コード例 #1
0
ファイル: cs_fact.c プロジェクト: joebradly/ceigs
/**
 * @brief Solves a sparse matrix factorization.
 *
 * This solves Ax = b.
 *
 *    @param[in,out] b Input right side vector that gets set to the output solution.
 *    @param[in] fact Factorization of the sparse matrix.
 */
void cs_fact_solve( double *b, cs_fact_t *fact )
{
#ifdef USE_UMFPACK
   int ret;
   double info[ UMFPACK_INFO ];
   int fnan, finf;
#endif /* USE_UMFPACK */
   int k;
   switch (fact->type) {
      case CS_FACT_CHOLESKY:
         cs_ipvec(   fact->S->pinv, b, fact->x, fact->n );
         cs_lsolve(  fact->N->L, fact->x );
         cs_ltsolve( fact->N->L, fact->x );
         cs_pvec(    fact->S->pinv, fact->x, b, fact->n );
         break;
      case CS_FACT_LU:
         cs_ipvec(  fact->N->pinv, b, fact->x, fact->n );
         cs_lsolve( fact->N->L, fact->x );
         cs_usolve( fact->N->U, fact->x );
         cs_ipvec(  fact->S->q, fact->x, b, fact->n );
         break;
      case CS_FACT_QR:
         cs_ipvec(  fact->S->pinv, b, fact->x, fact->n );
         for (k=0; k<fact->n; k++)
            cs_happly( fact->N->L, k, fact->N->B[k], fact->x );
         cs_usolve( fact->N->U, fact->x );
         cs_ipvec(  fact->S->q, fact->x, b, fact->n );
         break;
      case CS_FACT_UMFPACK:
#ifdef USE_UMFPACK
         ret = umfpack_di_wsolve( UMFPACK_A, /* Solving Ax=b problem. */
               fact->A->p, fact->A->i, fact->A->x,
               fact->x, b, fact->numeric, NULL, info, fact->wi, fact->w );
         if (ret == UMFPACK_WARNING_singular_matrix) {
            fprintf( stderr, "UMFPACK: wsolver Matrix singular!\n" );
            fnan = 0;
            finf = 0;
            for (k=0; k<fact->n; k++) {
               if (isnan(fact->x[k])) {
                  fact->x[k] = 0.;
                  fnan       = 1;
               }
               else if (isinf(fact->x[k])) {
                  fact->x[k] = 0.;
                  finf       = 1;
               }
            }
            if (fnan)
               fprintf( stderr, "UMFPACK: NaN values detected!\n" );
            if (finf)
               fprintf( stderr, "UMFPACK: Infinity values detected!\n" );
         }
         memcpy( b, fact->x, fact->n*sizeof(double) );
#endif /* USE_UMFPACK */
      default:
         break;
   }
}
コード例 #2
0
ファイル: sparseQR.c プロジェクト: rforge/matrix
SEXP sparseQR_coef(SEXP qr, SEXP y)
{
    SEXP ans = PROTECT(dup_mMatrix_as_dgeMatrix(y)),
	qslot = GET_SLOT(qr, install("q"));
    CSP V = AS_CSP(GET_SLOT(qr, install("V"))),
	R = AS_CSP(GET_SLOT(qr, install("R")));
    int *ydims = INTEGER(GET_SLOT(ans, Matrix_DimSym)),
	*q = INTEGER(qslot),
	j, lq = LENGTH(qslot), m = R->m, n = R->n;
    double *ax = REAL(GET_SLOT(ans, Matrix_xSym)),
	*x = Alloca(m, double);
    R_CheckStack();
    R_CheckStack();

    /* apply row permutation and multiply by Q' */
    sparseQR_Qmult(V, REAL(GET_SLOT(qr, install("beta"))),
		   INTEGER(GET_SLOT(qr, Matrix_pSym)), 1,
		   REAL(GET_SLOT(ans, Matrix_xSym)), ydims);
    for (j = 0; j < ydims[1]; j++) {
	double *aj = ax + j * m;
	cs_usolve(R, aj);
	if (lq) {
	    cs_ipvec(q, aj, x, n);
	    Memcpy(aj, x, n);
	}
    }
    UNPROTECT(1);
    return ans;
}
コード例 #3
0
SEXP dgCMatrix_matrix_solve(SEXP Ap, SEXP b, SEXP give_sparse)
// FIXME:  add  'keep_dimnames' as argument
{
    Rboolean sparse = asLogical(give_sparse);
    if(sparse) {
	// FIXME: implement this
	error(_("dgCMatrix_matrix_solve(.., sparse=TRUE) not yet implemented"));

