コード例 #1
0
void Segmentation::euclidianClustering( pcl::PointCloud<pcl::PointXYZRGBA>::Ptr  &cloud, std::vector < pcl::PointCloud<pcl::PointXYZRGBA>::Ptr > &clusters)
{
    pcl::search::KdTree<pcl::PointXYZRGBA>::Ptr tree (new pcl::search::KdTree<pcl::PointXYZRGBA>);
    tree->setInputCloud (cloud);

    std::vector<pcl::PointIndices> cluster_indices;
    pcl::EuclideanClusterExtraction<pcl::PointXYZRGBA> ec;
    ec.setClusterTolerance (0.02); // 2cm
    ec.setMinClusterSize (300); //1000
    ec.setMaxClusterSize (100000000);
    ec.setSearchMethod (tree);
    ec.setInputCloud (cloud);
    ec.extract (cluster_indices);
    for (std::vector<pcl::PointIndices>::const_iterator it = cluster_indices.begin (); it != cluster_indices.end (); ++it)
    {
        pcl::PointCloud<pcl::PointXYZRGBA>::Ptr cloud_cluster (new pcl::PointCloud<pcl::PointXYZRGBA>);
        for (std::vector<int>::const_iterator pit = it->indices.begin (); pit != it->indices.end (); ++pit)
        {
            cloud_cluster->points.push_back (cloud->points[*pit]);
        }
        cloud_cluster->width = cloud_cluster->points.size ();
        cloud_cluster->height = 1;
        cloud_cluster->is_dense = true;
        clusters.push_back(cloud_cluster);
    }
}
コード例 #2
0
ファイル: Distance.cpp プロジェクト: sagargp/minimum_distance
int clusterExtraction(pcl::PointCloud<pcl::PointXYZRGB>::Ptr input, std::vector<pcl::PointCloud<pcl::PointXYZRGB>::Ptr> *clouds, std::vector<pcl::PointXYZRGB> *labels)
{
	pcl::KdTree<pcl::PointXYZRGB>::Ptr tree(new pcl::KdTreeFLANN<pcl::PointXYZRGB>);
	tree->setInputCloud(input);

	std::vector<pcl::PointIndices> cluster_indices;
	pcl::EuclideanClusterExtraction<pcl::PointXYZRGB> extraction;

	extraction.setClusterTolerance(0.010); // 1cm -- decreasing makes more clusters
	extraction.setMinClusterSize(120);
	extraction.setMaxClusterSize(4000);
	extraction.setSearchMethod(tree);
	extraction.setInputCloud(input);
	extraction.extract(cluster_indices);

	for (std::vector<pcl::PointIndices>::const_iterator it = cluster_indices.begin(); it != cluster_indices.end(); it++)
	{
		pcl::PointCloud<pcl::PointXYZRGB>::Ptr cloud_cluster(new pcl::PointCloud<pcl::PointXYZRGB>);

		for (std::vector<int>::const_iterator pit = it->indices.begin (); pit != it->indices.end (); pit++)
			cloud_cluster->points.push_back (input->points[*pit]);

		cloud_cluster->width = cloud_cluster->points.size ();
		cloud_cluster->height = 1;
		cloud_cluster->is_dense = true;

		std::cout << "PointCloud has " << cloud_cluster->points.size () << " data points." << std::endl;
		clouds->push_back(cloud_cluster);
		labels->push_back(cloud_cluster->points[0]);
	}
	return cluster_indices.size();
}
コード例 #3
0
std::vector<PointCloudT::Ptr > computeClusters(PointCloudT::Ptr in, double tolerance){
	std::vector<PointCloudT::Ptr > clusters;
	
	pcl::search::KdTree<PointT>::Ptr tree (new pcl::search::KdTree<PointT>);
	tree->setInputCloud (in);

	std::vector<pcl::PointIndices> cluster_indices;
	pcl::EuclideanClusterExtraction<PointT> ec;
	ec.setClusterTolerance (tolerance); // 2cm
	ec.setMinClusterSize (50);
	ec.setMaxClusterSize (25000);
	ec.setSearchMethod (tree);
	ec.setInputCloud (in);
	ec.extract (cluster_indices);

	int j = 0;
	for (std::vector<pcl::PointIndices>::const_iterator it = cluster_indices.begin (); it != cluster_indices.end (); ++it)
	{
		PointCloudT::Ptr cloud_cluster (new PointCloudT);
		for (std::vector<int>::const_iterator pit = it->indices.begin (); pit != it->indices.end (); pit++)
			cloud_cluster->points.push_back (in->points[*pit]); //*
		cloud_cluster->width = cloud_cluster->points.size ();
		cloud_cluster->height = 1;
		cloud_cluster->is_dense = true;

		clusters.push_back(cloud_cluster);
	}
	return clusters;
}
コード例 #4
0
ファイル: tompcfilter.cpp プロジェクト: NBXApp/tum-lsr-dhri
bool TOMPCFilter<T>::segmentation(CloudPtr &cloud_in, VecCloud &clouds_out, double tolerance, double minSize, double maxSize)
{
    //    std::cout << "Object segmentation" << std::endl;
    // object clustering
    // Creating the KdTree object for the search method of the extraction
    typename pcl::search::KdTree<T>::Ptr tree (new pcl::search::KdTree<T>);
    tree->setInputCloud (cloud_in);

    std::vector<pcl::PointIndices> cluster_indices;
    pcl::EuclideanClusterExtraction<T> ec;
    ec.setClusterTolerance (tolerance); // 2cm
    ec.setMinClusterSize (minSize);
    ec.setMaxClusterSize (maxSize);
    ec.setSearchMethod (tree);
    ec.setInputCloud( cloud_in);
    ec.extract (cluster_indices);

    int j = 0;
    clouds_out.clear();
    for (std::vector<pcl::PointIndices>::const_iterator it = cluster_indices.begin (); it != cluster_indices.end (); ++it)
    {
        CloudPtr cloud_cluster (new pcl::PointCloud<T>);
        for (std::vector<int>::const_iterator pit = it->indices.begin (); pit != it->indices.end (); pit++)
            cloud_cluster->points.push_back (cloud_in->points[*pit]); //*
        clouds_out.push_back(cloud_cluster);
    }
    return 1;
}
コード例 #5
0
ファイル: tracking.cpp プロジェクト: hommeabeil/perception3d
pcl::PointCloud<PointT>::Ptr extract_object_from_indices(pcl::PointCloud<PointT>::Ptr cloud_input,pcl::PointIndices object_indices){
    pcl::PointCloud<PointT>::Ptr cloud_cluster(new pcl::PointCloud<PointT>);
    for (int j=0; j<object_indices.indices.size(); j++){
        cloud_cluster->points.push_back (cloud_input->points[object_indices.indices[j]]);
    }
    return cloud_cluster;
}
コード例 #6
0
ファイル: redblade_laser.cpp プロジェクト: mortonjt/Redblade
void redblade_laser::cluster(pcl::PointCloud<pcl::PointXYZ>::Ptr cloud,
			     pcl::PointCloud<pcl::PointXYZ>::Ptr cluster,
			     double tolerance){
  pcl::search::KdTree<pcl::PointXYZ>::Ptr tree(new pcl::search::KdTree<pcl::PointXYZ>);
  tree->setInputCloud(cloud);
  std::vector<pcl::PointIndices> cluster_indices;
  pcl::EuclideanClusterExtraction<pcl::PointXYZ> ec;
  ec.setClusterTolerance(tolerance);
  ec.setMinClusterSize(1);
  ec.setMaxClusterSize(1000);
  ec.setSearchMethod(tree);
  ec.setInputCloud(cloud);
  ec.extract(cluster_indices);
  int curSize = 0;
  for(std::vector<pcl::PointIndices>::iterator it = cluster_indices.begin();
      it!=cluster_indices.end(); ++it){
    pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_cluster(new pcl::PointCloud<pcl::PointXYZ>);
    for(std::vector<int>::const_iterator pit = it->indices.begin(); 
	pit!=it->indices.end();++pit){
      cloud_cluster->points.push_back(cloud->points[*pit]);
    }
    cloud_cluster->width = cluster->points.size();
    cloud_cluster->height = 1;
    if(cloud_cluster->points.size()>curSize){
      cluster->points.resize(cloud_cluster->points.size());
      std::copy(cloud_cluster->points.begin(),
		cloud_cluster->points.end(),
		cluster->points.begin());
      cloud_cluster->width = cluster->points.size();
      cloud_cluster->height = 1;
      curSize = cloud_cluster->points.size();
    }
  }
}
コード例 #7
0
  /* ========================================
   * Fill Code: EUCLIDEAN CLUSTER EXTRACTION
   * ========================================*/
std::vector<pcl::PointCloud<pcl::PointXYZ>::Ptr>
clusterExtraction(const pcl::PointCloud<pcl::PointXYZ>::ConstPtr &input_cloud)
{
  // Creating the KdTree object for the search method of the extraction
  pcl::search::KdTree<pcl::PointXYZ>::Ptr tree (new pcl::search::KdTree<pcl::PointXYZ>);
  tree->setInputCloud (input_cloud);

  std::vector<pcl::PointIndices> cluster_indices;
  pcl::EuclideanClusterExtraction<pcl::PointXYZ> ec;
  ec.setClusterTolerance (0.02); // 2cm
  ec.setMinClusterSize (25);
  ec.setMaxClusterSize (10000);
  ec.setSearchMethod (tree);
  ec.setInputCloud (input_cloud);
  ec.extract (cluster_indices);

  std::vector<pcl::PointCloud<pcl::PointXYZ>::Ptr> clusters;
  for (std::vector<pcl::PointIndices>::const_iterator it = cluster_indices.begin (); it != cluster_indices.end (); ++it)
  {
    pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_cluster (new pcl::PointCloud<pcl::PointXYZ>);
    for (std::vector<int>::const_iterator pit = it->indices.begin (); pit != it->indices.end (); pit++)
      cloud_cluster->points.push_back(input_cloud->points[*pit]);
    cloud_cluster->width = cloud_cluster->points.size ();
    cloud_cluster->height = 1;
    cloud_cluster->is_dense = true;
    std::cout << "Cluster has " << cloud_cluster->points.size() << " points.\n";
    clusters.push_back(cloud_cluster);
  }
  return clusters;
}
コード例 #8
0
void ObjectDetector::clusterCloud(pcl::PointCloud<pcl::PointXYZ>::Ptr cloud)
{
    // Create the cluster msg
    pcl_msgs::Clusters clusters_msg;

    int j = 0;

    if((cloud->width * cloud->height) != 0){

        // Creating the KdTree object for the search method of the extraction
        pcl::search::KdTree<pcl::PointXYZ>::Ptr tree (new pcl::search::KdTree<pcl::PointXYZ>);
        tree->setInputCloud (cloud);

        // Use Euclidean clustering
        std::vector<pcl::PointIndices> cluster_indices;
        pcl::EuclideanClusterExtraction<pcl::PointXYZ> ec;
        ec.setClusterTolerance (cluster_tolerance);
        ec.setMinClusterSize (cluster_min);
        ec.setMaxClusterSize (cluster_max);
        ec.setSearchMethod (tree);
        ec.setInputCloud (cloud);
        ec.extract (cluster_indices);

        // Find all clusters
        for (std::vector<pcl::PointIndices>::const_iterator it = cluster_indices.begin (); it != cluster_indices.end (); ++it)
        {
            pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_cluster (new pcl::PointCloud<pcl::PointXYZ>);
            for (std::vector<int>::const_iterator pit = it->indices.begin (); pit != it->indices.end (); ++pit)
                cloud_cluster->points.push_back (cloud->points[*pit]);
            cloud_cluster->width = cloud_cluster->points.size ();
            cloud_cluster->height = 1;
            cloud_cluster->is_dense = true;

            // Compute cluster size
            int cluster_size = (int) cloud_cluster->points.size();

            // Compute cluster centroid
            Eigen::Vector4f centroid;
            pcl::compute3DCentroid(*cloud_cluster,centroid);

            // Add cluster to msg
            pcl_msgs::Cluster cluster;
            cluster.x = centroid[0];
            cluster.y = centroid[1];
            cluster.z = -centroid[2];
            cluster.isDebris = false; 
            clusters_msg.cluster.push_back(cluster);

            j++;
        }
    }

    // Add number of clusters to msg
    clusters_msg.cluster_len = j;

    ROS_INFO("Clusters: %d", j);

    // Publish the data
    pub.publish(clusters_msg);
}
コード例 #9
0
int 
main (int, char **argv)
{
  pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_ptr (new pcl::PointCloud<pcl::PointXYZ> ());
  pcl::PointCloud<pcl::Normal>::Ptr cloud_normals (new pcl::PointCloud<pcl::Normal> ());
  pcl::PCDWriter writer;
	
  if (pcl::io::loadPCDFile<pcl::PointXYZ> (argv[1], *cloud_ptr) == -1)
  {
    std::cout<<"Couldn't read the file "<<argv[1]<<std::endl;
    return (-1);
  }
  std::cout << "Loaded pcd file " << argv[1] << " with " << cloud_ptr->points.size () << std::endl;

  // Normal estimation
  pcl::NormalEstimation<pcl::PointXYZ, pcl::Normal> ne;
  ne.setInputCloud (cloud_ptr);

  pcl::search::KdTree<pcl::PointXYZ>::Ptr tree_n (new pcl::search::KdTree<pcl::PointXYZ>());
  ne.setSearchMethod (tree_n);
  ne.setRadiusSearch (0.03);
  ne.compute (*cloud_normals);
  std::cout << "Estimated the normals" << std::endl;

  // Creating the kdtree object for the search method of the extraction
  boost::shared_ptr<pcl::KdTree<pcl::PointXYZ> > tree_ec  (new pcl::KdTreeFLANN<pcl::PointXYZ> ());
  tree_ec->setInputCloud (cloud_ptr);
  
