// evaluate all other incoming serial data void evaluateOtherData(uint8_t sr) { #ifndef SUPPRESS_OTHER_SERIAL_COMMANDS switch (sr) { // Note: we may receive weird characters here which could trigger unwanted features during flight. // this could lead to a crash easily. // Please use if (!f.ARMED) where neccessary #ifdef LCD_CONF case 's': case 'S': if (!f.ARMED) configurationLoop(); break; #endif #ifdef LOG_PERMANENT_SHOW_AT_L case 'L': if (!f.ARMED) dumpPLog(1); break; #endif #if defined(LCD_TELEMETRY) && defined(LCD_TEXTSTAR) case 'A': // button A press toggle_telemetry(1); break; case 'B': // button B press toggle_telemetry(2); break; case 'C': // button C press toggle_telemetry(3); break; case 'D': // button D press toggle_telemetry(4); break; case 'a': // button A release case 'b': // button B release case 'c': // button C release case 'd': // button D release break; #endif #ifdef LCD_TELEMETRY case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': #ifndef SUPPRESS_TELEMETRY_PAGE_R case 'R': #endif #if defined(DEBUG) || defined(DEBUG_FREE) case 'F': #endif toggle_telemetry(sr); break; #endif // LCD_TELEMETRY } #endif // SUPPRESS_OTHER_SERIAL_COMMANDS }
/******************************************************************************* ** Main Function main() *******************************************************************************/ int main (void) { /* Basic chip initialization is taken care of in SystemInit() called * from the startup code. SystemInit() and chip settings are defined * in the CMSIS system_<part family>.c file. */ setup(); static uint8_t rcDelayCommand; // this indicates the number of time (multiple of RC measurement at 50Hz) the sticks must be maintained to run or switch off motors uint8_t axis,i; int16_t delta,deltaSum; int16_t PTerm,ITerm,DTerm; static int16_t lastGyro[3] = {0,0,0}; static int16_t delta1[3],delta2[3]; static int16_t errorAngleI[2] = {0,0}; static uint32_t rcTime = 0; static int16_t initialThrottleHold; int16_t error,errorAngle =0; #if PIDcontroller ==1 static int16_t errorGyroI[3] = {0,0,0}; #elif PIDcontroller == 2 int32_t AngleRateTmp = 0, RateError = 0, AngleITerm = 0; static int32_t errorGyroI[3] = {0,0,0}; #endif #define RC_FREQ 50 while(1) { #ifdef LCD_TELEMETRY_STEP static char telemetryStepSequence [] = LCD_TELEMETRY_STEP; static uint8_t telemetryStepIndex = 0; #endif #if defined(SPEKTRUM) if (rcFrameComplete) computeRC(); #endif #if defined(OPENLRSv2MULTI) Read_OpenLRS_RC(); #endif if ((currentTime > rcTime) || rcTime > (currentTime + 20000)) { // 50Hz + additional check to ensure rcTime can reach currentTime rcTime = currentTime + 20000; computeRC(); //reset watchdog timer in RC loop to ensure user is not locked out of control feedWatchDog(); // Failsafe routine - added by MIS #if defined(FAILSAFE) if ( failsafeCnt > (5*FAILSAVE_DELAY) && f.ARMED) { // Stabilize, and set Throttle to specified level for(i=0; i<3; i++) rcData[i] = MIDRC; // after