	/* Idea: in the  for(j = 0; j < nrhs ..) loop below, build the *sparse* result matrix
	 * ----- *column* wise -- which is perfect for dgCMatrix
	 * --> build (i,p,x) slots "increasingly" [well, allocate in batches ..]
	 *
	 * --> maybe first a protoype in R
	 */

    }
    SEXP ans = PROTECT(dup_mMatrix_as_dgeMatrix(b)),
	lu, qslot;
    CSP L, U;
    int *bdims = INTEGER(GET_SLOT(ans, Matrix_DimSym)), *p, *q;
    int j, n = bdims[0], nrhs = bdims[1];
    double *x, *ax = REAL(GET_SLOT(ans, Matrix_xSym));
    C_or_Alloca_TO(x, n, double);

    if (isNull(lu = get_factors(Ap, "LU"))) {
	install_lu(Ap, /* order = */ 1, /* tol = */ 1.0, /* err_sing = */ TRUE,
		   /* keep_dimnames = */ TRUE);
	lu = get_factors(Ap, "LU");
    }
    qslot = GET_SLOT(lu, install("q"));
    L = AS_CSP__(GET_SLOT(lu, install("L")));
    U = AS_CSP__(GET_SLOT(lu, install("U")));
    R_CheckStack();
    if (U->n != n)
	error(_("Dimensions of system to be solved are inconsistent"));
    if(nrhs >= 1 && n >= 1) {
	p = INTEGER(GET_SLOT(lu, Matrix_pSym));
	q = LENGTH(qslot) ? INTEGER(qslot) : (int *) NULL;

	for (j = 0; j < nrhs; j++) {
	    cs_pvec(p, ax + j * n, x, n);  /* x = b(p) */
	    cs_lsolve(L, x);	       /* x = L\x */
	    cs_usolve(U, x);	       /* x = U\x */
	    if (q)		       /* r(q) = x , hence
					  r = Q' U{^-1} L{^-1} P b = A^{-1} b */
		cs_ipvec(q, x, ax + j * n, n);
	    else
		Memcpy(ax + j * n, x, n);
	}
    }
    if(n >= SMALL_4_Alloca) Free(x);
    UNPROTECT(1);
    return ans;
}
コード例 #4
0
ファイル: cs_qrsol.c プロジェクト: Aharobot/mrpt
/* x=A\b where A can be rectangular; b overwritten with solution */
int cs_qrsol (int order, const cs *A, double *b)
{
    double *x ;
    css *S ;
    csn *N ;
    cs *AT = NULL ;
    int k, m, n, ok ;
    if (!CS_CSC (A) || !b) return (0) ; /* check inputs */
    n = A->n ;
    m = A->m ;
    if (m >= n)
    {
        S = cs_sqr (order, A, 1) ;          /* ordering and symbolic analysis */
        N = cs_qr (A, S) ;                  /* numeric QR factorization */
        x = cs_calloc (S ? S->m2 : 1, sizeof (double)) ;    /* get workspace */
        ok = (S && N && x) ;
        if (ok)
        {
            cs_ipvec (S->pinv, b, x, m) ;   /* x(0:m-1) = b(p(0:m-1) */
            for (k = 0 ; k < n ; k++)       /* apply Householder refl. to x */
            {
                cs_happly (N->L, k, N->B [k], x) ;
            }
            cs_usolve (N->U, x) ;           /* x = R\x */
            cs_ipvec (S->q, x, b, n) ;      /* b(q(0:n-1)) = x(0:n-1) */
        }
    }
    else
    {
        AT = cs_transpose (A, 1) ;          /* Ax=b is underdetermined */
        S = cs_sqr (order, AT, 1) ;         /* ordering and symbolic analysis */
        N = cs_qr (AT, S) ;                 /* numeric QR factorization of A' */
        x = cs_calloc (S ? S->m2 : 1, sizeof (double)) ;    /* get workspace */
        ok = (AT && S && N && x) ;
        if (ok)
        {
            cs_pvec (S->q, b, x, m) ;       /* x(q(0:m-1)) = b(0:m-1) */
            cs_utsolve (N->U, x) ;          /* x = R'\x */
            for (k = m-1 ; k >= 0 ; k--)    /* apply Householder refl. to x */
            {
                cs_happly (N->L, k, N->B [k], x) ;
            }
            cs_pvec (S->pinv, x, b, n) ;    /* b(0:n-1) = x(p(0:n-1)) */
        }
    }
    cs_free (x) ;
    cs_sfree (S) ;
    cs_nfree (N) ;
    cs_spfree (AT) ;
    return (ok) ;
}
コード例 #5
0
ファイル: cs_lusol_inverse.c プロジェクト: alhajjar/PFE
/* x=A\b where A is unsymmetric; b overwritten with solution */
csi cs_lusol_inverse (const cs *A, double *b,double *d, csn *N, double *x)
{
	
