/* x=A\b where A can be rectangular; b overwritten with solution */ int cs_qrsol (int order, const cs *A, double *b) { double *x ; css *S ; csn *N ; cs *AT = NULL ; int k, m, n, ok ; if (!CS_CSC (A) || !b) return (0) ; /* check inputs */ n = A->n ; m = A->m ; if (m >= n) { S = cs_sqr (order, A, 1) ; /* ordering and symbolic analysis */ N = cs_qr (A, S) ; /* numeric QR factorization */ x = cs_calloc (S ? S->m2 : 1, sizeof (double)) ; /* get workspace */ ok = (S && N && x) ; if (ok) { cs_ipvec (S->pinv, b, x, m) ; /* x(0:m-1) = b(p(0:m-1) */ for (k = 0 ; k < n ; k++) /* apply Householder refl. to x */ { cs_happly (N->L, k, N->B [k], x) ; } cs_usolve (N->U, x) ; /* x = R\x */ cs_ipvec (S->q, x, b, n) ; /* b(q(0:n-1)) = x(0:n-1) */ } } else { AT = cs_transpose (A, 1) ; /* Ax=b is underdetermined */ S = cs_sqr (order, AT, 1) ; /* ordering and symbolic analysis */ N = cs_qr (AT, S) ; /* numeric QR factorization of A' */ x = cs_calloc (S ? S->m2 : 1, sizeof (double)) ; /* get workspace */ ok = (AT && S && N && x) ; if (ok) { cs_pvec (S->q, b, x, m) ; /* x(q(0:m-1)) = b(0:m-1) */ cs_utsolve (N->U, x) ; /* x = R'\x */ for (k = m-1 ; k >= 0 ; k--) /* apply Householder refl. to x */ { cs_happly (N->L, k, N->B [k], x) ; } cs_pvec (S->pinv, x, b, n) ; /* b(0:n-1) = x(p(0:n-1)) */ } } cs_free (x) ; cs_sfree (S) ; cs_nfree (N) ; cs_spfree (AT) ; return (ok) ; }
returnValue ACADOcsparse::setMatrix(double *A_) { int run1; int order = 0; if (dim <= 0) return ACADOERROR(RET_MEMBER_NOT_INITIALISED); if (nDense <= 0) return ACADOERROR(RET_MEMBER_NOT_INITIALISED); cs *C, *D; C = cs_spalloc(0, 0, 1, 1, 1); for (run1 = 0; run1 < nDense; run1++) cs_entry(C, index1[run1], index2[run1], A_[run1]); D = cs_compress(C); S = cs_sqr(order, D, 0); N = cs_lu(D, S, TOL); cs_spfree(C); cs_spfree(D); return SUCCESSFUL_RETURN; }
/* Modified version of Tim Davis's cs_lu_mex.c file for MATLAB */ void install_lu(SEXP Ap, int order, double tol, Rboolean err_sing) { // (order, tol) == (1, 1) by default, when called from R. SEXP ans; css *S; csn *N; int n, *p, *dims; CSP A = AS_CSP__(Ap), D; R_CheckStack(); n = A->n; if (A->m != n) error(_("LU decomposition applies only to square matrices")); if (order) { /* not using natural order */ order = (tol == 1) ? 2 /* amd(S'*S) w/dense rows or I */ : 1; /* amd (A+A'), or natural */ } S = cs_sqr(order, A, /*qr = */ 0); /* symbolic ordering */ N = cs_lu(A, S, tol); /* numeric factorization */ if (!N) { if(err_sing) error(_("cs_lu(A) failed: near-singular A (or out of memory)")); else { /* No warning: The useR should be careful : * Put NA into "LU" factor */ set_factors(Ap, ScalarLogical(NA_LOGICAL), "LU"); return; } } cs_dropzeros(N->L); /* drop zeros from L and sort it */ D = cs_transpose(N->L, 1); cs_spfree(N->L); N->L = cs_transpose(D, 1); cs_spfree(D); cs_dropzeros(N->U); /* drop zeros from U and sort it */ D = cs_transpose(N->U, 1); cs_spfree(N->U); N->U = cs_transpose(D, 1); cs_spfree(D); p = cs_pinv(N->pinv, n); /* p=pinv' */ ans = PROTECT(NEW_OBJECT(MAKE_CLASS("sparseLU"))); dims = INTEGER(ALLOC_SLOT(ans, Matrix_DimSym, INTSXP, 2)); dims[0] = n; dims[1] = n; SET_SLOT(ans, install("L"), Matrix_cs_to_SEXP(N->L, "dtCMatrix", 0)); SET_SLOT(ans, install("U"), Matrix_cs_to_SEXP(N->U, "dtCMatrix", 0)); Memcpy(INTEGER(ALLOC_SLOT(ans, Matrix_pSym, /* "p" */ INTSXP, n)), p, n); if (order) Memcpy(INTEGER(ALLOC_SLOT(ans, install("q"), INTSXP, n)), S->q, n); cs_nfree(N); cs_sfree(S); cs_free(p); UNPROTECT(1); set_factors(Ap, ans, "LU"); }
