コード例 #1
0
ファイル: classifier.c プロジェクト: ShahImranShovon/darknet
void label_classifier(char *datacfg, char *filename, char *weightfile)
{
    int i;
    network *net = load_network(filename, weightfile, 0);
    set_batch_network(net, 1);
    srand(time(0));

    list *options = read_data_cfg(datacfg);

    char *label_list = option_find_str(options, "names", "data/labels.list");
    char *test_list = option_find_str(options, "test", "data/train.list");
    int classes = option_find_int(options, "classes", 2);

    char **labels = get_labels(label_list);
    list *plist = get_paths(test_list);

    char **paths = (char **)list_to_array(plist);
    int m = plist->size;
    free_list(plist);

    for(i = 0; i < m; ++i){
        image im = load_image_color(paths[i], 0, 0);
        image resized = resize_min(im, net->w);
        image crop = crop_image(resized, (resized.w - net->w)/2, (resized.h - net->h)/2, net->w, net->h);
        float *pred = network_predict(net, crop.data);

        if(resized.data != im.data) free_image(resized);
        free_image(im);
        free_image(crop);
        int ind = max_index(pred, classes);

        printf("%s\n", labels[ind]);
    }
}
コード例 #2
0
void PixelsMovement::getDraggedImageCopy(base::UniquePtr<Image>& outputImage,
                                         base::UniquePtr<Mask>& outputMask)
{
  gfx::Rect bounds = m_currentData.transformedBounds();
  base::UniquePtr<Image> image(Image::create(m_sprite->pixelFormat(), bounds.w, bounds.h));

  drawImage(image, bounds.origin(), false);

  // Draw mask without shrinking it, so the mask size is equal to the
  // "image" render.
  base::UniquePtr<Mask> mask(new Mask);
  drawMask(mask, false);

  // Now we can shrink and crop the image.
  gfx::Rect oldMaskBounds = mask->bounds();
  mask->shrink();
  gfx::Rect newMaskBounds = mask->bounds();
  if (newMaskBounds != oldMaskBounds) {
    newMaskBounds.x -= oldMaskBounds.x;
    newMaskBounds.y -= oldMaskBounds.y;
    image.reset(crop_image(image,
                           newMaskBounds.x,
                           newMaskBounds.y,
                           newMaskBounds.w,
                           newMaskBounds.h, 0));
  }

  outputImage.reset(image.release());
  outputMask.reset(mask.release());
}
コード例 #3
0
ImageRef ExpandCelCanvas::trimDstImage(const gfx::Rect& bounds) const
{
  return ImageRef(
    crop_image(m_dstImage.get(),
               bounds.x, bounds.y,
               bounds.w, bounds.h,
               m_dstImage->maskColor()));
}
コード例 #4
0
ファイル: classifier.c プロジェクト: ShahImranShovon/darknet
void validate_classifier_single(char *datacfg, char *filename, char *weightfile)
{
    int i, j;
    network *net = load_network(filename, weightfile, 0);
    set_batch_network(net, 1);
    srand(time(0));

    list *options = read_data_cfg(datacfg);

    char *label_list = option_find_str(options, "labels", "data/labels.list");
    char *leaf_list = option_find_str(options, "leaves", 0);
    if(leaf_list) change_leaves(net->hierarchy, leaf_list);
    char *valid_list = option_find_str(options, "valid", "data/train.list");
    int classes = option_find_int(options, "classes", 2);
    int topk = option_find_int(options, "top", 1);

    char **labels = get_labels(label_list);
    list *plist = get_paths(valid_list);

    char **paths = (char **)list_to_array(plist);
    int m = plist->size;
    free_list(plist);

    float avg_acc = 0;
    float avg_topk = 0;
    int *indexes = calloc(topk, sizeof(int));

    for(i = 0; i < m; ++i){
        int class = -1;
        char *path = paths[i];
        for(j = 0; j < classes; ++j){
            if(strstr(path, labels[j])){
                class = j;
                break;
            }
        }
        image im = load_image_color(paths[i], 0, 0);
        image resized = resize_min(im, net->w);
        image crop = crop_image(resized, (resized.w - net->w)/2, (resized.h - net->h)/2, net->w, net->h);
        //show_image(im, "orig");
        //show_image(crop, "cropped");
        //cvWaitKey(0);
        float *pred = network_predict(net, crop.data);
        if(net->hierarchy) hierarchy_predictions(pred, net->outputs, net->hierarchy, 1, 1);

        if(resized.data != im.data) free_image(resized);
        free_image(im);
        free_image(crop);
        top_k(pred, classes, topk, indexes);

        if(indexes[0] == class) avg_acc += 1;
        for(j = 0; j < topk; ++j){
            if(indexes[j] == class) avg_topk += 1;
        }

        printf("%d: top 1: %f, top %d: %f\n", i, avg_acc/(i+1), topk, avg_topk/(i+1));
    }
}
コード例 #5
0
ファイル: lsd.c プロジェクト: vaiv/OpenANPR
void test_lsd(char *cfgfile, char *weightfile, char *filename)
{
    network net = parse_network_cfg(cfgfile);
    if(weightfile){
        load_weights(&net, weightfile);
    }
    set_batch_network(&net, 1);
    srand(2222222);

    clock_t time;
    char buff[256];
    char *input = buff;
    int i, imlayer = 0;

    for (i = 0; i < net.n; ++i) {
        if (net.layers[i].out_c == 3) {
            imlayer = i;
            printf("%d\n", i);
            break;
        }
    }

    while(1){
        if(filename){
            strncpy(input, filename, 256);
        }else{
            printf("Enter Image Path: ");
            fflush(stdout);
            input = fgets(input, 256, stdin);
            if(!input) return;
            strtok(input, "\n");
        }
        image im = load_image_color(input, 0, 0);
        image resized = resize_min(im, net.w);
        image crop = crop_image(resized, (resized.w - net.w)/2, (resized.h - net.h)/2, net.w, net.h);
        //grayscale_image_3c(crop);

        float *X = crop.data;
        time=clock();
        network_predict(net, X);
        image out = get_network_image_layer(net, imlayer);
        //yuv_to_rgb(out);
        constrain_image(out);
        printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time));
        show_image(out, "out");
        show_image(crop, "crop");
        save_image(out, "out");
#ifdef OPENCV
        cvWaitKey(0);
#endif

        free_image(im);
        free_image(resized);
        free_image(crop);
        if (filename) break;
    }
}
コード例 #6
0
ファイル: packed_tilegen.c プロジェクト: kyroskoh/png_tilegen
static void save_image(img_t *img, char *output_dir) {

    char filename[1024];

