void MOG_BGS_HSV::setThreshold(int value, void * userdata) { MOG_BGS_HSV *temp = (MOG_BGS_HSV *)userdata; temp->pMOG.release(); temp->threshold = value; temp->pMOG = createBackgroundSubtractorMOG2(temp->history, (double)(temp->threshold + 1) / 10.0, temp->shadows); }
int BackSubs::show_forgnd_and_bgnd_init(int fpsIN, bool lostFlag) { StatusText = "NAN"; mog = createBackgroundSubtractorMOG2(BackSubs_History , BackSubs_Threshould , BackSubs_DetectShadows); stable_bkgnd_phase = 0; if (fpsIN>0) fps = fpsIN; if(fps<=0) loopWait=33; else loopWait=1000/fps; // 1000/30=33; 1000/15=67 BgSubt_Status = BG_INITIALIZING ; frame_counter = 0; init_frames_number = 2; cycles_number_after_lost = 0; if (lostFlag) { cycles_number_after_lost++; BgSubt_Status = BG_RECOVER_FROM_LOST; } foreground = Mat(); return 0; }
BallDetector::BallDetector(string fileName) { capture.open(fileName); pMOG = createBackgroundSubtractorMOG2(); for (int i = 0; i < 100; i++) capture.read(frame); }
int main(int, char**) { //create Background Subtractor objects pMOG2 = createBackgroundSubtractorMOG2(); //MOG2 approach // Load the cascades if( !face_cascade.load( face_cascade_name ) ){ printf("--(!)Error loading face cascade\n"); return -1; }; int res = process_video(); return 0; }
void BallDetector::learnBg() { pMOG = createBackgroundSubtractorMOG2(); for (int i = 0; i < COUNT; i++) { cap.read(frame); medianBlur(frame, frame, 5); pMOG->apply(frame, fg); } }
MOG_BGS_HSV::MOG_BGS_HSV(Data * data) : AbstractSegment(data) { shadows = false; //Load settings if they exist history = Settings::loadFromFile("MOG_BGS_History"); threshold = Settings::loadFromFile("MOG_BGS_Threshold"); pMOG = createBackgroundSubtractorMOG2(history, threshold, shadows); //Create trackbar createTrackbar("MOG_BGS_History", "Settings", &history, 2000, setHistory, this); createTrackbar("MOG_BGS_Threshold", "Settings", &threshold, 500, setThreshold, this); }
void VideoDemos( VideoCapture& surveillance_video, int starting_frame, bool clean_binary_images ) { Mat previous_gray_frame, optical_flow, optical_flow_display; Mat current_frame, thresholded_image, closed_image, first_frame; Mat current_frame_gray, running_average_background; Mat temp_running_average_background, running_average_difference; Mat running_average_foreground_mask, running_average_foreground_image; Mat selective_running_average_background; Mat temp_selective_running_average_background, selective_running_average_difference; Mat selective_running_average_foreground_mask, selective_running_average_background_mask, selective_running_average_foreground_image; double running_average_learning_rate = 0.01; surveillance_video.set(CV_CAP_PROP_POS_FRAMES,starting_frame); surveillance_video >> current_frame; first_frame = current_frame.clone(); cvtColor(current_frame, current_frame_gray, CV_BGR2GRAY); current_frame.convertTo(running_average_background, CV_32F); selective_running_average_background = running_average_background.clone(); int rad = running_average_background.depth(); MedianBackground median_background( current_frame, (float) 1.005, 1 ); Mat median_background_image, median_foreground_image; int codec = static_cast<int>(surveillance_video.get(CV_CAP_PROP_FOURCC)); // V3.0.0 update on next line. OLD CODE was BackgroundSubtractorMOG2 gmm; //(50,16,true); Ptr<BackgroundSubtractorMOG2> gmm = createBackgroundSubtractorMOG2(); Mat foreground_mask, foreground_image = Mat::zeros(current_frame.size(), CV_8UC3); double frame_rate = surveillance_video.get(CV_CAP_PROP_FPS); double time_between_frames = 1000.0/frame_rate; Timestamper* timer = new Timestamper(); int frame_count = 0; while ((!current_frame.empty()) && (frame_count++ < 1000))//1800)) { double duration = static_cast<double>(getTickCount()); vector<Mat> input_planes(3); split(current_frame,input_planes); cvtColor(current_frame, current_frame_gray, CV_BGR2GRAY); if (frame_count%2 == 0) // Skip every second frame so the flow is greater. { if ( previous_gray_frame.data ) { Mat lucas_kanade_flow; timer->ignoreTimeSinceLastRecorded(); LucasKanadeOpticalFlow(previous_gray_frame, current_frame_gray, lucas_kanade_flow); timer->recordTime("Lucas Kanade Optical Flow"); calcOpticalFlowFarneback(previous_gray_frame, current_frame_gray, optical_flow, 0.5, 3, 15, 3, 5, 1.2, 0); cvtColor(previous_gray_frame, optical_flow_display, CV_GRAY2BGR); drawOpticalFlow(optical_flow, optical_flow_display, 