  // Extracting Euclidean clusters using cloud and its normals
  std::vector<int> indices;
  std::vector<pcl::PointIndices> cluster_indices;
  const float tolerance = 0.5f; // 50cm tolerance in (x, y, z) coordinate system
  const double eps_angle = 5 * (M_PI / 180.0); // 5degree tolerance in normals
  const unsigned int min_cluster_size = 50;
 
  pcl::extractEuclideanClusters (*cloud_ptr, *cloud_normals, tolerance, tree_ec, cluster_indices, eps_angle, min_cluster_size);

  std::cout << "No of clusters formed are " << cluster_indices.size () << std::endl;

  // Saving the clusters in seperate pcd files
  int j = 0;
  for (std::vector<pcl::PointIndices>::const_iterator it = cluster_indices.begin (); it != cluster_indices.end (); ++it)
  {
    pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_cluster (new pcl::PointCloud<pcl::PointXYZ>);
    for (std::vector<int>::const_iterator pit = it->indices.begin (); pit != it->indices.end (); pit++)
      cloud_cluster->points.push_back (cloud_ptr->points[*pit]); 
    cloud_cluster->width = static_cast<uint32_t> (cloud_cluster->points.size ());
    cloud_cluster->height = 1;
    cloud_cluster->is_dense = true;

    std::cout << "PointCloud representing the Cluster using xyzn: " << cloud_cluster->points.size () << " data points." << std::endl;
    std::stringstream ss;
    ss << "./cloud_cluster_" << j << ".pcd";
    writer.write<pcl::PointXYZ> (ss.str (), *cloud_cluster, false); 
    j++;
  }

  return (0);
}
コード例 #10
0
    void Planar_filter::Segment_cloud()
    {
      pcl::PointIndices::Ptr inliers (new pcl::PointIndices);
      pcl::ModelCoefficients::Ptr coefficients (new pcl::ModelCoefficients);
      PointCloudT::Ptr cloud_plane (new PointCloudT ());
      seg.setOptimizeCoefficients (true);
      seg.setModelType (pcl::SACMODEL_PLANE);
      seg.setMethodType (pcl::SAC_RANSAC);
      seg.setMaxIterations (100);
      seg.setDistanceThreshold (0.02);
      std::vector<pcl::PointIndices> cluster_indices;
        seg.setInputCloud (_cloud);
        seg.segment (*inliers, *coefficients);
        if (inliers->indices.size () == 0)
        {
          std::cout << "Could not estimate a planar model for the given dataset." << std::endl;
        }

        // Extract the planar inliers from the input cloud
        pcl::ExtractIndices<PointT> extract;
        extract.setInputCloud (_cloud);
        extract.setIndices (inliers);
        extract.setNegative (false);

        // Get the points associated with the planar surface
        PointCloudT::Ptr cloud_f(new PointCloudT);
        extract.filter (*cloud_plane);
        //std::cout << "PointCloud representing the planar component: " << cloud_plane->points.size () << " data points." << std::endl;
        extract.setNegative (true);
        extract.filter (*cloud_f);
        *_cloud = *cloud_f;

      // Creating the KdTree object for the search method of the extraction
      pcl::search::KdTree<PointT>::Ptr tree (new pcl::search::KdTree<PointT>);
      tree->setInputCloud (_cloud);

      pcl::EuclideanClusterExtraction<PointT> ec;
      ec.setClusterTolerance (0.02); // 2cm
      ec.setMinClusterSize (100);
      ec.setMaxClusterSize (25000);
      ec.setSearchMethod (tree);
      ec.setInputCloud (_cloud);
      ec.extract (cluster_indices);
      for (std::vector<pcl::PointIndices>::const_iterator it = cluster_indices.begin (); it != cluster_indices.end (); ++it)
        {
          PointCloudT::Ptr cloud_cluster (new PointCloudT);
          for (std::vector<int>::const_iterator pit = it->indices.begin (); pit != it->indices.end (); ++pit)
            cloud_cluster->points.push_back (_cloud->points[*pit]); //*
          cloud_cluster->width = cloud_cluster->points.size();
          cloud_cluster->height = 1;
          cloud_cluster->is_dense = true;
          _Segmented_clouds.push_back(cloud_cluster);
        }
    }  
コード例 #11
0
  void search_sphere(pcl::PointCloud<pcl::PointXYZ>::Ptr src, pcl::PointCloud<pcl::PointXYZ>::Ptr& dst,
                     pcl::ModelCoefficients::Ptr& coeffs)
  {

    // Creating the KdTree object for the search method of the extraction
    pcl::search::KdTree<pcl::PointXYZ>::Ptr tree (new pcl::search::KdTree<pcl::PointXYZ>);
    tree->setInputCloud (src);

    std::vector<pcl::PointIndices> cluster_indices;
    pcl::EuclideanClusterExtraction<pcl::PointXYZ> ec;
    ec.setClusterTolerance (cluster_tolerance_);
    ec.setMinClusterSize (50);
    ec.setMaxClusterSize (25000);
    ec.setSearchMethod (tree);
    ec.setInputCloud (src);
    ec.extract (cluster_indices);

    for (size_t i=0; i<cluster_indices.size(); i++)
    {
      pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_cluster (new pcl::PointCloud<pcl::PointXYZ>);
      pcl::copyPointCloud<pcl::PointXYZ>(*src, cluster_indices[i], *cloud_cluster);

      pcl::PointCloud<pcl::Normal>::Ptr cloud_cluster_normals (new pcl::PointCloud<pcl::Normal>);
      estimate_normals(cloud_cluster, cloud_cluster_normals);

      //Look for a sphere
      pcl::SACSegmentationFromNormals<pcl::PointXYZ,pcl::Normal> seg;
      pcl::ModelCoefficients::Ptr coefficients_sphere (new pcl::ModelCoefficients);
      pcl::PointIndices::Ptr inliers_sphere (new pcl::PointIndices);
      seg.setOptimizeCoefficients (true);
      seg.setModelType (pcl::SACMODEL_SPHERE);
      seg.setMethodType (pcl::SAC_RANSAC);
      seg.setNormalDistanceWeight (5);
      seg.setMaxIterations (100);
      seg.setDistanceThreshold (sphere_threshold_);
      seg.setRadiusLimits (target_radius_ - 0.05, target_radius_ + 0.05);
      seg.setInputCloud (cloud_cluster);
      seg.setInputNormals (cloud_cluster_normals);
      seg.segment(*inliers_sphere, *coefficients_sphere);

      if(inliers_sphere->indices.size() > 0)
      {
        pcl::ExtractIndices<pcl::PointXYZ> extract;
        extract.setInputCloud(cloud_cluster);
        extract.setIndices(inliers_sphere);
        extract.setNegative(false);
        extract.filter(*dst);
        *coeffs = *coefficients_sphere;
        found_ = true;
      }
    }
  }
コード例 #12
0
void PCLClusteringFunction::parallelClustering(pcl::PointIndices &aIndices)
{
    cloudPtrType cloud_cluster (new cloudType);
    for (std::vector<int>::const_iterator pit = aIndices.indices.begin (); pit != aIndices.indices.end (); pit++)
        cloud_cluster->points.push_back (workingCloud->points[*pit]); //*
    cloud_cluster->width = cloud_cluster->points.size ();
    cloud_cluster->height = 1;
    cloud_cluster->is_dense = true;

    clusteringParallelMuting.lock();
    cloud_clustered.push_back(cloud_cluster);
    clusteringParallelMuting.unlock();
}
コード例 #13
0
  /**
   *Segments the input point cloud into several clusters
   * @param input_cloud_ptr
   * @param clusters
   */
	void segment_clusters(const pcl::PointCloud<PointT>::Ptr input_cloud_ptr,
			std::vector<pcl::PointCloud<PointT> > & clusters) {

		pcl::search::KdTree<PointT>::Ptr cluster_tree (new pcl::search::KdTree<PointT> ());

		std::vector<pcl::PointIndices> cluster_indices;
		sensor_msgs::PointCloud2 cluster_msg;

		pcl::EuclideanClusterExtraction<pcl::PointXYZ> ec;

        ec.setClusterTolerance(0.08);
        ec.setMinClusterSize(50);
        ec.setMaxClusterSize(10000);
		ec.setSearchMethod(cluster_tree);
		ec.setInputCloud(input_cloud_ptr);
		ec.extract(cluster_indices);


        ROS_INFO("Found %d Clusters\n",(int)cluster_indices.size());

		for (std::vector<pcl::PointIndices>::const_iterator it =cluster_indices.begin(); it != cluster_indices.end(); ++it) {
			pcl::PointCloud<PointT>::Ptr cloud_cluster( new pcl::PointCloud<PointT>);
			for (std::vector<int>::const_iterator pit = it->indices.begin();pit != it->indices.end(); pit++)
				cloud_cluster->points.push_back(input_cloud_ptr->points[*pit]); //*
			cloud_cluster->width = cloud_cluster->points.size();
			cloud_cluster->height = 1;
			cloud_cluster->is_dense = true;

            ROS_INFO("Cluster Size: %d \n",(int)cloud_cluster->points.size());
			//adds a cluster to the output list
			clusters.push_back(*cloud_cluster);

			pcl::toROSMsg(*cloud_cluster, cluster_msg);

			cluster_msg.header.frame_id = frame_id_;
			cluster_msg.header.stamp=ros::Time::now();

			pub_cluster_.publish(cluster_msg);


            /*slow down ouput
            ros::Rate r(2);
			r.sleep();
            */




		}

	}
コード例 #14
0
	pcl::PointCloud<pcl::PointXYZ>::Ptr cluster_clouds(pcl::PointCloud<pcl::PointXYZ>::Ptr input, double dist)
	{
		
		 pcl::PointCloud<pcl::PointXYZ>::Ptr center_points (new pcl::PointCloud<pcl::PointXYZ>);
		 // Creating the KdTree object for the search method of the extraction
		  pcl::search::KdTree<pcl::PointXYZ>::Ptr tree (new pcl::search::KdTree<pcl::PointXYZ>);
		  tree->setInputCloud (input);

		  std::vector<pcl::PointIndices> cluster_indices;
		  pcl::EuclideanClusterExtraction<pcl::PointXYZ> ec;
		  ec.setClusterTolerance (dist); // in cm
		  ec.setMinClusterSize (10);
		  ec.setMaxClusterSize (25000);
		  ec.setSearchMethod (tree);
		  ec.setInputCloud (input);
		  ec.extract (cluster_indices);
	
		  int j = 0;
		  //now move trough all clusters of the point cloud...
		  for (std::vector<pcl::PointIndices>::const_iterator it = cluster_indices.begin (); it != cluster_indices.end (); ++it)
		  {
			pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_cluster (new pcl::PointCloud<pcl::PointXYZ>);
			for (std::vector<int>::const_iterator pit = it->indices.begin (); pit != it->indices.end (); ++pit)
			cloud_cluster->points.push_back (input->points[*pit]); 
			cloud_cluster->width = cloud_cluster->points.size ();
			cloud_cluster->height = 1;
			cloud_cluster->is_dense = true;

			std::cout << "PointCloud representing the Cluster: " << cloud_cluster->points.size () << " data points." << std::endl;
			//compute centroid of point cloud
			pcl::PointXYZ center;
			Eigen::Vector4f centroid; 
			pcl::compute3DCentroid(*cloud_cluster,centroid); 
			center.x=centroid[0];
			center.y=centroid[1];
			center.z=centroid[2];
			center_points->push_back(center);
			
			j++;
		  }
		
		center_points->width=center_points->points.size();
		
		//return input;
		return center_points;
		
		
	}
コード例 #15
0
  void compute_cluster_from_cloud(const Cloud::ConstPtr& cloud_msg) {
    maggieDebug2("compute_cluster_from_cloud()");

    // Creating the KdTree object for the search method of the extraction
    Timer timer;
    _tree_ptr->setInputCloud (cloud_msg);
    _cluster_indices.clear();
    pcl::EuclideanClusterExtraction<pcl::PointXYZ> ec;
    ec.setClusterTolerance (CLUSTER_TOLERANCE);
    ec.setMinClusterSize (MIN_CLUSTER_SIZE);
    ec.setMaxClusterSize (25000);
    ec.setSearchMethod (_tree_ptr);
    ec.setInputCloud( cloud_msg);
    ec.extract (_cluster_indices);
    _n_clusters = (int) _cluster_indices.size();
    maggieDebug2("euclidin clustering:%g ms, \tnumber of clusters:%i",
                 timer.getTimeMilliseconds(),
                 _n_clusters);

    // Write the planar inliers to disk
#if 0
    timer.reset();
    pcl::PCDWriter writer;
    int j = 0;
    for (std::vector<pcl::PointIndices>::const_iterator it = _cluster_indices.begin ();
         it != _cluster_indices.end ();
         ++it) {
      Cloud::Ptr cloud_cluster(new Cloud);
      for (std::vector<int>::const_iterator pit = it->indices.begin (); pit
           != it->indices.end (); pit++) {
        cloud_cluster->points.push_back (cloud_msg->points[*pit]);
      } // end loop cluster point

      cloud_cluster->width = cloud_cluster->points.size ();
      cloud_cluster->height = 1;
      cloud_cluster->is_dense = true;
      std::cout << "cloud representing the Cluster: " <<
                   cloud_cluster->points.size () << " data points." << std::endl;
      std::stringstream ss;
      ss << "cloud_cluster_" << j << ".pcd";
      writer.write<pcl::PointXYZ> (ss.str (), *cloud_cluster, false); //*
      j++;
    } // end loop cluster index
#endif

    compute_bounding_boxes(cloud_msg);
  } // end compute_cluster_from_cloud();
コード例 #16
0
pcl::PointCloud<pcl::PointXYZRGB>::Ptr extract_clusters (pcl::PointCloud<pcl::PointXYZRGB>::Ptr cloud, pcl::PointXYZRGB point)
{
  cloud->push_back(point);  // append clicked_point to cloud
  int point_index = cloud->points.size() - 1;  // get index of clicked_point