    // create the needed output directory if not present
    snprintf(filename, 1024, "%s/13/", output_dir);
    mkdir(filename, S_IRWXU | S_IRWXG | S_IROTH | S_IXOTH);

    snprintf(filename, 1024, "%s/13/%d/", output_dir, img->tileX);
    mkdir(filename, S_IRWXU | S_IRWXG | S_IROTH | S_IXOTH);

    snprintf(filename, 1024, "%s/13/%d/%d.png", output_dir, img->tileX, img->tileY);
    FILE *file = fopen(filename, "wb");

    crop_image(img, 6, file);

    fclose(file);
}
コード例 #7
0
ファイル: main.c プロジェクト: heroinlin/OpencvTest
int main(int argc, char **argv)
{
	char* input = argv[1];
	int channels = 3;
	list *plist = get_paths(input);
	//int N = plist->size;
	char **paths = (char **)list_to_array(plist);
	int m = plist->size;
	int count_label = 0;
	char labelpath[256];
	sprintf(labelpath, "../labels/01_5_1.txt");
	int count = 0;
	box_label *boxes = read_boxes(labelpath, &count);
	for (int i = 0; i < m; i++)
	{
		if (!paths[i])
		{
			printf("load error!\n");
			break;
		}
		image im = load_image(paths[i], 0, 0, channels);

		printf("load %s", paths[i]);
		float x, y, w, h;
			count_label++;
			x = boxes[i].x;
			y = boxes[i].y;
			w = boxes[i].w;
			h = boxes[i].h;
			box box = { x, y, w, h };
			char *save_path1 = get_basename(paths[i]);
			char save_path[256];
			sprintf(save_path, "./images/%s", save_path1);
			//show_image(im, save_path);
			image crop_im = crop_image(im, x,y,w,h);
			printf(" %f %f %f %f \n", x,y,w,h);
			show_image(crop_im, save_path);
			free_image(crop_im);
	     	free_image(im);
	}
}
コード例 #8
0
ファイル: image.cpp プロジェクト: felipeita/aseprite
// static
Image* Image::createCopy(const Image* image, const ImageBufferPtr& buffer)
{
  ASSERT(image);
  return crop_image(image, 0, 0, image->getWidth(), image->getHeight(),
    image->getMaskColor(), buffer);
}
コード例 #9
0
ファイル: celmove.cpp プロジェクト: DocHoncho/aseprite
void copy_cel(ContextWriter& writer)
{
  Document* document = writer.document();
  Sprite* sprite = writer.sprite();
  UndoTransaction undo(writer.context(), "Move Cel", undo::ModifyDocument);
  Cel *src_cel, *dst_cel;

  ASSERT(src_layer != NULL);
  ASSERT(dst_layer != NULL);
  ASSERT(src_frame >= 0 && src_frame < sprite->getTotalFrames());
  ASSERT(dst_frame >= 0 && dst_frame < sprite->getTotalFrames());

  src_cel = static_cast<LayerImage*>(src_layer)->getCel(src_frame);
  dst_cel = static_cast<LayerImage*>(dst_layer)->getCel(dst_frame);

  // Remove the 'dst_cel' (if it exists) because it must be replaced
  // with 'src_cel'
  if ((dst_cel != NULL) && (!dst_layer->isBackground() || src_cel != NULL))
    remove_cel(sprite, undo, static_cast<LayerImage*>(dst_layer), dst_cel);

  // Move the cel in the same layer.
  if (src_cel != NULL) {
    Image *src_image = sprite->getStock()->getImage(src_cel->getImage());
    Image *dst_image;
    int image_index;
    int dst_cel_x;
    int dst_cel_y;
    int dst_cel_opacity;

    // If we are moving a cel from a transparent layer to the
    // background layer, we have to clear the background of the image.
    if (!src_layer->isBackground() &&
        dst_layer->isBackground()) {
      dst_image = crop_image(src_image,
                             -src_cel->getX(),
                             -src_cel->getY(),
                             sprite->getWidth(),
                             sprite->getHeight(), 0);

      clear_image(dst_image, app_get_color_to_clear_layer(dst_layer));
      composite_image(dst_image, src_image, src_cel->getX(), src_cel->getY(), 255, BLEND_MODE_NORMAL);

      dst_cel_x = 0;
      dst_cel_y = 0;
      dst_cel_opacity = 255;
    }
    else {
      dst_image = Image::createCopy(src_image);
      dst_cel_x = src_cel->getX();
      dst_cel_y = src_cel->getY();
      dst_cel_opacity = src_cel->getOpacity();
    }

    // Add the image in the stock
    image_index = sprite->getStock()->addImage(dst_image);
    if (undo.isEnabled())
      undo.pushUndoer(new undoers::AddImage(undo.getObjects(),
          sprite->getStock(), image_index));