css * newton_sparsity(cs *J) { // Perform symbolic analysis of the Jacobian for subsequent LU // factorisation css *S; int order = 0; // 0 = natural, 1 = min deg order of A + A' S = cs_sqr(order, J, 0); // 0 means we're doing LU and not QR return S; }
/* cs_lu: sparse LU factorization, with optional fill-reducing ordering */ void mexFunction ( int nargout, mxArray *pargout [ ], int nargin, const mxArray *pargin [ ] ) { css *S ; csn *N ; cs Amatrix, *A, *D ; csi n, order, *p ; double tol ; if (nargout > 4 || nargin > 3 || nargin < 1) { mexErrMsgTxt ("Usage: [L,U,p,q] = cs_lu (A,tol)") ; } A = cs_mex_get_sparse (&Amatrix, 1, 1, pargin [0]) ; /* get A */ n = A->n ; if (nargin == 2) /* determine tol and ordering */ { tol = mxGetScalar (pargin [1]) ; order = (nargout == 4) ? 1 : 0 ; /* amd (A+A'), or natural */ } else { tol = 1 ; order = (nargout == 4) ? 2 : 0 ; /* amd(S'*S) w/dense rows or I */ } S = cs_sqr (order, A, 0) ; /* symbolic ordering, no QR bound */ N = cs_lu (A, S, tol) ; /* numeric factorization */ if (!N) mexErrMsgTxt ("cs_lu failed (singular, or out of memory)") ; cs_dropzeros (N->L) ; /* drop zeros from L and sort it */ D = cs_transpose (N->L, 1) ; cs_spfree (N->L) ; N->L = cs_transpose (D, 1) ; cs_spfree (D) ; cs_dropzeros (N->U) ; /* drop zeros from U and sort it */ D = cs_transpose (N->U, 1) ; cs_spfree (N->U) ; N->U = cs_transpose (D, 1) ; cs_spfree (D) ; p = cs_pinv (N->pinv, n) ; /* p=pinv' */ pargout [0] = cs_mex_put_sparse (&(N->L)) ; /* return L */ pargout [1] = cs_mex_put_sparse (&(N->U)) ; /* return U */ pargout [2] = cs_mex_put_int (p, n, 1, 1) ; /* return p */ /* return Q */ if (nargout == 4) pargout [3] = cs_mex_put_int (S->q, n, 1, 0) ; cs_nfree (N) ; cs_sfree (S) ; }
int cs_lu_factorization(csi order, const cs *A, double tol, NumericsSparseLinearSolverParams* p) { assert(A); assert(p); cs_lu_factors* cs_lu_A = (cs_lu_factors*) malloc(sizeof(cs_lu_factors)); cs_lu_A->n = A->n; css* S = cs_sqr (order, A, 0); cs_lu_A->S = S; cs_lu_A->N = cs_lu(A, S, tol); p->solver_data = cs_lu_A; return (S && cs_lu_A->N); }
int sparse_LU_decomp(sparse_matrix* matrix, css* S, csn* N ){ if( !matrix) return 0; S=cs_sqr(2,matrix,0); N=cs_lu(matrix,S,1); if(!S || !N) return 0; cs_spfree(matrix); return 1; }