  // Creating the KdTree object for the search method of the extraction
  pcl::search::KdTree<pcl::PointXYZRGB>::Ptr tree (new pcl::search::KdTree<pcl::PointXYZRGB>);
  tree->setInputCloud (cloud);

  std::vector<pcl::PointIndices> cluster_indices;
  pcl::EuclideanClusterExtraction<pcl::PointXYZRGB> ec;
  ec.setClusterTolerance (0.02); // 2cm
  ec.setMinClusterSize (100);
  ec.setMaxClusterSize (640*480);
  ec.setSearchMethod (tree);
  ec.setInputCloud (cloud);
  ec.extract (cluster_indices);

  pcl::PointCloud<pcl::PointXYZRGB>::Ptr cloud_cluster (new pcl::PointCloud<pcl::PointXYZRGB>);
	  
  int j = 0;
  for (std::vector<pcl::PointIndices>::const_iterator it = cluster_indices.begin (); it != cluster_indices.end (); ++it)
    {

      if(std::find(it->indices.begin(), it->indices.end(), point_index) != it->indices.end())
	{
	  // Pointer-ify the indices for the current cluster
	  pcl::PointIndicesPtr indices_ptr (new pcl::PointIndices);
	  indices_ptr->indices = it->indices; 
	  
	  // Extract the cluster points
	  pcl::ExtractIndices<pcl::PointXYZRGB> extract;
	  extract.setInputCloud (cloud);
	  extract.setIndices (indices_ptr);
	  extract.setNegative (false);
	  extract.filter (*cloud_cluster);
	  
	  std::cout << "PointCloud representing cluster #" << j << ": " << cloud_cluster->points.size () << " data points." << std::endl;
	  j++;
	}
    }

  return cloud_cluster;
}
コード例 #17
0
pcl::PointCloud<pcl::PointXYZ>::Ptr PlaneSegmentationPclRgbAlgorithm::getBiggestClusterPC (pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_orig)
{
	pcl::EuclideanClusterExtraction<pcl::PointXYZ> pcl_cluster;
	// Min distance between two clusters
	pcl_cluster.setClusterTolerance (plane_min_cluster_distance);
	// Min number of points for a cluster
	pcl_cluster.setMinClusterSize (plane_min_cluster_size);
	
	ROS_DEBUG("Clustering");
	
	ROS_DEBUG_STREAM("Original pointcloud size is" << cloud_orig->points.size());
	
	std::vector<pcl::PointIndices> clusters;
	pcl_cluster.setInputCloud (cloud_orig);
	pcl_cluster.extract (clusters);

	//converts clusters into the PointCloud message
	pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_cluster (new pcl::PointCloud<pcl::PointXYZ>);
	
	ROS_DEBUG_STREAM("Number of clusters is " << clusters.size());
	
	if ((int)clusters.size () > 0 ) {
		// get biggest cluster
		size_t biggest_cluster = 0;
		for (size_t j = 1; j < clusters.size (); ++j) {
			if (clusters[biggest_cluster].indices.size () < clusters[j].indices.size ())
				biggest_cluster = j;
		}
		
		ROS_DEBUG_STREAM("Biggest cluster is " << clusters[biggest_cluster].indices.size());
		cloud_cluster->points.resize (clusters[biggest_cluster].indices.size ());
		for (size_t j = 0; j < cloud_cluster->points.size (); ++j)
		{
			cloud_cluster->points[j].x = cloud_orig->points[clusters[biggest_cluster].indices[j]].x;
			cloud_cluster->points[j].y = cloud_orig->points[clusters[biggest_cluster].indices[j]].y;
			cloud_cluster->points[j].z = cloud_orig->points[clusters[biggest_cluster].indices[j]].z;
		}
	}
	else
		*cloud_cluster = *cloud_orig;
	
	return cloud_cluster;
}
コード例 #18
0
ファイル: tracking.cpp プロジェクト: hommeabeil/perception3d
std::vector<pcl::PointCloud<PointT>::Ptr> segment_objects(pcl::PointCloud<PointT>::Ptr cloud_input, double tolerance, int minClusterSize, int maxClusterSize){
    std::vector<pcl::PointIndices> cluster_indices;
    pcl::EuclideanClusterExtraction<PointT> ec;
    ec.setClusterTolerance (tolerance); // 2cm
    ec.setMinClusterSize (minClusterSize);
    ec.setMaxClusterSize (maxClusterSize);
    pcl::search::KdTree<PointT>::Ptr tree (new pcl::search::KdTree<PointT>);
    tree->setInputCloud (cloud_input);
    ec.setSearchMethod (tree);
    ec.setInputCloud (cloud_input);
    ec.extract (cluster_indices);

    // returns a vector of all the objects
    std::vector<pcl::PointCloud<PointT>::Ptr> object_vector_temp;
    for (int i=0; i<cluster_indices.size(); i++){
        pcl::PointIndices cloud_indices = cluster_indices.at(i);
        pcl::PointCloud<PointT>::Ptr cloud_cluster(new pcl::PointCloud<PointT>);
        cloud_cluster = extract_object_from_indices(cloud_input,cloud_indices);
        object_vector_temp.push_back(cloud_cluster);
    }

    return object_vector_temp;
}
コード例 #19
0
ファイル: get_box.cpp プロジェクト: xm-project/xm_object_cui
std::vector<Box2DPoint> Cluster(const pcl::PointCloud<PointT>::Ptr input_cloud)
{
    pcl::PointCloud<PointT>::Ptr cloud_filtered(new pcl::PointCloud<PointT>);
    cloud_filtered = RemovePlane (input_cloud);    

    //Creating  the KdTree object for the search method of the extraction
    pcl::search::KdTree<PointT>::Ptr tree (new pcl::search::KdTree<PointT>);
    tree->setInputCloud (cloud_filtered);

    std::vector<pcl::PointIndices> cluster_indices;
    pcl::EuclideanClusterExtraction<PointT> ec;
    ec.setClusterTolerance (0.02); // 2cm
    ec.setMinClusterSize (100);
    ec.setMaxClusterSize (1000);//
    ec.setSearchMethod (tree);
    ec.setInputCloud (cloud_filtered);
    ec.extract (cluster_indices);

   // pcl::visualization::PCLVisualizer viewer ("cluster");
    std::vector<Box2DPoint> my_points;
    int j = 0;
    for (std::vector<pcl::PointIndices>::const_iterator it = cluster_indices.begin (); it != cluster_indices.end (); ++it)
    {
        pcl::PointCloud<PointT>::Ptr cloud_cluster (new pcl::PointCloud<PointT>);
        for (std::vector<int>::const_iterator pit = it->indices.begin (); pit != it->indices.end (); pit++)
        cloud_cluster->points.push_back (cloud_filtered->points[*pit]); //*
        cloud_cluster->width = cloud_cluster->points.size ();
        cloud_cluster->height = 1;
        cloud_cluster->is_dense = true;

      //  viewer.addPointCloud (cloud_cluster, "cloud");

        float x_min=999,y_min=999,z_min=999;
        float x_max=0,y_max=0,z_max=0;    
        for(int i=0;i<cloud_cluster->size();i++)
        {
            if(cloud_cluster->points[i].x<x_min)
                x_min=cloud_cluster->points[i].x;
            if(cloud_cluster->points[i].y<y_min)
                y_min=cloud_cluster->points[i].y;
            if(cloud_cluster->points[i].z<z_min)
                z_min=cloud_cluster->points[i].z;

            if(cloud_cluster->points[i].x>x_max)
                x_max=cloud_cluster->points[i].x;
            if(cloud_cluster->points[i].y>y_max)
                y_max=cloud_cluster->points[i].y;
            if(cloud_cluster->points[i].z>z_max)
                z_max=cloud_cluster->points[i].z;    
        }

   // viewer.addCube(x_min, x_max, y_min, y_max, z_min, z_max, 0, 255, 0, "cloud");

        Box2DPoint pp;
        pp.x_left_down = x_min*FOCAL/z_min+320;
        pp.y_left_down = y_min*FOCAL/z_min+240;
        pp.x_right_up = x_max*FOCAL/z_max+320;
        pp.y_right_up = y_max*FOCAL/z_max+240;  
        my_points.push_back(pp);
        j++;
   }

    return my_points;
}
コード例 #20
0
void cloud_cb (const sensor_msgs::PointCloud2ConstPtr& cloud_msg){
 // Updating parameters from the parameter server
 ros::param::getCached("/PCL_object_clustering/cluster_tolerans",cluster_tolerans);
 ros::param::getCached("/PCL_object_clustering/cluster_size/min",cluster_size_min);
 ros::param::getCached("/PCL_object_clustering/cluster_size/max",cluster_size_max);
 ros::param::getCached("/PCL_object_clustering/clusters_highest_point",clusters_highest_point);

 // Converting from PointCloud2 msg to pcl::PointCloud
 pcl::PCLPointCloud2 pcl_pc2;
 pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_without_planes (new pcl::PointCloud<pcl::PointXYZ>);
 pcl_conversions::toPCL(*cloud_msg,pcl_pc2);
 pcl::fromPCLPointCloud2(pcl_pc2,*cloud_without_planes);

 if(!(*cloud_without_planes).empty()){
  pcl::search::KdTree<pcl::PointXYZ>::Ptr tree (new pcl::search::KdTree<pcl::PointXYZ>);
  tree->setInputCloud (cloud_without_planes);
  // Getting indeces for each found cluster with parameters cluster_tolerans,
  // cluster_size_min and cluster_size_max
  std::vector<pcl::PointIndices> cluster_indices;
  pcl::EuclideanClusterExtraction<pcl::PointXYZ> ec;
  ec.setClusterTolerance (cluster_tolerans);
  ec.setMinClusterSize (cluster_size_min);
  ec.setMaxClusterSize (cluster_size_max);
  ec.setSearchMethod (tree);
  ec.setInputCloud (cloud_without_planes);
  ec.extract (cluster_indices);

  /* For each cluster we store cluster in tmp_cloud, calculate its centroids.
     If cluster highest point is less than clusters_highest_point we publish
     centroid and append tmp_cloud to cloud_cluster. When we checked through all
     possible centroids we publish cloud_cluster to visualize in rviz.*/
  pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_cluster (new pcl::PointCloud<pcl::PointXYZ>);
  for (std::vector<pcl::PointIndices>::const_iterator it = cluster_indices.begin (); it != cluster_indices.end (); ++it){
   pcl::PointCloud<pcl::PointXYZ>::Ptr tmp_cloud (new pcl::PointCloud<pcl::PointXYZ>);
   for (std::vector<int>::const_iterator pit = it->indices.begin (); pit != it->indices.end (); ++pit){
    tmp_cloud->points.push_back (cloud_without_planes->points[*pit]);
   }
   pcl::PointXYZ min_point, max_point;
   pcl::getMinMax3D(*tmp_cloud,min_point,max_point);
   if(max_point.z < clusters_highest_point){
    Eigen::Vector4f c;
    pcl::compute3DCentroid(*tmp_cloud, c);
    //std::cout << "Centroid is " << c << std::endl;
    object_detecter_2d::object_loc object_loc_msg;
    object_loc_msg.ID = 10;
    object_loc_msg.point.x = c(0);
    object_loc_msg.point.y = c(1);
    object_loc_msg.point.z = c(2);
    pub_centroid.publish(object_loc_msg);
    (*cloud_cluster) = (*cloud_cluster)+(*tmp_cloud);

   }
  }
  cloud_cluster->width = cloud_cluster->points.size ();
  cloud_cluster->height = 1;
  cloud_cluster->is_dense = true;
  (*cloud_cluster).header.frame_id = (*cloud_without_planes).header.frame_id;
  sensor_msgs::PointCloud2 output;
  pcl::toROSMsg(*cloud_cluster, output);
  pub_debug_pcl.publish(output);
 }
}
コード例 #21
0
void cloud_cb (const sensor_msgs::PointCloud2ConstPtr& input)
{
  // ... do data processing
  sensor_msgs::PointCloud2 output;

  pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>);
  pcl::PointCloud<pcl::PointXYZ>::Ptr clustered_cloud (new pcl::PointCloud<pcl::PointXYZ>);
  pcl::fromROSMsg (*input, *cloud);

  // Creating the KdTree object for the search method of the extraction
  pcl::search::KdTree<pcl::PointXYZ>::Ptr tree (new pcl::search::KdTree<pcl::PointXYZ>);
  tree->setInputCloud (cloud);

  std::vector<pcl::PointIndices> cluster_indices;
  pcl::EuclideanClusterExtraction<pcl::PointXYZ> ec;
  ec.setClusterTolerance (0.10); // 2cm
  ec.setMinClusterSize (20);
  ec.setMaxClusterSize (2500);
  ec.setSearchMethod (tree);
  ec.setInputCloud(cloud);
  ec.extract (cluster_indices);
  