    // Create the new cel
    dst_cel = new Cel(dst_frame, image_index);
    dst_cel->setPosition(dst_cel_x, dst_cel_y);
    dst_cel->setOpacity(dst_cel_opacity);

    if (undo.isEnabled())
      undo.pushUndoer(new undoers::AddCel(undo.getObjects(), dst_layer, dst_cel));

    static_cast<LayerImage*>(dst_layer)->addCel(dst_cel);
  }

  undo.commit();

  document->notifyCelCopied(src_layer, src_frame, dst_layer, dst_frame);
  set_frame_to_handle(NULL, FrameNumber(0), NULL, FrameNumber(0));
}
コード例 #10
0
ファイル: packed_tilegen.c プロジェクト: kyroskoh/png_tilegen
int main(int argc, char **argv) {

    int ret, tmp;
    img_t img;
    char *output_dir;
    FILE *out_file;

    if (argc < 5) {
        printf("Usage:\npacked_tilegen <input> <output_dir> <tileX> <tileY> [cardinal direction N|E|S|W\n");
        exit(1);
    }

    printf("Read file \"%s\"\n", argv[1]);
    if (strstr(argv[1], ".png"))
        ret = read_png(argv[1], &img);
    else if (strstr(argv[1], ".ppm"))
        ret = read_ppm(argv[1], &img);
    else {
        printf("Unknown format!\n");
        exit(2);
    }

    output_dir = argv[2];

    if (ret) {
        printf("Could not read png input file! %d\n", ret);
        exit(ret);
    }

    img.tileX = atoi(argv[3]);
    img.tileY = atoi(argv[4]);

    if (argc > 5) {
        switch(argv[5][0]) {
        case 'n':
        case 'N':
            // keep defaults
            break;
        case 'e':
        case 'E':
            tmp = img.tileX;
            img.tileX = img.tileY;
            img.tileY = (2<<12) - 1 - tmp;
            break;
        case 's':
        case 'S':
            img.tileX = (2<<12) - 1 - img.tileX;
            img.tileY = (2<<12) - 1 - img.tileY;
            break;
        case 'w':
        case 'W':
            tmp = img.tileX;
            img.tileX = (2<<12) - 1 - img.tileY;
            img.tileY = tmp;
            break;
        default:
            fprintf(stderr, "Unknown cardinal direction \"%s\". Default to north\n", argv[5]);
        }
    }

    // create pack file for writing
    out_file = open_packed_file(output_dir, img.tileX, img.tileY);
    tmp = 0;

    while (1) {

        // crop image at given zoom level..
        crop_image(&img, tmp++, out_file);

        scale_image(&img);

        if (img.sizeX == TILE_SIZE) {
            save_image(&img, output_dir);
            break;
        }
    }

    close_packed_file(out_file);

    return 0;
}
コード例 #11
0
ExpandCelCanvas::ExpandCelCanvas(Context* context, TiledMode tiledMode, UndoTransaction& undo)
  : m_cel(NULL)
  , m_celImage(NULL)
  , m_celCreated(false)
  , m_closed(false)
  , m_committed(false)
  , m_undo(undo)
{
  create_buffers();

  DocumentLocation location = context->getActiveLocation();
  m_document = location.document();
  m_sprite = location.sprite();
  m_layer = location.layer();

  if (m_layer->isImage()) {
    m_cel = static_cast<LayerImage*>(m_layer)->getCel(location.frame());
    if (m_cel)
      m_celImage = m_sprite->getStock()->getImage(m_cel->getImage());
  }

  // If there is no Cel
  if (m_cel == NULL) {
    // Create the image
    m_celImage = Image::create(m_sprite->getPixelFormat(), m_sprite->getWidth(),
                               m_sprite->getHeight());
    clear_image(m_celImage, m_sprite->getTransparentColor());

    // Create the cel
    m_cel = new Cel(location.frame(), 0);
    static_cast<LayerImage*>(m_layer)->addCel(m_cel);

    m_celCreated = true;
  }

  m_originalCelX = m_cel->getX();
  m_originalCelY = m_cel->getY();

  // Region to draw
  int x1, y1, x2, y2;

  if (tiledMode == TILED_NONE) { // Non-tiled
    x1 = MIN(m_cel->getX(), 0);
    y1 = MIN(m_cel->getY(), 0);
    x2 = MAX(m_cel->getX()+m_celImage->getWidth(), m_sprite->getWidth());
    y2 = MAX(m_cel->getY()+m_celImage->getHeight(), m_sprite->getHeight());
  }
  else {                        // Tiled
    x1 = 0;
    y1 = 0;
    x2 = m_sprite->getWidth();
    y2 = m_sprite->getHeight();
  }

  // create two copies of the image region which we'll modify with the tool
  m_srcImage = crop_image(m_celImage,
    x1-m_cel->getX(),
    y1-m_cel->getY(), x2-x1, y2-y1,
    m_sprite->getTransparentColor(),
    src_buffer);

  m_dstImage = Image::createCopy(m_srcImage, dst_buffer);

  // We have to adjust the cel position to match the m_dstImage
  // position (the new m_dstImage will be used in RenderEngine to
  // draw this cel).
  m_cel->setPosition(x1, y1);
}
コード例 #12
0
void BackgroundBuilder::run(){
	const QRect win_dim = QApplication::desktop()->screenGeometry();
	std::cout << "Desktop is: " << win_dim.width() << "x" << win_dim.height() << "\n";
	const float desktop_aspect = static_cast<float>(win_dim.width()) / win_dim.height();

	const float image_aspect = static_cast<float>(original->width()) / original->height();
	std::cout << "Desktop aspect = " << desktop_aspect << ", image = " << image_aspect << "\n";

	auto pipeline_start = std::chrono::high_resolution_clock::now();
	// If the image is has a higher aspect ratio than the desktop we'll want to scale y
	// to fit and let x be croppped, otherwise we do the opposite
	int scaled_w = 0;
	int scaled_h = 0;
	if (desktop_aspect < image_aspect){
		scaled_h = win_dim.height() + 32;
		scaled_w = scaled_h * image_aspect;
	}
	else {
		scaled_w = win_dim.width() + 32;
		scaled_h = scaled_w * (1.0 / image_aspect);
	}
	//std::cout << "scaling image to " << scaled_w << "x" << scaled_h << "\n";
	QImage scaled_background{ scaled_w, scaled_h, QImage::Format_RGB32 };

	auto start = std::chrono::high_resolution_clock::now();
	resize_image(*blurred, scaled_background);
	auto end = std::chrono::high_resolution_clock::now();
	//std::cout << "resize took " << std::chrono::duration_cast<std::chrono::milliseconds>(end - start).count()
	//	<< "ms\n";