specified guard time after RC signal is lost (in 0.1sec) rcData[THROTTLE] = FAILSAVE_THROTTLE; if (failsafeCnt > 5*(FAILSAVE_DELAY+FAILSAVE_OFF_DELAY)) { // Turn OFF motors after specified Time (in 0.1sec) f.ARMED = 0; // This will prevent the copter to automatically rearm if failsafe shuts it down and prevents f.OK_TO_ARM = 0; // to restart accidentely by just reconnect to the tx - you will have to switch off first to rearm } failsafeEvents++; } if ( failsafeCnt > (5*FAILSAVE_DELAY) && !f.ARMED) { //Turn of "Ok To arm to prevent the motors from spinning after repowering the RX with low throttle and aux to arm f.ARMED = 0; // This will prevent the copter to automatically rearm if failsafe shuts it down and prevents f.OK_TO_ARM = 0; // to restart accidentely by just reconnect to the tx - you will have to switch off first to rearm } failsafeCnt++; #endif // end of failsave routine - next change is made with RcOptions setting if (rcData[THROTTLE] < MINCHECK) { errorGyroI[ROLL] = 0; errorGyroI[PITCH] = 0; errorGyroI[YAW] = 0; errorAngleI[ROLL] = 0; errorAngleI[PITCH] = 0; rcDelayCommand++; if (rcData[YAW] < MINCHECK && rcData[PITCH] < MINCHECK && !f.ARMED) { if (rcDelayCommand == 20) { calibratingG=400; #if GPS GPS_reset_home_position(); #endif } } else if (rcData[YAW] > MAXCHECK && rcData[PITCH] > MAXCHECK && !f.ARMED) { if (rcDelayCommand == 20) { #ifdef TRI servo[5] = 1500; // we center the yaw servo in conf mode writeServos(); #endif #ifdef FLYING_WING servo[0] = conf.wing_left_mid; servo[1] = conf.wing_right_mid; writeServos(); #endif #ifdef AIRPLANE for(i = 4; i<7 ;i++) servo[i] = 1500; writeServos(); #endif #if defined(LCD_CONF) configurationLoop(); // beginning LCD configuration #endif previousTime = micros(); } } #if defined(INFLIGHT_ACC_CALIBRATION) else if (!f.ARMED && rcData[YAW] < MINCHECK && rcData[PITCH] > MAXCHECK && rcData[ROLL] > MAXCHECK){ if (rcDelayCommand == 20){ if (AccInflightCalibrationMeasurementDone){ // trigger saving into eeprom after landing AccInflightCalibrationMeasurementDone = 0; AccInflightCalibrationSavetoEEProm = 1; }else{ AccInflightCalibrationArmed = !AccInflightCalibrationArmed; #if defined(BUZZER) if (AccInflightCalibrationArmed){ toggleBeep = 2; } else { toggleBeep = 3; } #endif } } } #endif else if (conf.activate[BOXARM] > 0) { if ( rcOptions[BOXARM] && f.OK_TO_ARM #if defined(FAILSAFE) && failsafeCnt <= 1 #endif ) { f.ARMED = 1; headFreeModeHold = heading; } else if (f.ARMED) f.ARMED = 0; rcDelayCommand = 0; #ifdef ALLOW_ARM_DISARM_VIA_TX_YAW } else if ( (rcData[YAW] < MINCHECK ) && f.ARMED) { if (rcDelayCommand == 20) f.ARMED = 0; // rcDelayCommand = 20 => 20x20ms = 0.4s = time to wait for a specific RC command to be acknowledged } else if ( (rcData[YAW] > MAXCHECK ) && rcData[PITCH] < MAXCHECK && !f.ARMED && calibratingG == 0 && f.ACC_CALIBRATED) { if (rcDelayCommand == 20) { f.ARMED = 1; headFreeModeHold = heading; } #endif #ifdef