コード例 #1
0
ファイル: dlasd3.c プロジェクト: 3deggi/levmar-ndk
/* Subroutine */ int dlasd3_(integer *nl, integer *nr, integer *sqre, integer 
	*k, doublereal *d__, doublereal *q, integer *ldq, doublereal *dsigma, 
	doublereal *u, integer *ldu, doublereal *u2, integer *ldu2, 
	doublereal *vt, integer *ldvt, doublereal *vt2, integer *ldvt2, 
	integer *idxc, integer *ctot, doublereal *z__, integer *info)
{
    /* System generated locals */
    integer q_dim1, q_offset, u_dim1, u_offset, u2_dim1, u2_offset, vt_dim1, 
	    vt_offset, vt2_dim1, vt2_offset, i__1, i__2;
    doublereal d__1, d__2;

    /* Builtin functions */
    double sqrt(doublereal), d_sign(doublereal *, doublereal *);

    /* Local variables */
    integer i__, j, m, n, jc;
    doublereal rho;
    integer nlp1, nlp2, nrp1;
    doublereal temp;
    extern doublereal dnrm2_(integer *, doublereal *, integer *);
    extern /* Subroutine */ int dgemm_(char *, char *, integer *, integer *, 
	    integer *, doublereal *, doublereal *, integer *, doublereal *, 
	    integer *, doublereal *, doublereal *, integer *);
    integer ctemp;
    extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *, 
	    doublereal *, integer *);
    integer ktemp;
    extern doublereal dlamc3_(doublereal *, doublereal *);
    extern /* Subroutine */ int dlasd4_(integer *, integer *, doublereal *, 
	    doublereal *, doublereal *, doublereal *, doublereal *, 
	    doublereal *, integer *), dlascl_(char *, integer *, integer *, 
	    doublereal *, doublereal *, integer *, integer *, doublereal *, 
	    integer *, integer *), dlacpy_(char *, integer *, integer 
	    *, doublereal *, integer *, doublereal *, integer *), 
	    xerbla_(char *, integer *);


/*  -- LAPACK auxiliary routine (version 3.2) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  DLASD3 finds all the square roots of the roots of the secular */
/*  equation, as defined by the values in D and Z.  It makes the */
/*  appropriate calls to DLASD4 and then updates the singular */
/*  vectors by matrix multiplication. */

/*  This code makes very mild assumptions about floating point */
/*  arithmetic. It will work on machines with a guard digit in */
/*  add/subtract, or on those binary machines without guard digits */
/*  which subtract like the Cray XMP, Cray YMP, Cray C 90, or Cray 2. */
/*  It could conceivably fail on hexadecimal or decimal machines */
/*  without guard digits, but we know of none. */

/*  DLASD3 is called from DLASD1. */

/*  Arguments */
/*  ========= */

/*  NL     (input) INTEGER */
/*         The row dimension of the upper block.  NL >= 1. */

/*  NR     (input) INTEGER */
/*         The row dimension of the lower block.  NR >= 1. */

/*  SQRE   (input) INTEGER */
/*         = 0: the lower block is an NR-by-NR square matrix. */
/*         = 1: the lower block is an NR-by-(NR+1) rectangular matrix. */

/*         The bidiagonal matrix has N = NL + NR + 1 rows and */
/*         M = N + SQRE >= N columns. */

/*  K      (input) INTEGER */
/*         The size of the secular equation, 1 =< K = < N. */

/*  D      (output) DOUBLE PRECISION array, dimension(K) */
/*         On exit the square roots of the roots of the secular equation, */
/*         in ascending order. */

/*  Q      (workspace) DOUBLE PRECISION array, */
/*                     dimension at least (LDQ,K). */

/*  LDQ    (input) INTEGER */
/*         The leading dimension of the array Q.  LDQ >= K. */

/*  DSIGMA (input) DOUBLE PRECISION array, dimension(K) */
/*         The first K elements of this array contain the old roots */
/*         of the deflated updating problem.  These are the poles */
/*         of the secular equation. */

/*  U      (output) DOUBLE PRECISION array, dimension (LDU, N) */
/*         The last N - K columns of this matrix contain the deflated */
/*         left singular vectors. */

/*  LDU    (input) INTEGER */
/*         The leading dimension of the array U.  LDU >= N. */

/*  U2     (input/output) DOUBLE PRECISION array, dimension (LDU2, N) */
/*         The first K columns of this matrix contain the non-deflated */
/*         left singular vectors for the split problem. */

/*  LDU2   (input) INTEGER */
/*         The leading dimension of the array U2.  LDU2 >= N. */

/*  VT     (output) DOUBLE PRECISION array, dimension (LDVT, M) */
/*         The last M - K columns of VT' contain the deflated */
/*         right singular vectors. */

/*  LDVT   (input) INTEGER */
/*         The leading dimension of the array VT.  LDVT >= N. */

/*  VT2    (input/output) DOUBLE PRECISION array, dimension (LDVT2, N) */
/*         The first K columns of VT2' contain the non-deflated */
/*         right singular vectors for the split problem. */

/*  LDVT2  (input) INTEGER */
/*         The leading dimension of the array VT2.  LDVT2 >= N. */

/*  IDXC   (input) INTEGER array, dimension ( N ) */
/*         The permutation used to arrange the columns of U (and rows of */
/*         VT) into three groups:  the first group contains non-zero */
/*         entries only at and above (or before) NL +1; the second */
/*         contains non-zero entries only at and below (or after) NL+2; */
/*         and the third is dense. The first column of U and the row of */
/*         VT are treated separately, however. */

/*         The rows of the singular vectors found by DLASD4 */
/*         must be likewise permuted before the matrix multiplies can */
/*         take place. */

/*  CTOT   (input) INTEGER array, dimension ( 4 ) */
/*         A count of the total number of the various types of columns */
/*         in U (or rows in VT), as described in IDXC. The fourth column */
/*         type is any column which has been deflated. */

/*  Z      (input) DOUBLE PRECISION array, dimension (K) */
/*         The first K elements of this array contain the components */
/*         of the deflation-adjusted updating row vector. */

/*  INFO   (output) INTEGER */
/*         = 0:  successful exit. */
/*         < 0:  if INFO = -i, the i-th argument had an illegal value. */
/*         > 0:  if INFO = 1, an singular value did not converge */

/*  Further Details */
/*  =============== */

/*  Based on contributions by */
/*     Ming Gu and Huan Ren, Computer Science Division, University of */
/*     California at Berkeley, USA */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input parameters. */

    /* Parameter adjustments */
    --d__;
    q_dim1 = *ldq;
    q_offset = 1 + q_dim1;
    q -= q_offset;
    --dsigma;
    u_dim1 = *ldu;
    u_offset = 1 + u_dim1;
    u -= u_offset;
    u2_dim1 = *ldu2;
    u2_offset = 1 + u2_dim1;
    u2 -= u2_offset;
    vt_dim1 = *ldvt;
    vt_offset = 1 + vt_dim1;
    vt -= vt_offset;
    vt2_dim1 = *ldvt2;
    vt2_offset = 1 + vt2_dim1;
    vt2 -= vt2_offset;
    --idxc;
    --ctot;
    --z__;

    /* Function Body */
    *info = 0;

    if (*nl < 1) {
	*info = -1;
    } else if (*nr < 1) {
	*info = -2;
    } else if (*sqre != 1 && *sqre != 0) {
	*info = -3;
    }

    n = *nl + *nr + 1;
    m = n + *sqre;
    nlp1 = *nl + 1;
    nlp2 = *nl + 2;

    if (*k < 1 || *k > n) {
	*info = -4;
    } else if (*ldq < *k) {
	*info = -7;
    } else if (*ldu < n) {
	*info = -10;
    } else if (*ldu2 < n) {
	*info = -12;
    } else if (*ldvt < m) {
	*info = -14;
    } else if (*ldvt2 < m) {
	*info = -16;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("DLASD3", &i__1);
	return 0;
    }

/*     Quick return if possible */

    if (*k == 1) {
	d__[1] = abs(z__[1]);
	dcopy_(&m, &vt2[vt2_dim1 + 1], ldvt2, &vt[vt_dim1 + 1], ldvt);
	if (z__[1] > 0.) {
	    dcopy_(&n, &u2[u2_dim1 + 1], &c__1, &u[u_dim1 + 1], &c__1);
	} else {
	    i__1 = n;
	    for (i__ = 1; i__ <= i__1; ++i__) {
		u[i__ + u_dim1] = -u2[i__ + u2_dim1];
/* L10: */
	    }
	}
	return 0;
    }

/*     Modify values DSIGMA(i) to make sure all DSIGMA(i)-DSIGMA(j) can */
/*     be computed with high relative accuracy (barring over/underflow). */
/*     This is a problem on machines without a guard digit in */
/*     add/subtract (Cray XMP, Cray YMP, Cray C 90 and Cray 2). */
/*     The following code replaces DSIGMA(I) by 2*DSIGMA(I)-DSIGMA(I), */
/*     which on any of these machines zeros out the bottommost */
/*     bit of DSIGMA(I) if it is 1; this makes the subsequent */
/*     subtractions DSIGMA(I)-DSIGMA(J) unproblematic when cancellation */
/*     occurs. On binary machines with a guard digit (almost all */
/*     machines) it does not change DSIGMA(I) at all. On hexadecimal */
/*     and decimal machines with a guard digit, it slightly */
/*     changes the bottommost bits of DSIGMA(I). It does not account */
/*     for hexadecimal or decimal machines without guard digits */
/*     (we know of none). We use a subroutine call to compute */
/*     2*DSIGMA(I) to prevent optimizing compilers from eliminating */
/*     this code. */

    i__1 = *k;
    for (i__ = 1; i__ <= i__1; ++i__) {
	dsigma[i__] = dlamc3_(&dsigma[i__], &dsigma[i__]) - dsigma[i__];
/* L20: */
    }

/*     Keep a copy of Z. */

    dcopy_(k, &z__[1], &c__1, &q[q_offset], &c__1);

/*     Normalize Z. */

    rho = dnrm2_(k, &z__[1], &c__1);
    dlascl_("G", &c__0, &c__0, &rho, &c_b13, k, &c__1, &z__[1], k, info);
    rho *= rho;

/*     Find the new singular values. */

    i__1 = *k;
    for (j = 1; j <= i__1; ++j) {
	dlasd4_(k, &j, &dsigma[1], &z__[1], &u[j * u_dim1 + 1], &rho, &d__[j], 
		 &vt[j * vt_dim1 + 1], info);

/*        If the zero finder fails, the computation is terminated. */

	if (*info != 0) {
	    return 0;
	}
/* L30: */
    }

/*     Compute updated Z. */

    i__1 = *k;
    for (i__ = 1; i__ <= i__1; ++i__) {
	z__[i__] = u[i__ + *k * u_dim1] * vt[i__ + *k * vt_dim1];
	i__2 = i__ - 1;
	for (j = 1; j <= i__2; ++j) {
	    z__[i__] *= u[i__ + j * u_dim1] * vt[i__ + j * vt_dim1] / (dsigma[
		    i__] - dsigma[j]) / (dsigma[i__] + dsigma[j]);
/* L40: */
	}
	i__2 = *k - 1;
	for (j = i__; j <= i__2; ++j) {
	    z__[i__] *= u[i__ + j * u_dim1] * vt[i__ + j * vt_dim1] / (dsigma[
		    i__] - dsigma[j + 1]) / (dsigma[i__] + dsigma[j + 1]);
/* L50: */
	}
	d__2 = sqrt((d__1 = z__[i__], abs(d__1)));
	z__[i__] = d_sign(&d__2, &q[i__ + q_dim1]);
/* L60: */
    }

/*     Compute left singular vectors of the modified diagonal matrix, */
/*     and store related information for the right singular vectors. */

    i__1 = *k;
    for (i__ = 1; i__ <= i__1; ++i__) {
	vt[i__ * vt_dim1 + 1] = z__[1] / u[i__ * u_dim1 + 1] / vt[i__ * 
		vt_dim1 + 1];
	u[i__ * u_dim1 + 1] = -1.;
	i__2 = *k;
	for (j = 2; j <= i__2; ++j) {
	    vt[j + i__ * vt_dim1] = z__[j] / u[j + i__ * u_dim1] / vt[j + i__ 
		    * vt_dim1];
	    u[j + i__ * u_dim1] = dsigma[j] * vt[j + i__ * vt_dim1];
/* L70: */
	}
	temp = dnrm2_(k, &u[i__ * u_dim1 + 1], &c__1);
	q[i__ * q_dim1 + 1] = u[i__ * u_dim1 + 1] / temp;
	i__2 = *k;
	for (j = 2; j <= i__2; ++j) {
	    jc = idxc[j];
	    q[j + i__ * q_dim1] = u[jc + i__ * u_dim1] / temp;
/* L80: */
	}
/* L90: */
    }

/*     Update the left singular vector matrix. */

    if (*k == 2) {
	dgemm_("N", "N", &n, k, k, &c_b13, &u2[u2_offset], ldu2, &q[q_offset], 
		 ldq, &c_b26, &u[u_offset], ldu);
	goto L100;
    }
    if (ctot[1] > 0) {
	dgemm_("N", "N", nl, k, &ctot[1], &c_b13, &u2[(u2_dim1 << 1) + 1], 
		ldu2, &q[q_dim1 + 2], ldq, &c_b26, &u[u_dim1 + 1], ldu);
	if (ctot[3] > 0) {
	    ktemp = ctot[1] + 2 + ctot[2];
	    dgemm_("N", "N", nl, k, &ctot[3], &c_b13, &u2[ktemp * u2_dim1 + 1]
, ldu2, &q[ktemp + q_dim1], ldq, &c_b13, &u[u_dim1 + 1], 
		    ldu);
	}
    } else if (ctot[3] > 0) {
	ktemp = ctot[1] + 2 + ctot[2];
	dgemm_("N", "N", nl, k, &ctot[3], &c_b13, &u2[ktemp * u2_dim1 + 1], 
		ldu2, &q[ktemp + q_dim1], ldq, &c_b26, &u[u_dim1 + 1], ldu);
    } else {
	dlacpy_("F", nl, k, &u2[u2_offset], ldu2, &u[u_offset], ldu);
    }
    dcopy_(k, &q[q_dim1 + 1], ldq, &u[nlp1 + u_dim1], ldu);
    ktemp = ctot[1] + 2;
    ctemp = ctot[2] + ctot[3];
    dgemm_("N", "N", nr, k, &ctemp, &c_b13, &u2[nlp2 + ktemp * u2_dim1], ldu2, 
	     &q[ktemp + q_dim1], ldq, &c_b26, &u[nlp2 + u_dim1], ldu);

/*     Generate the right singular vectors. */

L100:
    i__1 = *k;
    for (i__ = 1; i__ <= i__1; ++i__) {
	temp = dnrm2_(k, &vt[i__ * vt_dim1 + 1], &c__1);
	q[i__ + q_dim1] = vt[i__ * vt_dim1 + 1] / temp;
	i__2 = *k;
	for (j = 2; j <= i__2; ++j) {
	    jc = idxc[j];
	    q[i__ + j * q_dim1] = vt[jc + i__ * vt_dim1] / temp;
/* L110: */
	}
/* L120: */
    }