// Modified version of Tim Davis's cs_qr_mex.c file for MATLAB (in CSparse) // Usage: [V,beta,p,R,q] = cs_qr(A) ; SEXP dgCMatrix_QR(SEXP Ap, SEXP order) { CSP A = AS_CSP__(Ap), D; int io = INTEGER(order)[0]; Rboolean verbose = (io < 0); int m = A->m, n = A->n, ord = asLogical(order) ? 3 : 0, *p; R_CheckStack(); if (m < n) error(_("A must have #{rows} >= #{columns}")) ; SEXP ans = PROTECT(NEW_OBJECT(MAKE_CLASS("sparseQR"))); int *dims = INTEGER(ALLOC_SLOT(ans, Matrix_DimSym, INTSXP, 2)); dims[0] = m; dims[1] = n; css *S = cs_sqr(ord, A, 1); /* symbolic QR ordering & analysis*/ if (!S) error(_("cs_sqr failed")); if(verbose && S->m2 > m) // in ./cs.h , m2 := # of rows for QR, after adding fictitious rows Rprintf("Symbolic QR(): Matrix structurally rank deficient (m2-m = %d)\n", S->m2 - m); csn *N = cs_qr(A, S); /* numeric QR factorization */ if (!N) error(_("cs_qr failed")) ; cs_dropzeros(N->L); /* drop zeros from V and sort */ D = cs_transpose(N->L, 1); cs_spfree(N->L); N->L = cs_transpose(D, 1); cs_spfree(D); cs_dropzeros(N->U); /* drop zeros from R and sort */ D = cs_transpose(N->U, 1); cs_spfree(N->U) ; N->U = cs_transpose(D, 1); cs_spfree(D); m = N->L->m; /* m may be larger now */ // MM: m := S->m2 also counting the ficticious rows (Tim Davis, p.72, 74f) p = cs_pinv(S->pinv, m); /* p = pinv' */ SET_SLOT(ans, install("V"), Matrix_cs_to_SEXP(N->L, "dgCMatrix", 0)); Memcpy(REAL(ALLOC_SLOT(ans, install("beta"), REALSXP, n)), N->B, n); Memcpy(INTEGER(ALLOC_SLOT(ans, Matrix_pSym, INTSXP, m)), p, m); SET_SLOT(ans, install("R"), Matrix_cs_to_SEXP(N->U, "dgCMatrix", 0)); if (ord) Memcpy(INTEGER(ALLOC_SLOT(ans, install("q"), INTSXP, n)), S->q, n); else ALLOC_SLOT(ans, install("q"), INTSXP, 0); cs_nfree(N); cs_sfree(S); cs_free(p); UNPROTECT(1); return ans; }
/* cs_qr: sparse QR factorization */ void mexFunction ( int nargout, mxArray *pargout [ ], int nargin, const mxArray *pargin [ ] ) { css *S ; csn *N ; cs Amatrix, *A, *D ; csi m, n, order, *p ; if (nargout > 5 || nargin != 1) { mexErrMsgTxt ("Usage: [V,beta,p,R,q] = cs_qr(A)") ; } A = cs_mex_get_sparse (&Amatrix, 0, 1, pargin [0]) ; /* get A */ m = A->m ; n = A->n ; if (m < n) mexErrMsgTxt ("A must have # rows >= # columns") ; order = (nargout == 5) ? 3 : 0 ; /* determine ordering */ S = cs_sqr (order, A, 1) ; /* symbolic QR ordering & analysis*/ N = cs_qr (A, S) ; /* numeric QR factorization */ if (!N) mexErrMsgTxt ("qr failed") ; cs_dropzeros (N->L) ; /* drop zeros from V and sort */ D = cs_transpose (N->L, 1) ; cs_spfree (N->L) ; N->L = cs_transpose (D, 1) ; cs_spfree (D) ; cs_dropzeros (N->U) ; /* drop zeros from R and sort */ D = cs_transpose (N->U, 1) ; cs_spfree (N->U) ; N->U = cs_transpose (D, 1) ; cs_spfree (D) ; m = N->L->m ; /* m may be larger now */ p = cs_pinv (S->pinv, m) ; /* p = pinv' */ pargout [0] = cs_mex_put_sparse (&(N->L)) ; /* return V */ cs_mex_put_double (n, N->B, &(pargout [1])) ; /* return beta */ pargout [2] = cs_mex_put_int (p, m, 1, 1) ; /* return p */ pargout [3] = cs_mex_put_sparse (&(N->U)) ; /* return R */ pargout [4] = cs_mex_put_int (S->q, n, 1, 0) ; /* return q */ cs_nfree (N) ; cs_sfree (S) ; }