ALLOW_ARM_DISARM_VIA_TX_ROLL } else if ( (rcData[ROLL] < MINCHECK) && f.ARMED) { if (rcDelayCommand == 20) f.ARMED = 0; // rcDelayCommand = 20 => 20x20ms = 0.4s = time to wait for a specific RC command to be acknowledged } else if ( (rcData[ROLL] > MAXCHECK) && rcData[PITCH] < MAXCHECK && !f.ARMED && calibratingG == 0 && f.ACC_CALIBRATED) { if (rcDelayCommand == 20) { f.ARMED = 1; headFreeModeHold = heading; } #endif #ifdef LCD_TELEMETRY_AUTO } else if (rcData[ROLL] < MINCHECK && rcData[PITCH] > MAXCHECK && !f.ARMED) { if (rcDelayCommand == 20) { if (telemetry_auto) { telemetry_auto = 0; telemetry = 0; } else telemetry_auto = 1; } #endif #ifdef LCD_TELEMETRY_STEP } else if (rcData[ROLL] > MAXCHECK && rcData[PITCH] > MAXCHECK && !f.ARMED) { if (rcDelayCommand == 20) { telemetry = telemetryStepSequence[++telemetryStepIndex % strlen(telemetryStepSequence)]; LCDclear(); // make sure to clear away remnants } #endif } else rcDelayCommand = 0; } else if (rcData[THROTTLE] > MAXCHECK && !f.ARMED) { if (rcData[YAW] < MINCHECK && rcData[PITCH] < MINCHECK) { // throttle=max, yaw=left, pitch=min if (rcDelayCommand == 20) calibratingA=400; rcDelayCommand++; } else if (rcData[YAW] > MAXCHECK && rcData[PITCH] < MINCHECK) { // throttle=max, yaw=right, pitch=min if (rcDelayCommand == 20) f.CALIBRATE_MAG = 1; // MAG calibration request rcDelayCommand++; } else if (rcData[PITCH] > MAXCHECK) { conf.angleTrim[PITCH]+=2;writeParams(1); #if defined(LED_RING) blinkLedRing(); #endif } else if (rcData[PITCH] < MINCHECK) { conf.angleTrim[PITCH]-=2;writeParams(1); #if defined(LED_RING) blinkLedRing(); #endif } else if (rcData[ROLL] > MAXCHECK) { conf.angleTrim[ROLL]+=2;writeParams(1); #if defined(LED_RING) blinkLedRing(); #endif } else if (rcData[ROLL] < MINCHECK) { conf.angleTrim[ROLL]-=2;writeParams(1); #if defined(LED_RING) blinkLedRing(); #endif } else { rcDelayCommand = 0; } } #if defined(LED_FLASHER) led_flasher_autoselect_sequence(); #endif #if defined(INFLIGHT_ACC_CALIBRATION) if (AccInflightCalibrationArmed && f.ARMED && rcData[THROTTLE] > MINCHECK && !rcOptions[BOXARM] ){ // Copter is airborne and you are turning it off via boxarm : start measurement InflightcalibratingA = 50; AccInflightCalibrationArmed = 0; } if (rcOptions[BOXPASSTHRU]) { // Use the Passthru Option to activate : Passthru = TRUE Meausrement started, Land and passtrhu = 0 measurement stored if (!AccInflightCalibrationActive && !AccInflightCalibrationMeasurementDone){ InflightcalibratingA = 50; } }else if(AccInflightCalibrationMeasurementDone && !f.ARMED){ AccInflightCalibrationMeasurementDone = 0; AccInflightCalibrationSavetoEEProm = 1; } #endif uint16_t auxState = 0; for(i=0;i<4;i++) auxState |= (rcData[AUX1+i]<1300)<<(3*i) | (1300<rcData[AUX1+i] && rcData[AUX1+i]<1700)<<(3*i+1) | (rcData[AUX1+i]>1700)<<(3*i+2); for(i=0;i<CHECKBOXITEMS;i++) rcOptions[i] = (auxState & conf.activate[i])>0; // note: if FAILSAFE is disable, failsafeCnt > 5*FAILSAVE_DELAY