    csi n;

    n = A->n ;
        /* get workspace */
   
        cs_ipvec (N->pinv, b, x, n) ;       /* x = b(p) */
        cs_lsolve (N->L, x) ;               /* x = L\x */
        cs_usolve (N->U, x) ;               /* x = U\x */
        cs_ipvec (N->q, x, d, n) ;          /* b(q) = x */
    
	
    return (1) ;
}
コード例 #6
0
ファイル: SparseMatrix.c プロジェクト: xhub/siconos
/* Solve Ax = b with the factorization of A stored in the cs_lu_A
 * This is extracted from cs_lusol, you need to synchronize any changes! */
csi cs_solve (cs_lu_factors* cs_lu_A, double* x, double *b)
{
  assert(cs_lu_A);

  csi ok;
  csi n = cs_lu_A->n;
  css* S = cs_lu_A->S;
  csn* N = cs_lu_A->N;
  ok = (S && N && x) ;
  if (ok)
  {
    cs_ipvec (N->pinv, b, x, n) ;       /* x = b(p) */
    cs_lsolve (N->L, x) ;               /* x = L\x */
    cs_usolve (N->U, x) ;               /* x = U\x */
    cs_ipvec (S->q, x, b, n) ;          /* b(q) = x */
  }
  return (ok);
}
コード例 #7
0
ファイル: cs_usolve_mex.c プロジェクト: Ascronia/fieldtrip
void mexFunction
(
    int nargout,
    mxArray *pargout [ ],
    int nargin,
    const mxArray *pargin [ ]
)
{
    cs Umatrix, Bmatrix, *U, *B, *X ;
    double *x, *b ;
    int top, nz, p, *xi ;
    if (nargout > 1 || nargin != 2)
    {
        mexErrMsgTxt ("Usage: x = cs_usolve(U,b)") ;
    }
    U = cs_mex_get_sparse (&Umatrix, 1, 1, pargin [0]) ;    /* get U */
    if (mxIsSparse (pargin [1]))
    {
        B = cs_mex_get_sparse (&Bmatrix, 0, 1, pargin [1]) ;/* get sparse b */
        cs_mex_check (0, U->n, 1, 0, 1, 1, pargin [1]) ;
        xi = cs_malloc (2*U->n, sizeof (int)) ;             /* get workspace */
        x  = cs_malloc (U->n, sizeof (double)) ;
        top = cs_spsolve (U, B, 0, xi, x, NULL, 0) ;        /* x = U\b */
        X = cs_spalloc (U->n, 1, U->n-top, 1, 0) ;          /* create sparse x*/
        X->p [0] = 0 ;
        nz = 0 ;
        for (p = top ; p < U->n ; p++)
        {
            X->i [nz] = xi [p] ;
            X->x [nz++] = x [xi [p]] ;
        }
        X->p [1] = nz ;
        pargout [0] = cs_mex_put_sparse (&X) ;
        cs_free (x) ;
        cs_free (xi) ;
    }
    else
    {
        b = cs_mex_get_double (U->n, pargin [1]) ;          /* get full b */
        x = cs_mex_put_double (U->n, b, &(pargout [0])) ;   /* x = b */
        cs_usolve (U, x) ;                                  /* x = U\x */
    }
}
コード例 #8
0
ファイル: solver.c プロジェクト: BlueFern/parbrain
int lusoln(ode_workspace *odews, double *b)
{
    // Can only be called if newton_matrix has been called already
    double *x;
    int n = odews->W->J->n;
    x = cs_malloc (n, sizeof (*x));
    int ok = odews->S && odews->N && x;

    if (ok)
    {
        cs_ipvec(odews->N->pinv, b, x, n);
        cs_lsolve(odews->N->L, x);
        cs_usolve(odews->N->U, x);
        cs_ipvec(odews->S->q, x, b, n);
    }

    cs_free (x);

    return ok;
}
コード例 #9
0
ファイル: acado_csparse.cpp プロジェクト: OspreyX/acado
returnValue ACADOcsparse::solve(double *b)
{
	// CONSISTENCY CHECKS:
	// -------------------
	if (dim <= 0)
		return ACADOERROR(RET_MEMBER_NOT_INITIALISED);
	if (nDense <= 0)
		return ACADOERROR(RET_MEMBER_NOT_INITIALISED);
	if (S == 0)
		return ACADOERROR(RET_MEMBER_NOT_INITIALISED);