	//scaled_background.save(QString("scaled_background.jpg"), "JPEG");

	int crop_x = (scaled_w - win_dim.width()) / 2;
	int start_x = crop_x;
	int end_x = scaled_w - crop_x;
	// Sometimes our crop may be off by a few pixels, so just drop the extra ones if we don't match
	if (end_x - start_x != win_dim.width()){
		//std::cout << "width mismatch of " << end_x - start_x - win_dim.width() << "pixels\n";
		end_x -= end_x - start_x - win_dim.width();
	}

	int crop_y = (scaled_h - win_dim.height()) / 2;
	int start_y = crop_y;
	int end_y = scaled_h - crop_y;
	if (end_y - start_y != win_dim.height()){
		//std::cout << "height mismatch of " << end_y - start_y - win_dim.height() << "pixels\n";
		end_y -= end_y - start_y - win_dim.height();
	}

	QSharedPointer<QImage> background(new QImage{win_dim.width(), win_dim.height(), QImage::Format_RGB32});
	start = std::chrono::high_resolution_clock::now();
	crop_image(scaled_background, *background, start_x, end_x, start_y, end_y);
	end = std::chrono::high_resolution_clock::now();
	//std::cout << "crop took " << std::chrono::duration_cast<std::chrono::milliseconds>(end - start).count()
	//	<< "ms\n";

	//background->save(QString("cropped_background.jpg"), "JPEG");

	//std::cout << "compositing original image with blurred background\n";

	int centered_w = 0;
	int centered_h = 0;
	float border_percent = 0.04f;
	if (desktop_aspect > image_aspect) {
		centered_h = win_dim.height() - border_percent * win_dim.height();
		centered_w = centered_h * image_aspect;
		//std::cout << "border size of " << border_percent * win_dim.height() << " along x\n";
	}
	else {
		centered_w = win_dim.width() - border_percent * win_dim.width();
		centered_h = centered_w * (1.0 / image_aspect);
		//std::cout << "border size of " << border_percent * win_dim.width() << " along y\n";
	}
	//std::cout << "Centered image will be scaled to " << centered_w << "x" << centered_h << "\n";
	QImage centered_image{centered_w, centered_h,  QImage::Format_RGB32};

	start = std::chrono::high_resolution_clock::now();
	resize_image(*original, centered_image);
	end = std::chrono::high_resolution_clock::now();
	//std::cout << "scaling centered image took "
	//	<< std::chrono::duration_cast<std::chrono::milliseconds>(end - start).count() << "ms\n";
	//centered_image.save(QString("centered_image.jpg"), "JPEG");

	start = std::chrono::high_resolution_clock::now();
	composite_background(centered_image, *background, *background);
	end = std::chrono::high_resolution_clock::now();
	//std::cout << "compositing took "
	//	<< std::chrono::duration_cast<std::chrono::milliseconds>(end - start).count() << "ms\n";

	auto pipeline_end = std::chrono::high_resolution_clock::now();
	std::cout << "Entire pipeline to build background took "
		<< std::chrono::duration_cast<std::chrono::milliseconds>(pipeline_end - pipeline_start).count() << "ms\n";

	std::cout << "done making background, Saving background to background.png\n";
	// Note: in the future we'll only save to the temp dir if we need to (on Windows we must pass a filename)
	background->save(QString::fromStdString("background.png"), "PNG");
	background->save(QDir::tempPath() + QString::fromStdString("/background.png"), "PNG");
	std::cout << "background saved\n";
	emit finished(background);
}
コード例 #13
0
ファイル: nightmare.c プロジェクト: LongjunCode/yolo-windows
void run_nightmare(int argc, char **argv)
{
    srand(0);
    if(argc < 4){
        fprintf(stderr, "usage: %s %s [cfg] [weights] [image] [layer] [options! (optional)]\n", argv[0], argv[1]);
        return;
    }

    char *cfg = argv[2];
    char *weights = argv[3];
    char *input = argv[4];
    int max_layer = atoi(argv[5]);

    int range = find_int_arg(argc, argv, "-range", 1);
    int rounds = find_int_arg(argc, argv, "-rounds", 1);
    int iters = find_int_arg(argc, argv, "-iters", 10);
    int octaves = find_int_arg(argc, argv, "-octaves", 4);
    float zoom = find_float_arg(argc, argv, "-zoom", 1.);
    float rate = find_float_arg(argc, argv, "-rate", .04);
    float thresh = find_float_arg(argc, argv, "-thresh", 1.);
    float rotate = find_float_arg(argc, argv, "-rotate", 0);
    char *prefix = find_char_arg(argc, argv, "-prefix", 0);

    network net = parse_network_cfg(cfg);
    load_weights(&net, weights);
    char *cfgbase = basecfg(cfg);
    char *imbase = basecfg(input);

    set_batch_network(&net, 1);
    image im = load_image_color(input, 0, 0);
    if(0){
        float scale = 1;
        if(im.w > 512 || im.h > 512){
            if(im.w > im.h) scale = 512.0/im.w;
            else scale = 512.0/im.h;
        }
        image resized = resize_image(im, scale*im.w, scale*im.h);
        free_image(im);
        im = resized;
    }

    int e;
    int n;
    for(e = 0; e < rounds; ++e){
            fprintf(stderr, "Iteration: ");
            fflush(stderr);
        for(n = 0; n < iters; ++n){  
            fprintf(stderr, "%d, ", n);
            fflush(stderr);
            int layer = max_layer + rand()%range - range/2;
            int octave = rand()%octaves;
            optimize_picture(&net, im, layer, 1/pow(1.33333333, octave), rate, thresh);
        }
        fprintf(stderr, "done\n");
        if(0){
            image g = grayscale_image(im);
            free_image(im);
            im = g;
        }
        char buff[256];
        if (prefix){
            sprintf(buff, "%s/%s_%s_%d_%06d",prefix, imbase, cfgbase, max_layer, e);
        }else{
            sprintf(buff, "%s_%s_%d_%06d",imbase, cfgbase, max_layer, e);
        }
        printf("%d %s\n", e, buff);
        save_image(im, buff);
        //show_image(im, buff);
        //cvWaitKey(0);

