コード例 #1
0
static size_t get_workspace_size(layer l){
#ifdef CUDNN
    if(gpu_index >= 0){
        size_t most = 0;
        size_t s = 0;
        cudnnGetConvolutionForwardWorkspaceSize(cudnn_handle(),
                l.srcTensorDesc,
                l.weightDesc,
                l.convDesc,
                l.dstTensorDesc,
                l.fw_algo,
                &s);
        if (s > most) most = s;
        cudnnGetConvolutionBackwardFilterWorkspaceSize(cudnn_handle(),
                l.srcTensorDesc,
                l.ddstTensorDesc,
                l.convDesc,
                l.dweightDesc,
                l.bf_algo,
                &s);
        if (s > most) most = s;
        cudnnGetConvolutionBackwardDataWorkspaceSize(cudnn_handle(),
                l.weightDesc,
                l.ddstTensorDesc,
                l.convDesc,
                l.dsrcTensorDesc,
                l.bd_algo,
                &s);
        if (s > most) most = s;
        return most;
    }
#endif
    return (size_t)l.out_h*l.out_w*l.size*l.size*l.c/l.groups*sizeof(float);
}
コード例 #2
0
size_t get_workspace_size(layer l){
#ifdef CUDNN
    size_t most = 0;
    size_t s = 0;
    cudnnGetConvolutionForwardWorkspaceSize(cudnn_handle(),
            l.srcTensorDesc,
            l.filterDesc,
            l.convDesc,
            l.dstTensorDesc,
            l.fw_algo,
            &s);
    if (s > most) most = s;
    cudnnGetConvolutionBackwardFilterWorkspaceSize(cudnn_handle(),
            l.srcTensorDesc,
            l.ddstTensorDesc,
            l.convDesc,
            l.dfilterDesc,
            l.bf_algo,
            &s);
    if (s > most) most = s;
    cudnnGetConvolutionBackwardDataWorkspaceSize(cudnn_handle(),
            l.filterDesc,
            l.ddstTensorDesc,
            l.convDesc,
            l.dsrcTensorDesc,
            l.bd_algo,
            &s);
    if (s > most) most = s;
    return most;
#else
    return (size_t)l.out_h*l.out_w*l.size*l.size*l.c*sizeof(float);
#endif
}
コード例 #3
0
void cudnn_convolutional_setup(layer *l)
{
    cudnnSetTensor4dDescriptor(l->dsrcTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, l->batch, l->c, l->h, l->w); 
    cudnnSetTensor4dDescriptor(l->ddstTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, l->batch, l->out_c, l->out_h, l->out_w); 

    cudnnSetTensor4dDescriptor(l->srcTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, l->batch, l->c, l->h, l->w); 
    cudnnSetTensor4dDescriptor(l->dstTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, l->batch, l->out_c, l->out_h, l->out_w); 
    cudnnSetTensor4dDescriptor(l->normTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, l->out_c, 1, 1); 

    cudnnSetFilter4dDescriptor(l->dweightDesc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, l->n, l->c/l->groups, l->size, l->size); 
    cudnnSetFilter4dDescriptor(l->weightDesc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, l->n, l->c/l->groups, l->size, l->size); 
    #if CUDNN_MAJOR >= 6
    cudnnSetConvolution2dDescriptor(l->convDesc, l->pad, l->pad, l->stride, l->stride, 1, 1, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT);
    #else
    cudnnSetConvolution2dDescriptor(l->convDesc, l->pad, l->pad, l->stride, l->stride, 1, 1, CUDNN_CROSS_CORRELATION);
    #endif

    #if CUDNN_MAJOR >= 7
    cudnnSetConvolutionGroupCount(l->convDesc, l->groups);
    #else
    if(l->groups > 1){
        error("CUDNN < 7 doesn't support groups, please upgrade!");
    }
    #endif