	// CASE: LU

	cs_ipvec(N->pinv, b, x, dim); /* x = b(p) */
	cs_lsolve(N->L, x); /* x = L\x  */
	cs_usolve(N->U, x); /* x = U\x  */
	cs_ipvec(S->q, x, b, dim); /* b(q) = x */

	return SUCCESSFUL_RETURN;
}
コード例 #10
0
void CSparseInternal::solve(double* x, int nrhs, bool transpose){
  casadi_assert(prepared_);
  casadi_assert(N_!=0);
  
  double *t = &temp_.front();
  
  for(int k=0; k<nrhs; ++k){
    if(transpose){
      cs_ipvec (N_->pinv, x, t, AT_.n) ;   // t = P1\b
      cs_lsolve (N_->L, t) ;               // t = L\t 
      cs_usolve (N_->U, t) ;               // t = U\t 
      cs_ipvec (S_->q, t, x, AT_.n) ;      // x = P2\t 
    } else {
      cs_pvec (S_->q, x, t, AT_.n) ;       // t = P2*b 
      casadi_assert(N_->U!=0);
      cs_utsolve (N_->U, t) ;              // t = U'\t 
      cs_ltsolve (N_->L, t) ;              // t = L'\t 
      cs_pvec (N_->pinv, t, x, AT_.n) ;    // x = P1*t 
    }
    x += nrow();
  }
}
コード例 #11
0
ファイル: dtCMatrix.c プロジェクト: rforge/matrix
SEXP dtCMatrix_matrix_solve(SEXP a, SEXP b, SEXP classed)
{
    int cl = asLogical(classed);
    SEXP ans = PROTECT(NEW_OBJECT(MAKE_CLASS("dgeMatrix")));
    CSP A = AS_CSP(a);
    int *adims = INTEGER(GET_SLOT(a, Matrix_DimSym)),
	*bdims = INTEGER(cl ? GET_SLOT(b, Matrix_DimSym) :
			 getAttrib(b, R_DimSymbol));
    int j, n = bdims[0], nrhs = bdims[1], lo = (*uplo_P(a) == 'L');
    double *bx;
    R_CheckStack();

    if (*adims != n || nrhs < 1 || *adims < 1 || *adims != adims[1])
	error(_("Dimensions of system to be solved are inconsistent"));
    Memcpy(INTEGER(ALLOC_SLOT(ans, Matrix_DimSym, INTSXP, 2)), bdims, 2);
    /* FIXME: copy dimnames or Dimnames as well */
    bx = Memcpy(REAL(ALLOC_SLOT(ans, Matrix_xSym, REALSXP, n * nrhs)),
		REAL(cl ? GET_SLOT(b, Matrix_xSym):b), n * nrhs);
    for (j = 0; j < nrhs; j++)
	lo ? cs_lsolve(A, bx + n * j) : cs_usolve(A, bx + n * j);
    UNPROTECT(1);
    return ans;
}
コード例 #12
0
ファイル: csparse_interface.cpp プロジェクト: edmundus/casadi
  void CsparseInterface::solve(double* x, int nrhs, bool transpose) {
    double time_start=0;
    if (CasadiOptions::profiling&& CasadiOptions::profilingBinary) {
      time_start = getRealTime(); // Start timer
      profileWriteEntry(CasadiOptions::profilingLog, this);
    }


    casadi_assert(prepared_);
    casadi_assert(N_!=0);

    double *t = &temp_.front();

    for (int k=0; k<nrhs; ++k) {
      if (transpose) {
        cs_pvec(S_->q, x, t, A_.n) ;       // t = P2*b
        casadi_assert(N_->U!=0);
        cs_utsolve(N_->U, t) ;              // t = U'\t
        cs_ltsolve(N_->L, t) ;              // t = L'\t
        cs_pvec(N_->pinv, t, x, A_.n) ;    // x = P1*t
      } else {
        cs_ipvec(N_->pinv, x, t, A_.n) ;   // t = P1\b
        cs_lsolve(N_->L, t) ;               // t = L\t
        cs_usolve(N_->U, t) ;               // t = U\t
        cs_ipvec(S_->q, t, x, A_.n) ;      // x = P2\t
      }
      x += ncol();
    }