  ROS_INFO("cluster_indices has %d data points.", (int) cluster_indices.size());
  ROS_INFO("cloud has %d data points.", (int) cloud->points.size());

  visualization_msgs::Marker marker;
  marker.header   = cloud->header;
  marker.id       = 1;
  marker.type     = visualization_msgs::Marker::CUBE_LIST;
  marker.action   = visualization_msgs::Marker::ADD;
  marker.color.r  = 1;
  marker.color.g  = 0;
  marker.color.b  = 0;
  marker.color.a  = 0.7;
  marker.scale.x  = 0.2;
  marker.scale.y  = 0.2;
  marker.scale.z  = 0.2;
  marker.lifetime = ros::Duration(60.0);
  Eigen::Vector4f minPoint;
  Eigen::Vector4f maxPoint;
//  pcl::getMinMax3D(*cloud, minPoint, maxPoint);

  for (std::vector<pcl::PointIndices>::const_iterator it = cluster_indices.begin (); it != cluster_indices.end (); ++it)
  {
    pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_cluster (new pcl::PointCloud<pcl::PointXYZ>);
    for (std::vector<int>::const_iterator pit = it->indices.begin (); pit != it->indices.end (); pit++)
      cloud_cluster->points.push_back (cloud->points[*pit]); 

    std::cout << "PointCloud representing the Cluster: " << cloud_cluster->points.size () << " data points." << std::endl;
    // Merge current clusters to whole point cloud
    *clustered_cloud += *cloud_cluster;
 //   for(size_t j = 0; j < cloud_cluster->points.size() - 1; j++)
 //   {
      /*
      geometry_msgs::Point pt1;
      pt1.x = cloud_cluster->points[j].x;
      pt1.y = cloud_cluster->points[j].y;
      pt1.z = cloud_cluster->points[j].z;
      geometry_msgs::Point pt2;
      pt2.x = cloud_cluster->points[j+1].x;
      pt2.y = cloud_cluster->points[j+1].y;
      pt2.z = cloud_cluster->points[j+1].z;

      marker.points.push_back(pt1);
      marker.points.push_back(pt2);
      */
      //Seg for top of prism
      geometry_msgs::Point pt3;      
      pt3.x = 0.0;
      pt3.y = 0.0;
      pt3.z = 0.0;
      std_msgs::ColorRGBA colors;
      colors.r = 0.0;
      colors.g = 0.0;
      colors.b = 0.0;
      for(size_t i=0; i<cloud_cluster->points.size(); i++)
      {
        pt3.x += cloud_cluster->points[i].x;
        pt3.y += cloud_cluster->points[i].y;
        pt3.z += cloud_cluster->points[i].z;
      }
      pt3.x /= cloud_cluster->points.size();
      pt3.y /= cloud_cluster->points.size();
      pt3.z /= cloud_cluster->points.size();
      pcl::getMinMax3D(*cloud_cluster, minPoint, maxPoint);
      marker.scale.y= maxPoint.y();
      //marker.scale.x= maxPoint.x();
      //marker.scale.z= maxPoint.z();
      marker.scale.x= maxPoint.x()-minPoint.x();
      colors.r = marker.scale.x;
//      colors.g = marker.scale.y;
      //marker.scale.z= maxPoint.z()-minPoint.z();
      //pt3.z = maxPoint.z();

      //geometry_msgs::Point pt4;
      //pt4.x = cloud_cluster->points[j+1].x;
      //pt4.y = cloud_cluster->points[j+1].y;
      //pt4.z = cloud_cluster->points[j+1].z;
      //pt4.z = maxPoint.z();

      //marker.pose.position.x = pt3.x;
      //marker.pose.position.y = pt3.y;
      //marker.pose.position.z = pt3.z;
      //marker.colors.push_back(colors);
      marker.points.push_back(pt3);
      //marker.points.push_back(pt4);

      //Seg for bottom vertices to top vertices
     // marker.points.push_back(pt1);
      //marker.points.push_back(pt3);
 //   }
    object_pub.publish(marker);

  }
  // Publish the data
  pcl::toROSMsg(*clustered_cloud, output);
  output.header = cloud->header;
//  output.header.frame_id="/camera_link";
//  output.header.stamp = ros::Time::now();

  pub.publish (output);

}
int main (int argc, char** argv) {
	pcl::PointCloud<pcl::PointXYZRGBA>::Ptr cloud (new pcl::PointCloud<pcl::PointXYZRGBA>);
        pcl::PointCloud<pcl::PointXYZRGBA>::Ptr cloud_filtered (new pcl::PointCloud<pcl::PointXYZRGBA>);

	if (pcl::io::loadPCDFile<pcl::PointXYZRGBA> ("cloud_inliers.pcd", *cloud) == -1) {
                PCL_ERROR ("Failed to read file cloud_inliers.pcd \n");
                return (-1);
        }

        std::cout << "Loaded "
                  << cloud->width * cloud->height
                  << " data points from cloud_inliers.pcd."
                  << std::endl;

	pcl::SACSegmentation<pcl::PointXYZRGBA> seg;
	pcl::PointIndices::Ptr inliers (new pcl::PointIndices);
	pcl::ModelCoefficients::Ptr coefficients (new pcl::ModelCoefficients);
	pcl::PointCloud<pcl::PointXYZRGBA>::Ptr cloud_plane (new pcl::PointCloud<pcl::PointXYZRGBA> ());
	pcl::PCDWriter writer;

	seg.setOptimizeCoefficients (true);
	seg.setModelType (pcl::SACMODEL_PLANE);
	seg.setMethodType (pcl::SAC_RANSAC);
	seg.setMaxIterations (100);
	seg.setDistanceThreshold (0.02);

	int i = 0;
	int num_points = (int) cloud->points.size();
	
	while (cloud->points.size() > 0.3 * num_points) {
		seg.setInputCloud (cloud);
		seg.segment (*inliers, *coefficients);

		if (inliers->indices.size() == 0) {
			std::cout << "Could not estimate a planar model for the given dataset." << std::endl;
			break;
		}

		pcl::ExtractIndices<pcl::PointXYZRGBA> extract;
		
		extract.setInputCloud (cloud);
		extract.setIndices (inliers);
		extract.setNegative (false);
		extract.filter (*cloud_plane);

		std::cout << "PointCloud representing the planar component: " << cloud_plane->points.size() << " data points." << std::endl;

		extract.setNegative (true);
		extract.filter (*cloud_filtered);
		*cloud = *cloud_filtered;
	}

	pcl::search::KdTree<pcl::PointXYZRGBA>::Ptr tree (new pcl::search::KdTree<pcl::PointXYZRGBA>);
	tree->setInputCloud (cloud);

	std::vector<pcl::PointIndices> cluster_indices;
	pcl::EuclideanClusterExtraction<pcl::PointXYZRGBA> ec;
	
	ec.setClusterTolerance (0.02);
	ec.setMinClusterSize (100);
	ec.setMaxClusterSize (25000);
	ec.setSearchMethod (tree);
	ec.setInputCloud (cloud);
	ec.extract (cluster_indices);
	
	int j = 0;

	for (std::vector<pcl::PointIndices>::const_iterator it = cluster_indices.begin (); it != cluster_indices.end (); ++it) {
		pcl::PointCloud<pcl::PointXYZRGBA>::Ptr cloud_cluster (new pcl::PointCloud<pcl::PointXYZRGBA>);

		for (std::vector<int>::const_iterator pit = it->indices.begin (); pit != it->indices.end (); pit++)
			cloud_cluster->points.push_back (cloud_filtered->points[*pit]); //*

		cloud_cluster->width = cloud_cluster->points.size ();
		cloud_cluster->height = 1;
		cloud_cluster->is_dense = true;

		std::cout << "PointCloud representing the Cluster: " << cloud_cluster->points.size () << " data points." << std::endl;
		std::stringstream ss;
		ss << "cloud_cluster_" << j << ".pcd";
		writer.write<pcl::PointXYZRGBA> (ss.str (), *cloud_cluster, false); //*

		j++;
	}

	return (0);
}
コード例 #23
0
    // this function gets called every time new pcl data comes in
    void cloudcb(const sensor_msgs::PointCloud2ConstPtr &scan)
	{
	    ROS_INFO("Kinect point cloud receieved");
	    ros::Time start_time = ros::Time::now();
	    ros::Time tcur = ros::Time::now();

	    Eigen::Vector4f centroid;
	    geometry_msgs::Point point;
	    pcl::PassThrough<pcl::PointXYZ> pass;
	    Eigen::VectorXf lims(6);
	    sensor_msgs::PointCloud2::Ptr
		ros_cloud (new sensor_msgs::PointCloud2 ()),
		ros_cloud_filtered (new sensor_msgs::PointCloud2 ());    
	    pcl::PointCloud<pcl::PointXYZ>::Ptr
	    	cloud (new pcl::PointCloud<pcl::PointXYZ> ()),
	    	cloud_downsampled (new pcl::PointCloud<pcl::PointXYZ> ()),
	    	cloud_filtered (new pcl::PointCloud<pcl::PointXYZ> ());
	    
	    // set a parameter telling the world that I am tracking the robot
	    ros::param::set("/tracking_robot", true);

	    ROS_DEBUG("finished declaring vars : %f", (ros::Time::now()-tcur).toSec());
	    tcur = ros::Time::now();

	    ROS_DEBUG("About to transform cloud");
	    // New sensor message for holding the transformed data
	    sensor_msgs::PointCloud2::Ptr scan_transformed
		(new sensor_msgs::PointCloud2());
	    try{
		pcl_ros::transformPointCloud("/oriented_optimization_frame",
					     tf, *scan, *scan_transformed);
	    }
	    catch(tf::TransformException ex) {
		ROS_ERROR("%s", ex.what());
	    }
	    scan_transformed->header.frame_id = "/oriented_optimization_frame";

	    // Convert to pcl
	    ROS_DEBUG("Convert cloud to pcd from rosmsg");
	    pcl::fromROSMsg(*scan_transformed, *cloud);

	    ROS_DEBUG("cloud transformed and converted to pcl : %f",
		      (ros::Time::now()-tcur).toSec());
	    tcur = ros::Time::now();
	    
	    // set time stamp and frame id
	    ros::Time tstamp = ros::Time::now();

	    // run through pass-through filter to eliminate tarp and below robots.
	    ROS_DEBUG("Pass-through filter");
	    pass_through(cloud, cloud_filtered, robot_limits);

	    ROS_DEBUG("done with pass-through : %f", (ros::Time::now()-tcur).toSec());
	    tcur = ros::Time::now();

	    // now let's publish that filtered cloud
	    ROS_DEBUG("Converting and publishing cloud");		      
	    pcl::toROSMsg(*cloud_filtered, *ros_cloud_filtered);
	    ros_cloud_filtered->header.frame_id =
		"/oriented_optimization_frame";
	    cloud_pub[0].publish(ros_cloud_filtered);

	    ROS_DEBUG("published filtered cloud : %f", (ros::Time::now()-tcur).toSec());
	    tcur = ros::Time::now();

	    // Let's do a downsampling before doing cluster extraction
	    pcl::VoxelGrid<pcl::PointXYZ> vg;
	    vg.setInputCloud (cloud_filtered);
	    vg.setLeafSize (0.01f, 0.01f, 0.01f);
	    vg.filter (*cloud_downsampled);

	    ROS_DEBUG("finished downsampling : %f", (ros::Time::now()-tcur).toSec());
	    tcur = ros::Time::now();


	    ROS_DEBUG("Begin extraction filtering");
	    // build a KdTree object for the search method of the extraction
	    pcl::search::KdTree<pcl::PointXYZ>::Ptr tree
	    	(new pcl::search::KdTree<pcl::PointXYZ> ());
	    tree->setInputCloud (cloud_downsampled);
	    
	    ROS_DEBUG("done with KdTree initialization : %f",
		      (ros::Time::now()-tcur).toSec());
	    tcur = ros::Time::now();


	    // create a vector for storing the indices of the clusters
	    std::vector<pcl::PointIndices> cluster_indices;

	    // setup extraction:
	    pcl::EuclideanClusterExtraction<pcl::PointXYZ> ec;
	    ec.setClusterTolerance (0.02); // cm
	    ec.setMinClusterSize (50);
	    ec.setMaxClusterSize (3000);
	    ec.setSearchMethod (tree);
	    ec.setInputCloud (cloud_downsampled);

	    // now we can perform cluster extraction
	    ec.extract (cluster_indices);

	    ROS_DEBUG("finished extraction : %f", (ros::Time::now()-tcur).toSec());
	    tcur = ros::Time::now();

	    // run through the indices, create new clouds, and then publish them
	    int j=1;
	    int number_clusters=0;
	    geometry_msgs::PointStamped pt;
	    puppeteer_msgs::Robots robots;
	    std::vector<int> num;

	    for (std::vector<pcl::PointIndices>::const_iterator
	    	     it=cluster_indices.begin();
	    	 it!=cluster_indices.end (); ++it)
	    {
		number_clusters = (int) cluster_indices.size();
	    	ROS_DEBUG("Number of clusters found: %d",number_clusters);
	    	pcl::PointCloud<pcl::PointXYZ>::Ptr
	    	    cloud_cluster (new pcl::PointCloud<pcl::PointXYZ>);
	    	for (std::vector<int>::const_iterator
	    		 pit = it->indices.begin ();
	    	     pit != it->indices.end (); pit++)
	    	{
	    	    cloud_cluster->points.push_back(cloud_downsampled->points[*pit]);
	    	}
	    	cloud_cluster->width = cloud_cluster->points.size ();
	    	cloud_cluster->height = 1;
	    	cloud_cluster->is_dense = true;

	    	// convert to rosmsg and publish:
	    	ROS_DEBUG("Publishing extracted cloud");
	    	pcl::toROSMsg(*cloud_cluster, *ros_cloud_filtered);
		ros_cloud_filtered->header.frame_id =
		    "/oriented_optimization_frame";
	    	if(j < MAX_CLUSTERS+1)
	    	    cloud_pub[j].publish(ros_cloud_filtered);
	    	j++;

		// compute centroid and add to Robots:
		pcl::compute3DCentroid(*cloud_cluster, centroid);
		pt.point.x = centroid(0);
		pt.point.y = centroid(1);
		pt.point.z = centroid(2);
		pt.header.stamp = tstamp;
		pt.header.frame_id = "/oriented_optimization_frame";
		robots.robots.push_back(pt);
		// add number of points in cluster to num:
		num.push_back(cloud_cluster->points.size());		
	    }