    cudnnGetConvolutionForwardAlgorithm(cudnn_handle(),
            l->srcTensorDesc,
            l->weightDesc,
            l->convDesc,
            l->dstTensorDesc,
            CUDNN_CONVOLUTION_FWD_PREFER_FASTEST,
            0,
            &l->fw_algo);
    cudnnGetConvolutionBackwardDataAlgorithm(cudnn_handle(),
            l->weightDesc,
            l->ddstTensorDesc,
            l->convDesc,
            l->dsrcTensorDesc,
            CUDNN_CONVOLUTION_BWD_DATA_PREFER_FASTEST,
            0,
            &l->bd_algo);
    cudnnGetConvolutionBackwardFilterAlgorithm(cudnn_handle(),
            l->srcTensorDesc,
            l->ddstTensorDesc,
            l->convDesc,
            l->dweightDesc,
            CUDNN_CONVOLUTION_BWD_FILTER_PREFER_FASTEST,
            0,
            &l->bf_algo);
}
コード例 #4
0
ファイル: activation.cpp プロジェクト: caomw/purine2
void Activation::compute_gpu(const vector<bool>& add) {
  DTYPE alpha = 1.;
  DTYPE beta = add[0] ? 1. : 0.;
  CUDNN_CHECK(cudnnActivationForward(cudnn_handle(), activation_mode_,
          &alpha, bottom_desc_, inputs_[0]->gpu_data(), &beta, top_desc_,
          outputs_[0]->mutable_gpu_data()));
}
コード例 #5
0
ファイル: softmax.cpp プロジェクト: caomw/purine2
void Softmax::compute_gpu(const vector<bool>& add) {
  DTYPE alpha = 1.;
  DTYPE beta = add[0] ? 1. : 0.;
  CUDNN_CHECK(cudnnSoftmaxForward(cudnn_handle(), CUDNN_SOFTMAX_ACCURATE,
          softmax_mode_, &alpha, bottom_desc_, inputs_[0]->gpu_data(), &beta,
          top_desc_, outputs_[0]->mutable_gpu_data()));
}
コード例 #6
0
ファイル: batchnorm_layer.c プロジェクト: vaiv/OpenANPR
void forward_batchnorm_layer_gpu(layer l, network_state state)
{
    if(l.type == BATCHNORM) copy_ongpu(l.outputs*l.batch, state.input, 1, l.output_gpu, 1);
    if(l.type == CONNECTED){
        l.out_c = l.outputs;
        l.out_h = l.out_w = 1;
    }
    if (state.train) {
#ifdef CUDNN
        copy_ongpu(l.outputs*l.batch, l.output_gpu, 1, l.x_gpu, 1);
        float one = 1;
        float zero = 0;
        cudnnBatchNormalizationForwardTraining(cudnn_handle(),
                    CUDNN_BATCHNORM_SPATIAL,
                    &one,
                    &zero,
                    l.dstTensorDesc,
                    l.x_gpu,
                    l.dstTensorDesc,
                    l.output_gpu,
                    l.normTensorDesc,
                    l.scales_gpu,
                    l.biases_gpu,
                    .01,
                    l.rolling_mean_gpu,
                    l.rolling_variance_gpu,
                    .00001,
                    l.mean_gpu,
                    l.variance_gpu);
#else
        fast_mean_gpu(l.output_gpu, l.batch, l.out_c, l.out_h*l.out_w, l.mean_gpu);
        fast_variance_gpu(l.output_gpu, l.mean_gpu, l.batch, l.out_c, l.out_h*l.out_w, l.variance_gpu);

        scal_ongpu(l.out_c, .99, l.rolling_mean_gpu, 1);
        axpy_ongpu(l.out_c, .01, l.mean_gpu, 1, l.rolling_mean_gpu, 1);
        scal_ongpu(l.out_c, .99, l.rolling_variance_gpu, 1);
        axpy_ongpu(l.out_c, .01, l.variance_gpu, 1, l.rolling_variance_gpu, 1);

        copy_ongpu(l.outputs*l.batch, l.output_gpu, 1, l.x_gpu, 1);
        normalize_gpu(l.output_gpu, l.mean_gpu, l.variance_gpu, l.batch, l.out_c, l.out_h*l.out_w);
        copy_ongpu(l.outputs*l.batch, l.output_gpu, 1, l.x_norm_gpu, 1);

        scale_bias_gpu(l.output_gpu, l.scales_gpu, l.batch, l.out_c, l.out_h*l.out_w);
        add_bias_gpu(l.output_gpu, l.biases_gpu, l.batch, l.out_c, l.out_w*l.out_h);
#endif
    } else {
        normalize_gpu(l.output_gpu, l.rolling_mean_gpu, l.rolling_variance_gpu, l.batch, l.out_c, l.out_h*l.out_w);
        scale_bias_gpu(l.output_gpu, l.scales_gpu, l.batch, l.out_c, l.out_h*l.out_w);
        add_bias_gpu(l.output_gpu, l.biases_gpu, l.batch, l.out_c, l.out_w*l.out_h);
    }