/*     Update the right singular vector matrix. */

    if (*k == 2) {
	dgemm_("N", "N", k, &m, k, &c_b13, &q[q_offset], ldq, &vt2[vt2_offset]
, ldvt2, &c_b26, &vt[vt_offset], ldvt);
	return 0;
    }
    ktemp = ctot[1] + 1;
    dgemm_("N", "N", k, &nlp1, &ktemp, &c_b13, &q[q_dim1 + 1], ldq, &vt2[
	    vt2_dim1 + 1], ldvt2, &c_b26, &vt[vt_dim1 + 1], ldvt);
    ktemp = ctot[1] + 2 + ctot[2];
    if (ktemp <= *ldvt2) {
	dgemm_("N", "N", k, &nlp1, &ctot[3], &c_b13, &q[ktemp * q_dim1 + 1], 
		ldq, &vt2[ktemp + vt2_dim1], ldvt2, &c_b13, &vt[vt_dim1 + 1], 
		ldvt);
    }

    ktemp = ctot[1] + 1;
    nrp1 = *nr + *sqre;
    if (ktemp > 1) {
	i__1 = *k;
	for (i__ = 1; i__ <= i__1; ++i__) {
	    q[i__ + ktemp * q_dim1] = q[i__ + q_dim1];
/* L130: */
	}
	i__1 = m;
	for (i__ = nlp2; i__ <= i__1; ++i__) {
	    vt2[ktemp + i__ * vt2_dim1] = vt2[i__ * vt2_dim1 + 1];
/* L140: */
	}
    }
    ctemp = ctot[2] + 1 + ctot[3];
    dgemm_("N", "N", k, &nrp1, &ctemp, &c_b13, &q[ktemp * q_dim1 + 1], ldq, &
	    vt2[ktemp + nlp2 * vt2_dim1], ldvt2, &c_b26, &vt[nlp2 * vt_dim1 + 
	    1], ldvt);

    return 0;

/*     End of DLASD3 */

} /* dlasd3_ */
コード例 #2
0
/* Subroutine */ int dggglm_(integer *n, integer *m, integer *p, doublereal *
	a, integer *lda, doublereal *b, integer *ldb, doublereal *d__, 
	doublereal *x, doublereal *y, doublereal *work, integer *lwork, 
	integer *info)
{
/*  -- LAPACK driver routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       June 30, 1999   


    Purpose   
    =======   

    DGGGLM solves a general Gauss-Markov linear model (GLM) problem:   

            minimize || y ||_2   subject to   d = A*x + B*y   
                x   

    where A is an N-by-M matrix, B is an N-by-P matrix, and d is a   
    given N-vector. It is assumed that M <= N <= M+P, and   

               rank(A) = M    and    rank( A B ) = N.   

    Under these assumptions, the constrained equation is always   
    consistent, and there is a unique solution x and a minimal 2-norm   
    solution y, which is obtained using a generalized QR factorization   
    of A and B.   

    In particular, if matrix B is square nonsingular, then the problem   
    GLM is equivalent to the following weighted linear least squares   
    problem   

                 minimize || inv(B)*(d-A*x) ||_2   
                     x   

    where inv(B) denotes the inverse of B.   

    Arguments   
    =========   

    N       (input) INTEGER   
            The number of rows of the matrices A and B.  N >= 0.   

    M       (input) INTEGER   
            The number of columns of the matrix A.  0 <= M <= N.   

    P       (input) INTEGER   
            The number of columns of the matrix B.  P >= N-M.   

    A       (input/output) DOUBLE PRECISION array, dimension (LDA,M)   
            On entry, the N-by-M matrix A.   
            On exit, A is destroyed.   

    LDA     (input) INTEGER   
            The leading dimension of the array A. LDA >= max(1,N).   

    B       (input/output) DOUBLE PRECISION array, dimension (LDB,P)   
            On entry, the N-by-P matrix B.   
            On exit, B is destroyed.   

    LDB     (input) INTEGER   
            The leading dimension of the array B. LDB >= max(1,N).   

    D       (input/output) DOUBLE PRECISION array, dimension (N)   
            On entry, D is the left hand side of the GLM equation.   
            On exit, D is destroyed.   

    X       (output) DOUBLE PRECISION array, dimension (M)   
    Y       (output) DOUBLE PRECISION array, dimension (P)   
            On exit, X and Y are the solutions of the GLM problem.   

    WORK    (workspace/output) DOUBLE PRECISION array, dimension (LWORK)   
            On exit, if INFO = 0, WORK(1) returns the optimal LWORK.   

    LWORK   (input) INTEGER   
            The dimension of the array WORK. LWORK >= max(1,N+M+P).   
            For optimum performance, LWORK >= M+min(N,P)+max(N,P)*NB,   
            where NB is an upper bound for the optimal blocksizes for   
            DGEQRF, SGERQF, DORMQR and SORMRQ.   

            If LWORK = -1, then a workspace query is assumed; the routine   
            only calculates the optimal size of the WORK array, returns   
            this value as the first entry of the WORK array, and no error   
            message related to LWORK is issued by XERBLA.   

    INFO    (output) INTEGER   
            = 0:  successful exit.   
            < 0:  if INFO = -i, the i-th argument had an illegal value.   

    ===================================================================   


       Test the input parameters   

       Parameter adjustments */
    /* Table of constant values */
    static integer c__1 = 1;
    static integer c_n1 = -1;
    static doublereal c_b32 = -1.;
    static doublereal c_b34 = 1.;
    
    /* System generated locals */
    integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3, i__4;
    /* Local variables */
    static integer lopt, i__;
    extern /* Subroutine */ int dgemv_(char *, integer *, integer *, 
	    doublereal *, doublereal *, integer *, doublereal *, integer *, 
	    doublereal *, doublereal *, integer *), dcopy_(integer *, 
	    doublereal *, integer *, doublereal *, integer *), dtrsv_(char *, 
	    char *, char *, integer *, doublereal *, integer *, doublereal *, 
	    integer *);
    static integer nb, np;
    extern /* Subroutine */ int dggqrf_(integer *, integer *, integer *, 
	    doublereal *, integer *, doublereal *, doublereal *, integer *, 
	    doublereal *, doublereal *, integer *, integer *), xerbla_(char *,
	     integer *);
    extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
	    integer *, integer *, ftnlen, ftnlen);
    static integer nb1, nb2, nb3, nb4;
    extern /* Subroutine */ int dormqr_(char *, char *, integer *, integer *, 
	    integer *, doublereal *, integer *, doublereal *, doublereal *, 
	    integer *, doublereal *, integer *, integer *), 
	    dormrq_(char *, char *, integer *, integer *, integer *, 
	    doublereal *, integer *, doublereal *, doublereal *, integer *, 
	    doublereal *, integer *, integer *);
    static integer lwkopt;
    static logical lquery;
#define b_ref(a_1,a_2) b[(a_2)*b_dim1 + a_1]


    a_dim1 = *lda;
    a_offset = 1 + a_dim1 * 1;
    a -= a_offset;
    b_dim1 = *ldb;
    b_offset = 1 + b_dim1 * 1;
    b -= b_offset;
    --d__;
    --x;
    --y;
    --work;

    /* Function Body */
    *info = 0;
    np = min(*n,*p);
    nb1 = ilaenv_(&c__1, "DGEQRF", " ", n, m, &c_n1, &c_n1, (ftnlen)6, (
	    ftnlen)1);
    nb2 = ilaenv_(&c__1, "DGERQF", " ", n, m, &c_n1, &c_n1, (ftnlen)6, (
	    ftnlen)1);
    nb3 = ilaenv_(&c__1, "DORMQR", " ", n, m, p, &c_n1, (ftnlen)6, (ftnlen)1);
    nb4 = ilaenv_(&c__1, "DORMRQ", " ", n, m, p, &c_n1, (ftnlen)6, (ftnlen)1);
/* Computing MAX */
    i__1 = max(nb1,nb2), i__1 = max(i__1,nb3);
    nb = max(i__1,nb4);
    lwkopt = *m + np + max(*n,*p) * nb;
    work[1] = (doublereal) lwkopt;
    lquery = *lwork == -1;
    if (*n < 0) {
	*info = -1;
    } else if (*m < 0 || *m > *n) {
	*info = -2;
    } else if (*p < 0 || *p < *n - *m) {
	*info = -3;
    } else if (*lda < max(1,*n)) {
	*info = -5;
    } else if (*ldb < max(1,*n)) {
	*info = -7;
    } else /* if(complicated condition) */ {
/* Computing MAX */
	i__1 = 1, i__2 = *n + *m + *p;
	if (*lwork < max(i__1,i__2) && ! lquery) {
	    *info = -12;
	}
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("DGGGLM", &i__1);
	return 0;
    } else if (lquery) {
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0) {
	return 0;
    }

/*     Compute the GQR factorization of matrices A and B:   

              Q'*A = ( R11 ) M,    Q'*B*Z' = ( T11   T12 ) M   
                     (  0  ) N-M             (  0    T22 ) N-M   
                        M                     M+P-N  N-M   

       where R11 and T22 are upper triangular, and Q and Z are   
       orthogonal. */

    i__1 = *lwork - *m - np;
    dggqrf_(n, m, p, &a[a_offset], lda, &work[1], &b[b_offset], ldb, &work[*m 
	    + 1], &work[*m + np + 1], &i__1, info);
    lopt = (integer) work[*m + np + 1];

/*     Update left-hand-side vector d = Q'*d = ( d1 ) M   
                                               ( d2 ) N-M */

    i__1 = max(1,*n);
    i__2 = *lwork - *m - np;
    dormqr_("Left", "Transpose", n, &c__1, m, &a[a_offset], lda, &work[1], &
	    d__[1], &i__1, &work[*m + np + 1], &i__2, info);
/* Computing MAX */
    i__1 = lopt, i__2 = (integer) work[*m + np + 1];
    lopt = max(i__1,i__2);

/*     Solve T22*y2 = d2 for y2 */

    i__1 = *n - *m;
    dtrsv_("Upper", "No transpose", "Non unit", &i__1, &b_ref(*m + 1, *m + *p 
	    - *n + 1), ldb, &d__[*m + 1], &c__1);
    i__1 = *n - *m;
    dcopy_(&i__1, &d__[*m + 1], &c__1, &y[*m + *p - *n + 1], &c__1);

/*     Set y1 = 0 */

    i__1 = *m + *p - *n;
    for (i__ = 1; i__ <= i__1; ++i__) {
	y[i__] = 0.;
/* L10: */
    }

/*     Update d1 = d1 - T12*y2 */

    i__1 = *n - *m;
    dgemv_("No transpose", m, &i__1, &c_b32, &b_ref(1, *m + *p - *n + 1), ldb,
	     &y[*m + *p - *n + 1], &c__1, &c_b34, &d__[1], &c__1);

/*     Solve triangular system: R11*x = d1 */

    dtrsv_("Upper", "No Transpose", "Non unit", m, &a[a_offset], lda, &d__[1],
	     &c__1);

/*     Copy D to X */

    dcopy_(m, &d__[1], &c__1, &x[1], &c__1);

/*     Backward transformation y = Z'*y   

   Computing MAX */
    i__1 = 1, i__2 = *n - *p + 1;
    i__3 = max(1,*p);
    i__4 = *lwork - *m - np;
    dormrq_("Left", "Transpose", p, &c__1, &np, &b_ref(max(i__1,i__2), 1), 
	    ldb, &work[*m + 1], &y[1], &i__3, &work[*m + np + 1], &i__4, info);
/* Computing MAX */
    i__1 = lopt, i__2 = (integer) work[*m + np + 1];
    work[1] = (doublereal) (*m + np + max(i__1,i__2));

    return 0;

/*     End of DGGGLM */

} /* dggglm_ */
コード例 #3
0
ファイル: dlaed8.c プロジェクト: Ayato-Harashima/Bundler
/* Subroutine */ int dlaed8_(integer *icompq, integer *k, integer *n, integer 
	*qsiz, doublereal *d__, doublereal *q, integer *ldq, integer *indxq, 
	doublereal *rho, integer *cutpnt, doublereal *z__, doublereal *dlamda, 
	 doublereal *q2, integer *ldq2, doublereal *w, integer *perm, integer 
	*givptr, integer *givcol, doublereal *givnum, integer *indxp, integer 
	*indx, integer *info)
{
    /* System generated locals */
    integer q_dim1, q_offset, q2_dim1, q2_offset, i__1;
    doublereal d__1;

    /* Builtin functions */
    double sqrt(doublereal);

    /* Local variables */
    doublereal c__;
    integer i__, j;
    doublereal s, t;
    integer k2, n1, n2, jp, n1p1;
    doublereal eps, tau, tol;
    integer jlam, imax, jmax;
    extern /* Subroutine */ int drot_(integer *, doublereal *, integer *, 
	    doublereal *, integer *, doublereal *, doublereal *), dscal_(
	    integer *, doublereal *, doublereal *, integer *), dcopy_(integer 
	    *, doublereal *, integer *, doublereal *, integer *);
    extern doublereal dlapy2_(doublereal *, doublereal *), dlamch_(char *);
    extern integer idamax_(integer *, doublereal *, integer *);
    extern /* Subroutine */ int dlamrg_(integer *, integer *, doublereal *, 
	    integer *, integer *, integer *), dlacpy_(char *, integer *, 
	    integer *, doublereal *, integer *, doublereal *, integer *), xerbla_(char *, integer *);


/*  -- LAPACK routine (version 3.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  DLAED8 merges the two sets of eigenvalues together into a single */
/*  sorted set.  Then it tries to deflate the size of the problem. */
/*  There are two ways in which deflation can occur:  when two or more */
/*  eigenvalues are close together or if there is a tiny element in the */
/*  Z vector.  For each such occurrence the order of the related secular */
/*  equation problem is reduced by one. */

/*  Arguments */
/*  ========= */

/*  ICOMPQ  (input) INTEGER */
/*          = 0:  Compute eigenvalues only. */
/*          = 1:  Compute eigenvectors of original dense symmetric matrix */
/*                also.  On entry, Q contains the orthogonal matrix used */
/*                to reduce the original matrix to tridiagonal form. */

/*  K      (output) INTEGER */
/*         The number of non-deflated eigenvalues, and the order of the */
/*         related secular equation. */

/*  N      (input) INTEGER */
/*         The dimension of the symmetric tridiagonal matrix.  N >= 0. */

/*  QSIZ   (input) INTEGER */
/*         The dimension of the orthogonal matrix used to reduce */
/*         the full matrix to tridiagonal form.  QSIZ >= N if ICOMPQ = 1. */

/*  D      (input/output) DOUBLE PRECISION array, dimension (N) */
/*         On entry, the eigenvalues of the two submatrices to be */
/*         combined.  On exit, the trailing (N-K) updated eigenvalues */
/*         (those which were deflated) sorted into increasing order. */

/*  Q      (input/output) DOUBLE PRECISION array, dimension (LDQ,N) */
/*         If ICOMPQ = 0, Q is not referenced.  Otherwise, */
/*         on entry, Q contains the eigenvectors of the partially solved */
/*         system which has been previously updated in matrix */
/*         multiplies with other partially solved eigensystems. */
/*         On exit, Q contains the trailing (N-K) updated eigenvectors */
/*         (those which were deflated) in its last N-K columns. */