/** * @brief Performs QR factorization on a matrix. * * @param[in,out] qrd QR factorization of the matrix. * @param[in] A Matrix to factorize. * @return 0 on success. */ static int cs_fact_init_qr( cs_fact_t *qrd, const cs *A ) { int order = 3; /* order 0:natural, 1:Chol, 2:LU, 3:QR */ qrd->S = cs_sqr( order, A, 1 ); if (qrd->S == NULL) goto err_S; qrd->N = cs_qr( A, qrd->S ); if (qrd->N == NULL) goto err_N; qrd->x = cs_malloc( qrd->S->m2, sizeof(double) ); if (qrd->x == NULL) goto err_x; qrd->type = CS_FACT_QR; return 0; err_x: cs_nfree( qrd->N ); err_N: cs_sfree( qrd->S ); err_S: return -1; }
/* x=A\b where A is unsymmetric; b overwritten with solution */ csi cs_lusol_modifier (csi order, const cs *A, double *b, double *a, double tol) { double *x ; css *S ; csn *N ; csi n, ok ; // if (!CS_CSC (A) || !b) return (0) ; /* check inputs */ n = A->n ; S = cs_sqr (order, A, 0) ; /* ordering and symbolic analysis */ N = cs_lu (A, S, tol) ; /* numeric LU factorization */ x = cs_malloc (n, sizeof (double)) ; /* get workspace */ // ok = (S && N && x) ; //if (ok) //{ cs_ipvec (N->pinv, b, x, n) ; /* x = b(p) */ cs_lsolve (N->L, x) ; /* x = L\x */ cs_usolve (N->U, x) ; /* x = U\x */ cs_ipvec (S->q, x, a, n) ; /* b(q) = x */ // } cs_free (x) ; cs_sfree (S) ; cs_nfree (N) ; return (ok) ; }
/** * @brief Performs LU factorization on a matrix. * * @param[in,out] lud LU factorization of the matrix. * @param[in] A Matrix to factorize. * @return 0 on success. */ static int cs_fact_init_lu( cs_fact_t *lud, const cs *A ) { int order = 2; /* order 0:natural, 1:Chol, 2:LU, 3:QR */ double tol = 1e-16; lud->S = cs_sqr( order, A, 0 ); if (lud->S == NULL) goto err_S; lud->N = cs_lu( A, lud->S, tol ); if (lud->N == NULL) goto err_N; lud->x = cs_malloc( A->n, sizeof(double) ); if (lud->x == NULL) goto err_x; lud->type = CS_FACT_LU; return 0; err_x: cs_nfree( lud->N ); err_N: cs_sfree( lud->S ); err_S: return -1; }
void luDecomp_sparse(cs* matrixA, double* matrixB, double* matrixX, int size) { int i; css *S; csn *N; S=cs_sqr(2,matrixA,0); N=cs_lu(matrixA,S,1); cs_spfree(matrixA); if(found_dc_sweep==0){ cs_ipvec(N->pinv, matrixB, matrixX, size); cs_lsolve(N->L, matrixX); cs_usolve(N->U, matrixX); cs_ipvec(S->q, matrixX, matrixB, size); printf("X vector \n"); for(i=0;i<size;i++){ printf(" %.6lf ",matrixX[i]); } printf("\n"); } else{ double value; double *matrixB_temp = (double *)calloc(size,sizeof(double)); if (source > -1) { for(value=start_value;value<=end_value;value=value+step){ matrixB[source-1]=value; cs_ipvec(N->pinv, matrixB, matrixX, size); cs_lsolve(N->L, matrixX); cs_usolve(N->U, matrixX); } } else { if (sweep_node1!=0){ matrixB[sweep_node1-1]+=sweep_value-start_value; } if(sweep_node2!=0){ matrixB[sweep_node2-1]-=sweep_value+start_value; } for(value=start_value;value<=end_value;value=value+step) { cs_ipvec(N->pinv, matrixB, matrixX, size); cs_lsolve(N->L, matrixX); cs_usolve(N->U, matrixX); cs_ipvec(S->q, matrixX, matrixB_temp, size); if (sweep_node1!=0){ matrixB[sweep_node1-1]+=sweep_value-start_value; } if(sweep_node2!=0){ matrixB[sweep_node2-1]-=sweep_value+start_value; } printf("value= %lf Matrix X: \n",value); for(i=0;i<size;i++){ printf(" %.6lf ",matrixX[i]); } printf("\n"); } } } printf("\n"); }