}
コード例 #7
0
void cudnn_convolutional_setup(layer *l)
{
    cudnnSetTensor4dDescriptor(l->dsrcTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, l->batch, l->c, l->h, l->w); 
    cudnnSetTensor4dDescriptor(l->ddstTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, l->batch, l->out_c, l->out_h, l->out_w); 
    cudnnSetFilter4dDescriptor(l->dweightDesc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, l->n, l->c, l->size, l->size); 

    cudnnSetTensor4dDescriptor(l->srcTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, l->batch, l->c, l->h, l->w); 
    cudnnSetTensor4dDescriptor(l->dstTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, l->batch, l->out_c, l->out_h, l->out_w); 
    cudnnSetFilter4dDescriptor(l->weightDesc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, l->n, l->c, l->size, l->size); 
    //cudnnSetConvolution2dDescriptor(l->convDesc, l->pad, l->pad, l->stride, l->stride, 1, 1, CUDNN_CROSS_CORRELATION);
    cudnnSetConvolution2dDescriptor(l->convDesc, l->pad, l->pad, l->stride, l->stride, 1, 1, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT);

    cudnnGetConvolutionForwardAlgorithm(cudnn_handle(),
            l->srcTensorDesc,
            l->weightDesc,
            l->convDesc,
            l->dstTensorDesc,
            CUDNN_CONVOLUTION_FWD_PREFER_FASTEST,
            0,
            &l->fw_algo);
    cudnnGetConvolutionBackwardDataAlgorithm(cudnn_handle(),
            l->weightDesc,
            l->ddstTensorDesc,
            l->convDesc,
            l->dsrcTensorDesc,
            CUDNN_CONVOLUTION_BWD_DATA_PREFER_FASTEST,
            0,
            &l->bd_algo);
    cudnnGetConvolutionBackwardFilterAlgorithm(cudnn_handle(),
            l->srcTensorDesc,
            l->ddstTensorDesc,
            l->convDesc,
            l->dweightDesc,
            CUDNN_CONVOLUTION_BWD_FILTER_PREFER_FASTEST,
            0,
            &l->bf_algo);
}
コード例 #8
0
ファイル: batchnorm_layer.c プロジェクト: vaiv/OpenANPR
void backward_batchnorm_layer_gpu(const layer l, network_state state)
{
#ifdef CUDNN
    float one = 1;
    float zero = 0;
    cudnnBatchNormalizationBackward(cudnn_handle(),
            CUDNN_BATCHNORM_SPATIAL,
            &one,
            &zero,
            &one,
            &one,
            l.dstTensorDesc,
            l.x_gpu,
            l.dstTensorDesc,
            l.delta_gpu,
            l.dstTensorDesc,
            l.x_norm_gpu,
            l.normTensorDesc,
            l.scales_gpu,
            l.scale_updates_gpu,
            l.bias_updates_gpu,
            .00001,
            l.mean_gpu,
            l.variance_gpu);
    copy_ongpu(l.outputs*l.batch, l.x_norm_gpu, 1, l.delta_gpu, 1);
#else
    backward_bias_gpu(l.bias_updates_gpu, l.delta_gpu, l.batch, l.out_c, l.out_w*l.out_h);
    backward_scale_gpu(l.x_norm_gpu, l.delta_gpu, l.batch, l.out_c, l.out_w*l.out_h, l.scale_updates_gpu);

    scale_bias_gpu(l.delta_gpu, l.scales_gpu, l.batch, l.out_c, l.out_h*l.out_w);

    fast_mean_delta_gpu(l.delta_gpu, l.variance_gpu, l.batch, l.out_c, l.out_w*l.out_h, l.mean_delta_gpu);
    fast_variance_delta_gpu(l.x_gpu, l.delta_gpu, l.mean_gpu, l.variance_gpu, l.batch, l.out_c, l.out_w*l.out_h, l.variance_delta_gpu);
    normalize_delta_gpu(l.x_gpu, l.mean_gpu, l.variance_gpu, l.mean_delta_gpu, l.variance_delta_gpu, l.batch, l.out_c, l.out_w*l.out_h, l.delta_gpu);
#endif
    if(l.type == BATCHNORM) copy_ongpu(l.outputs*l.batch, l.delta_gpu, 1, state.delta, 1);
}
コード例 #9
0
void resize_convolutional_layer(convolutional_layer *l, int w, int h)
{
    l->w = w;
    l->h = h;
    int out_w = convolutional_out_width(*l);
    int out_h = convolutional_out_height(*l);

    l->out_w = out_w;
    l->out_h = out_h;

    l->outputs = l->out_h * l->out_w * l->out_c;
    l->inputs = l->w * l->h * l->c;

    l->output = realloc(l->output,
            l->batch*out_h * out_w * l->n*sizeof(float));
    l->delta  = realloc(l->delta,
            l->batch*out_h * out_w * l->n*sizeof(float));