/*  LDQ    (input) INTEGER */
/*         The leading dimension of the array Q.  LDQ >= max(1,N). */

/*  INDXQ  (input) INTEGER array, dimension (N) */
/*         The permutation which separately sorts the two sub-problems */
/*         in D into ascending order.  Note that elements in the second */
/*         half of this permutation must first have CUTPNT added to */
/*         their values in order to be accurate. */

/*  RHO    (input/output) DOUBLE PRECISION */
/*         On entry, the off-diagonal element associated with the rank-1 */
/*         cut which originally split the two submatrices which are now */
/*         being recombined. */
/*         On exit, RHO has been modified to the value required by */
/*         DLAED3. */

/*  CUTPNT (input) INTEGER */
/*         The location of the last eigenvalue in the leading */
/*         sub-matrix.  min(1,N) <= CUTPNT <= N. */

/*  Z      (input) DOUBLE PRECISION array, dimension (N) */
/*         On entry, Z contains the updating vector (the last row of */
/*         the first sub-eigenvector matrix and the first row of the */
/*         second sub-eigenvector matrix). */
/*         On exit, the contents of Z are destroyed by the updating */
/*         process. */

/*  DLAMDA (output) DOUBLE PRECISION array, dimension (N) */
/*         A copy of the first K eigenvalues which will be used by */
/*         DLAED3 to form the secular equation. */

/*  Q2     (output) DOUBLE PRECISION array, dimension (LDQ2,N) */
/*         If ICOMPQ = 0, Q2 is not referenced.  Otherwise, */
/*         a copy of the first K eigenvectors which will be used by */
/*         DLAED7 in a matrix multiply (DGEMM) to update the new */
/*         eigenvectors. */

/*  LDQ2   (input) INTEGER */
/*         The leading dimension of the array Q2.  LDQ2 >= max(1,N). */

/*  W      (output) DOUBLE PRECISION array, dimension (N) */
/*         The first k values of the final deflation-altered z-vector and */
/*         will be passed to DLAED3. */

/*  PERM   (output) INTEGER array, dimension (N) */
/*         The permutations (from deflation and sorting) to be applied */
/*         to each eigenblock. */

/*  GIVPTR (output) INTEGER */
/*         The number of Givens rotations which took place in this */
/*         subproblem. */

/*  GIVCOL (output) INTEGER array, dimension (2, N) */
/*         Each pair of numbers indicates a pair of columns to take place */
/*         in a Givens rotation. */

/*  GIVNUM (output) DOUBLE PRECISION array, dimension (2, N) */
/*         Each number indicates the S value to be used in the */
/*         corresponding Givens rotation. */

/*  INDXP  (workspace) INTEGER array, dimension (N) */
/*         The permutation used to place deflated values of D at the end */
/*         of the array.  INDXP(1:K) points to the nondeflated D-values */
/*         and INDXP(K+1:N) points to the deflated eigenvalues. */

/*  INDX   (workspace) INTEGER array, dimension (N) */
/*         The permutation used to sort the contents of D into ascending */
/*         order. */

/*  INFO   (output) INTEGER */
/*          = 0:  successful exit. */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value. */

/*  Further Details */
/*  =============== */

/*  Based on contributions by */
/*     Jeff Rutter, Computer Science Division, University of California */
/*     at Berkeley, USA */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */

/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input parameters. */

    /* Parameter adjustments */
    --d__;
    q_dim1 = *ldq;
    q_offset = 1 + q_dim1;
    q -= q_offset;
    --indxq;
    --z__;
    --dlamda;
    q2_dim1 = *ldq2;
    q2_offset = 1 + q2_dim1;
    q2 -= q2_offset;
    --w;
    --perm;
    givcol -= 3;
    givnum -= 3;
    --indxp;
    --indx;

    /* Function Body */
    *info = 0;

    if (*icompq < 0 || *icompq > 1) {
	*info = -1;
    } else if (*n < 0) {
	*info = -3;
    } else if (*icompq == 1 && *qsiz < *n) {
	*info = -4;
    } else if (*ldq < max(1,*n)) {
	*info = -7;
    } else if (*cutpnt < min(1,*n) || *cutpnt > *n) {
	*info = -10;
    } else if (*ldq2 < max(1,*n)) {
	*info = -14;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("DLAED8", &i__1);
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0) {
	return 0;
    }

    n1 = *cutpnt;
    n2 = *n - n1;
    n1p1 = n1 + 1;

    if (*rho < 0.) {
	dscal_(&n2, &c_b3, &z__[n1p1], &c__1);
    }

/*     Normalize z so that norm(z) = 1 */

    t = 1. / sqrt(2.);
    i__1 = *n;
    for (j = 1; j <= i__1; ++j) {
	indx[j] = j;
/* L10: */
    }
    dscal_(n, &t, &z__[1], &c__1);
    *rho = (d__1 = *rho * 2., abs(d__1));

/*     Sort the eigenvalues into increasing order */

    i__1 = *n;
    for (i__ = *cutpnt + 1; i__ <= i__1; ++i__) {
	indxq[i__] += *cutpnt;
/* L20: */
    }
    i__1 = *n;
    for (i__ = 1; i__ <= i__1; ++i__) {
	dlamda[i__] = d__[indxq[i__]];
	w[i__] = z__[indxq[i__]];
/* L30: */
    }
    i__ = 1;
    j = *cutpnt + 1;
    dlamrg_(&n1, &n2, &dlamda[1], &c__1, &c__1, &indx[1]);
    i__1 = *n;
    for (i__ = 1; i__ <= i__1; ++i__) {
	d__[i__] = dlamda[indx[i__]];
	z__[i__] = w[indx[i__]];
/* L40: */
    }

/*     Calculate the allowable deflation tolerence */

    imax = idamax_(n, &z__[1], &c__1);
    jmax = idamax_(n, &d__[1], &c__1);
    eps = dlamch_("Epsilon");
    tol = eps * 8. * (d__1 = d__[jmax], abs(d__1));

/*     If the rank-1 modifier is small enough, no more needs to be done */
/*     except to reorganize Q so that its columns correspond with the */
/*     elements in D. */

    if (*rho * (d__1 = z__[imax], abs(d__1)) <= tol) {
	*k = 0;
	if (*icompq == 0) {
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		perm[j] = indxq[indx[j]];
/* L50: */
	    }
	} else {
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		perm[j] = indxq[indx[j]];
		dcopy_(qsiz, &q[perm[j] * q_dim1 + 1], &c__1, &q2[j * q2_dim1 
			+ 1], &c__1);
/* L60: */
	    }
	    dlacpy_("A", qsiz, n, &q2[q2_dim1 + 1], ldq2, &q[q_dim1 + 1], ldq);
	}
	return 0;
    }

/*     If there are multiple eigenvalues then the problem deflates.  Here */
/*     the number of equal eigenvalues are found.  As each equal */
/*     eigenvalue is found, an elementary reflector is computed to rotate */
/*     the corresponding eigensubspace so that the corresponding */
/*     components of Z are zero in this new basis. */

    *k = 0;
    *givptr = 0;
    k2 = *n + 1;
    i__1 = *n;
    for (j = 1; j <= i__1; ++j) {
	if (*rho * (d__1 = z__[j], abs(d__1)) <= tol) {

/*           Deflate due to small z component. */

	    --k2;
	    indxp[k2] = j;
	    if (j == *n) {
		goto L110;
	    }
	} else {
	    jlam = j;
	    goto L80;
	}
/* L70: */
    }
L80:
    ++j;
    if (j > *n) {
	goto L100;
    }
    if (*rho * (d__1 = z__[j], abs(d__1)) <= tol) {

/*        Deflate due to small z component. */

	--k2;
	indxp[k2] = j;
    } else {

/*        Check if eigenvalues are close enough to allow deflation. */

	s = z__[jlam];
	c__ = z__[j];

/*        Find sqrt(a**2+b**2) without overflow or */
/*        destructive underflow. */

	tau = dlapy2_(&c__, &s);
	t = d__[j] - d__[jlam];
	c__ /= tau;
	s = -s / tau;
	if ((d__1 = t * c__ * s, abs(d__1)) <= tol) {

/*           Deflation is possible. */

	    z__[j] = tau;
	    z__[jlam] = 0.;

/*           Record the appropriate Givens rotation */

	    ++(*givptr);
	    givcol[(*givptr << 1) + 1] = indxq[indx[jlam]];
	    givcol[(*givptr << 1) + 2] = indxq[indx[j]];
	    givnum[(*givptr << 1) + 1] = c__;
	    givnum[(*givptr << 1) + 2] = s;
	    if (*icompq == 1) {
		drot_(qsiz, &q[indxq[indx[jlam]] * q_dim1 + 1], &c__1, &q[
			indxq[indx[j]] * q_dim1 + 1], &c__1, &c__, &s);
	    }
	    t = d__[jlam] * c__ * c__ + d__[j] * s * s;
	    d__[j] = d__[jlam] * s * s + d__[j] * c__ * c__;
	    d__[jlam] = t;
	    --k2;
	    i__ = 1;
L90:
	    if (k2 + i__ <= *n) {
		if (d__[jlam] < d__[indxp[k2 + i__]]) {
		    indxp[k2 + i__ - 1] = indxp[k2 + i__];
		    indxp[k2 + i__] = jlam;
		    ++i__;
		    goto L90;
		} else {
		    indxp[k2 + i__ - 1] = jlam;
		}
	    } else {
		indxp[k2 + i__ - 1] = jlam;
	    }
	    jlam = j;
	} else {
	    ++(*k);
	    w[*k] = z__[jlam];
	    dlamda[*k] = d__[jlam];
	    indxp[*k] = jlam;
	    jlam = j;
	}
    }
    goto L80;
L100:

/*     Record the last eigenvalue. */

    ++(*k);
    w[*k] = z__[jlam];
    dlamda[*k] = d__[jlam];
    indxp[*k] = jlam;

L110:

/*     Sort the eigenvalues and corresponding eigenvectors into DLAMDA */
/*     and Q2 respectively.  The eigenvalues/vectors which were not */
/*     deflated go into the first K slots of DLAMDA and Q2 respectively, */
/*     while those which were deflated go into the last N - K slots. */

    if (*icompq == 0) {
	i__1 = *n;
	for (j = 1; j <= i__1; ++j) {
	    jp = indxp[j];
	    dlamda[j] = d__[jp];
	    perm[j] = indxq[indx[jp]];
/* L120: */
	}
    } else {
	i__1 = *n;
	for (j = 1; j <= i__1; ++j) {
	    jp = indxp[j];
	    dlamda[j] = d__[jp];
	    perm[j] = indxq[indx[jp]];
	    dcopy_(qsiz, &q[perm[j] * q_dim1 + 1], &c__1, &q2[j * q2_dim1 + 1]
, &c__1);
/* L130: */
	}
    }

/*     The deflated eigenvalues and their corresponding vectors go back */
/*     into the last N - K slots of D and Q respectively. */

    if (*k < *n) {
	if (*icompq == 0) {
	    i__1 = *n - *k;
	    dcopy_(&i__1, &dlamda[*k + 1], &c__1, &d__[*k + 1], &c__1);
	} else {
	    i__1 = *n - *k;
	    dcopy_(&i__1, &dlamda[*k + 1], &c__1, &d__[*k + 1], &c__1);
	    i__1 = *n - *k;
	    dlacpy_("A", qsiz, &i__1, &q2[(*k + 1) * q2_dim1 + 1], ldq2, &q[(*
		    k + 1) * q_dim1 + 1], ldq);
	}
    }

    return 0;

/*     End of DLAED8 */

} /* dlaed8_ */
コード例 #4
0
ファイル: dseupd.c プロジェクト: Electrostatics/FETK
/* ----------------------------------------------------------------------- */
/* Subroutine */ int dseupd_(logical *rvec, char *howmny, logical *select, 
	doublereal *d__, doublereal *z__, integer *ldz, doublereal *sigma, 
	char *bmat, integer *n, char *which, integer *nev, doublereal *tol, 
	doublereal *resid, integer *ncv, doublereal *v, integer *ldv, integer 
	*iparam, integer *ipntr, doublereal *workd, doublereal *workl, 
	integer *lworkl, integer *info, ftnlen howmny_len, ftnlen bmat_len, 
	ftnlen which_len)
{
    /* System generated locals */
    integer v_dim1, v_offset, z_dim1, z_offset, i__1;
    doublereal d__1, d__2, d__3;

    /* Builtin functions */
    integer s_cmp(char *, char *, ftnlen, ftnlen);
    /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen);
    double pow_dd(doublereal *, doublereal *);

    /* Local variables */
    static integer j, k, ih, jj, iq, np, iw, ibd, ihb, ihd, ldh, ldq, irz;
    extern /* Subroutine */ int dger_(integer *, integer *, doublereal *, 
	    doublereal *, integer *, doublereal *, integer *, doublereal *, 
	    integer *);
    static integer mode;
    static doublereal eps23;
    static integer ierr;
    static doublereal temp;
    static integer next;
    static char type__[6];
    static integer ritz;
    extern doublereal dnrm2_(integer *, doublereal *, integer *);
    static doublereal temp1;
    extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *, 
	    integer *);
    static logical reord;
    extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *, 
	    doublereal *, integer *);
    static integer nconv;
    static doublereal rnorm;
    extern /* Subroutine */ int dvout_(integer *, integer *, doublereal *, 
	    integer *, char *, ftnlen), ivout_(integer *, integer *, integer *
	    , integer *, char *, ftnlen), dgeqr2_(integer *, integer *, 
	    doublereal *, integer *, doublereal *, doublereal *, integer *);
    static doublereal bnorm2;
    extern /* Subroutine */ int dorm2r_(char *, char *, integer *, integer *, 
	    integer *, doublereal *, integer *, doublereal *, doublereal *, 
	    integer *, doublereal *, integer *, ftnlen, ftnlen);
    extern doublereal dlamch_(char *, ftnlen);
    static integer bounds, msglvl, ishift, numcnv;
    extern /* Subroutine */ int dlacpy_(char *, integer *, integer *, 
	    doublereal *, integer *, doublereal *, integer *, ftnlen), 
	    dsesrt_(char *, logical *, integer *, doublereal *, integer *, 
	    doublereal *, integer *, ftnlen), dsteqr_(char *, integer *, 
	    doublereal *, doublereal *, doublereal *, integer *, doublereal *,
	     integer *, ftnlen), dsortr_(char *, logical *, integer *, 
	    doublereal *, doublereal *, ftnlen), dsgets_(integer *, char *, 
	    integer *, integer *, doublereal *, doublereal *, doublereal *, 
	    ftnlen);
    static integer leftptr, rghtptr;


/*     %----------------------------------------------------% */
/*     | Include files for debugging and timing information | */
/*     %----------------------------------------------------% */


/* \SCCS Information: @(#) */
/* FILE: debug.h   SID: 2.3   DATE OF SID: 11/16/95   RELEASE: 2 */