    if (CasadiOptions::profiling && CasadiOptions::profilingBinary) {
      double time_stop = getRealTime(); // Stop timer
      profileWriteTime(CasadiOptions::profilingLog, this, 1,
                       time_stop-time_start,
                       time_stop-time_start);
      profileWriteExit(CasadiOptions::profilingLog, this, time_stop-time_start);
    }
  }
コード例 #13
0
ファイル: cs_lusol_modifier.c プロジェクト: alhajjar/PFE
/* x=A\b where A is unsymmetric; b overwritten with solution */
csi cs_lusol_modifier (csi order, const cs *A, double *b, double *a, double tol)
{
    double *x ;
    css *S ;
    csn *N ;
    csi n, ok ;
   // if (!CS_CSC (A) || !b) return (0) ;     /* check inputs */
    n = A->n ;
    S = cs_sqr (order, A, 0) ;              /* ordering and symbolic analysis */
    N = cs_lu (A, S, tol) ;                 /* numeric LU factorization */
    x = cs_malloc (n, sizeof (double)) ;    /* get workspace */
   // ok = (S && N && x) ;
    //if (ok)
    //{
        cs_ipvec (N->pinv, b, x, n) ;       /* x = b(p) */
        cs_lsolve (N->L, x) ;               /* x = L\x */
        cs_usolve (N->U, x) ;               /* x = U\x */
        cs_ipvec (S->q, x, a, n) ;          /* b(q) = x */
   // }
    cs_free (x) ;
    cs_sfree (S) ;
    cs_nfree (N) ;
    return (ok) ;
}
コード例 #14
0
void luDecomp_sparse(cs* matrixA, double* matrixB, double* matrixX, int size)
{
    int i;
    css *S;
    csn *N;

    S=cs_sqr(2,matrixA,0);
    N=cs_lu(matrixA,S,1);
    cs_spfree(matrixA);

    if(found_dc_sweep==0){
        cs_ipvec(N->pinv, matrixB, matrixX, size);
	cs_lsolve(N->L, matrixX);
	cs_usolve(N->U, matrixX);
	cs_ipvec(S->q, matrixX, matrixB, size);

	printf("X vector \n");
	for(i=0;i<size;i++){
	    printf(" %.6lf ",matrixX[i]);
	}
	printf("\n");
    }
    else{
	double value;
        double *matrixB_temp = (double *)calloc(size,sizeof(double));
	if (source > -1) {
            for(value=start_value;value<=end_value;value=value+step){
                matrixB[source-1]=value;
		cs_ipvec(N->pinv, matrixB, matrixX, size);
		cs_lsolve(N->L, matrixX);
		cs_usolve(N->U, matrixX);
       	    }
        }
        else { 
	    	if (sweep_node1!=0){
				matrixB[sweep_node1-1]+=sweep_value-start_value;
	    	}
	    	if(sweep_node2!=0){
				matrixB[sweep_node2-1]-=sweep_value+start_value;
	    	}
	    	for(value=start_value;value<=end_value;value=value+step) {
				cs_ipvec(N->pinv, matrixB, matrixX, size);
				cs_lsolve(N->L, matrixX);
				cs_usolve(N->U, matrixX);
				cs_ipvec(S->q, matrixX, matrixB_temp, size);
	   			if (sweep_node1!=0){
			    	matrixB[sweep_node1-1]+=sweep_value-start_value;
	    		}
	    		if(sweep_node2!=0){
		    		matrixB[sweep_node2-1]-=sweep_value+start_value;
	    		}
	    
				printf("value= %lf Matrix X: \n",value);
            	for(i=0;i<size;i++){
	            	printf(" %.6lf ",matrixX[i]);
	    		}
				printf("\n");
	    	} 
		}
    } 
    printf("\n");

}
コード例 #15
0
ファイル: mna_sparse.c プロジェクト: mirtwzavvou/SPICE
void solveSparse(double time){
  
	int i;
	double current_value;
	double *B_sparse_temp;