#ifdef GPU
    cuda_free(l->delta_gpu);
    cuda_free(l->output_gpu);

    l->delta_gpu =     cuda_make_array(l->delta, l->batch*out_h*out_w*l->n);
    l->output_gpu =    cuda_make_array(l->output, l->batch*out_h*out_w*l->n);
#ifdef CUDNN
    cudnnSetTensor4dDescriptor(l->dsrcTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, l->batch, l->c, l->h, l->w); 
    cudnnSetTensor4dDescriptor(l->ddstTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, l->batch, l->out_c, l->out_h, l->out_w); 
    cudnnSetFilter4dDescriptor(l->dfilterDesc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, l->n, l->c, l->size, l->size); 

    cudnnSetTensor4dDescriptor(l->srcTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, l->batch, l->c, l->h, l->w); 
    cudnnSetTensor4dDescriptor(l->dstTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, l->batch, l->out_c, l->out_h, l->out_w); 
    cudnnSetFilter4dDescriptor(l->filterDesc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, l->n, l->c, l->size, l->size); 
    int padding = l->pad ? l->size/2 : 0;
    cudnnSetConvolution2dDescriptor(l->convDesc, padding, padding, l->stride, l->stride, 1, 1, CUDNN_CROSS_CORRELATION);
    cudnnGetConvolutionForwardAlgorithm(cudnn_handle(),
            l->srcTensorDesc,
            l->filterDesc,
            l->convDesc,
            l->dstTensorDesc,
            CUDNN_CONVOLUTION_FWD_PREFER_FASTEST,
            0,
            &l->fw_algo);
    cudnnGetConvolutionBackwardDataAlgorithm(cudnn_handle(),
            l->filterDesc,
            l->ddstTensorDesc,
            l->convDesc,
            l->dsrcTensorDesc,
            CUDNN_CONVOLUTION_BWD_DATA_PREFER_FASTEST,
            0,
            &l->bd_algo);
    cudnnGetConvolutionBackwardFilterAlgorithm(cudnn_handle(),
            l->srcTensorDesc,
            l->ddstTensorDesc,
            l->convDesc,
            l->dfilterDesc,
            CUDNN_CONVOLUTION_BWD_FILTER_PREFER_FASTEST,
            0,
            &l->bf_algo);
#endif
#endif
    l->workspace_size = get_workspace_size(*l);
}
コード例 #10
0
convolutional_layer make_convolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, int pad, ACTIVATION activation, int batch_normalize, int binary, int xnor)
{
    int i;
    convolutional_layer l = {0};
    l.type = CONVOLUTIONAL;

    l.h = h;
    l.w = w;
    l.c = c;
    l.n = n;
    l.binary = binary;
    l.xnor = xnor;
    l.batch = batch;
    l.stride = stride;
    l.size = size;
    l.pad = pad;
    l.batch_normalize = batch_normalize;

    l.filters = calloc(c*n*size*size, sizeof(float));
    l.filter_updates = calloc(c*n*size*size, sizeof(float));

    l.biases = calloc(n, sizeof(float));
    l.bias_updates = calloc(n, sizeof(float));

    // float scale = 1./sqrt(size*size*c);
    float scale = sqrt(2./(size*size*c));
    for(i = 0; i < c*n*size*size; ++i) l.filters[i] = scale*rand_uniform(-1, 1);
    int out_h = convolutional_out_height(l);
    int out_w = convolutional_out_width(l);
    l.out_h = out_h;
    l.out_w = out_w;
    l.out_c = n;
    l.outputs = l.out_h * l.out_w * l.out_c;
    l.inputs = l.w * l.h * l.c;

    l.output = calloc(l.batch*out_h * out_w * n, sizeof(float));
    l.delta  = calloc(l.batch*out_h * out_w * n, sizeof(float));

    if(binary){
        l.binary_filters = calloc(c*n*size*size, sizeof(float));
        l.cfilters = calloc(c*n*size*size, sizeof(char));
        l.scales = calloc(n, sizeof(float));
    }
    if(xnor){
        l.binary_filters = calloc(c*n*size*size, sizeof(float));
        l.binary_input = calloc(l.inputs*l.batch, sizeof(float));
    }

    if(batch_normalize){
        l.scales = calloc(n, sizeof(float));
        l.scale_updates = calloc(n, sizeof(float));
        for(i = 0; i < n; ++i){
            l.scales[i] = 1;
        }

        l.mean = calloc(n, sizeof(float));
        l.variance = calloc(n, sizeof(float));

        l.rolling_mean = calloc(n, sizeof(float));
        l.rolling_variance = calloc(n, sizeof(float));
    }