/*     %---------------------------------% */
/*     | See debug.doc for documentation | */
/*     %---------------------------------% */

/*     %------------------% */
/*     | Scalar Arguments | */
/*     %------------------% */

/*     %--------------------------------% */
/*     | See stat.doc for documentation | */
/*     %--------------------------------% */

/* \SCCS Information: @(#) */
/* FILE: stat.h   SID: 2.2   DATE OF SID: 11/16/95   RELEASE: 2 */



/*     %-----------------% */
/*     | Array Arguments | */
/*     %-----------------% */


/*     %------------% */
/*     | Parameters | */
/*     %------------% */


/*     %---------------% */
/*     | Local Scalars | */
/*     %---------------% */


/*     %----------------------% */
/*     | External Subroutines | */
/*     %----------------------% */


/*     %--------------------% */
/*     | External Functions | */
/*     %--------------------% */


/*     %---------------------% */
/*     | Intrinsic Functions | */
/*     %---------------------% */


/*     %-----------------------% */
/*     | Executable Statements | */
/*     %-----------------------% */

/*     %------------------------% */
/*     | Set default parameters | */
/*     %------------------------% */

    /* Parameter adjustments */
    --workd;
    --resid;
    z_dim1 = *ldz;
    z_offset = 1 + z_dim1;
    z__ -= z_offset;
    --d__;
    --select;
    v_dim1 = *ldv;
    v_offset = 1 + v_dim1;
    v -= v_offset;
    --iparam;
    --ipntr;
    --workl;

    /* Function Body */
    msglvl = debug_1.mseupd;
    mode = iparam[7];
    nconv = iparam[5];
    *info = 0;

/*     %--------------% */
/*     | Quick return | */
/*     %--------------% */

    if (nconv == 0) {
	goto L9000;
    }
    ierr = 0;

    if (nconv <= 0) {
	ierr = -14;
    }
    if (*n <= 0) {
	ierr = -1;
    }
    if (*nev <= 0) {
	ierr = -2;
    }
    if (*ncv <= *nev || *ncv > *n) {
	ierr = -3;
    }
    if (s_cmp(which, "LM", (ftnlen)2, (ftnlen)2) != 0 && s_cmp(which, "SM", (
	    ftnlen)2, (ftnlen)2) != 0 && s_cmp(which, "LA", (ftnlen)2, (
	    ftnlen)2) != 0 && s_cmp(which, "SA", (ftnlen)2, (ftnlen)2) != 0 &&
	     s_cmp(which, "BE", (ftnlen)2, (ftnlen)2) != 0) {
	ierr = -5;
    }
    if (*(unsigned char *)bmat != 'I' && *(unsigned char *)bmat != 'G') {
	ierr = -6;
    }
    if (*(unsigned char *)howmny != 'A' && *(unsigned char *)howmny != 'P' && 
	    *(unsigned char *)howmny != 'S' && *rvec) {
	ierr = -15;
    }
    if (*rvec && *(unsigned char *)howmny == 'S') {
	ierr = -16;
    }

/* Computing 2nd power */
    i__1 = *ncv;
    if (*rvec && *lworkl < i__1 * i__1 + (*ncv << 3)) {
	ierr = -7;
    }

    if (mode == 1 || mode == 2) {
	s_copy(type__, "REGULR", (ftnlen)6, (ftnlen)6);
    } else if (mode == 3) {
	s_copy(type__, "SHIFTI", (ftnlen)6, (ftnlen)6);
    } else if (mode == 4) {
	s_copy(type__, "BUCKLE", (ftnlen)6, (ftnlen)6);
    } else if (mode == 5) {
	s_copy(type__, "CAYLEY", (ftnlen)6, (ftnlen)6);
    } else {
	ierr = -10;
    }
    if (mode == 1 && *(unsigned char *)bmat == 'G') {
	ierr = -11;
    }
    if (*nev == 1 && s_cmp(which, "BE", (ftnlen)2, (ftnlen)2) == 0) {
	ierr = -12;
    }

/*     %------------% */
/*     | Error Exit | */
/*     %------------% */

    if (ierr != 0) {
	*info = ierr;
	goto L9000;
    }

/*     %-------------------------------------------------------% */
/*     | Pointer into WORKL for address of H, RITZ, BOUNDS, Q  | */
/*     | etc... and the remaining workspace.                   | */
/*     | Also update pointer to be used on output.             | */
/*     | Memory is laid out as follows:                        | */
/*     | workl(1:2*ncv) := generated tridiagonal matrix H      | */
/*     |       The subdiagonal is stored in workl(2:ncv).      | */
/*     |       The dead spot is workl(1) but upon exiting      | */
/*     |       dsaupd  stores the B-norm of the last residual   | */
/*     |       vector in workl(1). We use this !!!             | */
/*     | workl(2*ncv+1:2*ncv+ncv) := ritz values               | */
/*     |       The wanted values are in the first NCONV spots. | */
/*     | workl(3*ncv+1:3*ncv+ncv) := computed Ritz estimates   | */
/*     |       The wanted values are in the first NCONV spots. | */
/*     | NOTE: workl(1:4*ncv) is set by dsaupd  and is not      | */
/*     |       modified by dseupd .                             | */
/*     %-------------------------------------------------------% */

/*     %-------------------------------------------------------% */
/*     | The following is used and set by dseupd .              | */
/*     | workl(4*ncv+1:4*ncv+ncv) := used as workspace during  | */
/*     |       computation of the eigenvectors of H. Stores    | */
/*     |       the diagonal of H. Upon EXIT contains the NCV   | */
/*     |       Ritz values of the original system. The first   | */
/*     |       NCONV spots have the wanted values. If MODE =   | */
/*     |       1 or 2 then will equal workl(2*ncv+1:3*ncv).    | */
/*     | workl(5*ncv+1:5*ncv+ncv) := used as workspace during  | */
/*     |       computation of the eigenvectors of H. Stores    | */
/*     |       the subdiagonal of H. Upon EXIT contains the    | */
/*     |       NCV corresponding Ritz estimates of the         | */
/*     |       original system. The first NCONV spots have the | */
/*     |       wanted values. If MODE = 1,2 then will equal    | */
/*     |       workl(3*ncv+1:4*ncv).                           | */
/*     | workl(6*ncv+1:6*ncv+ncv*ncv) := orthogonal Q that is  | */
/*     |       the eigenvector matrix for H as returned by     | */
/*     |       dsteqr . Not referenced if RVEC = .False.        | */
/*     |       Ordering follows that of workl(4*ncv+1:5*ncv)   | */
/*     | workl(6*ncv+ncv*ncv+1:6*ncv+ncv*ncv+2*ncv) :=         | */
/*     |       Workspace. Needed by dsteqr  and by dseupd .      | */
/*     | GRAND total of NCV*(NCV+8) locations.                 | */
/*     %-------------------------------------------------------% */


    ih = ipntr[5];
    ritz = ipntr[6];
    bounds = ipntr[7];
    ldh = *ncv;
    ldq = *ncv;
    ihd = bounds + ldh;
    ihb = ihd + ldh;
    iq = ihb + ldh;
    iw = iq + ldh * *ncv;
    next = iw + (*ncv << 1);
    ipntr[4] = next;
    ipntr[8] = ihd;
    ipntr[9] = ihb;
    ipntr[10] = iq;

/*     %----------------------------------------% */
/*     | irz points to the Ritz values computed | */
/*     |     by _seigt before exiting _saup2.   | */
/*     | ibd points to the Ritz estimates       | */
/*     |     computed by _seigt before exiting  | */
/*     |     _saup2.                            | */
/*     %----------------------------------------% */

    irz = ipntr[11] + *ncv;
    ibd = irz + *ncv;


/*     %---------------------------------% */
/*     | Set machine dependent constant. | */
/*     %---------------------------------% */

    eps23 = dlamch_("Epsilon-Machine", (ftnlen)15);
    eps23 = pow_dd(&eps23, &c_b21);

/*     %---------------------------------------% */
/*     | RNORM is B-norm of the RESID(1:N).    | */
/*     | BNORM2 is the 2 norm of B*RESID(1:N). | */
/*     | Upon exit of dsaupd  WORKD(1:N) has    | */
/*     | B*RESID(1:N).                         | */
/*     %---------------------------------------% */

    rnorm = workl[ih];
    if (*(unsigned char *)bmat == 'I') {
	bnorm2 = rnorm;
    } else if (*(unsigned char *)bmat == 'G') {
	bnorm2 = dnrm2_(n, &workd[1], &c__1);
    }

    if (msglvl > 2) {
	dvout_(&debug_1.logfil, ncv, &workl[irz], &debug_1.ndigit, "_seupd: "
		"Ritz values passed in from _SAUPD.", (ftnlen)42);
	dvout_(&debug_1.logfil, ncv, &workl[ibd], &debug_1.ndigit, "_seupd: "
		"Ritz estimates passed in from _SAUPD.", (ftnlen)45);
    }

    if (*rvec) {

	reord = FALSE_;

/*        %---------------------------------------------------% */
/*        | Use the temporary bounds array to store indices   | */
/*        | These will be used to mark the select array later | */
/*        %---------------------------------------------------% */

	i__1 = *ncv;
	for (j = 1; j <= i__1; ++j) {
	    workl[bounds + j - 1] = (doublereal) j;
	    select[j] = FALSE_;
/* L10: */
	}

/*        %-------------------------------------% */
/*        | Select the wanted Ritz values.      | */
/*        | Sort the Ritz values so that the    | */
/*        | wanted ones appear at the tailing   | */
/*        | NEV positions of workl(irr) and     | */
/*        | workl(iri).  Move the corresponding | */
/*        | error estimates in workl(bound)     | */
/*        | accordingly.                        | */
/*        %-------------------------------------% */

	np = *ncv - *nev;
	ishift = 0;
	dsgets_(&ishift, which, nev, &np, &workl[irz], &workl[bounds], &workl[
		1], (ftnlen)2);

	if (msglvl > 2) {
	    dvout_(&debug_1.logfil, ncv, &workl[irz], &debug_1.ndigit, "_seu"
		    "pd: Ritz values after calling _SGETS.", (ftnlen)41);
	    dvout_(&debug_1.logfil, ncv, &workl[bounds], &debug_1.ndigit, 
		    "_seupd: Ritz value indices after calling _SGETS.", (
		    ftnlen)48);
	}

/*        %-----------------------------------------------------% */
/*        | Record indices of the converged wanted Ritz values  | */
/*        | Mark the select array for possible reordering       | */
/*        %-----------------------------------------------------% */

	numcnv = 0;
	i__1 = *ncv;
	for (j = 1; j <= i__1; ++j) {
/* Computing MAX */
	    d__2 = eps23, d__3 = (d__1 = workl[irz + *ncv - j], abs(d__1));
	    temp1 = max(d__2,d__3);
	    jj = (integer) workl[bounds + *ncv - j];
	    if (numcnv < nconv && workl[ibd + jj - 1] <= *tol * temp1) {
		select[jj] = TRUE_;
		++numcnv;
		if (jj > *nev) {
		    reord = TRUE_;
		}
	    }
/* L11: */
	}

/*        %-----------------------------------------------------------% */
/*        | Check the count (numcnv) of converged Ritz values with    | */
/*        | the number (nconv) reported by _saupd.  If these two      | */
/*        | are different then there has probably been an error       | */
/*        | caused by incorrect passing of the _saupd data.           | */
/*        %-----------------------------------------------------------% */

	if (msglvl > 2) {
	    ivout_(&debug_1.logfil, &c__1, &numcnv, &debug_1.ndigit, "_seupd"
		    ": Number of specified eigenvalues", (ftnlen)39);
	    ivout_(&debug_1.logfil, &c__1, &nconv, &debug_1.ndigit, "_seupd:"
		    " Number of \"converged\" eigenvalues", (ftnlen)41);
	}

	if (numcnv != nconv) {
	    *info = -17;
	    goto L9000;
	}

/*        %-----------------------------------------------------------% */
/*        | Call LAPACK routine _steqr to compute the eigenvalues and | */
/*        | eigenvectors of the final symmetric tridiagonal matrix H. | */
/*        | Initialize the eigenvector matrix Q to the identity.      | */
/*        %-----------------------------------------------------------% */

	i__1 = *ncv - 1;
	dcopy_(&i__1, &workl[ih + 1], &c__1, &workl[ihb], &c__1);
	dcopy_(ncv, &workl[ih + ldh], &c__1, &workl[ihd], &c__1);

	dsteqr_("Identity", ncv, &workl[ihd], &workl[ihb], &workl[iq], &ldq, &
		workl[iw], &ierr, (ftnlen)8);

	if (ierr != 0) {
	    *info = -8;
	    goto L9000;
	}

	if (msglvl > 1) {
	    dcopy_(ncv, &workl[iq + *ncv - 1], &ldq, &workl[iw], &c__1);
	    dvout_(&debug_1.logfil, ncv, &workl[ihd], &debug_1.ndigit, "_seu"
		    "pd: NCV Ritz values of the final H matrix", (ftnlen)45);
	    dvout_(&debug_1.logfil, ncv, &workl[iw], &debug_1.ndigit, "_seup"
		    "d: last row of the eigenvector matrix for H", (ftnlen)48);
	}

	if (reord) {

/*           %---------------------------------------------% */
/*           | Reordered the eigenvalues and eigenvectors  | */
/*           | computed by _steqr so that the "converged"  | */
/*           | eigenvalues appear in the first NCONV       | */
/*           | positions of workl(ihd), and the associated | */
/*           | eigenvectors appear in the first NCONV      | */
/*           | columns.                                    | */
/*           %---------------------------------------------% */

	    leftptr = 1;
	    rghtptr = *ncv;

	    if (*ncv == 1) {
		goto L30;
	    }

L20:
	    if (select[leftptr]) {

/*              %-------------------------------------------% */
/*              | Search, from the left, for the first Ritz | */
/*              | value that has not converged.             | */
/*              %-------------------------------------------% */

		++leftptr;

	    } else if (! select[rghtptr]) {

/*              %----------------------------------------------% */
/*              | Search, from the right, the first Ritz value | */
/*              | that has converged.                          | */
/*              %----------------------------------------------% */

		--rghtptr;

	    } else {

/*              %----------------------------------------------% */
/*              | Swap the Ritz value on the left that has not | */
/*              | converged with the Ritz value on the right   | */
/*              | that has converged.  Swap the associated     | */
/*              | eigenvector of the tridiagonal matrix H as   | */
/*              | well.                                        | */
/*              %----------------------------------------------% */

		temp = workl[ihd + leftptr - 1];
		workl[ihd + leftptr - 1] = workl[ihd + rghtptr - 1];
		workl[ihd + rghtptr - 1] = temp;
		dcopy_(ncv, &workl[iq + *ncv * (leftptr - 1)], &c__1, &workl[
			iw], &c__1);
		dcopy_(ncv, &workl[iq + *ncv * (rghtptr - 1)], &c__1, &workl[
			iq + *ncv * (leftptr - 1)], &c__1);
		dcopy_(ncv, &workl[iw], &c__1, &workl[iq + *ncv * (rghtptr - 
			1)], &c__1);
		++leftptr;
		--rghtptr;