        if(rotate){
            image rot = rotate_image(im, rotate);
            free_image(im);
            im = rot;
        }
        image crop = crop_image(im, im.w * (1. - zoom)/2., im.h * (1.-zoom)/2., im.w*zoom, im.h*zoom);
        image resized = resize_image(crop, im.w, im.h);
        free_image(im);
        free_image(crop);
        im = resized;
    }
}
コード例 #14
0
ファイル: sprite.cpp プロジェクト: piluke/BasicEventEngine
/*
* BEE::Sprite::crop_image_height() - Crop the image to the given height
* @new_crop_height: the new height to crop the image to
*/
int BEE::Sprite::crop_image_height(int new_crop_height) {
	crop.h = new_crop_height; // Set the height
	return crop_image(crop); // Return the status of the cropping
}
コード例 #15
0
ファイル: nightmare.c プロジェクト: imaami/darknet
void run_nightmare(int argc, char **argv)
{
    srand(0);
    if(argc < 4){
        fprintf(stderr, "usage: %s %s [cfg] [weights] [image] [layer] [options! (optional)]\n", argv[0], argv[1]);
        return;
    }

    char *cfg = argv[2];
    char *weights = argv[3];
    char *input = argv[4];
    int max_layer = atoi(argv[5]);

    int range = find_int_arg(argc, argv, "-range", 1);
    int norm = find_int_arg(argc, argv, "-norm", 1);
    int rounds = find_int_arg(argc, argv, "-rounds", 1);
    int iters = find_int_arg(argc, argv, "-iters", 10);
    int octaves = find_int_arg(argc, argv, "-octaves", 4);
    float zoom = find_float_arg(argc, argv, "-zoom", 1.);
    float rate = find_float_arg(argc, argv, "-rate", .04);
    float thresh = find_float_arg(argc, argv, "-thresh", 1.);
    float rotate = find_float_arg(argc, argv, "-rotate", 0);
    float momentum = find_float_arg(argc, argv, "-momentum", .9);
    float lambda = find_float_arg(argc, argv, "-lambda", .01);
    char *prefix = find_char_arg(argc, argv, "-prefix", 0);
    int reconstruct = find_arg(argc, argv, "-reconstruct");
    int smooth_size = find_int_arg(argc, argv, "-smooth", 1);

    network net = parse_network_cfg(cfg);
    load_weights(&net, weights);
    char *cfgbase = basecfg(cfg);
    char *imbase = basecfg(input);

    set_batch_network(&net, 1);
    image im = load_image_color(input, 0, 0);
    if(0){
        float scale = 1;
        if(im.w > 512 || im.h > 512){
            if(im.w > im.h) scale = 512.0/im.w;
            else scale = 512.0/im.h;
        }
        image resized = resize_image(im, scale*im.w, scale*im.h);
        free_image(im);
        im = resized;
    }

    float *features = 0;
    image update;
    if (reconstruct){
        resize_network(&net, im.w, im.h);

        int zz = 0;
        network_predict(net, im.data);
        image out_im = get_network_image(net);
        image crop = crop_image(out_im, zz, zz, out_im.w-2*zz, out_im.h-2*zz);
        //flip_image(crop);
        image f_im = resize_image(crop, out_im.w, out_im.h);
        free_image(crop);
        printf("%d features\n", out_im.w*out_im.h*out_im.c);


        im = resize_image(im, im.w, im.h);
        f_im = resize_image(f_im, f_im.w, f_im.h);
        features = f_im.data;

        int i;
        for(i = 0; i < 14*14*512; ++i){
            features[i] += rand_uniform(-.19, .19);
        }

        free_image(im);
        im = make_random_image(im.w, im.h, im.c);
        update = make_image(im.w, im.h, im.c);

    }

    int e;
    int n;
    for(e = 0; e < rounds; ++e){
        fprintf(stderr, "Iteration: ");
        fflush(stderr);
        for(n = 0; n < iters; ++n){  
            fprintf(stderr, "%d, ", n);
            fflush(stderr);
            if(reconstruct){
                reconstruct_picture(net, features, im, update, rate, momentum, lambda, smooth_size, 1);
                //if ((n+1)%30 == 0) rate *= .5;
                show_image(im, "reconstruction");
#ifdef OPENCV
                cvWaitKey(10);
#endif
            }else{
                int layer = max_layer + rand()%range - range/2;
                int octave = rand()%octaves;
                optimize_picture(&net, im, layer, 1/pow(1.33333333, octave), rate, thresh, norm);
            }
        }
        fprintf(stderr, "done\n");
        if(0){
            image g = grayscale_image(im);
            free_image(im);
            im = g;
        }
        char buff[256];
        if (prefix){
            sprintf(buff, "%s/%s_%s_%d_%06d",prefix, imbase, cfgbase, max_layer, e);
        }else{
            sprintf(buff, "%s_%s_%d_%06d",imbase, cfgbase, max_layer, e);
        }
        printf("%d %s\n", e, buff);
        save_image(im, buff);
        //show_image(im, buff);
        //cvWaitKey(0);

        if(rotate){
            image rot = rotate_image(im, rotate);
            free_image(im);
            im = rot;
        }
        image crop = crop_image(im, im.w * (1. - zoom)/2., im.h * (1.-zoom)/2., im.w*zoom, im.h*zoom);
        image resized = resize_image(crop, im.w, im.h);
        free_image(im);
        free_image(crop);
        im = resized;
    }
}
コード例 #16
0
ファイル: celmove.cpp プロジェクト: DocHoncho/aseprite
void move_cel(ContextWriter& writer)
{
  Document* document = writer.document();
  Sprite* sprite = writer.sprite();
  Cel *src_cel, *dst_cel;

  ASSERT(src_layer != NULL);
  ASSERT(dst_layer != NULL);
  ASSERT(src_frame >= 0 && src_frame < sprite->getTotalFrames());
  ASSERT(dst_frame >= 0 && dst_frame < sprite->getTotalFrames());

  if (src_layer->isBackground()) {
    copy_cel(writer);
    return;
  }

  src_cel = static_cast<LayerImage*>(src_layer)->getCel(src_frame);
  dst_cel = static_cast<LayerImage*>(dst_layer)->getCel(dst_frame);

  UndoTransaction undo(writer.context(), "Move Cel", undo::ModifyDocument);