is always false if (( rcOptions[BOXACC] || (failsafeCnt > 5*FAILSAVE_DELAY) ) && ACC ) { // bumpless transfer to Level mode if (!f.ACC_MODE) { errorAngleI[ROLL] = 0; errorAngleI[PITCH] = 0; f.ACC_MODE = 1; } } else { // failsafe support f.ACC_MODE = 0; } if (rcOptions[BOXARM] == 0) f.OK_TO_ARM = 1; //if (f.ACC_MODE) {STABLEPIN_ON;} else {STABLEPIN_OFF;} #if BARO if (rcOptions[BOXBARO]) { if (!f.BARO_MODE) { f.BARO_MODE = 1; AltHold = EstAlt; initialThrottleHold = rcCommand[THROTTLE]; errorAltitudeI = 0; BaroPID=0; } } else { f.BARO_MODE = 0; } #endif #if MAG if (rcOptions[BOXMAG]) { if (!f.MAG_MODE) { f.MAG_MODE = 1; magHold = heading; } } else { f.MAG_MODE = 0; } if (rcOptions[BOXHEADFREE]) { if (!f.HEADFREE_MODE) { f.HEADFREE_MODE = 1; } } else { f.HEADFREE_MODE = 0; } if (rcOptions[BOXHEADADJ]) { headFreeModeHold = heading; // acquire new heading } #endif #if GPS #if defined(I2C_NAV) static uint8_t GPSNavReset = 1; if (f.GPS_FIX && GPS_numSat >= 5 ) { if (!rcOptions[BOXGPSHOME] && !rcOptions[BOXGPSHOLD] ) { //Both boxes are unselected if (GPSNavReset == 0 ) { GPSNavReset = 1; GPS_reset_nav(); } } if (rcOptions[BOXGPSHOME]) { if (!f.GPS_HOME_MODE) { f.GPS_HOME_MODE = 1; GPSNavReset = 0; GPS_I2C_command(I2C_GPS_COMMAND_START_NAV,0); //waypoint zero } } else { f.GPS_HOME_MODE = 0; } if (rcOptions[BOXGPSHOLD]) { if (!f.GPS_HOLD_MODE & !f.GPS_HOME_MODE) { f.GPS_HOLD_MODE = 1; GPSNavReset = 0; GPS_I2C_command(I2C_GPS_COMMAND_POSHOLD,0); } } else { f.GPS_HOLD_MODE = 0; } } #endif #if defined(GPS_SERIAL) || defined(TINY_GPS) || defined(GPS_FROM_OSD)||defined(I2C_GPS) if (f.GPS_FIX && GPS_numSat >= 5 ) { if (rcOptions[BOXGPSHOME]) { if (!f.GPS_HOME_MODE) { f.GPS_HOME_MODE = 1; GPS_set_next_wp(&GPS_home[LAT],&GPS_home[LON]); nav_mode = NAV_MODE_WP; } } else { f.GPS_HOME_MODE = 0; } if (rcOptions[BOXGPSHOLD]) { if (!f.GPS_HOLD_MODE) { f.GPS_HOLD_MODE = 1; GPS_hold[LAT] = GPS_coord[LAT]; GPS_hold[LON] = GPS_coord[LON]; GPS_set_next_wp(&GPS_hold[LAT],&GPS_hold[LON]); nav_mode = NAV_MODE_POSHOLD; } } else { f.GPS_HOLD_MODE = 0; } } #endif #endif #ifdef FLOW if(rcOptions[BOXFLOWHOLD]) { if (!f.FLOW_HOLD_MODE) { f.FLOW_HOLD_MODE = 1; GPS_hold[LAT] = GPS_coord[LAT]; GPS_hold[LON] = GPS_coord[LON]; flow_set_next_wp(&GPS_hold[LAT],&GPS_hold[LON]); nav_mode = NAV_MODE_POSHOLD; } //debug[1] = 1; } else { f.FLOW_HOLD_MODE = 0; //debug[1] = 0; } #endif if (rcOptions[BOXPASSTHRU]) {f.PASSTHRU_MODE = 1;} else {f.PASSTHRU_MODE = 0;} #ifdef FIXEDWING f.HEADFREE_MODE = 0; #endif } else { // not in rc loop static uint8_t taskOrder=0; // never call all functions in the same loop, to avoid high delay spikes if(taskOrder>4) taskOrder-=5; switch (taskOrder) { case 0: taskOrder++; #if MAG if (Mag_getADC()) break; // max 350 µs (HMC5883) // only break when we actually did something #endif case 1: taskOrder++; #if BARO if (Baro_update() != 0 ) break; #endif case 2: taskOrder++; #if BARO if (getEstimatedAltitude() !