	    }

	    if (leftptr < rghtptr) {
		goto L20;
	    }

L30:
	    ;
	}

	if (msglvl > 2) {
	    dvout_(&debug_1.logfil, ncv, &workl[ihd], &debug_1.ndigit, "_seu"
		    "pd: The eigenvalues of H--reordered", (ftnlen)39);
	}

/*        %----------------------------------------% */
/*        | Load the converged Ritz values into D. | */
/*        %----------------------------------------% */

	dcopy_(&nconv, &workl[ihd], &c__1, &d__[1], &c__1);

    } else {

/*        %-----------------------------------------------------% */
/*        | Ritz vectors not required. Load Ritz values into D. | */
/*        %-----------------------------------------------------% */

	dcopy_(&nconv, &workl[ritz], &c__1, &d__[1], &c__1);
	dcopy_(ncv, &workl[ritz], &c__1, &workl[ihd], &c__1);

    }

/*     %------------------------------------------------------------------% */
/*     | Transform the Ritz values and possibly vectors and corresponding | */
/*     | Ritz estimates of OP to those of A*x=lambda*B*x. The Ritz values | */
/*     | (and corresponding data) are returned in ascending order.        | */
/*     %------------------------------------------------------------------% */

    if (s_cmp(type__, "REGULR", (ftnlen)6, (ftnlen)6) == 0) {

/*        %---------------------------------------------------------% */
/*        | Ascending sort of wanted Ritz values, vectors and error | */
/*        | bounds. Not necessary if only Ritz values are desired.  | */
/*        %---------------------------------------------------------% */

	if (*rvec) {
	    dsesrt_("LA", rvec, &nconv, &d__[1], ncv, &workl[iq], &ldq, (
		    ftnlen)2);
	} else {
	    dcopy_(ncv, &workl[bounds], &c__1, &workl[ihb], &c__1);
	}

    } else {

/*        %-------------------------------------------------------------% */
/*        | *  Make a copy of all the Ritz values.                      | */
/*        | *  Transform the Ritz values back to the original system.   | */
/*        |    For TYPE = 'SHIFTI' the transformation is                | */
/*        |             lambda = 1/theta + sigma                        | */
/*        |    For TYPE = 'BUCKLE' the transformation is                | */
/*        |             lambda = sigma * theta / ( theta - 1 )          | */
/*        |    For TYPE = 'CAYLEY' the transformation is                | */
/*        |             lambda = sigma * (theta + 1) / (theta - 1 )     | */
/*        |    where the theta are the Ritz values returned by dsaupd .  | */
/*        | NOTES:                                                      | */
/*        | *The Ritz vectors are not affected by the transformation.   | */
/*        |  They are only reordered.                                   | */
/*        %-------------------------------------------------------------% */

	dcopy_(ncv, &workl[ihd], &c__1, &workl[iw], &c__1);
	if (s_cmp(type__, "SHIFTI", (ftnlen)6, (ftnlen)6) == 0) {
	    i__1 = *ncv;
	    for (k = 1; k <= i__1; ++k) {
		workl[ihd + k - 1] = 1. / workl[ihd + k - 1] + *sigma;
/* L40: */
	    }
	} else if (s_cmp(type__, "BUCKLE", (ftnlen)6, (ftnlen)6) == 0) {
	    i__1 = *ncv;
	    for (k = 1; k <= i__1; ++k) {
		workl[ihd + k - 1] = *sigma * workl[ihd + k - 1] / (workl[ihd 
			+ k - 1] - 1.);
/* L50: */
	    }
	} else if (s_cmp(type__, "CAYLEY", (ftnlen)6, (ftnlen)6) == 0) {
	    i__1 = *ncv;
	    for (k = 1; k <= i__1; ++k) {
		workl[ihd + k - 1] = *sigma * (workl[ihd + k - 1] + 1.) / (
			workl[ihd + k - 1] - 1.);
/* L60: */
	    }
	}

/*        %-------------------------------------------------------------% */
/*        | *  Store the wanted NCONV lambda values into D.             | */
/*        | *  Sort the NCONV wanted lambda in WORKL(IHD:IHD+NCONV-1)   | */
/*        |    into ascending order and apply sort to the NCONV theta   | */
/*        |    values in the transformed system. We will need this to   | */
/*        |    compute Ritz estimates in the original system.           | */
/*        | *  Finally sort the lambda`s into ascending order and apply | */
/*        |    to Ritz vectors if wanted. Else just sort lambda`s into  | */
/*        |    ascending order.                                         | */
/*        | NOTES:                                                      | */
/*        | *workl(iw:iw+ncv-1) contain the theta ordered so that they  | */
/*        |  match the ordering of the lambda. We`ll use them again for | */
/*        |  Ritz vector purification.                                  | */
/*        %-------------------------------------------------------------% */

	dcopy_(&nconv, &workl[ihd], &c__1, &d__[1], &c__1);
	dsortr_("LA", &c_true, &nconv, &workl[ihd], &workl[iw], (ftnlen)2);
	if (*rvec) {
	    dsesrt_("LA", rvec, &nconv, &d__[1], ncv, &workl[iq], &ldq, (
		    ftnlen)2);
	} else {
	    dcopy_(ncv, &workl[bounds], &c__1, &workl[ihb], &c__1);
	    d__1 = bnorm2 / rnorm;
	    dscal_(ncv, &d__1, &workl[ihb], &c__1);
	    dsortr_("LA", &c_true, &nconv, &d__[1], &workl[ihb], (ftnlen)2);
	}

    }

/*     %------------------------------------------------% */
/*     | Compute the Ritz vectors. Transform the wanted | */
/*     | eigenvectors of the symmetric tridiagonal H by | */
/*     | the Lanczos basis matrix V.                    | */
/*     %------------------------------------------------% */

    if (*rvec && *(unsigned char *)howmny == 'A') {

/*        %----------------------------------------------------------% */
/*        | Compute the QR factorization of the matrix representing  | */
/*        | the wanted invariant subspace located in the first NCONV | */
/*        | columns of workl(iq,ldq).                                | */
/*        %----------------------------------------------------------% */

	dgeqr2_(ncv, &nconv, &workl[iq], &ldq, &workl[iw + *ncv], &workl[ihb],
		 &ierr);

/*        %--------------------------------------------------------% */
/*        | * Postmultiply V by Q.                                 | */
/*        | * Copy the first NCONV columns of VQ into Z.           | */
/*        | The N by NCONV matrix Z is now a matrix representation | */
/*        | of the approximate invariant subspace associated with  | */
/*        | the Ritz values in workl(ihd).                         | */
/*        %--------------------------------------------------------% */

	dorm2r_("Right", "Notranspose", n, ncv, &nconv, &workl[iq], &ldq, &
		workl[iw + *ncv], &v[v_offset], ldv, &workd[*n + 1], &ierr, (
		ftnlen)5, (ftnlen)11);
	dlacpy_("All", n, &nconv, &v[v_offset], ldv, &z__[z_offset], ldz, (
		ftnlen)3);

/*        %-----------------------------------------------------% */
/*        | In order to compute the Ritz estimates for the Ritz | */
/*        | values in both systems, need the last row of the    | */
/*        | eigenvector matrix. Remember, it`s in factored form | */
/*        %-----------------------------------------------------% */

	i__1 = *ncv - 1;
	for (j = 1; j <= i__1; ++j) {
	    workl[ihb + j - 1] = 0.;
/* L65: */
	}
	workl[ihb + *ncv - 1] = 1.;
	dorm2r_("Left", "Transpose", ncv, &c__1, &nconv, &workl[iq], &ldq, &
		workl[iw + *ncv], &workl[ihb], ncv, &temp, &ierr, (ftnlen)4, (
		ftnlen)9);

    } else if (*rvec && *(unsigned char *)howmny == 'S') {

/*     Not yet implemented. See remark 2 above. */

    }

    if (s_cmp(type__, "REGULR", (ftnlen)6, (ftnlen)6) == 0 && *rvec) {

	i__1 = *ncv;
	for (j = 1; j <= i__1; ++j) {
	    workl[ihb + j - 1] = rnorm * (d__1 = workl[ihb + j - 1], abs(d__1)
		    );
/* L70: */
	}

    } else if (s_cmp(type__, "REGULR", (ftnlen)6, (ftnlen)6) != 0 && *rvec) {

/*        %-------------------------------------------------% */
/*        | *  Determine Ritz estimates of the theta.       | */
/*        |    If RVEC = .true. then compute Ritz estimates | */
/*        |               of the theta.                     | */
/*        |    If RVEC = .false. then copy Ritz estimates   | */
/*        |              as computed by dsaupd .             | */
/*        | *  Determine Ritz estimates of the lambda.      | */
/*        %-------------------------------------------------% */

	dscal_(ncv, &bnorm2, &workl[ihb], &c__1);
	if (s_cmp(type__, "SHIFTI", (ftnlen)6, (ftnlen)6) == 0) {

	    i__1 = *ncv;
	    for (k = 1; k <= i__1; ++k) {
/* Computing 2nd power */
		d__2 = workl[iw + k - 1];
		workl[ihb + k - 1] = (d__1 = workl[ihb + k - 1], abs(d__1)) / 
			(d__2 * d__2);
/* L80: */
	    }

	} else if (s_cmp(type__, "BUCKLE", (ftnlen)6, (ftnlen)6) == 0) {

	    i__1 = *ncv;
	    for (k = 1; k <= i__1; ++k) {
/* Computing 2nd power */
		d__2 = workl[iw + k - 1] - 1.;
		workl[ihb + k - 1] = *sigma * (d__1 = workl[ihb + k - 1], abs(
			d__1)) / (d__2 * d__2);
/* L90: */
	    }

	} else if (s_cmp(type__, "CAYLEY", (ftnlen)6, (ftnlen)6) == 0) {

	    i__1 = *ncv;
	    for (k = 1; k <= i__1; ++k) {
		workl[ihb + k - 1] = (d__1 = workl[ihb + k - 1] / workl[iw + 
			k - 1] * (workl[iw + k - 1] - 1.), abs(d__1));
/* L100: */
	    }

	}

    }

    if (s_cmp(type__, "REGULR", (ftnlen)6, (ftnlen)6) != 0 && msglvl > 1) {
	dvout_(&debug_1.logfil, &nconv, &d__[1], &debug_1.ndigit, "_seupd: U"
		"ntransformed converged Ritz values", (ftnlen)43);
	dvout_(&debug_1.logfil, &nconv, &workl[ihb], &debug_1.ndigit, "_seup"
		"d: Ritz estimates of the untransformed Ritz values", (ftnlen)
		55);
    } else if (msglvl > 1) {
	dvout_(&debug_1.logfil, &nconv, &d__[1], &debug_1.ndigit, "_seupd: C"
		"onverged Ritz values", (ftnlen)29);
	dvout_(&debug_1.logfil, &nconv, &workl[ihb], &debug_1.ndigit, "_seup"
		"d: Associated Ritz estimates", (ftnlen)33);
    }

/*     %-------------------------------------------------% */
/*     | Ritz vector purification step. Formally perform | */
/*     | one of inverse subspace iteration. Only used    | */
/*     | for MODE = 3,4,5. See reference 7               | */
/*     %-------------------------------------------------% */

    if (*rvec && (s_cmp(type__, "SHIFTI", (ftnlen)6, (ftnlen)6) == 0 || s_cmp(
	    type__, "CAYLEY", (ftnlen)6, (ftnlen)6) == 0)) {

	i__1 = nconv - 1;
	for (k = 0; k <= i__1; ++k) {
	    workl[iw + k] = workl[iq + k * ldq + *ncv - 1] / workl[iw + k];
/* L110: */
	}

    } else if (*rvec && s_cmp(type__, "BUCKLE", (ftnlen)6, (ftnlen)6) == 0) {

	i__1 = nconv - 1;
	for (k = 0; k <= i__1; ++k) {
	    workl[iw + k] = workl[iq + k * ldq + *ncv - 1] / (workl[iw + k] - 
		    1.);
/* L120: */
	}

    }

    if (s_cmp(type__, "REGULR", (ftnlen)6, (ftnlen)6) != 0) {
	dger_(n, &nconv, &c_b110, &resid[1], &c__1, &workl[iw], &c__1, &z__[
		z_offset], ldz);
    }

L9000:

    return 0;

/*     %---------------% */
/*     | End of dseupd | */
/*     %---------------% */

} /* dseupd_ */
コード例 #5
0
ファイル: gmath.cpp プロジェクト: elen4/GURLS
void GURLS_EXPORT copy(double* dst, const double* src, const int size)
{
    int incr = 1;

    dcopy_(const_cast<int*>(&size), const_cast<double*>(src), &incr, dst, &incr);
}
コード例 #6
0
/* Subroutine */ int dsyevr_(char *jobz, char *range, char *uplo, integer *n, 
	doublereal *a, integer *lda, doublereal *vl, doublereal *vu, integer *
	il, integer *iu, doublereal *abstol, integer *m, doublereal *w, 
	doublereal *z__, integer *ldz, integer *isuppz, doublereal *work, 
	integer *lwork, integer *iwork, integer *liwork, integer *info)
{
    /* System generated locals */
    integer a_dim1, a_offset, z_dim1, z_offset, i__1, i__2;
    doublereal d__1, d__2;

    /* Builtin functions */
    double sqrt(doublereal);

    /* Local variables */
    integer i__, j, nb, jj;
    doublereal eps, vll, vuu, tmp1;
    integer indd, inde;
    doublereal anrm;
    integer imax;
    doublereal rmin, rmax;
    integer inddd, indee;
    extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *, 
	    integer *);
    doublereal sigma;
    extern logical lsame_(char *, char *);
    integer iinfo;
    char order[1];
    integer indwk;
    extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *, 
	    doublereal *, integer *), dswap_(integer *, doublereal *, integer 
	    *, doublereal *, integer *);
    integer lwmin;
    logical lower, wantz;
    extern doublereal dlamch_(char *);
    logical alleig, indeig;
    integer iscale, ieeeok, indibl, indifl;
    logical valeig;
    doublereal safmin;
    extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
	    integer *, integer *);
    extern /* Subroutine */ int xerbla_(char *, integer *);
    doublereal abstll, bignum;
    integer indtau, indisp;
    extern /* Subroutine */ int dstein_(integer *, doublereal *, doublereal *, 
	     integer *, doublereal *, integer *, integer *, doublereal *, 
	    integer *, doublereal *, integer *, integer *, integer *), 
	    dsterf_(integer *, doublereal *, doublereal *, integer *);
    integer indiwo, indwkn;
    extern doublereal dlansy_(char *, char *, integer *, doublereal *, 
	    integer *, doublereal *);
    extern /* Subroutine */ int dstebz_(char *, char *, integer *, doublereal 
	    *, doublereal *, integer *, integer *, doublereal *, doublereal *, 
	     doublereal *, integer *, integer *, doublereal *, integer *, 
	    integer *, doublereal *, integer *, integer *), 
	    dstemr_(char *, char *, integer *, doublereal *, doublereal *, 
	    doublereal *, doublereal *, integer *, integer *, integer *, 
	    doublereal *, doublereal *, integer *, integer *, integer *, 
	    logical *, doublereal *, integer *, integer *, integer *, integer 
	    *);
    integer liwmin;
    logical tryrac;
    extern /* Subroutine */ int dormtr_(char *, char *, char *, integer *, 
	    integer *, doublereal *, integer *, doublereal *, doublereal *, 
	    integer *, doublereal *, integer *, integer *);
    integer llwrkn, llwork, nsplit;
    doublereal smlnum;
    extern /* Subroutine */ int dsytrd_(char *, integer *, doublereal *, 
	    integer *, doublereal *, doublereal *, doublereal *, doublereal *, 
	     integer *, integer *);
    integer lwkopt;
    logical lquery;