#ifdef GPU
    l.filters_gpu = cuda_make_array(l.filters, c*n*size*size);
    l.filter_updates_gpu = cuda_make_array(l.filter_updates, c*n*size*size);

    l.biases_gpu = cuda_make_array(l.biases, n);
    l.bias_updates_gpu = cuda_make_array(l.bias_updates, n);

    l.scales_gpu = cuda_make_array(l.scales, n);
    l.scale_updates_gpu = cuda_make_array(l.scale_updates, n);

    l.delta_gpu = cuda_make_array(l.delta, l.batch*out_h*out_w*n);
    l.output_gpu = cuda_make_array(l.output, l.batch*out_h*out_w*n);

    if(binary){
        l.binary_filters_gpu = cuda_make_array(l.filters, c*n*size*size);
    }
    if(xnor){
        l.binary_filters_gpu = cuda_make_array(l.filters, c*n*size*size);
        l.binary_input_gpu = cuda_make_array(0, l.inputs*l.batch);
    }

    if(batch_normalize){
        l.mean_gpu = cuda_make_array(l.mean, n);
        l.variance_gpu = cuda_make_array(l.variance, n);

        l.rolling_mean_gpu = cuda_make_array(l.mean, n);
        l.rolling_variance_gpu = cuda_make_array(l.variance, n);

        l.mean_delta_gpu = cuda_make_array(l.mean, n);
        l.variance_delta_gpu = cuda_make_array(l.variance, n);

        l.x_gpu = cuda_make_array(l.output, l.batch*out_h*out_w*n);
        l.x_norm_gpu = cuda_make_array(l.output, l.batch*out_h*out_w*n);
    }
#ifdef CUDNN
    cudnnCreateTensorDescriptor(&l.srcTensorDesc);
    cudnnCreateTensorDescriptor(&l.dstTensorDesc);
    cudnnCreateFilterDescriptor(&l.filterDesc);
    cudnnCreateTensorDescriptor(&l.dsrcTensorDesc);
    cudnnCreateTensorDescriptor(&l.ddstTensorDesc);
    cudnnCreateFilterDescriptor(&l.dfilterDesc);
    cudnnCreateConvolutionDescriptor(&l.convDesc);
    cudnnSetTensor4dDescriptor(l.dsrcTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, l.batch, l.c, l.h, l.w); 
    cudnnSetTensor4dDescriptor(l.ddstTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, l.batch, l.out_c, l.out_h, l.out_w); 
    cudnnSetFilter4dDescriptor(l.dfilterDesc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, l.n, l.c, l.size, l.size); 

    cudnnSetTensor4dDescriptor(l.srcTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, l.batch, l.c, l.h, l.w); 
    cudnnSetTensor4dDescriptor(l.dstTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, l.batch, l.out_c, l.out_h, l.out_w); 
    cudnnSetFilter4dDescriptor(l.filterDesc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, l.n, l.c, l.size, l.size); 
    int padding = l.pad ? l.size/2 : 0;
    cudnnSetConvolution2dDescriptor(l.convDesc, padding, padding, l.stride, l.stride, 1, 1, CUDNN_CROSS_CORRELATION);
    cudnnGetConvolutionForwardAlgorithm(cudnn_handle(),
            l.srcTensorDesc,
            l.filterDesc,
            l.convDesc,
            l.dstTensorDesc,
            CUDNN_CONVOLUTION_FWD_PREFER_FASTEST,
            0,
            &l.fw_algo);
    cudnnGetConvolutionBackwardDataAlgorithm(cudnn_handle(),
            l.filterDesc,
            l.ddstTensorDesc,
            l.convDesc,
            l.dsrcTensorDesc,
            CUDNN_CONVOLUTION_BWD_DATA_PREFER_FASTEST,
            0,
            &l.bd_algo);
    cudnnGetConvolutionBackwardFilterAlgorithm(cudnn_handle(),
            l.srcTensorDesc,
            l.ddstTensorDesc,
            l.convDesc,
            l.dfilterDesc,
            CUDNN_CONVOLUTION_BWD_FILTER_PREFER_FASTEST,
            0,
            &l.bf_algo);
#endif
#endif
    l.workspace_size = get_workspace_size(l);
    l.activation = activation;

    fprintf(stderr, "Convolutional Layer: %d x %d x %d image, %d filters -> %d x %d x %d image\n", h,w,c,n, out_h, out_w, n);

    return l;
}