void CsparseInterface::prepare() { double time_start=0; if (CasadiOptions::profiling && CasadiOptions::profilingBinary) { time_start = getRealTime(); // Start timer profileWriteEntry(CasadiOptions::profilingLog, this); } if (!called_once_) { if (verbose()) { cout << "CsparseInterface::prepare: symbolic factorization" << endl; } // ordering and symbolic analysis int order = 0; // ordering? if (S_) cs_sfree(S_); S_ = cs_sqr(order, &A_, 0) ; } prepared_ = false; called_once_ = true; // Get a referebce to the nonzeros of the linear system const vector<double>& linsys_nz = input().data(); // Make sure that all entries of the linear system are valid for (int k=0; k<linsys_nz.size(); ++k) { casadi_assert_message(!isnan(linsys_nz[k]), "Nonzero " << k << " is not-a-number"); casadi_assert_message(!isinf(linsys_nz[k]), "Nonzero " << k << " is infinite"); } if (verbose()) { cout << "CsparseInterface::prepare: numeric factorization" << endl; cout << "linear system to be factorized = " << endl; input(0).printSparse(); } double tol = 1e-8; if (N_) cs_nfree(N_); N_ = cs_lu(&A_, S_, tol) ; // numeric LU factorization if (N_==0) { DMatrix temp = input(); temp.makeSparse(); if (temp.sparsity().isSingular()) { stringstream ss; ss << "CsparseInterface::prepare: factorization failed due to matrix" " being singular. Matrix contains numerical zeros which are " "structurally non-zero. Promoting these zeros to be structural " "zeros, the matrix was found to be structurally rank deficient." " sprank: " << sprank(temp.sparsity()) << " <-> " << temp.size2() << endl; if (verbose()) { ss << "Sparsity of the linear system: " << endl; input(LINSOL_A).sparsity().print(ss); // print detailed } throw CasadiException(ss.str()); } else { stringstream ss; ss << "CsparseInterface::prepare: factorization failed, check if Jacobian is singular" << endl; if (verbose()) { ss << "Sparsity of the linear system: " << endl; input(LINSOL_A).sparsity().print(ss); // print detailed } throw CasadiException(ss.str()); } } casadi_assert(N_!=0); prepared_ = true; if (CasadiOptions::profiling && CasadiOptions::profilingBinary) { double time_stop = getRealTime(); // Stop timer profileWriteTime(CasadiOptions::profilingLog, this, 0, time_stop-time_start, time_stop-time_start); profileWriteExit(CasadiOptions::profilingLog, this, time_stop-time_start); } }
void CSparseInternal::prepare(){ if(!called_once_){ // ordering and symbolic analysis int order = 3; // ordering? int qr = 1; // LU if(S_) cs_sfree(S_); S_ = cs_sqr (order, &AT_, qr) ; std::vector<int> pinv; std::vector<int> q; std::vector<int> parent; std::vector<int> cp; std::vector<int> leftmost; int m2; double lnz; double unz; input().sparsity()->prefactorize(order, qr, pinv, q, parent, cp, leftmost, m2, lnz, unz); cout << "pinv" << endl; cout << pinv << endl; if(S_->pinv!=0) cout << vector<int>(S_->pinv, S_->pinv + pinv.size()) << endl; cout << endl; cout << "q" << endl; cout << q << endl; if(S_->q!=0) cout << vector<int>(S_->q, S_->q + q.size()) << endl; cout << endl; cout << "parent" << endl; cout << parent << endl; if(S_->parent!=0) cout << vector<int>(S_->parent, S_->parent + parent.size()) << endl; cout << endl; cout << "cp" << endl; cout << cp << endl; if(S_->cp!