8, Scalar(0, 255, 0), Scalar(0, 0, 255)); timer->recordTime("Farneback Optical Flow"); char frame_str[100]; sprintf( frame_str, "Frame = %d", frame_count); Mat temp_output = JoinImagesHorizontally( current_frame, frame_str, optical_flow_display, "Farneback Optical Flow", 4 ); Mat optical_flow_output = JoinImagesHorizontally( temp_output, "", lucas_kanade_flow, "Lucas Kanade Optical Flow", 4 ); imshow("Optical Flow", optical_flow_output ); } std::swap(previous_gray_frame, current_frame_gray); } // Static background image Mat difference_frame, binary_difference; Mat structuring_element(3,3,CV_8U,Scalar(1)); timer->ignoreTimeSinceLastRecorded(); absdiff(current_frame,first_frame,difference_frame); cvtColor(difference_frame, thresholded_image, CV_BGR2GRAY); threshold(thresholded_image,thresholded_image,30,255,THRESH_BINARY); if (clean_binary_images) { morphologyEx(thresholded_image,closed_image,MORPH_CLOSE,structuring_element); morphologyEx(closed_image,binary_difference,MORPH_OPEN,structuring_element); current_frame.copyTo(binary_difference, thresholded_image); } else { binary_difference.setTo(Scalar(0,0,0)); current_frame.copyTo(binary_difference, thresholded_image); } timer->recordTime("Static difference"); // Running Average (three channel version) vector<Mat> running_average_planes(3); split(running_average_background,running_average_planes); accumulateWeighted(input_planes[0], running_average_planes[0], running_average_learning_rate); accumulateWeighted(input_planes[1], running_average_planes[1], running_average_learning_rate); accumulateWeighted(input_planes[2], running_average_planes[2], running_average_learning_rate); merge(running_average_planes,running_average_background); running_average_background.convertTo(temp_running_average_background,CV_8U); absdiff(temp_running_average_background,current_frame,running_average_difference); split(running_average_difference,running_average_planes); // Determine foreground points as any point with a difference of more than 30 on any one channel: threshold(running_average_difference,running_average_foreground_mask,30,255,THRESH_BINARY); split(running_average_foreground_mask,running_average_planes); bitwise_or( running_average_planes[0], running_average_planes[1], running_average_foreground_mask ); bitwise_or( running_average_planes[2], running_average_foreground_mask, running_average_foreground_mask ); if (clean_binary_images) { morphologyEx(running_average_foreground_mask,closed_image,MORPH_CLOSE,structuring_element); morphologyEx(closed_image,running_average_foreground_mask,MORPH_OPEN,structuring_element); } running_average_foreground_image.setTo(Scalar(0,0,0)); current_frame.copyTo(running_average_foreground_image, running_average_foreground_mask); timer->recordTime("Running Average"); // Running Average with selective update vector<Mat> selective_running_average_planes(3); // Find Foreground mask selective_running_average_background.convertTo(temp_selective_running_average_background,CV_8U); absdiff(temp_selective_running_average_background,current_frame,selective_running_average_difference); split(selective_running_average_difference,selective_running_average_planes); // Determine foreground points as any point with an average difference of more than 30 over all channels: Mat temp_sum = (selective_running_average_planes[0]/3 + selective_running_average_planes[1]/3 + selective_running_average_planes[2]/3); threshold(temp_sum,selective_running_average_foreground_mask,30,255,THRESH_BINARY_INV); // Update background split(selective_running_average_background,selective_running_average_planes); accumulateWeighted(input_planes[0], selective_running_average_planes[0], running_average_learning_rate,selective_running_average_foreground_mask); accumulateWeighted(input_planes[1], selective_running_average_planes[1], running_average_learning_rate,selective_running_average_foreground_mask); accumulateWeighted(input_planes[2], selective_running_average_planes[2], running_average_learning_rate,selective_running_average_foreground_mask); invertImage(selective_running_average_foreground_mask,selective_running_average_foreground_mask); accumulateWeighted(input_planes[0], selective_running_average_planes[0], running_average_learning_rate/3.0,selective_running_average_foreground_mask); accumulateWeighted(input_planes[1], selective_running_average_planes[1], running_average_learning_rate/3.0,selective_running_average_foreground_mask); accumulateWeighted(input_planes[2], selective_running_average_planes[2], running_average_learning_rate/3.0,selective_running_average_foreground_mask); merge(selective_running_average_planes,selective_running_average_background); if (clean_binary_images) { morphologyEx(selective_running_average_foreground_mask,closed_image,MORPH_CLOSE,structuring_element); morphologyEx(closed_image,selective_running_average_foreground_mask,MORPH_OPEN,structuring_element); } selective_running_average_foreground_image.setTo(Scalar(0,0,0)); current_frame.copyTo(selective_running_average_foreground_image, selective_running_average_foreground_mask); timer->recordTime("Selective Running Average"); // Median background timer->ignoreTimeSinceLastRecorded(); median_background.UpdateBackground( current_frame ); timer->recordTime("Median"); median_background_image = median_background.GetBackgroundImage(); Mat median_difference; absdiff(median_background_image,current_frame,median_difference); cvtColor(median_difference, median_difference, CV_BGR2GRAY); threshold(median_difference,median_difference,30,255,THRESH_BINARY); median_foreground_image.setTo(Scalar(0,0,0)); current_frame.copyTo(median_foreground_image, median_difference); // Update the Gaussian Mixture Model // V3.0.0 update on next line. OLD CODE was gmm(current_frame, foreground_mask); gmm->apply(current_frame, foreground_mask); // Clean the resultant binary (moving pixel) mask using an opening. threshold(foreground_mask,thresholded_image,150,255,THRESH_BINARY); Mat moving_incl_shadows, shadow_points; threshold(foreground_mask,moving_incl_shadows,50,255,THRESH_BINARY); absdiff( thresholded_image, moving_incl_shadows, shadow_points ); Mat cleaned_foreground_mask; if (clean_binary_images) { morphologyEx(thresholded_image,closed_image,MORPH_CLOSE,structuring_element); morphologyEx(closed_image,cleaned_foreground_mask,MORPH_OPEN,structuring_element); } else cleaned_foreground_mask = thresholded_image.clone(); foreground_image.setTo(Scalar(0,0,0)); current_frame.copyTo(foreground_image, cleaned_foreground_mask); timer->recordTime("Gaussian Mixture Model"); // Create an average background image (just for information) Mat mean_background_image; timer->ignoreTimeSinceLastRecorded(); // V3.0.0 update on next line. OLD CODE was gmm.getBackgroundImage(mean_background_image); gmm->getBackgroundImage(mean_background_image); duration = static_cast<double>(getTickCount())-duration; duration /= getTickFrequency()/1000.0; int delay = (time_between_frames>duration) ? ((int) (time_between_frames-duration)) : 1; char c = cvWaitKey(delay); char frame_str[100]; sprintf( frame_str, "Frame = %d", frame_count); Mat temp_static_output = JoinImagesHorizontally( current_frame, frame_str, first_frame, "Static Background", 4 ); Mat static_output = JoinImagesHorizontally( temp_static_output, "", binary_difference, "Foreground", 4 ); imshow("Static Background Model", static_output ); Mat temp_running_output = JoinImagesHorizontally( current_frame, frame_str, temp_running_average_background, "Running Average Background", 4 ); Mat running_output = JoinImagesHorizontally( temp_running_output, "", running_average_foreground_image, "Foreground", 4 ); imshow("Running Average Background Model", running_output ); Mat temp_selective_output = JoinImagesHorizontally( current_frame, frame_str, temp_selective_running_average_background, "Selective Running Average Background", 4 ); Mat selective_output = JoinImagesHorizontally( temp_selective_output, "", selective_running_average_foreground_image, "Foreground", 4 ); imshow("Selective Running Average Background Model", selective_output ); Mat temp_median_output = JoinImagesHorizontally( current_frame, frame_str, median_background_image, "Median Background", 4 ); Mat median_output = JoinImagesHorizontally( temp_median_output, "", median_foreground_image, "Foreground", 4 ); imshow("Median Background Model", median_output ); Mat temp_gaussian_output = JoinImagesHorizontally( current_frame, frame_str, mean_background_image, "GMM Background", 4 ); Mat gaussian_output = JoinImagesHorizontally( temp_gaussian_output, "", foreground_image, "Foreground", 4 ); imshow("Gaussian Mixture Model", gaussian_output ); timer->putTimes( current_frame ); imshow( "Computation Times", current_frame ); surveillance_video >> current_frame; } cvDestroyAllWindows(); }