コード例 #1
0
bool SkCLImageDiffer::loadKernelSource(const char source[], const char name[], cl_kernel* kernel) {
    // Build the kernel source
    size_t sourceLen = strlen(source);
    cl_program program = clCreateProgramWithSource(fContext, 1, &source, &sourceLen, NULL);
    cl_int programErr = clBuildProgram(program, 1, &fDevice, "", NULL, NULL);
    if (CL_SUCCESS != programErr) {
        SkDebugf("Program creation failed: %s\n", cl_error_to_string(programErr));

        // Attempt to get information about why the build failed
        char buildLog[4096];
        clGetProgramBuildInfo(program, fDevice, CL_PROGRAM_BUILD_LOG, sizeof(buildLog),
                              buildLog, NULL);
        SkDebugf("Build log: %s\n", buildLog);

        return false;
    }

    cl_int kernelErr;
    *kernel = clCreateKernel(program, name, &kernelErr);
    if (CL_SUCCESS != kernelErr) {
        SkDebugf("Kernel creation failed: %s\n", cl_error_to_string(kernelErr));
        return false;
    }

    return true;
}
コード例 #2
0
bool SkCLImageDiffer::init(cl_device_id device, cl_context context) {
    fContext = context;
    fDevice = device;

    cl_int queueErr;
    fCommandQueue = clCreateCommandQueue(fContext, fDevice, 0, &queueErr);
    if (CL_SUCCESS != queueErr) {
        SkDebugf("Command queue creation failed: %s\n", cl_error_to_string(queueErr));
        fIsGood = false;
        return false;
    }

    fIsGood = this->onInit();
    return fIsGood;
}
コード例 #3
0
bool SkCLImageDiffer::makeImage2D(SkBitmap* bitmap, cl_mem* image) const {
    cl_int imageErr;
    cl_image_format bitmapFormat;
    switch (bitmap->colorType()) {
        case kAlpha_8_SkColorType:
            bitmapFormat.image_channel_order = CL_A;
            bitmapFormat.image_channel_data_type = CL_UNSIGNED_INT8;
            break;
        case kRGB_565_SkColorType:
            bitmapFormat.image_channel_order = CL_RGB;
            bitmapFormat.image_channel_data_type = CL_UNORM_SHORT_565;
            break;
        case kN32_SkColorType:
            bitmapFormat.image_channel_order = CL_RGBA;
            bitmapFormat.image_channel_data_type = CL_UNSIGNED_INT8;
            break;
        default:
            SkDebugf("Image format is unsupported\n");
            return false;
    }

    // Upload the bitmap data to OpenCL
    bitmap->lockPixels();
    *image = clCreateImage2D(fContext, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,
                             &bitmapFormat, bitmap->width(), bitmap->height(),
                             bitmap->rowBytes(), bitmap->getPixels(),
                             &imageErr);
    bitmap->unlockPixels();

    if (CL_SUCCESS != imageErr) {
        SkDebugf("Input image creation failed: %s\n", cl_error_to_string(imageErr));
        return false;
    }

    return true;
}
コード例 #4
0
bool SkDifferentPixelsMetric::diff(SkBitmap* baseline, SkBitmap* test, bool computeMask,
                                   Result* result) const {
    double startTime = get_seconds();

    if (!fIsGood) {
        return false;
    }

    // If we never end up running the kernel, include some safe defaults in the result.
    result->poiCount = 0;

    // Ensure the images are comparable
    if (baseline->width() != test->width() || baseline->height() != test->height() ||
        baseline->width() <= 0 || baseline->height() <= 0 ||
        baseline->config() != test->config()) {
        return false;
    }

    cl_mem baselineImage;
    cl_mem testImage;
    cl_mem resultsBuffer;

    // Upload images to the CL device
    if (!this->makeImage2D(baseline, &baselineImage) || !this->makeImage2D(test, &testImage)) {
        SkDebugf("creation of openCL images failed");
        return false;
    }

    // A small hack that makes calculating percentage difference easier later on.
    result->result = 1.0 / ((double)baseline->width() * baseline->height());

    // Make a buffer to store results into. It must be initialized with pointers to memory.
    static const int kZero = 0;
    // We know OpenCL won't write to it because we use CL_MEM_COPY_HOST_PTR
    resultsBuffer = clCreateBuffer(fContext, CL_MEM_READ_WRITE | CL_MEM_COPY_HOST_PTR,
                                   sizeof(int), (int*)&kZero, NULL);

    // Set all kernel arguments
    cl_int setArgErr = clSetKernelArg(fKernel, 0, sizeof(cl_mem), &baselineImage);
    setArgErr       |= clSetKernelArg(fKernel, 1, sizeof(cl_mem), &testImage);
    setArgErr       |= clSetKernelArg(fKernel, 2, sizeof(cl_mem), &resultsBuffer);
    if (CL_SUCCESS != setArgErr) {
        SkDebugf("Set arg failed: %s\n", cl_error_to_string(setArgErr));
        return false;
    }

    // Queue this diff on the CL device
    cl_event event;
    const size_t workSize[] = { baseline->width(), baseline->height() };
    cl_int enqueueErr;
    enqueueErr = clEnqueueNDRangeKernel(fCommandQueue, fKernel, 2, NULL, workSize,
                                        NULL, 0, NULL, &event);
    if (CL_SUCCESS != enqueueErr) {
        SkDebugf("Enqueue failed: %s\n", cl_error_to_string(enqueueErr));
        return false;
    }

    // This makes things totally synchronous. Actual queue is not ready yet
    clWaitForEvents(1, &event);

    // Immediate read back the results
    clEnqueueReadBuffer(fCommandQueue, resultsBuffer, CL_TRUE, 0,
                        sizeof(int), &result->poiCount, 0, NULL, NULL);
    result->result *= (double)result->poiCount;
    result->result = (1.0 - result->result);

    // Release all the buffers created
    clReleaseMemObject(resultsBuffer);
    clReleaseMemObject(baselineImage);
    clReleaseMemObject(testImage);

    result->timeElapsed = get_seconds() - startTime;
    return true;
}