=0) cout << vector<int>(S_->cp, S_->cp + cp.size()) << endl; cout << endl; cout << "leftmost" << endl; cout << leftmost << endl; if(S_->leftmost!=0) cout << vector<int>(S_->leftmost, S_->leftmost + leftmost.size()) << endl; cout << endl; } prepared_ = false; called_once_ = true; double tol = 1e-8; if(N_) cs_nfree(N_); N_ = cs_lu(&AT_, S_, tol) ; // numeric LU factorization if(N_==0){ throw CasadiException("factorization failed, Jacobian singular?"); } casadi_assert(N_!=0); prepared_ = true; }
void solveSparse(double time){ int i; double current_value; double *B_sparse_temp; //Adeiasma twn arxeiwn sta opoia tha apothikeutoun ta apotelesmata tis analysis gia tous komvous PLOT if(TRAN==0)initPlotFiles("Sparse"); if(ITER==0) { //LU decomposition S=cs_sqr(2,C_sparse,0); N=cs_lu(C_sparse,S,1); //cs_spfree(C_sparse); } B_sparse_temp = (double *)calloc(sizeB,sizeof(double)); //apothikeusi tou apotelesmatos tis LU solve gia to sweep kai to transient if(dc_sweep==0){ //An den exoume sweep for(i=0;i<sizeB;i++)B_sparse_temp[i]=B_sparse[i]; if (ITER == 0){ //LU solve cs_ipvec(N->pinv, B_sparse, x_sparse, sizeB); //seg fault gia choleskyNetlist!LA8OS TO N!ARA ANADROMIKA LA8OS TO C_sparse.Omws C_sparce swsto vash ths CG. cs_lsolve(N->L, x_sparse); cs_usolve(N->U, x_sparse); cs_ipvec(S->q, x_sparse, B_sparse, sizeB); //printf("\n ----- SPARSE LU decomposition ----- \n"); for(i=0;i<sizeB;i++){x_sparse[i]=B_sparse[i];} cs_nfree(N); cs_sfree(S); }else{ bi_conjugate_gradient_sparse(C_sparse,B_sparse, sizeB, x_sparse, itol_value); //printf("\n"); //printf("---- BI-CG SPARSE ----\n"); } /* printf("X = \n"); for(i=0;i<sizeB;i++){ printf(" %.6lf \n",x_sparse[i]); } printf("----------------------\n"); printf("\n"); */ if(TRAN==0){ plotFiles("Sparse", x_sparse, -1.0, "Analysis: DC"); }else{ plotFiles("Sparse", x_sparse, time, "Analysis: TRAN"); } for(i=0;i<sizeB;i++)B_sparse[i]=B_sparse_temp[i]; //epanafora tou B_sparse gia xrisi sto transient } else //DC_SWEEP != 0 { if(sweep_source!=-1){ //pigi tashs ginetai sweep for(current_value=start_value; current_value<=end_value+EPS; current_value+=sweep_step){ B_sparse[sweep_source-1]=current_value; if(ITER == 0){ cs_ipvec(N->pinv, B_sparse, x_sparse, sizeB); cs_lsolve(N->L, x_sparse); cs_usolve(N->U, x_sparse); cs_ipvec(S->q, x_sparse, B_sparse_temp, sizeB); }else{ bi_conjugate_gradient_sparse(C_sparse,B_sparse, sizeB, x_sparse, itol_value); } //Apothikeusi twn apotelesmatwn tis analysis gia tous komvous PLOT plotFiles("Sparse", (ITER ? x_sparse:B_sparse_temp), current_value, "Sweep source voltage at"); } }else{ //pigi reumatos ginetai sweep //Anairesi twn praksewn + kai - apo tin arxiki timi tis pigis ston pinaka B //kai praksi + kai - me to start_value if(sweep_posNode!=0){ B_sparse[sweep_posNode-1]+=sweep_value_I-start_value; } if(sweep_negNode!