  /* remove the 'dst_cel' (if it exists) because it must be
     replaced with 'src_cel' */
  if ((dst_cel != NULL) && (!dst_layer->isBackground() || src_cel != NULL))
    remove_cel(sprite, undo, static_cast<LayerImage*>(dst_layer), dst_cel);

  /* move the cel in the same layer */
  if (src_cel != NULL) {
    if (src_layer == dst_layer) {
      if (undo.isEnabled())
        undo.pushUndoer(new undoers::SetCelFrame(undo.getObjects(), src_cel));

      src_cel->setFrame(dst_frame);
    }
    /* move the cel in different layers */
    else {
      if (undo.isEnabled())
        undo.pushUndoer(new undoers::RemoveCel(undo.getObjects(), src_layer, src_cel));
      static_cast<LayerImage*>(src_layer)->removeCel(src_cel);

      src_cel->setFrame(dst_frame);

      /* if we are moving a cel from a transparent layer to the
         background layer, we have to clear the background of the
         image */
      if (!src_layer->isBackground() &&
          dst_layer->isBackground()) {
        Image* src_image = sprite->getStock()->getImage(src_cel->getImage());
        Image* dst_image = crop_image(src_image,
                                      -src_cel->getX(),
                                      -src_cel->getY(),
                                      sprite->getWidth(),
                                      sprite->getHeight(), 0);

        if (undo.isEnabled()) {
          undo.pushUndoer(new undoers::ReplaceImage(undo.getObjects(),
              sprite->getStock(), src_cel->getImage()));
          undo.pushUndoer(new undoers::SetCelPosition(undo.getObjects(), src_cel));
          undo.pushUndoer(new undoers::SetCelOpacity(undo.getObjects(), src_cel));
        }

        clear_image(dst_image, app_get_color_to_clear_layer(dst_layer));
        composite_image(dst_image, src_image, src_cel->getX(), src_cel->getY(), 255, BLEND_MODE_NORMAL);

        src_cel->setPosition(0, 0);
        src_cel->setOpacity(255);

        sprite->getStock()->replaceImage(src_cel->getImage(), dst_image);
        delete src_image;
      }

      if (undo.isEnabled())
        undo.pushUndoer(new undoers::AddCel(undo.getObjects(), dst_layer, src_cel));

      static_cast<LayerImage*>(dst_layer)->addCel(src_cel);
    }
  }

  undo.commit();

  document->notifyCelMoved(src_layer, src_frame, dst_layer, dst_frame);
  set_frame_to_handle(NULL, FrameNumber(0), NULL, FrameNumber(0));
}
コード例 #17
0
ファイル: classifier.c プロジェクト: ShahImranShovon/darknet
void validate_classifier_10(char *datacfg, char *filename, char *weightfile)
{
    int i, j;
    network *net = load_network(filename, weightfile, 0);
    set_batch_network(net, 1);
    srand(time(0));

    list *options = read_data_cfg(datacfg);

    char *label_list = option_find_str(options, "labels", "data/labels.list");
    char *valid_list = option_find_str(options, "valid", "data/train.list");
    int classes = option_find_int(options, "classes", 2);
    int topk = option_find_int(options, "top", 1);

    char **labels = get_labels(label_list);
    list *plist = get_paths(valid_list);

    char **paths = (char **)list_to_array(plist);
    int m = plist->size;
    free_list(plist);

    float avg_acc = 0;
    float avg_topk = 0;
    int *indexes = calloc(topk, sizeof(int));

    for(i = 0; i < m; ++i){
        int class = -1;
        char *path = paths[i];
        for(j = 0; j < classes; ++j){
            if(strstr(path, labels[j])){
                class = j;
                break;
            }
        }
        int w = net->w;
        int h = net->h;
        int shift = 32;
        image im = load_image_color(paths[i], w+shift, h+shift);
        image images[10];
        images[0] = crop_image(im, -shift, -shift, w, h);
        images[1] = crop_image(im, shift, -shift, w, h);
        images[2] = crop_image(im, 0, 0, w, h);
        images[3] = crop_image(im, -shift, shift, w, h);
        images[4] = crop_image(im, shift, shift, w, h);
        flip_image(im);
        images[5] = crop_image(im, -shift, -shift, w, h);
        images[6] = crop_image(im, shift, -shift, w, h);
        images[7] = crop_image(im, 0, 0, w, h);
        images[8] = crop_image(im, -shift, shift, w, h);
        images[9] = crop_image(im, shift, shift, w, h);
        float *pred = calloc(classes, sizeof(float));
        for(j = 0; j < 10; ++j){
            float *p = network_predict(net, images[j].data);
            if(net->hierarchy) hierarchy_predictions(p, net->outputs, net->hierarchy, 1, 1);
            axpy_cpu(classes, 1, p, 1, pred, 1);
            free_image(images[j]);
        }
        free_image(im);
        top_k(pred, classes, topk, indexes);
        free(pred);
        if(indexes[0] == class) avg_acc += 1;
        for(j = 0; j < topk; ++j){
            if(indexes[j] == class) avg_topk += 1;
        }

        printf("%d: top 1: %f, top %d: %f\n", i, avg_acc/(i+1), topk, avg_topk/(i+1));
    }
}
コード例 #18
0
ファイル: classifier.c プロジェクト: ShahImranShovon/darknet
void try_classifier(char *datacfg, char *cfgfile, char *weightfile, char *filename, int layer_num)
{
    network *net = load_network(cfgfile, weightfile, 0);
    set_batch_network(net, 1);
    srand(2222222);

    list *options = read_data_cfg(datacfg);

    char *name_list = option_find_str(options, "names", 0);
    if(!name_list) name_list = option_find_str(options, "labels", "data/labels.list");
    int top = option_find_int(options, "top", 1);