=0) break; #endif case 3: taskOrder++; if(flowUpdate() !=0) break; #if GPS if(GPS_Enable) GPS_NewData(); break; #endif case 4: taskOrder++; #if SONAR #if !defined(MAXSONAR_PWM) && !defined(FLOW) Sonar_update(); #endif //debug[2] = sonarAlt; #endif #ifdef LANDING_LIGHTS_DDR auto_switch_landing_lights(); #endif #ifdef VARIOMETER if (f.VARIO_MODE) vario_signaling(); #endif break; } } computeIMU(); // Measure loop rate just afer reading the sensors currentTime = micros(); cycleTime = currentTime - previousTime; previousTime = currentTime; //delayMs(500); //if(cycleTime > 3150) // debug[0]++; #if MAG if (fabs(rcCommand[YAW]) <70 && f.MAG_MODE) { int16_t dif = heading - magHold; if (dif <= - 180) dif += 360; if (dif >= + 180) dif -= 360; if ( f.SMALL_ANGLES_25 ) rcCommand[YAW] -= dif*conf.P8[PIDMAG]/30; // 18 deg } else magHold = heading; #endif #if BARO if (f.BARO_MODE) { if (fabs(rcCommand[THROTTLE]-initialThrottleHold)>ALT_HOLD_THROTTLE_NEUTRAL_ZONE) { f.BARO_MODE = 0; // so that a new althold reference is defined } rcCommand[THROTTLE] = initialThrottleHold + BaroPID; } #endif #if GPS if ( (!f.GPS_HOME_MODE && !f.GPS_HOLD_MODE) || !f.GPS_FIX_HOME ) { GPS_reset_nav(); // If GPS is not activated. Reset nav loops and all nav related parameters GPS_angle[ROLL] = 0; GPS_angle[PITCH] = 0; } else { float sin_yaw_y = sinf(heading*0.0174532925f); float cos_yaw_x = cosf(heading*0.0174532925f); #if defined(NAV_SLEW_RATE) nav_rated[LON] += constrain(wrap_18000(nav[LON]-nav_rated[LON]),-NAV_SLEW_RATE,NAV_SLEW_RATE); nav_rated[LAT] += constrain(wrap_18000(nav[LAT]-nav_rated[LAT]),-NAV_SLEW_RATE,NAV_SLEW_RATE); GPS_angle[ROLL] = (nav_rated[LON]*cos_yaw_x - nav_rated[LAT]*sin_yaw_y) /10; GPS_angle[PITCH] = (nav_rated[LON]*sin_yaw_y + nav_rated[LAT]*cos_yaw_x) /10; #else GPS_angle[ROLL] = (nav[LON]*cos_yaw_x - nav[LAT]*sin_yaw_y) /10; GPS_angle[PITCH] = (nav[LON]*sin_yaw_y + nav[LAT]*cos_yaw_x) /10; #endif } //debug[2] = GPS_angle[ROLL]; //debug[3] = GPS_angle[PITCH]; #endif #ifdef FLOW if (!f.FLOW_HOLD_MODE) { flow_reset_nav(); // If GPS is not activated. Reset nav loops and all nav related parameters GPS_angle[ROLL] = 0; GPS_angle[PITCH] = 0; } else { float sin_yaw_y = sinf(heading*0.0174532925f); float cos_yaw_x = cosf(heading*0.0174532925f); #if defined(NAV_SLEW_RATE) nav_rated[LON] += constrain(wrap_18000(nav[LON]-nav_rated[LON]),-NAV_SLEW_RATE,NAV_SLEW_RATE); nav_rated[LAT] += constrain(wrap_18000(nav[LAT]-nav_rated[LAT]),-NAV_SLEW_RATE,NAV_SLEW_RATE); GPS_angle[ROLL] = (nav_rated[LON]*cos_yaw_x - nav_rated[LAT]*sin_yaw_y) /10; GPS_angle[PITCH] = (nav_rated[LON]*sin_yaw_y + nav_rated[LAT]*cos_yaw_x) /10; #else GPS_angle[ROLL] = (nav[LON]*cos_yaw_x - nav[LAT]*sin_yaw_y) /10; GPS_angle[PITCH] = (nav[LON]*sin_yaw_y + nav[LAT]*cos_yaw_x) /10; #endif } //debug[2] = GPS_angle[ROLL]; //debug[3] = GPS_angle[PITCH]; #endif #if PIDcontroller == 1 //**** PITCH & ROLL & YAW PID **** for(axis=0;axis<3;axis++) { if (f.ACC_MODE && axis<2 ) { //LEVEL MODE // 50 degrees max inclination errorAngle = constrain(2*rcCommand[axis] + GPS_angle[axis],-500,+500) - angle[axis] + conf.angleTrim[axis]; //16 bits is ok here #ifdef LEVEL_PDF PTerm = -(int32_t)angle[axis]*conf.P8[PIDLEVEL]/100 ; #else PTerm = (int32_t)errorAngle*conf.P8[PIDLEVEL]/100 ; // 32 bits is needed for calculation: errorAngle*P8[PIDLEVEL] could exceed 32768 16 bits is ok for result #endif PTerm = constrain(PTerm,-conf.D8[PIDLEVEL]*5,+conf.D8[PIDLEVEL]*5); errorAngleI[axis] = constrain(errorAngleI[axis]+errorAngle,-10000,+10000); // WindUp //16 bits is ok here ITerm = ((int32_t)errorAngleI[axis]*conf.I8[PIDLEVEL])>>12; // 32 bits is needed for calculation:10000*I8 could exceed 32768 16 bits is ok for result } else { //ACRO MODE or YAW axis if (fabs(rcCommand[axis])<350) error = rcCommand[axis]*10*8/conf.P8[axis] ; // 16 bits is needed for calculation: 350*10*8 = 28000 16 bits is ok for result if P8>2 (P>0.2) else error = (int32_t)rcCommand[axis]*10*8/conf.P8[axis] ; // 32 bits is needed for calculation: 500*5*10*8 = 200000 16 bits is ok for result if P8>2 (P>0.2) error -= gyroData[axis]; PTerm = rcCommand[axis]; errorGyroI[axis] = constrain(errorGyroI[axis]+error,-16000,+16000); // WindUp 16 bits is ok here if (fabs(gyroData[axis])>640) errorGyroI[axis] = 0; ITerm = (errorGyroI[axis]/125*conf.I8[axis])>>6; // 16 bits is ok here 16000/125 = 128 ; 128*250 = 32000 } if (fabs(gyroData[axis])<160) PTerm -= gyroData[axis]*dynP8[axis]/10/8; // 16 bits is needed for calculation 160*200 = 32000 16 bits is ok for result else PTerm -= (int32_t)gyroData[axis]*dynP8[axis]/10/8; // 32 bits is needed for calculation delta = gyroData[axis] - lastGyro[axis]; // 16 bits is ok here, the dif between 2 consecutive gyro reads is limited to 800 lastGyro[axis] = gyroData[axis]; deltaSum = delta1[axis]+delta2[axis]+delta; delta2[axis] = delta1[axis]; delta1[axis] = delta; if (fabs(deltaSum)<640) DTerm = (deltaSum*dynD8[axis])>>5; // 16 bits is needed for calculation 640*50 = 32000 16 bits is ok for result else DTerm = ((int32_t)deltaSum*dynD8[axis])>>5; // 32 bits is needed for calculation
// evaluate all other incoming serial data void evaluateOtherData(uint8_t sr) { #ifndef SUPPRESS_OTHER_SERIAL_COMMANDS #if GPS #if !defined(I2C_GPS) // on the GPS port, we must avoid interpreting incoming values for other commands because there is no // protocol protection as is with MSP commands // doing so with single chars would be prone to error. if (CURRENTPORT == GPS_SERIAL) return; #endif #endif switch (sr) { // Note: we may receive weird characters here which could trigger unwanted features during flight. // this could lead to a crash easily. // Please use if (!f.ARMED) where neccessary #ifdef LCD_CONF case 's': case 'S': if (!f.ARMED) configurationLoop(); break; #endif #ifdef LOG_PERMANENT_SHOW_AT_L case 'L': if (!f.ARMED) dumpPLog(1); break; #endif #if