=0){ B_sparse[sweep_negNode-1]-=sweep_value_I+start_value; } for(current_value=start_value;current_value<=end_value+EPS;current_value+=sweep_step){ if(ITER == 0){ cs_ipvec(N->pinv, B_sparse, x_sparse, sizeB); cs_lsolve(N->L, x_sparse); cs_usolve(N->U, x_sparse); cs_ipvec(S->q, x_sparse, B_sparse_temp,sizeB); }else{ bi_conjugate_gradient_sparse(C_sparse,B_sparse, sizeB, x_sparse, itol_value); } //Allagi twn timwn ston pinaka B gia to epomeno vima tou sweep if(sweep_posNode!=0){ B_sparse[sweep_posNode-1]-=sweep_step; } if(sweep_negNode!=0){ B_sparse[sweep_negNode-1]+=sweep_step; } //Apothikeusi twn apotelesmatwn tis analysis gia tous komvous PLOT se arxeia plotFiles("Sparse", (ITER ? x_sparse:B_sparse_temp), current_value, "Sweep source current at"); } printf("\n"); } } free(B_sparse_temp); }
// Modified version of Tim Davis's cs_qr_mex.c file for MATLAB (in CSparse) // Usage: [V,beta,p,R,q] = cs_qr(A) ; SEXP dgCMatrix_QR(SEXP Ap, SEXP order, SEXP keep_dimnames) { CSP A = AS_CSP__(Ap), D; int io = INTEGER(order)[0]; Rboolean verbose = (io < 0);// verbose=TRUE, encoded with negative 'order' int m0 = A->m, m = m0, n = A->n, ord = asLogical(order) ? 3 : 0, *p; R_CheckStack(); if (m < n) error(_("A must have #{rows} >= #{columns}")) ; SEXP ans = PROTECT(NEW_OBJECT(MAKE_CLASS("sparseQR"))); int *dims = INTEGER(ALLOC_SLOT(ans, Matrix_DimSym, INTSXP, 2)); dims[0] = m; dims[1] = n; css *S = cs_sqr(ord, A, 1); /* symbolic QR ordering & analysis*/ if (!S) error(_("cs_sqr failed")); int keep_dimnms = asLogical(keep_dimnames); if(keep_dimnms == NA_LOGICAL) { keep_dimnms = TRUE; warning(_("dgcMatrix_QR(*, keep_dimnames = NA): NA taken as TRUE")); } if(verbose && S->m2 > m) // in ./cs.h , m2 := # of rows for QR, after adding fictitious rows Rprintf("Symbolic QR(): Matrix structurally rank deficient (m2-m = %d)\n", S->m2 - m); csn *N = cs_qr(A, S); /* numeric QR factorization */ if (!N) error(_("cs_qr failed")) ; cs_dropzeros(N->L); /* drop zeros from V and sort */ D = cs_transpose(N->L, 1); cs_spfree(N->L); N->L = cs_transpose(D, 1); cs_spfree(D); cs_dropzeros(N->U); /* drop zeros from R and sort */ D = cs_transpose(N->U, 1); cs_spfree(N->U) ; N->U = cs_transpose(D, 1); cs_spfree(D); m = N->L->m; /* m may be larger now */ // MM: m := S->m2 also counting the ficticious rows (Tim Davis, p.72, 74f) p = cs_pinv(S->pinv, m); /* p = pinv' */ SEXP dn = R_NilValue; Rboolean do_dn = FALSE; if(keep_dimnms) { dn = GET_SLOT(Ap, Matrix_DimNamesSym); do_dn = !isNull(VECTOR_ELT(dn, 0)) && m == m0; // FIXME? also deal with case m > m0 ? if(do_dn) { // keep rownames dn = PROTECT(duplicate(dn)); SET_VECTOR_ELT(dn, 1, R_NilValue); } else dn = R_NilValue; } SET_SLOT(ans, Matrix_VSym, Matrix_cs_to_SEXP(N->L, "dgCMatrix", 0, dn)); // "V" Memcpy(REAL(ALLOC_SLOT(ans, Matrix_betaSym, REALSXP, n)), N->B, n); Memcpy(INTEGER(ALLOC_SLOT(ans, Matrix_pSym, INTSXP, m)), p, m); if(do_dn) { UNPROTECT(1); // dn dn = R_NilValue; do_dn = FALSE; } if (ord) { Memcpy(INTEGER(ALLOC_SLOT(ans, install("q"), INTSXP, n)), S->q, n); if(keep_dimnms) { dn = GET_SLOT(Ap, Matrix_DimNamesSym); do_dn = !isNull(VECTOR_ELT(dn, 1)); if(do_dn) { dn = PROTECT(duplicate(dn)); // permute colnames by S->q : cn <- cn[ S->q ] : SEXP cns = PROTECT(duplicate(VECTOR_ELT(dn, 1))); for(int j=0; j < n; j++) SET_STRING_ELT(VECTOR_ELT(dn, 1), j, STRING_ELT(cns, S->q[j])); UNPROTECT(1); SET_VECTOR_ELT(dn, 0, R_NilValue); } else dn = R_NilValue; } } else ALLOC_SLOT(ans, install("q"), INTSXP, 0); SET_SLOT(ans, install("R"), Matrix_cs_to_SEXP(N->U, "dgCMatrix", 0, dn)); if(do_dn) UNPROTECT(1); // dn cs_nfree(N); cs_sfree(S); cs_free(p); UNPROTECT(1); return ans; }