    int i = 0;
    char **names = get_labels(name_list);
    clock_t time;
    int *indexes = calloc(top, sizeof(int));
    char buff[256];
    char *input = buff;
    while(1){
        if(filename){
            strncpy(input, filename, 256);
        }else{
            printf("Enter Image Path: ");
            fflush(stdout);
            input = fgets(input, 256, stdin);
            if(!input) return;
            strtok(input, "\n");
        }
        image orig = load_image_color(input, 0, 0);
        image r = resize_min(orig, 256);
        image im = crop_image(r, (r.w - 224 - 1)/2 + 1, (r.h - 224 - 1)/2 + 1, 224, 224);
        float mean[] = {0.48263312050943, 0.45230225481413, 0.40099074308742};
        float std[] = {0.22590347483426, 0.22120921437787, 0.22103996251583};
        float var[3];
        var[0] = std[0]*std[0];
        var[1] = std[1]*std[1];
        var[2] = std[2]*std[2];

        normalize_cpu(im.data, mean, var, 1, 3, im.w*im.h);

        float *X = im.data;
        time=clock();
        float *predictions = network_predict(net, X);

        layer l = net->layers[layer_num];
        for(i = 0; i < l.c; ++i){
            if(l.rolling_mean) printf("%f %f %f\n", l.rolling_mean[i], l.rolling_variance[i], l.scales[i]);
        }
#ifdef GPU
        cuda_pull_array(l.output_gpu, l.output, l.outputs);
#endif
        for(i = 0; i < l.outputs; ++i){
            printf("%f\n", l.output[i]);
        }
        /*

           printf("\n\nWeights\n");
           for(i = 0; i < l.n*l.size*l.size*l.c; ++i){
           printf("%f\n", l.filters[i]);
           }

           printf("\n\nBiases\n");
           for(i = 0; i < l.n; ++i){
           printf("%f\n", l.biases[i]);
           }
         */

        top_predictions(net, top, indexes);
        printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time));
        for(i = 0; i < top; ++i){
            int index = indexes[i];
            printf("%s: %f\n", names[index], predictions[index]);
        }
        free_image(im);
        if (filename) break;
    }
}
コード例 #19
0
ファイル: coco.c プロジェクト: crystalphi/darknet
void validate_recall(char *cfgfile, char *weightfile)
{
    network net = parse_network_cfg(cfgfile);
    if(weightfile){
        load_weights(&net, weightfile);
    }
    set_batch_network(&net, 1);
    fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
    srand(time(0));

    char *val_images = "/home/pjreddie/data/voc/test/2007_test.txt";
    list *plist = get_paths(val_images);
    char **paths = (char **)list_to_array(plist);

    layer l = net.layers[net.n - 1];

    int num_boxes = l.side;
    int num = l.n;
    int classes = l.classes;

    int j;

    box *boxes = calloc(num_boxes*num_boxes*num, sizeof(box));
    float **probs = calloc(num_boxes*num_boxes*num, sizeof(float *));
    for(j = 0; j < num_boxes*num_boxes*num; ++j) probs[j] = calloc(classes+1, sizeof(float *));

    int N = plist->size;
    int i=0;
    int k;

    float iou_thresh = .5;
    float thresh = .1;
    int total = 0;
    int correct = 0;
    float avg_iou = 0;
    int nms = 1;
    int proposals = 0;
    int save = 1;

    for (i = 0; i < N; ++i) {
        char *path = paths[i];
        image orig = load_image_color(path, 0, 0);
        image resized = resize_image(orig, net.w, net.h);

        float *X = resized.data;
        float *predictions = network_predict(net, X);
        get_boxes(predictions+1+classes, num, num_boxes, 5+classes, boxes);
        get_probs(predictions, num*num_boxes*num_boxes, classes, 5+classes, probs);
        if (nms) do_nms(boxes, probs, num*num_boxes*num_boxes, (classes>0) ? classes : 1, iou_thresh);

        char *labelpath = find_replace(path, "images", "labels");
        labelpath = find_replace(labelpath, "JPEGImages", "labels");
        labelpath = find_replace(labelpath, ".jpg", ".txt");
        labelpath = find_replace(labelpath, ".JPEG", ".txt");

        int num_labels = 0;
        box_label *truth = read_boxes(labelpath, &num_labels);
        for(k = 0; k < num_boxes*num_boxes*num; ++k){
            if(probs[k][0] > thresh){
                ++proposals;
                if(save){
                    char buff[256];
                    sprintf(buff, "/data/extracted/nms_preds/%d", proposals);
                    int dx = (boxes[k].x - boxes[k].w/2) * orig.w;
                    int dy = (boxes[k].y - boxes[k].h/2) * orig.h;
                    int w = boxes[k].w * orig.w;
                    int h = boxes[k].h * orig.h;
                    image cropped = crop_image(orig, dx, dy, w, h);
                    image sized = resize_image(cropped, 224, 224);
#ifdef OPENCV
                    save_image_jpg(sized, buff);
#endif
                    free_image(sized);
                    free_image(cropped);
                    sprintf(buff, "/data/extracted/nms_pred_boxes/%d.txt", proposals);
                    char *im_id = basecfg(path);
                    FILE *fp = fopen(buff, "w");
                    fprintf(fp, "%s %d %d %d %d\n", im_id, dx, dy, dx+w, dy+h);
                    fclose(fp);
                    free(im_id);
                }
            }
        }
        for (j = 0; j < num_labels; ++j) {
            ++total;
            box t = {truth[j].x, truth[j].y, truth[j].w, truth[j].h};
            float best_iou = 0;
            for(k = 0; k < num_boxes*num_boxes*num; ++k){
                float iou = box_iou(boxes[k], t);
                if(probs[k][0] > thresh && iou > best_iou){
                    best_iou = iou;
                }
            }
            avg_iou += best_iou;
            if(best_iou > iou_thresh){
                ++correct;
            }
        }
        free(truth);
        free_image(orig);
        free_image(resized);
        fprintf(stderr, "%5d %5d %5d\tRPs/Img: %.2f\tIOU: %.2f%%\tRecall:%.2f%%\n", i, correct, total, (float)proposals/(i+1), avg_iou*100/total, 100.*correct/total);
    }
}
コード例 #20
0
ファイル: coco.c プロジェクト: crystalphi/darknet
void extract_boxes(char *cfgfile, char *weightfile)
{
    network net = parse_network_cfg(cfgfile);
    if(weightfile){
        load_weights(&net, weightfile);
    }
    set_batch_network(&net, 1);
    fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
    srand(time(0));

