&A, &c) ;
		cholmod_finish (&c) ;
		std::cout << "fail to load the matrix or it's not symmeric!"<<std::endl;
		exit(1) ;
	}

	b1 = cholmod_zeros(vnum, 1, CHOLMOD_REAL, &c);


	// --------------------- x demension -----------------------
	for( int i =0 ;i<Pb.size(); ++i ){
		((double*)(b1->x))[i] = Pb[i].x ;
	}
	L = cholmod_analyze (A, &c) ; /* analyze */
	cholmod_factorize (A, L, &c) ; /* factorize */
	x = cholmod_solve (CHOLMOD_A, L, b1, &c) ; /* solve Ax=b */


	// write x-values
	for( int i=0; i<vector_field.size(); ++i)
		vector_field[i].x = ((double*)(x->x))[i] ;
	// --------------------- y demension -----------------------
	for( int i =0 ;i<Pb.size(); ++i ){
		((double*)(b1->x))[i] = Pb[i].y ;
	}
	y = cholmod_solve (CHOLMOD_A, L, b1, &c) ; /* solve Ay=b */
	// write y-values
	for( int i=0; i<vector_field.size(); ++i)
		vector_field[i].y = ((double*)(y->x))[i] ;



	cholmod_free_factor (&L, &c) ; 
	cholmod_free_dense (&x, &c) ;
	cholmod_free_dense (&y, &c) ;
	cholmod_free_dense (&b1, &c) ;
	//delete L_add_P ;
	delete SM ;
	cholmod_finish (&c) ; /* finish CHOLMOD */



	double normx2, normy2 ;
	normx2 = normy2 = 0.0 ;

	for( int i=0; i<vnum; ++i ){
		normx2 += vector_field[i].x * vector_field[i].x ; 
		normy2 += vector_field[i].y * vector_field[i].y ; 
	}

	//std::cout<<"|x| = "<<sqrt(normx2) <<"\n|y| = "<<sqrt(normy2) <<std::endl;


	// normalize vector field
	for( int i=0; i<vector_field.size(); ++i){
		double norm = sqrt( vector_field[i].x * vector_field[i].x + vector_field[i].y * vector_field[i].y) ;
		vector_field[i].x /= norm ;
		vector_field[i].y /= norm ;

	}

	time3 = clock() ;


	//std::cout<<"time consumed by computing A and b: " << (double)(time2-time1)/CLOCKS_PER_SEC <<" s" <<std::endl ;
	//std::cout<<"time consumed by solving the system: " << (double)(time3-time2)/CLOCKS_PER_SEC <<" s" <<std::endl ;

	//std::cout<<"vector field computing completed."<<std::endl; ;
	int count = 0;
	for( int i=0; i<L_add_P.data.size(); ++i)
		count += L_add_P.data[i].size() ;

	//std::cout << "nonzero number: " << count <<std::endl; 

}