	//Adeiasma twn arxeiwn sta opoia tha apothikeutoun ta apotelesmata tis analysis gia tous komvous PLOT
	if(TRAN==0)initPlotFiles("Sparse");	
	
	if(ITER==0)
	{
	  //LU decomposition
	  S=cs_sqr(2,C_sparse,0);
	  N=cs_lu(C_sparse,S,1);
	  //cs_spfree(C_sparse);
	}
	B_sparse_temp = (double *)calloc(sizeB,sizeof(double));		//apothikeusi tou apotelesmatos tis LU solve gia to sweep kai to transient
	if(dc_sweep==0){	//An den exoume sweep

	  for(i=0;i<sizeB;i++)B_sparse_temp[i]=B_sparse[i];
	  if (ITER == 0){		//LU solve

	    cs_ipvec(N->pinv, B_sparse, x_sparse, sizeB);	//seg fault gia choleskyNetlist!LA8OS TO N!ARA ANADROMIKA LA8OS TO C_sparse.Omws C_sparce swsto vash ths CG.

	    cs_lsolve(N->L, x_sparse);
	    cs_usolve(N->U, x_sparse);
	    cs_ipvec(S->q, x_sparse, B_sparse, sizeB);
	    //printf("\n ----- SPARSE LU decomposition ----- \n");

	    for(i=0;i<sizeB;i++){x_sparse[i]=B_sparse[i];}
	    cs_nfree(N);
	    cs_sfree(S);
	  }else{
	     bi_conjugate_gradient_sparse(C_sparse,B_sparse, sizeB, x_sparse, itol_value);
	     //printf("\n");
	     //printf("---- BI-CG SPARSE ----\n");
	  }
	  /*
	  printf("X = \n");
	  for(i=0;i<sizeB;i++){
	    printf(" %.6lf \n",x_sparse[i]);
	  }
	  printf("----------------------\n");
	  printf("\n");
	  */
	  if(TRAN==0){
	    plotFiles("Sparse", x_sparse, -1.0, "Analysis: DC");
	  }else{
	    plotFiles("Sparse", x_sparse, time, "Analysis: TRAN");
	  }
	  
	  for(i=0;i<sizeB;i++)B_sparse[i]=B_sparse_temp[i];		//epanafora tou B_sparse gia xrisi sto transient
	}
	else				//DC_SWEEP != 0
	{
	  if(sweep_source!=-1){		//pigi tashs ginetai sweep
	    for(current_value=start_value; current_value<=end_value+EPS; current_value+=sweep_step){

		    B_sparse[sweep_source-1]=current_value;
		    if(ITER == 0){
		      cs_ipvec(N->pinv, B_sparse, x_sparse, sizeB);
		      cs_lsolve(N->L, x_sparse);
		      cs_usolve(N->U, x_sparse);
		      cs_ipvec(S->q, x_sparse, B_sparse_temp, sizeB);
		    }else{
			 bi_conjugate_gradient_sparse(C_sparse,B_sparse, sizeB, x_sparse, itol_value);
		    }
			
		    //Apothikeusi twn apotelesmatwn tis analysis gia tous komvous PLOT
		    plotFiles("Sparse", (ITER ? x_sparse:B_sparse_temp), current_value, "Sweep source voltage at");
			
		  }
		  
		}else{	//pigi reumatos ginetai sweep
		
		  //Anairesi twn praksewn + kai - apo tin arxiki timi tis pigis ston pinaka B
		  //kai praksi + kai - me to start_value
		  if(sweep_posNode!=0){
		    B_sparse[sweep_posNode-1]+=sweep_value_I-start_value;
		  }
		  if(sweep_negNode!=0){
		    B_sparse[sweep_negNode-1]-=sweep_value_I+start_value;
		  }
		  
		  for(current_value=start_value;current_value<=end_value+EPS;current_value+=sweep_step){
		    
		  	if(ITER == 0){
		      		cs_ipvec(N->pinv, B_sparse, x_sparse, sizeB);
		      		cs_lsolve(N->L, x_sparse);
		      		cs_usolve(N->U, x_sparse);
		      		cs_ipvec(S->q, x_sparse, B_sparse_temp,sizeB);
		  	}else{
		       		bi_conjugate_gradient_sparse(C_sparse,B_sparse, sizeB, x_sparse, itol_value);
		 	}
		  
		   	//Allagi twn timwn ston pinaka B gia to epomeno vima tou sweep
		   	if(sweep_posNode!=0){
		     		B_sparse[sweep_posNode-1]-=sweep_step;
		    	}
		   	if(sweep_negNode!=0){
		     		B_sparse[sweep_negNode-1]+=sweep_step;
		   	}
		   
			//Apothikeusi twn apotelesmatwn tis analysis gia tous komvous PLOT se arxeia
			plotFiles("Sparse", (ITER ? x_sparse:B_sparse_temp), current_value, "Sweep source current at");
			
		  }
		  printf("\n");
		}
	}
	free(B_sparse_temp);
}