/*  -- LAPACK driver routine (version 3.2) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  DSYEVR computes selected eigenvalues and, optionally, eigenvectors */
/*  of a real symmetric matrix A.  Eigenvalues and eigenvectors can be */
/*  selected by specifying either a range of values or a range of */
/*  indices for the desired eigenvalues. */

/*  DSYEVR first reduces the matrix A to tridiagonal form T with a call */
/*  to DSYTRD.  Then, whenever possible, DSYEVR calls DSTEMR to compute */
/*  the eigenspectrum using Relatively Robust Representations.  DSTEMR */
/*  computes eigenvalues by the dqds algorithm, while orthogonal */
/*  eigenvectors are computed from various "good" L D L^T representations */
/*  (also known as Relatively Robust Representations). Gram-Schmidt */
/*  orthogonalization is avoided as far as possible. More specifically, */
/*  the various steps of the algorithm are as follows. */

/*  For each unreduced block (submatrix) of T, */
/*     (a) Compute T - sigma I  = L D L^T, so that L and D */
/*         define all the wanted eigenvalues to high relative accuracy. */
/*         This means that small relative changes in the entries of D and L */
/*         cause only small relative changes in the eigenvalues and */
/*         eigenvectors. The standard (unfactored) representation of the */
/*         tridiagonal matrix T does not have this property in general. */
/*     (b) Compute the eigenvalues to suitable accuracy. */
/*         If the eigenvectors are desired, the algorithm attains full */
/*         accuracy of the computed eigenvalues only right before */
/*         the corresponding vectors have to be computed, see steps c) and d). */
/*     (c) For each cluster of close eigenvalues, select a new */
/*         shift close to the cluster, find a new factorization, and refine */
/*         the shifted eigenvalues to suitable accuracy. */
/*     (d) For each eigenvalue with a large enough relative separation compute */
/*         the corresponding eigenvector by forming a rank revealing twisted */
/*         factorization. Go back to (c) for any clusters that remain. */

/*  The desired accuracy of the output can be specified by the input */
/*  parameter ABSTOL. */

/*  For more details, see DSTEMR's documentation and: */
/*  - Inderjit S. Dhillon and Beresford N. Parlett: "Multiple representations */
/*    to compute orthogonal eigenvectors of symmetric tridiagonal matrices," */
/*    Linear Algebra and its Applications, 387(1), pp. 1-28, August 2004. */
/*  - Inderjit Dhillon and Beresford Parlett: "Orthogonal Eigenvectors and */
/*    Relative Gaps," SIAM Journal on Matrix Analysis and Applications, Vol. 25, */
/*    2004.  Also LAPACK Working Note 154. */
/*  - Inderjit Dhillon: "A new O(n^2) algorithm for the symmetric */
/*    tridiagonal eigenvalue/eigenvector problem", */
/*    Computer Science Division Technical Report No. UCB/CSD-97-971, */
/*    UC Berkeley, May 1997. */


/*  Note 1 : DSYEVR calls DSTEMR when the full spectrum is requested */
/*  on machines which conform to the ieee-754 floating point standard. */
/*  DSYEVR calls DSTEBZ and SSTEIN on non-ieee machines and */
/*  when partial spectrum requests are made. */

/*  Normal execution of DSTEMR may create NaNs and infinities and */
/*  hence may abort due to a floating point exception in environments */
/*  which do not handle NaNs and infinities in the ieee standard default */
/*  manner. */

/*  Arguments */
/*  ========= */

/*  JOBZ    (input) CHARACTER*1 */
/*          = 'N':  Compute eigenvalues only; */
/*          = 'V':  Compute eigenvalues and eigenvectors. */

/*  RANGE   (input) CHARACTER*1 */
/*          = 'A': all eigenvalues will be found. */
/*          = 'V': all eigenvalues in the half-open interval (VL,VU] */
/*                 will be found. */
/*          = 'I': the IL-th through IU-th eigenvalues will be found. */
/* ********* For RANGE = 'V' or 'I' and IU - IL < N - 1, DSTEBZ and */
/* ********* DSTEIN are called */

/*  UPLO    (input) CHARACTER*1 */
/*          = 'U':  Upper triangle of A is stored; */
/*          = 'L':  Lower triangle of A is stored. */

/*  N       (input) INTEGER */
/*          The order of the matrix A.  N >= 0. */

/*  A       (input/output) DOUBLE PRECISION array, dimension (LDA, N) */
/*          On entry, the symmetric matrix A.  If UPLO = 'U', the */
/*          leading N-by-N upper triangular part of A contains the */
/*          upper triangular part of the matrix A.  If UPLO = 'L', */
/*          the leading N-by-N lower triangular part of A contains */
/*          the lower triangular part of the matrix A. */
/*          On exit, the lower triangle (if UPLO='L') or the upper */
/*          triangle (if UPLO='U') of A, including the diagonal, is */
/*          destroyed. */

/*  LDA     (input) INTEGER */
/*          The leading dimension of the array A.  LDA >= max(1,N). */

/*  VL      (input) DOUBLE PRECISION */
/*  VU      (input) DOUBLE PRECISION */
/*          If RANGE='V', the lower and upper bounds of the interval to */
/*          be searched for eigenvalues. VL < VU. */
/*          Not referenced if RANGE = 'A' or 'I'. */

/*  IL      (input) INTEGER */
/*  IU      (input) INTEGER */
/*          If RANGE='I', the indices (in ascending order) of the */
/*          smallest and largest eigenvalues to be returned. */
/*          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. */
/*          Not referenced if RANGE = 'A' or 'V'. */

/*  ABSTOL  (input) DOUBLE PRECISION */
/*          The absolute error tolerance for the eigenvalues. */
/*          An approximate eigenvalue is accepted as converged */
/*          when it is determined to lie in an interval [a,b] */
/*          of width less than or equal to */

/*                  ABSTOL + EPS *   max( |a|,|b| ) , */

/*          where EPS is the machine precision.  If ABSTOL is less than */
/*          or equal to zero, then  EPS*|T|  will be used in its place, */
/*          where |T| is the 1-norm of the tridiagonal matrix obtained */
/*          by reducing A to tridiagonal form. */

/*          See "Computing Small Singular Values of Bidiagonal Matrices */
/*          with Guaranteed High Relative Accuracy," by Demmel and */
/*          Kahan, LAPACK Working Note #3. */

/*          If high relative accuracy is important, set ABSTOL to */
/*          DLAMCH( 'Safe minimum' ).  Doing so will guarantee that */
/*          eigenvalues are computed to high relative accuracy when */
/*          possible in future releases.  The current code does not */
/*          make any guarantees about high relative accuracy, but */
/*          future releases will. See J. Barlow and J. Demmel, */
/*          "Computing Accurate Eigensystems of Scaled Diagonally */
/*          Dominant Matrices", LAPACK Working Note #7, for a discussion */
/*          of which matrices define their eigenvalues to high relative */
/*          accuracy. */

/*  M       (output) INTEGER */
/*          The total number of eigenvalues found.  0 <= M <= N. */
/*          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1. */

/*  W       (output) DOUBLE PRECISION array, dimension (N) */
/*          The first M elements contain the selected eigenvalues in */
/*          ascending order. */

/*  Z       (output) DOUBLE PRECISION array, dimension (LDZ, max(1,M)) */
/*          If JOBZ = 'V', then if INFO = 0, the first M columns of Z */
/*          contain the orthonormal eigenvectors of the matrix A */
/*          corresponding to the selected eigenvalues, with the i-th */
/*          column of Z holding the eigenvector associated with W(i). */
/*          If JOBZ = 'N', then Z is not referenced. */
/*          Note: the user must ensure that at least max(1,M) columns are */
/*          supplied in the array Z; if RANGE = 'V', the exact value of M */
/*          is not known in advance and an upper bound must be used. */
/*          Supplying N columns is always safe. */

/*  LDZ     (input) INTEGER */
/*          The leading dimension of the array Z.  LDZ >= 1, and if */
/*          JOBZ = 'V', LDZ >= max(1,N). */

/*  ISUPPZ  (output) INTEGER array, dimension ( 2*max(1,M) ) */
/*          The support of the eigenvectors in Z, i.e., the indices */
/*          indicating the nonzero elements in Z. The i-th eigenvector */
/*          is nonzero only in elements ISUPPZ( 2*i-1 ) through */
/*          ISUPPZ( 2*i ). */
/* ********* Implemented only for RANGE = 'A' or 'I' and IU - IL = N - 1 */

/*  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */
/*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */

/*  LWORK   (input) INTEGER */
/*          The dimension of the array WORK.  LWORK >= max(1,26*N). */
/*          For optimal efficiency, LWORK >= (NB+6)*N, */
/*          where NB is the max of the blocksize for DSYTRD and DORMTR */
/*          returned by ILAENV. */

/*          If LWORK = -1, then a workspace query is assumed; the routine */
/*          only calculates the optimal size of the WORK array, returns */
/*          this value as the first entry of the WORK array, and no error */
/*          message related to LWORK is issued by XERBLA. */

/*  IWORK   (workspace/output) INTEGER array, dimension (MAX(1,LIWORK)) */
/*          On exit, if INFO = 0, IWORK(1) returns the optimal LWORK. */

/*  LIWORK  (input) INTEGER */
/*          The dimension of the array IWORK.  LIWORK >= max(1,10*N). */

/*          If LIWORK = -1, then a workspace query is assumed; the */
/*          routine only calculates the optimal size of the IWORK array, */
/*          returns this value as the first entry of the IWORK array, and */
/*          no error message related to LIWORK is issued by XERBLA. */

/*  INFO    (output) INTEGER */
/*          = 0:  successful exit */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value */
/*          > 0:  Internal error */

/*  Further Details */
/*  =============== */

/*  Based on contributions by */
/*     Inderjit Dhillon, IBM Almaden, USA */
/*     Osni Marques, LBNL/NERSC, USA */
/*     Ken Stanley, Computer Science Division, University of */
/*       California at Berkeley, USA */
/*     Jason Riedy, Computer Science Division, University of */
/*       California at Berkeley, USA */

/* ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input parameters. */

    /* Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    --w;
    z_dim1 = *ldz;
    z_offset = 1 + z_dim1;
    z__ -= z_offset;
    --isuppz;
    --work;
    --iwork;

    /* Function Body */
    ieeeok = ilaenv_(&c__10, "DSYEVR", "N", &c__1, &c__2, &c__3, &c__4);

    lower = lsame_(uplo, "L");
    wantz = lsame_(jobz, "V");
    alleig = lsame_(range, "A");
    valeig = lsame_(range, "V");
    indeig = lsame_(range, "I");

    lquery = *lwork == -1 || *liwork == -1;

/* Computing MAX */
    i__1 = 1, i__2 = *n * 26;
    lwmin = max(i__1,i__2);
/* Computing MAX */
    i__1 = 1, i__2 = *n * 10;
    liwmin = max(i__1,i__2);

    *info = 0;
    if (! (wantz || lsame_(jobz, "N"))) {
	*info = -1;
    } else if (! (alleig || valeig || indeig)) {
	*info = -2;
    } else if (! (lower || lsame_(uplo, "U"))) {
	*info = -3;
    } else if (*n < 0) {
	*info = -4;
    } else if (*lda < max(1,*n)) {
	*info = -6;
    } else {
	if (valeig) {
	    if (*n > 0 && *vu <= *vl) {
		*info = -8;
	    }
	} else if (indeig) {
	    if (*il < 1 || *il > max(1,*n)) {
		*info = -9;
	    } else if (*iu < min(*n,*il) || *iu > *n) {
		*info = -10;
	    }
	}
    }
    if (*info == 0) {
	if (*ldz < 1 || wantz && *ldz < *n) {
	    *info = -15;
	} else if (*lwork < lwmin && ! lquery) {
	    *info = -18;
	} else if (*liwork < liwmin && ! lquery) {
	    *info = -20;
	}
    }

    if (*info == 0) {
	nb = ilaenv_(&c__1, "DSYTRD", uplo, n, &c_n1, &c_n1, &c_n1);
/* Computing MAX */
	i__1 = nb, i__2 = ilaenv_(&c__1, "DORMTR", uplo, n, &c_n1, &c_n1, &
		c_n1);
	nb = max(i__1,i__2);
/* Computing MAX */
	i__1 = (nb + 1) * *n;
	lwkopt = max(i__1,lwmin);
	work[1] = (doublereal) lwkopt;
	iwork[1] = liwmin;
    }

    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("DSYEVR", &i__1);
	return 0;
    } else if (lquery) {
	return 0;
    }

/*     Quick return if possible */

    *m = 0;
    if (*n == 0) {
	work[1] = 1.;
	return 0;
    }

    if (*n == 1) {
	work[1] = 7.;
	if (alleig || indeig) {
	    *m = 1;
	    w[1] = a[a_dim1 + 1];
	} else {
	    if (*vl < a[a_dim1 + 1] && *vu >= a[a_dim1 + 1]) {
		*m = 1;
		w[1] = a[a_dim1 + 1];
	    }
	}
	if (wantz) {
	    z__[z_dim1 + 1] = 1.;
	}
	return 0;
    }

/*     Get machine constants. */

    safmin = dlamch_("Safe minimum");
    eps = dlamch_("Precision");
    smlnum = safmin / eps;
    bignum = 1. / smlnum;
    rmin = sqrt(smlnum);
/* Computing MIN */
    d__1 = sqrt(bignum), d__2 = 1. / sqrt(sqrt(safmin));
    rmax = min(d__1,d__2);