/* Modified version of Tim Davis's cs_lu_mex.c file for MATLAB */ void install_lu(SEXP Ap, int order, double tol, Rboolean err_sing, Rboolean keep_dimnms) { // (order, tol) == (1, 1) by default, when called from R. SEXP ans; css *S; csn *N; int n, *p, *dims; CSP A = AS_CSP__(Ap), D; R_CheckStack(); n = A->n; if (A->m != n) error(_("LU decomposition applies only to square matrices")); if (order) { /* not using natural order */ order = (tol == 1) ? 2 /* amd(S'*S) w/dense rows or I */ : 1; /* amd (A+A'), or natural */ } S = cs_sqr(order, A, /*qr = */ 0); /* symbolic ordering */ N = cs_lu(A, S, tol); /* numeric factorization */ if (!N) { if(err_sing) error(_("cs_lu(A) failed: near-singular A (or out of memory)")); else { /* No warning: The useR should be careful : * Put NA into "LU" factor */ set_factors(Ap, ScalarLogical(NA_LOGICAL), "LU"); return; } } cs_dropzeros(N->L); /* drop zeros from L and sort it */ D = cs_transpose(N->L, 1); cs_spfree(N->L); N->L = cs_transpose(D, 1); cs_spfree(D); cs_dropzeros(N->U); /* drop zeros from U and sort it */ D = cs_transpose(N->U, 1); cs_spfree(N->U); N->U = cs_transpose(D, 1); cs_spfree(D); p = cs_pinv(N->pinv, n); /* p=pinv' */ ans = PROTECT(NEW_OBJECT(MAKE_CLASS("sparseLU"))); dims = INTEGER(ALLOC_SLOT(ans, Matrix_DimSym, INTSXP, 2)); dims[0] = n; dims[1] = n; SEXP dn; Rboolean do_dn = FALSE; if(keep_dimnms) { dn = GET_SLOT(Ap, Matrix_DimNamesSym); do_dn = !isNull(VECTOR_ELT(dn, 0)); if(do_dn) { dn = PROTECT(duplicate(dn)); // permute rownames by p : rn <- rn[ p ] : SEXP rn = PROTECT(duplicate(VECTOR_ELT(dn, 0))); for(int i=0; i < n; i++) SET_STRING_ELT(VECTOR_ELT(dn, 0), i, STRING_ELT(rn, p[i])); UNPROTECT(1); // rn SET_VECTOR_ELT(dn, 1, R_NilValue); // colnames(.) := NULL } } SET_SLOT(ans, install("L"), Matrix_cs_to_SEXP(N->L, "dtCMatrix", 0, do_dn ? dn : R_NilValue)); if(keep_dimnms) { if(do_dn) { UNPROTECT(1); // dn dn = GET_SLOT(Ap, Matrix_DimNamesSym); } do_dn = !isNull(VECTOR_ELT(dn, 1)); if(do_dn) { dn = PROTECT(duplicate(dn)); if(order) { // permute colnames by S->q : cn <- cn[ S->q ] : SEXP cn = PROTECT(duplicate(VECTOR_ELT(dn, 1))); for(int j=0; j < n; j++) SET_STRING_ELT(VECTOR_ELT(dn, 1), j, STRING_ELT(cn, S->q[j])); UNPROTECT(1); // cn } SET_VECTOR_ELT(dn, 0, R_NilValue); // rownames(.) := NULL } } SET_SLOT(ans, install("U"), Matrix_cs_to_SEXP(N->U, "dtCMatrix", 0, do_dn ? dn : R_NilValue)); if(do_dn) UNPROTECT(1); // dn Memcpy(INTEGER(ALLOC_SLOT(ans, Matrix_pSym, /* "p" */ INTSXP, n)), p, n); if (order) Memcpy(INTEGER(ALLOC_SLOT(ans, install("q"), INTSXP, n)), S->q, n); cs_nfree(N); cs_sfree(S); cs_free(p); UNPROTECT(1); set_factors(Ap, ans, "LU"); }