	    ROS_DEBUG("finished creating and publishing clusters : %f", 
		      (ros::Time::now()-tcur).toSec());
	    tcur = ros::Time::now();


	    if (number_clusters > number_robots)
	    {
		ROS_WARN("Number of clusters found is greater "
			 "than the number of robots");
		// pop minimum cluster count
		remove_least_likely(&robots, &num);
	    }
	    
	    robots.header.stamp = tstamp;
	    robots.header.frame_id = "/oriented_optimization_frame";
	    robots.number = number_clusters;

	    robots_pub.publish(robots);

	    ROS_DEBUG("removed extra clusters, and published : %f",
		      (ros::Time::now()-tcur).toSec());
	    tcur = ros::Time::now();

	    ros::Duration d = ros::Time::now() - start_time;
	    ROS_DEBUG("End of cloudcb; time elapsed = %f (%f Hz)",
		      d.toSec(), 1/d.toSec());
	}
コード例 #24
0
/*
* Apply a the region growing algorithm.
* Params[in/out]: the inliers detected by Ransac, the output clusters found by RG
* return the number of clusters
*/
int Segmentation::regionGrowing(std::vector < pcl::PointCloud<pcl::PointXYZRGBA>::Ptr > &inliers, std::vector < pcl::PointCloud<pcl::PointXYZRGBA>::Ptr > &clusters)
{

    //    //      REGION GROWING
    //    if (inliers.size() > 0)
    //    {
    //        for(unsigned int i = 0; i < inliers.size(); i++)
    //        {

    //            pcl::search::Search<pcl::PointXYZRGBA>::Ptr tree = boost::shared_ptr<pcl::search::Search<pcl::PointXYZRGBA> > (new pcl::search::KdTree<pcl::PointXYZRGBA>);
    //            pcl::PointCloud <pcl::Normal>::Ptr normals (new pcl::PointCloud <pcl::Normal>);
    //            pcl::NormalEstimation<pcl::PointXYZRGBA, pcl::Normal> normal_estimator;
    //            normal_estimator.setSearchMethod (tree);
    //            normal_estimator.setInputCloud (inliers[i]);
    //            normal_estimator.setKSearch (50);
    //            normal_estimator.compute (*normals);

    //            pcl::RegionGrowing<pcl::PointXYZRGBA, pcl::Normal> reg;
    //            reg.setMinClusterSize (1000);//1000
    //            reg.setMaxClusterSize (100000000);

    //            reg.setSearchMethod (tree);
    //            reg.setNumberOfNeighbours (30);
    //            reg.setInputCloud (inliers[i]);
    //            //reg.setIndices (indices);
    //            reg.setInputNormals (normals);
    //            reg.setSmoothnessThreshold (7.0 / 180.0 * M_PI); //4.0 / 6
    //            reg.setCurvatureThreshold (4.0); //4.0
    //            std::vector <pcl::PointIndices> clustersIndices;
    //            reg.extract (clustersIndices);
    //            //pcl::PointCloud <pcl::PointXYZRGBA>::Ptr cloud_cluster;
    //            for (std::vector<pcl::PointIndices>::const_iterator it = clustersIndices.begin (); it != clustersIndices.end (); ++it)
    //            {

    //                pcl::PointCloud<pcl::PointXYZRGBA>::Ptr cloud_cluster (new pcl::PointCloud<pcl::PointXYZRGBA>);
    //                for (std::vector<int>::const_iterator pit = it->indices.begin (); pit != it->indices.end (); ++pit)
    //                {
    //                    cloud_cluster->points.push_back (inliers[i]->points[*pit]);
    //                }
    //                cloud_cluster->width = cloud_cluster->points.size ();
    //                cloud_cluster->height = 1;
    //                cloud_cluster->is_dense = true;
    //                clusters.push_back(cloud_cluster);

    //            }
    //        }
    //        return clusters.size();
    //    }
    //    else
    //    {
    //        std::cerr << "No planes detected" << std::endl;
    //        return -1;
    //    }

    //      REGION GROWING
    if (inliers.size() > 0)
    {
        for(unsigned int i = 0; i < inliers.size(); i++)
        {
            pcl::search::KdTree<pcl::PointXYZRGBA>::Ptr tree (new pcl::search::KdTree<pcl::PointXYZRGBA>);
            tree->setInputCloud (inliers[i]);

            std::vector<pcl::PointIndices> cluster_indices;
            pcl::EuclideanClusterExtraction<pcl::PointXYZRGBA> ec;
            ec.setClusterTolerance (0.02); // 2cm
            ec.setMinClusterSize (1000);
            ec.setMaxClusterSize (100000000);
            ec.setSearchMethod (tree);
            ec.setInputCloud (inliers[i]);
            ec.extract (cluster_indices);
            //            pcl::search::Search<pcl::PointXYZRGBA>::Ptr tree = boost::shared_ptr<pcl::search::Search<pcl::PointXYZRGBA> > (new pcl::search::KdTree<pcl::PointXYZRGBA>);
            //            pcl::PointCloud <pcl::Normal>::Ptr normals (new pcl::PointCloud <pcl::Normal>);
            //            pcl::NormalEstimation<pcl::PointXYZRGBA, pcl::Normal> normal_estimator;
            //            normal_estimator.setSearchMethod (tree);
            //            normal_estimator.setInputCloud (inliers[i]);
            //            normal_estimator.setKSearch (50);
            //            normal_estimator.compute (*normals);

            //            pcl::RegionGrowing<pcl::PointXYZRGBA, pcl::Normal> reg;
            //            reg.setMinClusterSize (1000);//1000
            //            reg.setMaxClusterSize (100000000);

            //            reg.setSearchMethod (tree);
            //            reg.setNumberOfNeighbours (30);
            //            reg.setInputCloud (inliers[i]);
            //            //reg.setIndices (indices);
            //            reg.setInputNormals (normals);
            //            reg.setSmoothnessThreshold (7.0 / 180.0 * M_PI); //4.0 / 6
            //            reg.setCurvatureThreshold (4.0); //4.0

            //            std::vector <pcl::PointIndices> clustersIndices;
            //            reg.extract (clustersIndices);
            //            //pcl::PointCloud <pcl::PointXYZRGBA>::Ptr cloud_cluster;
            //            for (std::vector<pcl::PointIndices>::const_iterator it = clustersIndices.begin (); it != clustersIndices.end (); ++it)
            //            {
            for (std::vector<pcl::PointIndices>::const_iterator it = cluster_indices.begin (); it != cluster_indices.end (); ++it)
            {
                pcl::PointCloud<pcl::PointXYZRGBA>::Ptr cloud_cluster (new pcl::PointCloud<pcl::PointXYZRGBA>);
                for (std::vector<int>::const_iterator pit = it->indices.begin (); pit != it->indices.end (); ++pit)
                {
                    cloud_cluster->points.push_back (inliers[i]->points[*pit]);
                }
                cloud_cluster->width = cloud_cluster->points.size ();
                cloud_cluster->height = 1;
                cloud_cluster->is_dense = true;
                clusters.push_back(cloud_cluster);
            }
            //                pcl::PointCloud<pcl::PointXYZRGBA>::Ptr cloud_cluster (new pcl::PointCloud<pcl::PointXYZRGBA>);
            //                for (std::vector<int>::const_iterator pit = it->indices.begin (); pit != it->indices.end (); ++pit)
            //                {
            //                    cloud_cluster->points.push_back (inliers[i]->points[*pit]);
            //                }
            //                cloud_cluster->width = cloud_cluster->points.size ();
            //                cloud_cluster->height = 1;
            //                cloud_cluster->is_dense = true;
            //                clusters.push_back(cloud_cluster);

            //            }
        }
        return clusters.size();
    }
    else
    {
        std::cerr << "No planes detected" << std::endl;
        return -1;
    }
}
コード例 #25
0
/**
 *
 * @brief Publish the data based on set up parameters.
 *
 */
bool publishData() {
    /*
     * Get frame from camera
     */
    status = BTAgetFrame(btaHandle, &frame,3000);  //3000;
    if (status != BTA_StatusOk) {
        std::cout << "\t Could transfer data: " << status << "\n";
        return 0;
    }

    /*
     * Obtain XYZcoordinates from 3Dcamera
     */
    float_t *xCoordinates, *yCoordinates, *zCoordinates;
    BTA_DataFormat dataFormat;
    BTA_Unit unit;
    uint16_t xRes, yRes;
    status = BTAgetXYZcoordinates(frame, (void **)&xCoordinates, (void **)&yCoordinates,
                                  (void **)&zCoordinates, &dataFormat, &unit, &xRes, &yRes);
    if (status != BTA_StatusOk) {
        std::cout << "\t Could get cartesian coordinates: " << status << "\n";
        return 0;
    }

    /*
     * Creating the pointcloud
     */
    PointCloud::Ptr cloud_raw (new PointCloud);
    cloud_raw->header.frame_id = "map";
    cloud_raw->height = 1;
    cloud_raw->width = xRes*yRes;

    for (size_t i = 0; i < xRes*yRes; ++i)	{
        pcl::PointXYZ temp_point;
        temp_point.x = xCoordinates[i];
        temp_point.y = yCoordinates[i];
        temp_point.z = zCoordinates[i];
        cloud_raw->points.push_back(temp_point);
    }
    /*
     * Downsampling a PointCloud using a VoxelGrid filter
     */
    PointCloud::Ptr cloud_filtered (new PointCloud);
    pcl::VoxelGrid<pcl::PointXYZ> sor;
    sor.setInputCloud (cloud_raw);
    sor.setLeafSize (VOXEL_GRID_LEAF_SIZE, VOXEL_GRID_LEAF_SIZE, VOXEL_GRID_LEAF_SIZE);
    sor.filter (*cloud_filtered);

    /*
     * Removing outliers using a StatisticalOutlierRemoval filter
     */
    PointCloud::Ptr cloud_filtered_without_outliers (new PointCloud);
    pcl::StatisticalOutlierRemoval<pcl::PointXYZ> sor_stat;
    sor_stat.setInputCloud (cloud_filtered);
    sor_stat.setMeanK (STAT_FILTER_MEAN_K);
    sor_stat.setStddevMulThresh (STAT_FILTER_DEV_MUL_THRESH);
    sor_stat.filter (*cloud_filtered_without_outliers);

    /*
     * Euclidean Cluster Extraction
     */
    // Creating the KdTree object for the search method of the extraction
    pcl::search::KdTree<pcl::PointXYZ>::Ptr tree (new pcl::search::KdTree<pcl::PointXYZ>);
    tree->setInputCloud (cloud_filtered_without_outliers);
    pcl::EuclideanClusterExtraction<pcl::PointXYZ> ec;
    ec.setClusterTolerance (EUCL_CLUSTER_EXTRAC_TOLERANCE);
    ec.setMinClusterSize (EUCL_CLUSTER_EXTRAC_MIN_CLUSTER_SIZE);
    ec.setMaxClusterSize (cloud_filtered_without_outliers->size());
    ec.setSearchMethod (tree);
    ec.setInputCloud (cloud_filtered_without_outliers);
    std::vector<pcl::PointIndices> cluster_indices;
    ec.extract (cluster_indices);

    std::vector<pcl::PointCloud<pcl::PointXYZ>::Ptr > vec_cluters;
    for (std::vector<pcl::PointIndices>::const_iterator it = cluster_indices.begin (); it != cluster_indices.end (); ++it)
    {
        pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_cluster (new pcl::PointCloud<pcl::PointXYZ>);
        for (std::vector<int>::const_iterator pit = it->indices.begin (); pit != it->indices.end (); ++pit){
            cloud_cluster->points.push_back (cloud_filtered_without_outliers->points[*pit]);
        }
        vec_cluters.push_back(cloud_cluster);
    }

    /*
     * ConvexHull for every cluster
     */
    /*
    std::vector<pcl::PointCloud<pcl::PointXYZ>::Ptr > vec_convex_hulls;
    for (int i = 0; i < vec_cluters.size(); ++i) {
        pcl::PointCloud<pcl::PointXYZ>::Ptr cloud (new pcl::PointCloud<pcl::PointXYZ>);
        pcl::ConvexHull<pcl::PointXYZ> hull;
        hull.setInputCloud (vec_cluters[i]);
        hull.reconstruct (*cloud);
        vec_convex_hulls.push_back(cloud);
    }
    */

    /*
     * Bounding box for every cluster
     */
    obst_min.clear();
    obst_max.clear();
    for (int i = 0; i < vec_cluters.size(); ++i) {
        obst_min.push_back(pcl::PointXYZ());
        obst_max.push_back(pcl::PointXYZ());
        pcl::getMinMax3D(*vec_cluters[i], obst_min[i], obst_max[i]);
    }