defined(LCD_TELEMETRY) && defined(LCD_TEXTSTAR) case 'A': // button A press toggle_telemetry(1); break; case 'B': // button B press toggle_telemetry(2); break; case 'C': // button C press toggle_telemetry(3); break; case 'D': // button D press toggle_telemetry(4); break; case 'a': // button A release case 'b': // button B release case 'c': // button C release case 'd': // button D release break; #endif #ifdef LCD_TELEMETRY case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': #ifndef SUPPRESS_TELEMETRY_PAGE_R case 'R': #endif #if defined(DEBUG) || defined(DEBUG_FREE) case 'F': #endif toggle_telemetry(sr); break; #endif // LCD_TELEMETRY } #endif // SUPPRESS_OTHER_SERIAL_COMMANDS }
void setup() { #if !defined(GPS_PROMINI) UARTInit(115200); #endif LEDPIN_PINMODE; SHIELDLED_PINMODE; //POWERPIN_PINMODE; //BUZZERPIN_PINMODE; //STABLEPIN_PINMODE; //POWERPIN_OFF; /* Initialize GPIO (sets up clock) */ GPIOInit(); init_microsec(); enable_microsec(); init_timer16PWM(); enable_PWMtimer(); /******** special version of MultiWii to calibrate all attached ESCs ************/ #if defined(ESC_CALIB_CANNOT_FLY) writeAllMotors(ESC_CALIB_HIGH); delayMs(3000); writeAllMotors(ESC_CALIB_LOW); delayMs(500); while (1) { delayMs(5000); blinkLED(2,20, 2); } // statement never reached #endif writeAllMotors(MINCOMMAND); delayMs(300); readEEPROM(); checkFirstTime(); configureReceiver(); #if defined(OPENLRSv2MULTI) initOpenLRS(); #endif initSensors(); #if defined(I2C_GPS) || defined(GPS_SERIAL) || defined(GPS_FROM_OSD)||defined(I2C_NAV) GPS_set_pids(); #endif previousTime = micros(); #if defined(GIMBAL) calibratingA = 400; #endif calibratingG = 400; calibratingB = 200; // 10 seconds init_delay + 200 * 25 ms = 15 seconds before ground pressure settles #if defined(POWERMETER) for(uint8_t i=0;i<=PMOTOR_SUM;i++) pMeter[i]=0; #endif #if defined(ARMEDTIMEWARNING) ArmedTimeWarningMicroSeconds = (ARMEDTIMEWARNING *1000000); #endif /************************************/ #if defined(GPS_SERIAL) SerialOpen(GPS_SERIAL,GPS_BAUD); delay(400); for(uint8_t i=0;i<=5;i++){ GPS_NewData(); LEDPIN_ON delay(20); LEDPIN_OFF delay(80); } if(!GPS_Present){ SerialEnd(GPS_SERIAL); SerialOpen(0,SERIAL_COM_SPEED); } #if !defined(GPS_PROMINI) GPS_Present = 1; #endif GPS_Enable = GPS_Present; #endif /************************************/ #if defined(I2C_GPS) || defined(TINY_GPS) || defined(GPS_FROM_OSD)|| defined(I2C_NAV) GPS_Enable = 1; #endif #if defined(LCD_ETPP) || defined(LCD_LCD03) || defined(OLED_I2C_128x64) initLCD(); #endif #ifdef LCD_TELEMETRY_DEBUG telemetry_auto = 1; #endif #ifdef LCD_CONF_DEBUG configurationLoop(); #endif #ifdef LANDING_LIGHTS_DDR init_landing_lights(); #endif #if defined(LED_FLASHER) init_led_flasher(); led_flasher_set_sequence(LED_FLASHER_SEQUENCE); #endif f.SMALL_ANGLES_25=1; // important for gyro only conf //initialise median filter structures #ifdef MEDFILTER #ifdef SONAR initMedianFilter(&SonarFilter, 5); #endif #endif initWatchDog(); }