    char *val_images = "/home/pjreddie/data/voc/test/train.txt";
    list *plist = get_paths(val_images);
    char **paths = (char **)list_to_array(plist);

    layer l = net.layers[net.n - 1];

    int num_boxes = l.side;
    int num = l.n;
    int classes = l.classes;

    int j;

    box *boxes = calloc(num_boxes*num_boxes*num, sizeof(box));
    float **probs = calloc(num_boxes*num_boxes*num, sizeof(float *));
    for(j = 0; j < num_boxes*num_boxes*num; ++j) probs[j] = calloc(classes+1, sizeof(float *));

    int N = plist->size;
    int i=0;
    int k;

    int count = 0;
    float iou_thresh = .3;

    for (i = 0; i < N; ++i) {
        fprintf(stderr, "%5d %5d\n", i, count);
        char *path = paths[i];
        image orig = load_image_color(path, 0, 0);
        image resized = resize_image(orig, net.w, net.h);

        float *X = resized.data;
        float *predictions = network_predict(net, X);
        get_boxes(predictions+1+classes, num, num_boxes, 5+classes, boxes);
        get_probs(predictions, num*num_boxes*num_boxes, classes, 5+classes, probs);

        char *labelpath = find_replace(path, "images", "labels");
        labelpath = find_replace(labelpath, "JPEGImages", "labels");
        labelpath = find_replace(labelpath, ".jpg", ".txt");
        labelpath = find_replace(labelpath, ".JPEG", ".txt");

        int num_labels = 0;
        box_label *truth = read_boxes(labelpath, &num_labels);
        FILE *label = stdin;
        for(k = 0; k < num_boxes*num_boxes*num; ++k){
            int overlaps = 0;
            for (j = 0; j < num_labels; ++j) {
                box t = {truth[j].x, truth[j].y, truth[j].w, truth[j].h};
                float iou = box_iou(boxes[k], t);
                if (iou > iou_thresh){
                    if (!overlaps) {
                        char buff[256];
                        sprintf(buff, "/data/extracted/labels/%d.txt", count);
                        label = fopen(buff, "w");
                        overlaps = 1;
                    }
                    fprintf(label, "%d %f\n", truth[j].id, iou);
                }
            }
            if (overlaps) {
                char buff[256];
                sprintf(buff, "/data/extracted/imgs/%d", count++);
                int dx = (boxes[k].x - boxes[k].w/2) * orig.w;
                int dy = (boxes[k].y - boxes[k].h/2) * orig.h;
                int w = boxes[k].w * orig.w;
                int h = boxes[k].h * orig.h;
                image cropped = crop_image(orig, dx, dy, w, h);
                image sized = resize_image(cropped, 224, 224);
#ifdef OPENCV
                save_image_jpg(sized, buff);
#endif
                free_image(sized);
                free_image(cropped);
                fclose(label);
            }
        }
        free(truth);
        free_image(orig);
        free_image(resized);
    }
}
コード例 #21
0
ファイル: nightmare.c プロジェクト: imaami/darknet
void optimize_picture(network *net, image orig, int max_layer, float scale, float rate, float thresh, int norm)
{
    //scale_image(orig, 2);
    //translate_image(orig, -1);
    net->n = max_layer + 1;

    int dx = rand()%16 - 8;
    int dy = rand()%16 - 8;
    int flip = rand()%2;

    image crop = crop_image(orig, dx, dy, orig.w, orig.h);
    image im = resize_image(crop, (int)(orig.w * scale), (int)(orig.h * scale));
    if(flip) flip_image(im);

    resize_network(net, im.w, im.h);
    layer_t last = net->layers[net->n-1];
    //net->layers[net->n - 1].activation = LINEAR;

    image delta = make_image(im.w, im.h, im.c);

    NETWORK_STATE(state);

#ifdef GPU
    state.input = cuda_make_array(im.data, im.w*im.h*im.c);
    state.delta = cuda_make_array(im.data, im.w*im.h*im.c);

    forward_network_gpu(*net, state);
    copy_ongpu(last.outputs, last.output_gpu, 1, last.delta_gpu, 1);

    cuda_pull_array(last.delta_gpu, last.delta, last.outputs);
    calculate_loss(last.delta, last.delta, last.outputs, thresh);
    cuda_push_array(last.delta_gpu, last.delta, last.outputs);

    backward_network_gpu(*net, state);

    cuda_pull_array(state.delta, delta.data, im.w*im.h*im.c);
    cuda_free(state.input);
    cuda_free(state.delta);
#else
    state.input = im.data;
    state.delta = delta.data;
    forward_network(*net, state);
    fltcpy(last.delta, last.output, last.outputs);
    calculate_loss(last.output, last.delta, last.outputs, thresh);
    backward_network(*net, state);
#endif

    if(flip) flip_image(delta);
    //normalize_array(delta.data, delta.w*delta.h*delta.c);
    image resized = resize_image(delta, orig.w, orig.h);
    image out = crop_image(resized, -dx, -dy, orig.w, orig.h);

    /*
       image g = grayscale_image(out);
       free_image(out);
       out = g;
     */

    //rate = rate / abs_mean(out.data, out.w*out.h*out.c);

    if(norm) normalize_array(out.data, out.w*out.h*out.c);
    fltaddmul(orig.data, out.data, orig.w * orig.h * orig.c, rate);

    /*
       normalize_array(orig.data, orig.w*orig.h*orig.c);
       scale_image(orig, sqrt(var));
       translate_image(orig, mean);
     */

    //translate_image(orig, 1);
    //scale_image(orig, .5);
    //normalize_image(orig);

    constrain_image(orig);

    free_image(crop);
    free_image(im);
    free_image(delta);
    free_image(resized);
    free_image(out);

}
コード例 #22
0
ファイル: sprite.cpp プロジェクト: piluke/BasicEventEngine
/*
* BEE::Sprite::crop_image_width() - Crop the image to the given width
* @new_crop_width: the new width to crop the image to
*/
int BEE::Sprite::crop_image_width(int new_crop_width) {
	crop.w = new_crop_width; // Set the width
	return crop_image(crop); // Return the status of the cropping
}