    /*
     * Visualization of convex hulls
     */
    visualizer->clearWindow();
    for (int i = 0; i < vec_cluters.size(); ++i) {
        //visualizer->addPointCloud(vec_cluters[i],i);
        //visualizer->addConvexMesh(vec_cluters[i],i);
        visualizer->addBox(obst_min[i],obst_max[i],i);
    }
    visualizer->refresh();


    status = BTAfreeFrame(&frame);
    if (status != BTA_StatusOk) {
        std::cout << "\t Could not free frame: " << status << "\n";
        return 0;
    }

    return 1;
}
コード例 #26
0
ファイル: segment.cpp プロジェクト: pr3mar/ROS
void 
cloud_cb (const sensor_msgs::PointCloud2ConstPtr& input)
{
  // Convert the sensor_msgs/PointCloud2 data to pcl/PointCloud
  pcl::PointCloud<pcl::PointXYZ>::Ptr cloud (new pcl::PointCloud<pcl::PointXYZ>), cloud_f (new pcl::PointCloud<pcl::PointXYZ>);
  pcl::fromROSMsg (*input, *cloud);
  
  pcl::VoxelGrid<pcl::PointXYZ> vg;
  pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_filtered (new pcl::PointCloud<pcl::PointXYZ>);
  vg.setInputCloud(cloud);
  vg.setLeafSize(0.01f, 0.01f, 0.01f);
  vg.filter(*cloud_filtered);
  
  pcl::ModelCoefficients::Ptr coefficients(new pcl::ModelCoefficients);
  pcl::PointIndices::Ptr inliers (new pcl::PointIndices);
  pcl::SACSegmentation<pcl::PointXYZ> seg;
  pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_plane (new pcl::PointCloud<pcl::PointXYZ>() );
  seg.setOptimizeCoefficients(true);
  seg.setModelType(pcl::SACMODEL_PLANE);
  seg.setMethodType(pcl::SAC_RANSAC);
  seg.setMaxIterations(100);
  seg.setDistanceThreshold(0.02);

  int i = 0, nr_points = (int) cloud_filtered -> points.size();
  while(cloud_filtered -> points.size() > 0.3 * nr_points)
  {
    seg.setInputCloud(cloud_filtered);
    seg.segment(*inliers, *coefficients);
    if(inliers -> indices.size() == 0)
        break;
    pcl::ExtractIndices<pcl::PointXYZ> extract;
    extract.setInputCloud(cloud_filtered);
    extract.setIndices(inliers);
    extract.setNegative(false);
    extract.filter(*cloud_plane);
    
    extract.setNegative(true);
    extract.filter(*cloud_f);
    *cloud_filtered = *cloud_f;
    
  }

  pcl::search::KdTree<pcl::PointXYZ>::Ptr tree(new pcl::search::KdTree<pcl::PointXYZ>);
  tree -> setInputCloud(cloud_filtered);
  
  std::vector<pcl::PointIndices> cluster_indices;
  pcl::EuclideanClusterExtraction<pcl::PointXYZ> ec;
  ec.setClusterTolerance(0.02);
  ec.setMinClusterSize(100);
  ec.setMaxClusterSize(25000);
  ec.setSearchMethod(tree);
  ec.setInputCloud(cloud_filtered);
  ec.extract(cluster_indices);


  pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_cluster (new pcl::PointCloud<pcl::PointXYZ>);
  for (std::vector<pcl::PointIndices>::const_iterator it = cluster_indices.begin (); it != cluster_indices.end (); ++it)
  {
    for (std::vector<int>::const_iterator pit = it->indices.begin (); pit != it->indices.end (); ++pit)
      cloud_cluster->points.push_back (cloud_filtered->points[*pit]);
  }
  sensor_msgs::PointCloud2 output;
  pcl::toROSMsg(*cloud_cluster, output);  
  pub.publish (output);
}
コード例 #27
0
int 
main (int argc, char** argv)
{
  // Read in the cloud data
  pcl::PCDReader reader;
  pcl::PointCloud<pcl::PointXYZ>::Ptr cloud (new pcl::PointCloud<pcl::PointXYZ>), cloud_f (new pcl::PointCloud<pcl::PointXYZ>);
  reader.read ("table_scene_lms400.pcd", *cloud);
  std::cout << "PointCloud before filtering has: " << cloud->points.size () << " data points." << std::endl; //*

  // Create the filtering object: downsample the dataset using a leaf size of 1cm
  pcl::VoxelGrid<pcl::PointXYZ> vg;
  pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_filtered (new pcl::PointCloud<pcl::PointXYZ>);
  vg.setInputCloud (cloud);
  vg.setLeafSize (0.01f, 0.01f, 0.01f);
  vg.filter (*cloud_filtered);
  std::cout << "PointCloud after filtering has: " << cloud_filtered->points.size ()  << " data points." << std::endl; //*

  // Create the segmentation object for the planar model and set all the parameters
  pcl::SACSegmentation<pcl::PointXYZ> seg;
  pcl::PointIndices::Ptr inliers (new pcl::PointIndices);
  pcl::ModelCoefficients::Ptr coefficients (new pcl::ModelCoefficients);
  pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_plane (new pcl::PointCloud<pcl::PointXYZ> ());
  pcl::PCDWriter writer;
  seg.setOptimizeCoefficients (true);
  seg.setModelType (pcl::SACMODEL_PLANE);
  seg.setMethodType (pcl::SAC_RANSAC);
  seg.setMaxIterations (100);
  seg.setDistanceThreshold (0.02);

  int i=0, nr_points = (int) cloud_filtered->points.size ();
  while (cloud_filtered->points.size () > 0.3 * nr_points)
  {
    // Segment the largest planar component from the remaining cloud
    seg.setInputCloud (cloud_filtered);
    seg.segment (*inliers, *coefficients);
    if (inliers->indices.size () == 0)
    {
      std::cout << "Could not estimate a planar model for the given dataset." << std::endl;
      break;
    }

    // Extract the planar inliers from the input cloud
    pcl::ExtractIndices<pcl::PointXYZ> extract;
    extract.setInputCloud (cloud_filtered);
    extract.setIndices (inliers);
    extract.setNegative (false);

    // Get the points associated with the planar surface
    extract.filter (*cloud_plane);
    std::cout << "PointCloud representing the planar component: " << cloud_plane->points.size () << " data points." << std::endl;

    // Remove the planar inliers, extract the rest
    extract.setNegative (true);
    extract.filter (*cloud_f);
    *cloud_filtered = *cloud_f;
  }

  // Creating the KdTree object for the search method of the extraction
  pcl::search::KdTree<pcl::PointXYZ>::Ptr tree (new pcl::search::KdTree<pcl::PointXYZ>);
  tree->setInputCloud (cloud_filtered);

  std::vector<pcl::PointIndices> cluster_indices;
  pcl::EuclideanClusterExtraction<pcl::PointXYZ> ec;
  ec.setClusterTolerance (0.02); // 2cm
  ec.setMinClusterSize (100);
  ec.setMaxClusterSize (25000);
  ec.setSearchMethod (tree);
  ec.setInputCloud (cloud_filtered);
  ec.extract (cluster_indices);

  int j = 0;
  for (std::vector<pcl::PointIndices>::const_iterator it = cluster_indices.begin (); it != cluster_indices.end (); ++it)
  {
    pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_cluster (new pcl::PointCloud<pcl::PointXYZ>);
    for (std::vector<int>::const_iterator pit = it->indices.begin (); pit != it->indices.end (); pit++)
      cloud_cluster->points.push_back (cloud_filtered->points[*pit]); //*
    cloud_cluster->width = cloud_cluster->points.size ();
    cloud_cluster->height = 1;
    cloud_cluster->is_dense = true;

	// Visualization removed noise
	printf("\ncloud_cluster\n");
	pcl::visualization::PCLVisualizer viewer1 ("cloud_cluster");

	pcl::visualization::PointCloudColorHandlerCustom<pcl::PointXYZ> cloud_cluster_handler (cloud_cluster, 0, 0, 0); // Where 255,255,255 are R,G,B colors
	viewer1.addPointCloud (cloud_cluster, cloud_cluster_handler, "cloud_cluster");	// We add the point cloud to the viewer and pass the color handler

	//viewer.addCoordinateSystem (1.0, "cloud", 0);
	viewer1.setBackgroundColor(0.95, 0.95, 0.95, 0); // Setting background to a dark grey
	viewer1.setPointCloudRenderingProperties (pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 2, "cloud_cluster");
	
	//viewer.setPosition(800, 400); // Setting visualiser window position

	while (!viewer1.wasStopped ()) { // Display the visualiser untill 'q' key is pressed
		viewer1.spinOnce ();
	}


    std::cout << "PointCloud representing the Cluster: " << cloud_cluster->points.size () << " data points." << std::endl;
    std::stringstream ss;
    ss << "cloud_cluster_" << j << ".pcd";
    writer.write<pcl::PointXYZ> (ss.str (), *cloud_cluster, false); //*
    j++;
  }

  return (0);
}
コード例 #28
0
ファイル: main.cpp プロジェクト: jgvictores/snippets
    void cloud_cb_ (const pcl::PointCloud<pcl::PointXYZ>::ConstPtr &cloud) {
        if (!viewer.wasStopped()) {
//            viewer.showCloud (cloud);
//            writer.write<pcl::PointXYZ> ("kinect_cloud.pcd", *cloud, false); //*
//            std::cout << "PointCloud before filtering has: " << cloud->points.size () << " data points." << std::endl;
  // Create the filtering object: downsample the dataset using a leaf size of 1cm
  pcl::VoxelGrid<pcl::PointXYZ> vg;
  pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_filtered (new pcl::PointCloud<pcl::PointXYZ>);
  vg.setInputCloud (cloud);
  vg.setLeafSize (0.01f, 0.01f, 0.01f);
  vg.filter (*cloud_filtered);
//  std::cout << "PointCloud after filtering has: " << cloud_filtered->points.size ()  << " data points." << std::endl; //*

  // Create the segmentation object for the planar model and set all the parameters
  pcl::SACSegmentation<pcl::PointXYZ> seg;
  pcl::PointIndices::Ptr inliers (new pcl::PointIndices);
  pcl::ModelCoefficients::Ptr coefficients (new pcl::ModelCoefficients);
  pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_plane (new pcl::PointCloud<pcl::PointXYZ> ());
  pcl::PCDWriter writer;
  seg.setOptimizeCoefficients (true);
  seg.setModelType (pcl::SACMODEL_PLANE);
  seg.setMethodType (pcl::SAC_RANSAC);
  seg.setMaxIterations (100);
  seg.setDistanceThreshold (0.02);

  int i=0, nr_points = (int) cloud_filtered->points.size ();
  while (cloud_filtered->points.size () > 0.3 * nr_points)
  {
    // Segment the largest planar component from the remaining cloud
    seg.setInputCloud (cloud_filtered);
    seg.segment (*inliers, *coefficients);
    if (inliers->indices.size () == 0)
    {
      std::cout << "Could not estimate a planar model for the given dataset." << std::endl;
      break;
    }

   pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_f (new pcl::PointCloud<pcl::PointXYZ>);

    // Extract the planar inliers from the input cloud
    pcl::ExtractIndices<pcl::PointXYZ> extract;
    extract.setInputCloud (cloud_filtered);
    extract.setIndices (inliers);
    extract.setNegative (false);

    // Write the planar inliers to disk
    extract.filter (*cloud_plane);
//    std::cout << "PointCloud representing the planar component: " << cloud_plane->points.size () << " data points." << std::endl;

    // Remove the planar inliers, extract the rest
    extract.setNegative (true);
    extract.filter (*cloud_f);
    cloud_filtered = cloud_f;
  }

  // Creating the KdTree object for the search method of the extraction
  pcl::search::KdTree<pcl::PointXYZ>::Ptr tree (new pcl::search::KdTree<pcl::PointXYZ>);
  tree->setInputCloud (cloud_filtered);

  std::vector<pcl::PointIndices> cluster_indices;
  pcl::EuclideanClusterExtraction<pcl::PointXYZ> ec;
  ec.setClusterTolerance (0.02); // 2cm
  ec.setMinClusterSize (100);
  ec.setMaxClusterSize (25000);
  ec.setSearchMethod (tree);
  ec.setInputCloud (cloud_filtered);
  ec.extract (cluster_indices);

  int j = 0;
  std::vector<pcl::PointIndices>::const_iterator it = cluster_indices.begin ();
 // for (std::vector<pcl::PointIndices>::const_iterator it = cluster_indices.begin (); it != cluster_indices.end (); ++it)
  {
    pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_cluster (new pcl::PointCloud<pcl::PointXYZ>);
    for (std::vector<int>::const_iterator pit = it->indices.begin (); pit != it->indices.end (); pit++)
      cloud_cluster->points.push_back (cloud_filtered->points[*pit]); //*
    cloud_cluster->width = cloud_cluster->points.size ();
    cloud_cluster->height = 1;
    cloud_cluster->is_dense = true;

  //  std::cout << "PointCloud representing the Cluster: " << cloud_cluster->points.size () << " data points." << std::endl;
  //  std::stringstream ss;
  //  ss << "cloud_cluster_" << j << ".pcd";
  //  writer.write<pcl::PointXYZ> (ss.str (), *cloud_cluster, false); //*
  //  j++;
    viewer.showCloud (cloud_cluster);

  }

        }
    }
コード例 #29
0
int main (int argc, char** argv)
{
    //---------------------------------------------------------------------------------------------------
    //-- Initialization stuff
    //---------------------------------------------------------------------------------------------------

    //-- Command-line arguments
    float ransac_threshold = 0.02;
    float hsv_s_threshold = 0.30;
    float hsv_v_threshold = 0.35;

    //-- Show usage
    if (pcl::console::find_switch(argc, argv, "-h") || pcl::console::find_switch(argc, argv, "--help"))
    {
        show_usage(argv[0]);
        return 0;
    }

    if (pcl::console::find_switch(argc, argv, "--ransac-threshold"))
        pcl::console::parse_argument(argc, argv, "--ransac-threshold", ransac_threshold);
    else
    {
        std::cerr << "RANSAC theshold not specified, using default value..." << std::endl;
    }

    if (pcl::console::find_switch(argc, argv, "--hsv-s-threshold"))
        pcl::console::parse_argument(argc, argv, "--hsv-s-threshold", hsv_s_threshold);
    else
    {
        std::cerr << "Saturation theshold not specified, using default value..." << std::endl;
    }

    if (pcl::console::find_switch(argc, argv, "--hsv-v-threshold"))
        pcl::console::parse_argument(argc, argv, "--hsv-v-threshold", hsv_v_threshold);
    else
    {
        std::cerr << "Value theshold not specified, using default value..." << std::endl;
    }