/*     Scale matrix to allowable range, if necessary. */

    iscale = 0;
    abstll = *abstol;
    vll = *vl;
    vuu = *vu;
    anrm = dlansy_("M", uplo, n, &a[a_offset], lda, &work[1]);
    if (anrm > 0. && anrm < rmin) {
	iscale = 1;
	sigma = rmin / anrm;
    } else if (anrm > rmax) {
	iscale = 1;
	sigma = rmax / anrm;
    }
    if (iscale == 1) {
	if (lower) {
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		i__2 = *n - j + 1;
		dscal_(&i__2, &sigma, &a[j + j * a_dim1], &c__1);
/* L10: */
	    }
	} else {
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		dscal_(&j, &sigma, &a[j * a_dim1 + 1], &c__1);
/* L20: */
	    }
	}
	if (*abstol > 0.) {
	    abstll = *abstol * sigma;
	}
	if (valeig) {
	    vll = *vl * sigma;
	    vuu = *vu * sigma;
	}
    }
/*     Initialize indices into workspaces.  Note: The IWORK indices are */
/*     used only if DSTERF or DSTEMR fail. */
/*     WORK(INDTAU:INDTAU+N-1) stores the scalar factors of the */
/*     elementary reflectors used in DSYTRD. */
    indtau = 1;
/*     WORK(INDD:INDD+N-1) stores the tridiagonal's diagonal entries. */
    indd = indtau + *n;
/*     WORK(INDE:INDE+N-1) stores the off-diagonal entries of the */
/*     tridiagonal matrix from DSYTRD. */
    inde = indd + *n;
/*     WORK(INDDD:INDDD+N-1) is a copy of the diagonal entries over */
/*     -written by DSTEMR (the DSTERF path copies the diagonal to W). */
    inddd = inde + *n;
/*     WORK(INDEE:INDEE+N-1) is a copy of the off-diagonal entries over */
/*     -written while computing the eigenvalues in DSTERF and DSTEMR. */
    indee = inddd + *n;
/*     INDWK is the starting offset of the left-over workspace, and */
/*     LLWORK is the remaining workspace size. */
    indwk = indee + *n;
    llwork = *lwork - indwk + 1;
/*     IWORK(INDIBL:INDIBL+M-1) corresponds to IBLOCK in DSTEBZ and */
/*     stores the block indices of each of the M<=N eigenvalues. */
    indibl = 1;
/*     IWORK(INDISP:INDISP+NSPLIT-1) corresponds to ISPLIT in DSTEBZ and */
/*     stores the starting and finishing indices of each block. */
    indisp = indibl + *n;
/*     IWORK(INDIFL:INDIFL+N-1) stores the indices of eigenvectors */
/*     that corresponding to eigenvectors that fail to converge in */
/*     DSTEIN.  This information is discarded; if any fail, the driver */
/*     returns INFO > 0. */
    indifl = indisp + *n;
/*     INDIWO is the offset of the remaining integer workspace. */
    indiwo = indisp + *n;

/*     Call DSYTRD to reduce symmetric matrix to tridiagonal form. */

    dsytrd_(uplo, n, &a[a_offset], lda, &work[indd], &work[inde], &work[
	    indtau], &work[indwk], &llwork, &iinfo);

/*     If all eigenvalues are desired */
/*     then call DSTERF or DSTEMR and DORMTR. */

    if ((alleig || indeig && *il == 1 && *iu == *n) && ieeeok == 1) {
	if (! wantz) {
	    dcopy_(n, &work[indd], &c__1, &w[1], &c__1);
	    i__1 = *n - 1;
	    dcopy_(&i__1, &work[inde], &c__1, &work[indee], &c__1);
	    dsterf_(n, &w[1], &work[indee], info);
	} else {
	    i__1 = *n - 1;
	    dcopy_(&i__1, &work[inde], &c__1, &work[indee], &c__1);
	    dcopy_(n, &work[indd], &c__1, &work[inddd], &c__1);

	    if (*abstol <= *n * 2. * eps) {
		tryrac = TRUE_;
	    } else {
		tryrac = FALSE_;
	    }
	    dstemr_(jobz, "A", n, &work[inddd], &work[indee], vl, vu, il, iu, 
		    m, &w[1], &z__[z_offset], ldz, n, &isuppz[1], &tryrac, &
		    work[indwk], lwork, &iwork[1], liwork, info);



/*        Apply orthogonal matrix used in reduction to tridiagonal */
/*        form to eigenvectors returned by DSTEIN. */

	    if (wantz && *info == 0) {
		indwkn = inde;
		llwrkn = *lwork - indwkn + 1;
		dormtr_("L", uplo, "N", n, m, &a[a_offset], lda, &work[indtau]
, &z__[z_offset], ldz, &work[indwkn], &llwrkn, &iinfo);
	    }
	}


	if (*info == 0) {
/*           Everything worked.  Skip DSTEBZ/DSTEIN.  IWORK(:) are */
/*           undefined. */
	    *m = *n;
	    goto L30;
	}
	*info = 0;
    }

/*     Otherwise, call DSTEBZ and, if eigenvectors are desired, DSTEIN. */
/*     Also call DSTEBZ and DSTEIN if DSTEMR fails. */

    if (wantz) {
	*(unsigned char *)order = 'B';
    } else {
	*(unsigned char *)order = 'E';
    }
    dstebz_(range, order, n, &vll, &vuu, il, iu, &abstll, &work[indd], &work[
	    inde], m, &nsplit, &w[1], &iwork[indibl], &iwork[indisp], &work[
	    indwk], &iwork[indiwo], info);

    if (wantz) {
	dstein_(n, &work[indd], &work[inde], m, &w[1], &iwork[indibl], &iwork[
		indisp], &z__[z_offset], ldz, &work[indwk], &iwork[indiwo], &
		iwork[indifl], info);

/*        Apply orthogonal matrix used in reduction to tridiagonal */
/*        form to eigenvectors returned by DSTEIN. */

	indwkn = inde;
	llwrkn = *lwork - indwkn + 1;
	dormtr_("L", uplo, "N", n, m, &a[a_offset], lda, &work[indtau], &z__[
		z_offset], ldz, &work[indwkn], &llwrkn, &iinfo);
    }

/*     If matrix was scaled, then rescale eigenvalues appropriately. */

/*  Jump here if DSTEMR/DSTEIN succeeded. */
L30:
    if (iscale == 1) {
	if (*info == 0) {
	    imax = *m;
	} else {
	    imax = *info - 1;
	}
	d__1 = 1. / sigma;
	dscal_(&imax, &d__1, &w[1], &c__1);
    }

/*     If eigenvalues are not in order, then sort them, along with */
/*     eigenvectors.  Note: We do not sort the IFAIL portion of IWORK. */
/*     It may not be initialized (if DSTEMR/DSTEIN succeeded), and we do */
/*     not return this detailed information to the user. */

    if (wantz) {
	i__1 = *m - 1;
	for (j = 1; j <= i__1; ++j) {
	    i__ = 0;
	    tmp1 = w[j];
	    i__2 = *m;
	    for (jj = j + 1; jj <= i__2; ++jj) {
		if (w[jj] < tmp1) {
		    i__ = jj;
		    tmp1 = w[jj];
		}
/* L40: */
	    }

	    if (i__ != 0) {
		w[i__] = w[j];
		w[j] = tmp1;
		dswap_(n, &z__[i__ * z_dim1 + 1], &c__1, &z__[j * z_dim1 + 1], 
			 &c__1);
	    }
/* L50: */
	}
    }

/*     Set WORK(1) to optimal workspace size. */

    work[1] = (doublereal) lwkopt;
    iwork[1] = liwmin;

    return 0;

/*     End of DSYEVR */

} /* dsyevr_ */
コード例 #7
0
ファイル: dlasyf.c プロジェクト: 3deggi/levmar-ndk
/* Subroutine */ int dlasyf_(char *uplo, integer *n, integer *nb, integer *kb, 
	 doublereal *a, integer *lda, integer *ipiv, doublereal *w, integer *
	ldw, integer *info)
{
    /* System generated locals */
    integer a_dim1, a_offset, w_dim1, w_offset, i__1, i__2, i__3, i__4, i__5;
    doublereal d__1, d__2, d__3;

    /* Builtin functions */
    double sqrt(doublereal);

    /* Local variables */
    integer j, k;
    doublereal t, r1, d11, d21, d22;
    integer jb, jj, kk, jp, kp, kw, kkw, imax, jmax;
    doublereal alpha;
    extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *, 
	    integer *), dgemm_(char *, char *, integer *, integer *, integer *
, doublereal *, doublereal *, integer *, doublereal *, integer *, 
	    doublereal *, doublereal *, integer *);
    extern logical lsame_(char *, char *);
    extern /* Subroutine */ int dgemv_(char *, integer *, integer *, 
	    doublereal *, doublereal *, integer *, doublereal *, integer *, 
	    doublereal *, doublereal *, integer *), dcopy_(integer *, 
	    doublereal *, integer *, doublereal *, integer *), dswap_(integer 
	    *, doublereal *, integer *, doublereal *, integer *);
    integer kstep;
    doublereal absakk;
    extern integer idamax_(integer *, doublereal *, integer *);
    doublereal colmax, rowmax;


/*  -- LAPACK routine (version 3.2) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  DLASYF computes a partial factorization of a real symmetric matrix A */
/*  using the Bunch-Kaufman diagonal pivoting method. The partial */
/*  factorization has the form: */

/*  A  =  ( I  U12 ) ( A11  0  ) (  I    0   )  if UPLO = 'U', or: */
/*        ( 0  U22 ) (  0   D  ) ( U12' U22' ) */

/*  A  =  ( L11  0 ) (  D   0  ) ( L11' L21' )  if UPLO = 'L' */
/*        ( L21  I ) (  0  A22 ) (  0    I   ) */

/*  where the order of D is at most NB. The actual order is returned in */
/*  the argument KB, and is either NB or NB-1, or N if N <= NB. */

/*  DLASYF is an auxiliary routine called by DSYTRF. It uses blocked code */
/*  (calling Level 3 BLAS) to update the submatrix A11 (if UPLO = 'U') or */
/*  A22 (if UPLO = 'L'). */

/*  Arguments */
/*  ========= */

/*  UPLO    (input) CHARACTER*1 */
/*          Specifies whether the upper or lower triangular part of the */
/*          symmetric matrix A is stored: */
/*          = 'U':  Upper triangular */
/*          = 'L':  Lower triangular */

/*  N       (input) INTEGER */
/*          The order of the matrix A.  N >= 0. */

/*  NB      (input) INTEGER */
/*          The maximum number of columns of the matrix A that should be */
/*          factored.  NB should be at least 2 to allow for 2-by-2 pivot */
/*          blocks. */

/*  KB      (output) INTEGER */
/*          The number of columns of A that were actually factored. */
/*          KB is either NB-1 or NB, or N if N <= NB. */

/*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N) */
/*          On entry, the symmetric matrix A.  If UPLO = 'U', the leading */
/*          n-by-n upper triangular part of A contains the upper */
/*          triangular part of the matrix A, and the strictly lower */
/*          triangular part of A is not referenced.  If UPLO = 'L', the */
/*          leading n-by-n lower triangular part of A contains the lower */
/*          triangular part of the matrix A, and the strictly upper */
/*          triangular part of A is not referenced. */
/*          On exit, A contains details of the partial factorization. */

/*  LDA     (input) INTEGER */
/*          The leading dimension of the array A.  LDA >= max(1,N). */

/*  IPIV    (output) INTEGER array, dimension (N) */
/*          Details of the interchanges and the block structure of D. */
/*          If UPLO = 'U', only the last KB elements of IPIV are set; */
/*          if UPLO = 'L', only the first KB elements are set. */

/*          If IPIV(k) > 0, then rows and columns k and IPIV(k) were */
/*          interchanged and D(k,k) is a 1-by-1 diagonal block. */
/*          If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and */
/*          columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k) */
/*          is a 2-by-2 diagonal block.  If UPLO = 'L' and IPIV(k) = */
/*          IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were */
/*          interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block. */

/*  W       (workspace) DOUBLE PRECISION array, dimension (LDW,NB) */

/*  LDW     (input) INTEGER */
/*          The leading dimension of the array W.  LDW >= max(1,N). */

/*  INFO    (output) INTEGER */
/*          = 0: successful exit */
/*          > 0: if INFO = k, D(k,k) is exactly zero.  The factorization */
/*               has been completed, but the block diagonal matrix D is */
/*               exactly singular. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

    /* Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    --ipiv;
    w_dim1 = *ldw;
    w_offset = 1 + w_dim1;
    w -= w_offset;

    /* Function Body */
    *info = 0;

/*     Initialize ALPHA for use in choosing pivot block size. */

    alpha = (sqrt(17.) + 1.) / 8.;

    if (lsame_(uplo, "U")) {

/*        Factorize the trailing columns of A using the upper triangle */
/*        of A and working backwards, and compute the matrix W = U12*D */
/*        for use in updating A11 */

/*        K is the main loop index, decreasing from N in steps of 1 or 2 */

/*        KW is the column of W which corresponds to column K of A */

	k = *n;
L10:
	kw = *nb + k - *n;

/*        Exit from loop */

	if (k <= *n - *nb + 1 && *nb < *n || k < 1) {
	    goto L30;
	}

/*        Copy column K of A to column KW of W and update it */

	dcopy_(&k, &a[k * a_dim1 + 1], &c__1, &w[kw * w_dim1 + 1], &c__1);
	if (k < *n) {
	    i__1 = *n - k;
	    dgemv_("No transpose", &k, &i__1, &c_b8, &a[(k + 1) * a_dim1 + 1], 
		     lda, &w[k + (kw + 1) * w_dim1], ldw, &c_b9, &w[kw * 
		    w_dim1 + 1], &c__1);
	}

	kstep = 1;

/*        Determine rows and columns to be interchanged and whether */
/*        a 1-by-1 or 2-by-2 pivot block will be used */

	absakk = (d__1 = w[k + kw * w_dim1], abs(d__1));

/*        IMAX is the row-index of the largest off-diagonal element in */
/*        column K, and COLMAX is its absolute value */

	if (k > 1) {
	    i__1 = k - 1;
	    imax = idamax_(&i__1, &w[kw * w_dim1 + 1], &c__1);
	    colmax = (d__1 = w[imax + kw * w_dim1], abs(d__1));
	} else {
	    colmax = 0.;
	}

	if (max(absakk,colmax) == 0.) {

/*           Column K is zero: set INFO and continue */

	    if (*info == 0) {
		*info = k;
	    }
	    kp = k;
	} else {
	    if (absakk >= alpha * colmax) {

/*              no interchange, use 1-by-1 pivot block */

		kp = k;
	    } else {

/*              Copy column IMAX to column KW-1 of W and update it */

		dcopy_(&imax, &a[imax * a_dim1 + 1], &c__1, &w[(kw - 1) * 
			w_dim1 + 1], &c__1);
		i__1 = k - imax;
		dcopy_(&i__1, &a[imax + (imax + 1) * a_dim1], lda, &w[imax + 
			1 + (kw - 1) * w_dim1], &c__1);
		if (k < *n) {
		    i__1 = *n - k;
		    dgemv_("No transpose", &k, &i__1, &c_b8, &a[(k + 1) * 
			    a_dim1 + 1], lda, &w[imax + (kw + 1) * w_dim1], 
			    ldw, &c_b9, &w[(kw - 1) * w_dim1 + 1], &c__1);
		}

/*              JMAX is the column-index of the largest off-diagonal */
/*              element in row IMAX, and ROWMAX is its absolute value */

		i__1 = k - imax;
		jmax = imax + idamax_(&i__1, &w[imax + 1 + (kw - 1) * w_dim1], 
			 &c__1);
		rowmax = (d__1 = w[jmax + (kw - 1) * w_dim1], abs(d__1));
		if (imax > 1) {
		    i__1 = imax - 1;
		    jmax = idamax_(&i__1, &w[(kw - 1) * w_dim1 + 1], &c__1);
/* Computing MAX */
		    d__2 = rowmax, d__3 = (d__1 = w[jmax + (kw - 1) * w_dim1],
			     abs(d__1));
		    rowmax = max(d__2,d__3);
		}

		if (absakk >= alpha * colmax * (colmax / rowmax)) {

/*                 no interchange, use 1-by-1 pivot block */

		    kp = k;
		} else if ((d__1 = w[imax + (kw - 1) * w_dim1], abs(d__1)) >= 
			alpha * rowmax) {