    //-- Get point cloud file from arguments
    std::vector<int> filenames;
    bool file_is_pcd = false;

    filenames = pcl::console::parse_file_extension_argument(argc, argv, ".ply");

    if (filenames.size() != 1)
    {
        filenames = pcl::console::parse_file_extension_argument(argc, argv, ".pcd");

        if (filenames.size() != 1)
        {
            show_usage(argv[0]);
            return -1;
        }

        file_is_pcd = true;
    }

    //-- Load point cloud data
    pcl::PointCloud<pcl::PointXYZ>::Ptr source_cloud(new pcl::PointCloud<pcl::PointXYZ>);

    if (file_is_pcd)
    {
        if (pcl::io::loadPCDFile(argv[filenames[0]], *source_cloud) < 0)
        {
            std::cout << "Error loading point cloud " << argv[filenames[0]] << std::endl << std::endl;
            show_usage(argv[0]);
            return -1;
        }
    }
    else
    {
        if (pcl::io::loadPLYFile(argv[filenames[0]], *source_cloud) < 0)
        {
            std::cout << "Error loading point cloud " << argv[filenames[0]] << std::endl << std::endl;
            show_usage(argv[0]);
            return -1;
        }
    }

    //-- Load point cloud data (with color)
    pcl::PointCloud<pcl::PointXYZRGB>::Ptr source_cloud_color(new pcl::PointCloud<pcl::PointXYZRGB>);

    if (file_is_pcd)
    {
        if (pcl::io::loadPCDFile(argv[filenames[0]], *source_cloud_color) < 0)
        {
            std::cout << "Error loading colored point cloud " << argv[filenames[0]] << std::endl << std::endl;
            show_usage(argv[0]);
            return -1;
        }
    }
    else
    {
        if (pcl::io::loadPLYFile(argv[filenames[0]], *source_cloud_color) < 0)
        {
            std::cout << "Error loading colored point cloud " << argv[filenames[0]] << std::endl << std::endl;
            show_usage(argv[0]);
            return -1;
        }
    }

    //-- Print arguments to user
    std::cout << "Selected arguments: " << std::endl
              << "\tRANSAC threshold: " << ransac_threshold << std::endl
              << "\tColor point threshold: " << hsv_s_threshold << std::endl
              << "\tColor region threshold: " << hsv_v_threshold << std::endl;

    pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_filtered(new pcl::PointCloud<pcl::PointXYZ>);


    //--------------------------------------------------------------------------------------------------------
    //-- Program does actual work from here
    //--------------------------------------------------------------------------------------------------------
    Debug debug;
    debug.setAutoShow(false);
    debug.setEnabled(false);

    debug.setEnabled(true);
    debug.plotPointCloud<pcl::PointXYZRGB>(source_cloud_color, Debug::COLOR_ORIGINAL);
    debug.show("Original with color");

    //-- Downsample the dataset prior to plane detection (using a leaf size of 1cm)
    //-----------------------------------------------------------------------------------
    pcl::VoxelGrid<pcl::PointXYZ> voxel_grid;
    voxel_grid.setInputCloud(source_cloud);
    voxel_grid.setLeafSize(0.01f, 0.01f, 0.01f);
    voxel_grid.filter(*cloud_filtered);
    std::cout << "Initially PointCloud has: " << source_cloud->points.size ()  << " data points." << std::endl;
    std::cout << "PointCloud after filtering has: " << cloud_filtered->points.size ()  << " data points." << std::endl;

    //-- Detect all possible planes
    //-----------------------------------------------------------------------------------
    std::vector<pcl::ModelCoefficientsPtr> all_planes;

    pcl::SACSegmentation<pcl::PointXYZ> ransac_segmentation;
    ransac_segmentation.setOptimizeCoefficients(true);
    ransac_segmentation.setModelType(pcl::SACMODEL_PLANE);
    ransac_segmentation.setMethodType(pcl::SAC_RANSAC);
    ransac_segmentation.setDistanceThreshold(ransac_threshold);

    pcl::PointIndices::Ptr inliers(new pcl::PointIndices);
    pcl::ModelCoefficients::Ptr current_plane(new pcl::ModelCoefficients);

    int i=0, nr_points = (int) cloud_filtered->points.size();
    while (cloud_filtered->points.size() > 0.3 * nr_points)
    {
        // Segment the largest planar component from the remaining cloud
        ransac_segmentation.setInputCloud(cloud_filtered);
        ransac_segmentation.segment(*inliers, *current_plane);
        if (inliers->indices.size() == 0)
        {
            std::cout << "Could not estimate a planar model for the given dataset." << std::endl;
            break;
        }

        // Extract the planar inliers from the input cloud
        pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_f(new pcl::PointCloud<pcl::PointXYZ>);
        pcl::ExtractIndices<pcl::PointXYZ> extract;
        extract.setInputCloud(cloud_filtered);
        extract.setIndices(inliers);
        extract.setNegative(false);

        // Remove the planar inliers, extract the rest
        extract.setNegative(true);
        extract.filter(*cloud_f);
        *cloud_filtered = *cloud_f;

        //-- Save plane
        pcl::ModelCoefficients::Ptr copy_current_plane(new pcl::ModelCoefficients);
        *copy_current_plane = *current_plane;
        all_planes.push_back(copy_current_plane);

        //-- Debug stuff
        debug.setEnabled(false);
        debug.plotPlane(*current_plane, Debug::COLOR_BLUE);
        debug.plotPointCloud<pcl::PointXYZ>(cloud_filtered, Debug::COLOR_RED);
        debug.show("Plane segmentation");
    }

    //-- Filter planes to obtain garment plane
    //-----------------------------------------------------------------------------------
    pcl::ModelCoefficients::Ptr garment_plane(new pcl::ModelCoefficients);
    float min_height = FLT_MAX;
    pcl::PointXYZ garment_projected_center;

    for(int i = 0; i < all_planes.size(); i++)
    {
        //-- Check orientation
        Eigen::Vector3f normal_vector(all_planes[i]->values[0],
                                      all_planes[i]->values[1],
                                      all_planes[i]->values[2]);
        normal_vector.normalize();
        Eigen::Vector3f good_orientation(0, -1, -1);
        good_orientation.normalize();

        std::cout << "Checking vector with dot product: " << std::abs(normal_vector.dot(good_orientation)) << std::endl;
        if (std::abs(normal_vector.dot(good_orientation)) >= 0.9)
        {
            //-- Check "height" (height is defined in the local frame of reference in the yz direction)
            //-- With this frame, it is approximately equal to the norm of the vector OO' (being O the
            //-- center of the old frame and O' the projection of that center onto the plane).

            //-- Project center point onto given plane:
            pcl::PointCloud<pcl::PointXYZ>::Ptr center_to_be_projected_cloud(new pcl::PointCloud<pcl::PointXYZ>);
            center_to_be_projected_cloud->points.push_back(pcl::PointXYZ(0,0,0));
            pcl::PointCloud<pcl::PointXYZ>::Ptr center_projected_cloud(new pcl::PointCloud<pcl::PointXYZ>);

            pcl::ProjectInliers<pcl::PointXYZ> project_inliners;
            project_inliners.setModelType(pcl::SACMODEL_PLANE);
            project_inliners.setInputCloud(center_to_be_projected_cloud);
            project_inliners.setModelCoefficients(all_planes[i]);
            project_inliners.filter(*center_projected_cloud);
            pcl::PointXYZ projected_center = center_projected_cloud->points[0];
            Eigen::Vector3f projected_center_vector(projected_center.x, projected_center.y, projected_center.z);

            float height = projected_center_vector.norm();
            if (height < min_height)
            {
                min_height = height;
                *garment_plane = *all_planes[i];
                garment_projected_center = projected_center;
            }
        }
    }

    if (!(min_height < FLT_MAX))
    {
        std::cerr << "Garment plane not found!" << std::endl;
        return -3;
    }
    else
    {
        std::cout << "Found closest plane with h=" << min_height << std::endl;

        //-- Debug stuff
        debug.setEnabled(true);
        debug.plotPlane(*garment_plane, Debug::COLOR_BLUE);
        debug.plotPointCloud<pcl::PointXYZ>(source_cloud, Debug::COLOR_RED);
        debug.show("Garment plane");
    }

    //-- Reorient cloud to origin (with color point cloud)
    //-----------------------------------------------------------------------------------
    //-- Translating to center
    //pcl::PointCloud<pcl::PointXYZRGB>::Ptr centered_cloud(new pcl::PointCloud<pcl::PointXYZRGB>);
    Eigen::Affine3f translation_transform = Eigen::Affine3f::Identity();
    translation_transform.translation() << -garment_projected_center.x, -garment_projected_center.y, -garment_projected_center.z;
    //pcl::transformPointCloud(*source_cloud_color, *centered_cloud, translation_transform);

    //-- Orient using the plane normal
    pcl::PointCloud<pcl::PointXYZRGB>::Ptr oriented_cloud(new pcl::PointCloud<pcl::PointXYZRGB>);
    Eigen::Vector3f normal_vector(garment_plane->values[0], garment_plane->values[1], garment_plane->values[2]);
    //-- Check normal vector orientation
    if (normal_vector.dot(Eigen::Vector3f::UnitZ()) >= 0 && normal_vector.dot(Eigen::Vector3f::UnitY()) >= 0)
        normal_vector = -normal_vector;
    Eigen::Quaternionf rotation_quaternion = Eigen::Quaternionf().setFromTwoVectors(normal_vector, Eigen::Vector3f::UnitZ());
    //pcl::transformPointCloud(*centered_cloud, *oriented_cloud, Eigen::Vector3f(0,0,0), rotation_quaternion);
    Eigen::Transform<float, 3, Eigen::Affine> t(rotation_quaternion * translation_transform);
    pcl::transformPointCloud(*source_cloud_color, *oriented_cloud, t);

    //-- Save to file
    record_transformation(argv[filenames[0]]+std::string("-transform1.txt"), translation_transform, rotation_quaternion);

    debug.setEnabled(true);
    debug.plotPointCloud<pcl::PointXYZRGB>(oriented_cloud, Debug::COLOR_GREEN);
    debug.show("Oriented");

    //-- Filter points under the garment table
    //-----------------------------------------------------------------------------------
    pcl::PointCloud<pcl::PointXYZRGB>::Ptr garment_table_cloud(new pcl::PointCloud<pcl::PointXYZRGB>);
    pcl::PassThrough<pcl::PointXYZRGB> passthrough_filter;
    passthrough_filter.setInputCloud(oriented_cloud);
    passthrough_filter.setFilterFieldName("z");
    passthrough_filter.setFilterLimits(-ransac_threshold/2.0f, FLT_MAX);
    passthrough_filter.setFilterLimitsNegative(false);
    passthrough_filter.filter(*garment_table_cloud);

    debug.setEnabled(true);
    debug.plotPointCloud<pcl::PointXYZRGB>(garment_table_cloud, Debug::COLOR_GREEN);
    debug.show("Table cloud (filtered)");

    //-- Color segmentation of the garment
    //-----------------------------------------------------------------------------------
    //-- HSV thresholding
    pcl::PointCloud<pcl::PointXYZHSV>::Ptr hsv_cloud(new pcl::PointCloud<pcl::PointXYZHSV>);
    pcl::PointCloud<pcl::PointXYZRGB>::Ptr filtered_garment_cloud(new pcl::PointCloud<pcl::PointXYZRGB>);
    pcl::PointCloudXYZRGBtoXYZHSV(*garment_table_cloud, *hsv_cloud);
    for (int i = 0; i < hsv_cloud->points.size(); i++)
    {
        if (isnan(hsv_cloud->points[i].x) || isnan(hsv_cloud->points[i].y || isnan(hsv_cloud->points[i].z)))
            continue;
        if (hsv_cloud->points[i].s > hsv_s_threshold &&  hsv_cloud->points[i].v > hsv_v_threshold)
            filtered_garment_cloud->push_back(garment_table_cloud->points[i]);
    }

    debug.setEnabled(true);
    debug.plotPointCloud<pcl::PointXYZRGB>(filtered_garment_cloud, Debug::COLOR_GREEN);
    debug.show("Garment cloud");

    //-- Euclidean Clustering of the resultant cloud
    pcl::search::KdTree<pcl::PointXYZRGB>::Ptr tree(new pcl::search::KdTree<pcl::PointXYZRGB>);
    tree->setInputCloud(filtered_garment_cloud);

    std::vector<pcl::PointIndices> cluster_indices;
    pcl::EuclideanClusterExtraction<pcl::PointXYZRGB> euclidean_custering;
    euclidean_custering.setClusterTolerance(0.005);
    euclidean_custering.setMinClusterSize(100);
    euclidean_custering.setSearchMethod(tree);
    euclidean_custering.setInputCloud(filtered_garment_cloud);
    euclidean_custering.extract(cluster_indices);

    pcl::PointCloud<pcl::PointXYZRGB>::Ptr largest_color_cluster(new pcl::PointCloud<pcl::PointXYZRGB>);
    int largest_cluster_size = 0;
    for (auto it = cluster_indices.begin (); it != cluster_indices.end (); ++it)
    {
      pcl::PointCloud<pcl::PointXYZRGB>::Ptr cloud_cluster (new pcl::PointCloud<pcl::PointXYZRGB>);
      for (auto pit = it->indices.begin (); pit != it->indices.end (); ++pit)
        cloud_cluster->points.push_back(filtered_garment_cloud->points[*pit]);
      cloud_cluster->width = cloud_cluster->points.size ();
      cloud_cluster->height = 1;
      cloud_cluster->is_dense = true;

      std::cout << "Found cluster of " << cloud_cluster->points.size() << " points." << std::endl;
      if (cloud_cluster->points.size() > largest_cluster_size)
      {
          largest_cluster_size = cloud_cluster->points.size();
          *largest_color_cluster = *cloud_cluster;
      }
    }

    debug.setEnabled(true);
    debug.plotPointCloud<pcl::PointXYZRGB>(largest_color_cluster, Debug::COLOR_GREEN);
    debug.show("Filtered garment cloud");

    //-- Centering the point cloud before saving it
    //-----------------------------------------------------------------------------------
    //-- Find bounding box
    pcl::MomentOfInertiaEstimation<pcl::PointXYZRGB> feature_extractor;
    pcl::PointXYZRGB min_point_AABB, max_point_AABB;
    pcl::PointXYZRGB min_point_OBB,  max_point_OBB;
    pcl::PointXYZRGB position_OBB;
    Eigen::Matrix3f rotational_matrix_OBB;

    feature_extractor.setInputCloud(largest_color_cluster);
    feature_extractor.compute();
    feature_extractor.getAABB(min_point_AABB, max_point_AABB);
    feature_extractor.getOBB(min_point_OBB, max_point_OBB, position_OBB, rotational_matrix_OBB);

    //-- Translating to center
    pcl::PointCloud<pcl::PointXYZRGB>::Ptr centered_garment_cloud(new pcl::PointCloud<pcl::PointXYZRGB>);
    Eigen::Affine3f garment_translation_transform = Eigen::Affine3f::Identity();
    garment_translation_transform.translation() << -position_OBB.x, -position_OBB.y, -position_OBB.z;
    pcl::transformPointCloud(*largest_color_cluster, *centered_garment_cloud, garment_translation_transform);

    //-- Orient using the principal axes of the bounding box
    pcl::PointCloud<pcl::PointXYZRGB>::Ptr oriented_garment_cloud(new pcl::PointCloud<pcl::PointXYZRGB>);
    Eigen::Vector3f principal_axis_x(max_point_OBB.x - min_point_OBB.x, 0, 0);
    Eigen::Quaternionf garment_rotation_quaternion = Eigen::Quaternionf().setFromTwoVectors(principal_axis_x, Eigen::Vector3f::UnitX()); //-- This transformation is wrong (I guess)
    Eigen::Transform<float, 3, Eigen::Affine> t2 = Eigen::Transform<float, 3, Eigen::Affine>::Identity();
    t2.rotate(rotational_matrix_OBB.inverse());
    //pcl::transformPointCloud(*centered_garment_cloud, *oriented_garment_cloud, Eigen::Vector3f(0,0,0), garment_rotation_quaternion);
    pcl::transformPointCloud(*centered_garment_cloud, *oriented_garment_cloud, t2);

    //-- Save to file
    record_transformation(argv[filenames[0]]+std::string("-transform2.txt"), garment_translation_transform, Eigen::Quaternionf(t2.rotation()));


    debug.setEnabled(true);
    debug.plotPointCloud<pcl::PointXYZRGB>(oriented_garment_cloud, Debug::COLOR_GREEN);
    debug.plotBoundingBox(min_point_OBB, max_point_OBB, position_OBB, rotational_matrix_OBB, Debug::COLOR_YELLOW);
    debug.show("Oriented garment patch");

    //-- Save point cloud in file to process it in Python
    pcl::io::savePCDFileBinary(argv[filenames[0]]+std::string("-output.pcd"), *oriented_garment_cloud);

    return 0;
}
コード例 #30
0
void ClusterExtraction::processCloud(float plane_tolerance)
{
	ros::Time stamp = ros::Time::now();

	if(!pcl_data)
	{
		ROS_INFO("No xtion_camera data.");
		sleep(1);
		return;
	}

	//pcl::PointCloud<PoinT>::Ptr _cloud;// (new pcl::PointCloud<PoinT>);
	sensor_msgs::PointCloud2ConstPtr _temp_cloud_ = pcl_data;
	pcl::PointCloud<PoinT>::Ptr _cloud (new pcl::PointCloud<PoinT>);
	pcl::fromROSMsg(*_temp_cloud_, *_cloud);

	pcl::VoxelGrid<PoinT> vg_filter;
	pcl::PointCloud<PoinT>::Ptr cloud_filtered (new pcl::PointCloud<PoinT>);

	vg_filter.setInputCloud (_cloud);
	vg_filter.setLeafSize (0.01f, 0.01f, 0.01f);
	vg_filter.filter (*cloud_filtered);

	_cloud = cloud_filtered;

	/**********************************************
	 * NEW BULL
	 *********************************************/

	//////////////////////////////////////////////////////////////////////
	// Cluster Extraction
	//////////////////////////////////////////////////////////////////////
	// Findout the points that are more than 1.25 m away.
	pcl::PointIndices::Ptr out_of_range_points (new pcl::PointIndices);
	unsigned int i = 0;

	BOOST_FOREACH(const PoinT& pt, _cloud->points)
	{
		if(sqrt( (pt.x*pt.x) + (pt.y*pt.y) + (pt.z*pt.z) ) > 1.5 || isnan (pt.x) || isnan (pt.y) || isnan (pt.z) ||
				  isinf (pt.x) || isinf (pt.y) || isinf (pt.z) )
			out_of_range_points->indices.push_back(i);

		i++;

	}

	pcl::ExtractIndices<PoinT> extract;
	pcl::PointCloud<PoinT>::Ptr cloud (new pcl::PointCloud<PoinT>);

	// Perform the extraction of these points (indices).
	extract.setInputCloud(_cloud);
	extract.setIndices(out_of_range_points);
	extract.setNegative (true);
	extract.filter (*cloud);


	// Prepare plane segmentation.
	pcl::SACSegmentation<PoinT> seg;
	pcl::PointIndices::Ptr inliers (new pcl::PointIndices);
	pcl::ModelCoefficients::Ptr coefficients (new pcl::ModelCoefficients);

	pcl::PointCloud<PoinT>::Ptr cloud_plane; // This door is opened elsewhere.

	pcl::PointCloud<PoinT>::Ptr cloud_f (new pcl::PointCloud<PoinT> ());

	seg.setOptimizeCoefficients (true);
	seg.setModelType (pcl::SACMODEL_PLANE);
	seg.setMethodType (pcl::SAC_RANSAC);
	seg.setMaxIterations (1000);
	seg.setDistanceThreshold (0.02);

	// Remove the planes.
	i = 0;

	int nr_points =  (int) cloud->points.size();
	tf::StampedTransform base_link_to_openni;
	
	try
	{
		tf_listener->waitForTransform("base_link", cloud->header.frame_id, ros::Time(0), ros::Duration(1));
		//tf_listener->transformPoint("base_link", plane_normal, _plane_normal);
		tf_listener->lookupTransform("base_link", cloud->header.frame_id, ros::Time(0), base_link_to_openni);
	}
	catch(tf::TransformException& ex)
	{
	  	ROS_INFO("COCKED UP POINT INFO! Why: %s", ex.what());
	}


	// We do this here so that we can put in an empty cluster, if we see no table in the first place.
	doro_msgs::ClusterArray __clusters;

	while (cloud->points.size () > 0.5 * nr_points)
	{
		seg.setInputCloud (cloud);
		seg.segment (*inliers, *coefficients);

		if (inliers->indices.size () == 0)
		{
		  //std::cout << "Could not estimate a planar model for the given dataset." << std::endl;
		  break;
		}

		// Extract the planar inliers from the input cloud
		extract.setInputCloud (cloud);
		extract.setIndices (inliers);
		extract.setNegative (false);
		extract.filter (*cloud_f);


		// Is this a parallel to ground plane? If yes, save it.
		tf::Vector3 plane_normal (coefficients->values[0], coefficients->values[1], coefficients->values[2]);
		tf::Vector3 _plane_normal = base_link_to_openni*plane_normal;
		
		// What's the angle between this vector and the actual z axis? cos_inverse ( j component )...
		tf::Vector3 normal (_plane_normal.x(), _plane_normal.y(), _plane_normal.z());
		normal = normal.normalized();

		//std::cout<<"x: "<<normal.x()<<"\t";
		//std::cout<<"y: "<<normal.y()<<"\t";
		//std::cout<<"z: "<<normal.z()<<"\t";

		if(acos (normal.z()) < plane_tolerance)
		{
			cloud_plane = pcl::PointCloud<PoinT>::Ptr(new pcl::PointCloud<PoinT>);
			*cloud_plane = *cloud_f;
		}


		extract.setNegative (true);
		extract.filter (*cloud_f);
		*cloud = *cloud_f;
	}

	if(!cloud_plane)
	{
		ROS_INFO("No table or table-like object could be seen. Can't extract...");
		//clusters_pub.publish(__clusters);
		//sleep(1);
		return;
	}

	//ROS_INFO("Table seen.");
	//table_cloud_pub.publish(cloud_plane);

    //////////////////////////////////////////////////////////////////////
    /**
     * COMPUTE THE CENTROID OF THE PLANE AND PUBLISH IT.
     */
    //////////////////////////////////////////////////////////////////////
    Eigen::Vector4f plane_cen;

    // REMOVE COMMENTS WITH REAL ROBOT!!!
    pcl::compute3DCentroid(*cloud_plane, plane_cen);
    //std::cout<< plane_cen;

    tf::Vector3 plane_centroid (plane_cen[0], plane_cen[1], plane_cen[2]);
    tf::Vector3 _plane_centroid = base_link_to_openni*plane_centroid;
    
    geometry_msgs::PointStamped _plane_centroid_ROSMsg;
    _plane_centroid_ROSMsg.header.frame_id = "base_link";
    _plane_centroid_ROSMsg.header.stamp = stamp;
    _plane_centroid_ROSMsg.point.x = _plane_centroid.x();
    _plane_centroid_ROSMsg.point.y = _plane_centroid.y();
    _plane_centroid_ROSMsg.point.z = _plane_centroid.z();

    // Publish the centroid.
    table_position_pub.publish(_plane_centroid_ROSMsg);

    pcl::search::KdTree<PoinT>::Ptr tree (new pcl::search::KdTree<PoinT>);

   	if(cloud->points.size() == 0)
   	{
   		clusters_pub.publish(__clusters);
   		return;
   	}

   	tree->setInputCloud (cloud);

   	std::vector<pcl::PointIndices> cluster_indices;
   	pcl::EuclideanClusterExtraction<PoinT> ec;
   	ec.setClusterTolerance (0.02); // 2cm
   	ec.setMinClusterSize (20);
   	ec.setMaxClusterSize (25000);
   	ec.setSearchMethod (tree);
   	ec.setInputCloud (cloud);

   	ec.extract (cluster_indices);

   	//ROS_INFO("WIDTH: %d, HEIGHT: %d\n", _cloud->width, _cloud->height);

   	//ROS_INFO("GOOD TILL HERE!");

   	int j = 0;


   	for (std::vector<pcl::PointIndices>::const_iterator it = cluster_indices.begin (); it != cluster_indices.end (); ++it)
   	{
   		pcl::PointCloud<PoinT>::Ptr cloud_cluster (new pcl::PointCloud<PoinT>);

		cloud_cluster->header.frame_id = cloud->header.frame_id;

   		long int color_r, color_g, color_b;
   		uint8_t mean_r, mean_g, mean_b;

   		for (std::vector<int>::const_iterator pit = it->indices.begin (); pit != it->indices.end (); pit++)
   		{
   			cloud_cluster->points.push_back (cloud->points[*pit]);
   			/* ***************** */
   			/* COLOR COMPUTATION */
   			/* ***************** */

   			color_r += cloud->points[*pit].r;
   			color_g += cloud->points[*pit].g;
   			color_b += cloud->points[*pit].b;

   		}

   		geometry_msgs::Point a, b;
   		std::vector <double> cluster_dims = getClusterDimensions(cloud_cluster, a, b);

   		mean_r = (uint8_t) (color_r / cloud_cluster->points.size ());
   		mean_g = (uint8_t) (color_g / cloud_cluster->points.size ());
   		mean_b = (uint8_t) (color_b / cloud_cluster->points.size ());

   		cloud_cluster->width = cloud_cluster->points.size ();
   		cloud_cluster->height = 1;
   		cloud_cluster->is_dense = true;
   		cloud_cluster->header.frame_id = cloud->header.frame_id;

   		Eigen::Vector4f cluster_cen;

   		pcl::compute3DCentroid(*cloud_cluster, cluster_cen);

   		tf::Vector3 cluster_centroid (cluster_cen[0], cluster_cen[1], cluster_cen[2]);
   		tf::Vector3 _cluster_centroid = base_link_to_openni*cluster_centroid;

   		geometry_msgs::PointStamped _cluster_centroid_ROSMsg;
   		_cluster_centroid_ROSMsg.header.frame_id = "base_link";
   		_cluster_centroid_ROSMsg.header.stamp = stamp;
   		_cluster_centroid_ROSMsg.point.x = _cluster_centroid.x();
  		_cluster_centroid_ROSMsg.point.y = _cluster_centroid.y();
   		_cluster_centroid_ROSMsg.point.z = _cluster_centroid.z();

   		if(DIST(cluster_centroid,plane_centroid) < 0.6 && _cluster_centroid.z() > _plane_centroid.z())
   		{
   			doro_msgs::Cluster __cluster;
   			__cluster.centroid = _cluster_centroid_ROSMsg;
   			// Push cluster dimentions. Viewed width, breadth and height
   			__cluster.cluster_size = cluster_dims;
   			__cluster.a = a;
   			__cluster.b = b;
   			// Push colors
   			__cluster.color.push_back(mean_r);
   			__cluster.color.push_back(mean_g);
   			__cluster.color.push_back(mean_b);
   			__clusters.clusters.push_back (__cluster);
   			j++;
   		}

   	}

   	clusters_pub.publish(__clusters);

   	/////////////// RUBBISH ENDS ////////////////

    //if(pcl_data)
    //	pcl_data.reset();

}