/*                 interchange rows and columns K and IMAX, use 1-by-1 */
/*                 pivot block */

		    kp = imax;

/*                 copy column KW-1 of W to column KW */

		    dcopy_(&k, &w[(kw - 1) * w_dim1 + 1], &c__1, &w[kw * 
			    w_dim1 + 1], &c__1);
		} else {

/*                 interchange rows and columns K-1 and IMAX, use 2-by-2 */
/*                 pivot block */

		    kp = imax;
		    kstep = 2;
		}
	    }

	    kk = k - kstep + 1;
	    kkw = *nb + kk - *n;

/*           Updated column KP is already stored in column KKW of W */

	    if (kp != kk) {

/*              Copy non-updated column KK to column KP */

		a[kp + k * a_dim1] = a[kk + k * a_dim1];
		i__1 = k - 1 - kp;
		dcopy_(&i__1, &a[kp + 1 + kk * a_dim1], &c__1, &a[kp + (kp + 
			1) * a_dim1], lda);
		dcopy_(&kp, &a[kk * a_dim1 + 1], &c__1, &a[kp * a_dim1 + 1], &
			c__1);

/*              Interchange rows KK and KP in last KK columns of A and W */

		i__1 = *n - kk + 1;
		dswap_(&i__1, &a[kk + kk * a_dim1], lda, &a[kp + kk * a_dim1], 
			 lda);
		i__1 = *n - kk + 1;
		dswap_(&i__1, &w[kk + kkw * w_dim1], ldw, &w[kp + kkw * 
			w_dim1], ldw);
	    }

	    if (kstep == 1) {

/*              1-by-1 pivot block D(k): column KW of W now holds */

/*              W(k) = U(k)*D(k) */

/*              where U(k) is the k-th column of U */

/*              Store U(k) in column k of A */

		dcopy_(&k, &w[kw * w_dim1 + 1], &c__1, &a[k * a_dim1 + 1], &
			c__1);
		r1 = 1. / a[k + k * a_dim1];
		i__1 = k - 1;
		dscal_(&i__1, &r1, &a[k * a_dim1 + 1], &c__1);
	    } else {

/*              2-by-2 pivot block D(k): columns KW and KW-1 of W now */
/*              hold */

/*              ( W(k-1) W(k) ) = ( U(k-1) U(k) )*D(k) */

/*              where U(k) and U(k-1) are the k-th and (k-1)-th columns */
/*              of U */

		if (k > 2) {

/*                 Store U(k) and U(k-1) in columns k and k-1 of A */

		    d21 = w[k - 1 + kw * w_dim1];
		    d11 = w[k + kw * w_dim1] / d21;
		    d22 = w[k - 1 + (kw - 1) * w_dim1] / d21;
		    t = 1. / (d11 * d22 - 1.);
		    d21 = t / d21;
		    i__1 = k - 2;
		    for (j = 1; j <= i__1; ++j) {
			a[j + (k - 1) * a_dim1] = d21 * (d11 * w[j + (kw - 1) 
				* w_dim1] - w[j + kw * w_dim1]);
			a[j + k * a_dim1] = d21 * (d22 * w[j + kw * w_dim1] - 
				w[j + (kw - 1) * w_dim1]);
/* L20: */
		    }
		}

/*              Copy D(k) to A */

		a[k - 1 + (k - 1) * a_dim1] = w[k - 1 + (kw - 1) * w_dim1];
		a[k - 1 + k * a_dim1] = w[k - 1 + kw * w_dim1];
		a[k + k * a_dim1] = w[k + kw * w_dim1];
	    }
	}

/*        Store details of the interchanges in IPIV */

	if (kstep == 1) {
	    ipiv[k] = kp;
	} else {
	    ipiv[k] = -kp;
	    ipiv[k - 1] = -kp;
	}

/*        Decrease K and return to the start of the main loop */

	k -= kstep;
	goto L10;

L30:

/*        Update the upper triangle of A11 (= A(1:k,1:k)) as */

/*        A11 := A11 - U12*D*U12' = A11 - U12*W' */

/*        computing blocks of NB columns at a time */

	i__1 = -(*nb);
	for (j = (k - 1) / *nb * *nb + 1; i__1 < 0 ? j >= 1 : j <= 1; j += 
		i__1) {
/* Computing MIN */
	    i__2 = *nb, i__3 = k - j + 1;
	    jb = min(i__2,i__3);

/*           Update the upper triangle of the diagonal block */

	    i__2 = j + jb - 1;
	    for (jj = j; jj <= i__2; ++jj) {
		i__3 = jj - j + 1;
		i__4 = *n - k;
		dgemv_("No transpose", &i__3, &i__4, &c_b8, &a[j + (k + 1) * 
			a_dim1], lda, &w[jj + (kw + 1) * w_dim1], ldw, &c_b9, 
			&a[j + jj * a_dim1], &c__1);
/* L40: */
	    }

/*           Update the rectangular superdiagonal block */

	    i__2 = j - 1;
	    i__3 = *n - k;
	    dgemm_("No transpose", "Transpose", &i__2, &jb, &i__3, &c_b8, &a[(
		    k + 1) * a_dim1 + 1], lda, &w[j + (kw + 1) * w_dim1], ldw, 
		     &c_b9, &a[j * a_dim1 + 1], lda);
/* L50: */
	}

/*        Put U12 in standard form by partially undoing the interchanges */
/*        in columns k+1:n */

	j = k + 1;
L60:
	jj = j;
	jp = ipiv[j];
	if (jp < 0) {
	    jp = -jp;
	    ++j;
	}
	++j;
	if (jp != jj && j <= *n) {
	    i__1 = *n - j + 1;
	    dswap_(&i__1, &a[jp + j * a_dim1], lda, &a[jj + j * a_dim1], lda);
	}
	if (j <= *n) {
	    goto L60;
	}

/*        Set KB to the number of columns factorized */

	*kb = *n - k;

    } else {

/*        Factorize the leading columns of A using the lower triangle */
/*        of A and working forwards, and compute the matrix W = L21*D */
/*        for use in updating A22 */

/*        K is the main loop index, increasing from 1 in steps of 1 or 2 */

	k = 1;
L70:

/*        Exit from loop */

	if (k >= *nb && *nb < *n || k > *n) {
	    goto L90;
	}

/*        Copy column K of A to column K of W and update it */

	i__1 = *n - k + 1;
	dcopy_(&i__1, &a[k + k * a_dim1], &c__1, &w[k + k * w_dim1], &c__1);
	i__1 = *n - k + 1;
	i__2 = k - 1;
	dgemv_("No transpose", &i__1, &i__2, &c_b8, &a[k + a_dim1], lda, &w[k 
		+ w_dim1], ldw, &c_b9, &w[k + k * w_dim1], &c__1);

	kstep = 1;

/*        Determine rows and columns to be interchanged and whether */
/*        a 1-by-1 or 2-by-2 pivot block will be used */

	absakk = (d__1 = w[k + k * w_dim1], abs(d__1));

/*        IMAX is the row-index of the largest off-diagonal element in */
/*        column K, and COLMAX is its absolute value */

	if (k < *n) {
	    i__1 = *n - k;
	    imax = k + idamax_(&i__1, &w[k + 1 + k * w_dim1], &c__1);
	    colmax = (d__1 = w[imax + k * w_dim1], abs(d__1));
	} else {
	    colmax = 0.;
	}

	if (max(absakk,colmax) == 0.) {

/*           Column K is zero: set INFO and continue */

	    if (*info == 0) {
		*info = k;
	    }
	    kp = k;
	} else {
	    if (absakk >= alpha * colmax) {

/*              no interchange, use 1-by-1 pivot block */

		kp = k;
	    } else {

/*              Copy column IMAX to column K+1 of W and update it */

		i__1 = imax - k;
		dcopy_(&i__1, &a[imax + k * a_dim1], lda, &w[k + (k + 1) * 
			w_dim1], &c__1);
		i__1 = *n - imax + 1;
		dcopy_(&i__1, &a[imax + imax * a_dim1], &c__1, &w[imax + (k + 
			1) * w_dim1], &c__1);
		i__1 = *n - k + 1;
		i__2 = k - 1;
		dgemv_("No transpose", &i__1, &i__2, &c_b8, &a[k + a_dim1], 
			lda, &w[imax + w_dim1], ldw, &c_b9, &w[k + (k + 1) * 
			w_dim1], &c__1);

/*              JMAX is the column-index of the largest off-diagonal */
/*              element in row IMAX, and ROWMAX is its absolute value */

		i__1 = imax - k;
		jmax = k - 1 + idamax_(&i__1, &w[k + (k + 1) * w_dim1], &c__1)
			;
		rowmax = (d__1 = w[jmax + (k + 1) * w_dim1], abs(d__1));
		if (imax < *n) {
		    i__1 = *n - imax;
		    jmax = imax + idamax_(&i__1, &w[imax + 1 + (k + 1) * 
			    w_dim1], &c__1);
/* Computing MAX */
		    d__2 = rowmax, d__3 = (d__1 = w[jmax + (k + 1) * w_dim1], 
			    abs(d__1));
		    rowmax = max(d__2,d__3);
		}

		if (absakk >= alpha * colmax * (colmax / rowmax)) {

/*                 no interchange, use 1-by-1 pivot block */

		    kp = k;
		} else if ((d__1 = w[imax + (k + 1) * w_dim1], abs(d__1)) >= 
			alpha * rowmax) {

/*                 interchange rows and columns K and IMAX, use 1-by-1 */
/*                 pivot block */

		    kp = imax;

/*                 copy column K+1 of W to column K */

		    i__1 = *n - k + 1;
		    dcopy_(&i__1, &w[k + (k + 1) * w_dim1], &c__1, &w[k + k * 
			    w_dim1], &c__1);
		} else {

/*                 interchange rows and columns K+1 and IMAX, use 2-by-2 */
/*                 pivot block */

		    kp = imax;
		    kstep = 2;
		}
	    }

	    kk = k + kstep - 1;

/*           Updated column KP is already stored in column KK of W */

	    if (kp != kk) {

/*              Copy non-updated column KK to column KP */

		a[kp + k * a_dim1] = a[kk + k * a_dim1];
		i__1 = kp - k - 1;
		dcopy_(&i__1, &a[k + 1 + kk * a_dim1], &c__1, &a[kp + (k + 1) 
			* a_dim1], lda);
		i__1 = *n - kp + 1;
		dcopy_(&i__1, &a[kp + kk * a_dim1], &c__1, &a[kp + kp * 
			a_dim1], &c__1);

/*              Interchange rows KK and KP in first KK columns of A and W */

		dswap_(&kk, &a[kk + a_dim1], lda, &a[kp + a_dim1], lda);
		dswap_(&kk, &w[kk + w_dim1], ldw, &w[kp + w_dim1], ldw);
	    }

	    if (kstep == 1) {

/*              1-by-1 pivot block D(k): column k of W now holds */

/*              W(k) = L(k)*D(k) */

/*              where L(k) is the k-th column of L */

/*              Store L(k) in column k of A */

		i__1 = *n - k + 1;
		dcopy_(&i__1, &w[k + k * w_dim1], &c__1, &a[k + k * a_dim1], &
			c__1);
		if (k < *n) {
		    r1 = 1. / a[k + k * a_dim1];
		    i__1 = *n - k;
		    dscal_(&i__1, &r1, &a[k + 1 + k * a_dim1], &c__1);
		}
	    } else {

/*              2-by-2 pivot block D(k): columns k and k+1 of W now hold */

/*              ( W(k) W(k+1) ) = ( L(k) L(k+1) )*D(k) */

/*              where L(k) and L(k+1) are the k-th and (k+1)-th columns */
/*              of L */

		if (k < *n - 1) {

/*                 Store L(k) and L(k+1) in columns k and k+1 of A */

		    d21 = w[k + 1 + k * w_dim1];
		    d11 = w[k + 1 + (k + 1) * w_dim1] / d21;
		    d22 = w[k + k * w_dim1] / d21;
		    t = 1. / (d11 * d22 - 1.);
		    d21 = t / d21;
		    i__1 = *n;
		    for (j = k + 2; j <= i__1; ++j) {
			a[j + k * a_dim1] = d21 * (d11 * w[j + k * w_dim1] - 
				w[j + (k + 1) * w_dim1]);
			a[j + (k + 1) * a_dim1] = d21 * (d22 * w[j + (k + 1) *
				 w_dim1] - w[j + k * w_dim1]);
/* L80: */
		    }
		}

/*              Copy D(k) to A */

		a[k + k * a_dim1] = w[k + k * w_dim1];
		a[k + 1 + k * a_dim1] = w[k + 1 + k * w_dim1];
		a[k + 1 + (k + 1) * a_dim1] = w[k + 1 + (k + 1) * w_dim1];
	    }
	}

/*        Store details of the interchanges in IPIV */

	if (kstep == 1) {
	    ipiv[k] = kp;
	} else {
	    ipiv[k] = -kp;
	    ipiv[k + 1] = -kp;
	}

/*        Increase K and return to the start of the main loop */

	k += kstep;
	goto L70;

L90:

/*        Update the lower triangle of A22 (= A(k:n,k:n)) as */

/*        A22 := A22 - L21*D*L21' = A22 - L21*W' */

/*        computing blocks of NB columns at a time */

	i__1 = *n;
	i__2 = *nb;
	for (j = k; i__2 < 0 ? j >= i__1 : j <= i__1; j += i__2) {
/* Computing MIN */
	    i__3 = *nb, i__4 = *n - j + 1;
	    jb = min(i__3,i__4);

/*           Update the lower triangle of the diagonal block */

	    i__3 = j + jb - 1;
	    for (jj = j; jj <= i__3; ++jj) {
		i__4 = j + jb - jj;
		i__5 = k - 1;
		dgemv_("No transpose", &i__4, &i__5, &c_b8, &a[jj + a_dim1], 
			lda, &w[jj + w_dim1], ldw, &c_b9, &a[jj + jj * a_dim1]
, &c__1);
/* L100: */
	    }

/*           Update the rectangular subdiagonal block */

	    if (j + jb <= *n) {
		i__3 = *n - j - jb + 1;
		i__4 = k - 1;
		dgemm_("No transpose", "Transpose", &i__3, &jb, &i__4, &c_b8, 
			&a[j + jb + a_dim1], lda, &w[j + w_dim1], ldw, &c_b9, 
			&a[j + jb + j * a_dim1], lda);
	    }
/* L110: */
	}

/*        Put L21 in standard form by partially undoing the interchanges */
/*        in columns 1:k-1 */

	j = k - 1;
L120:
	jj = j;
	jp = ipiv[j];
	if (jp < 0) {
	    jp = -jp;
	    --j;
	}
	--j;
	if (jp != jj && j >= 1) {
	    dswap_(&j, &a[jp + a_dim1], lda, &a[jj + a_dim1], lda);
	}
	if (j >= 1) {
	    goto L120;
	}

/*        Set KB to the number of columns factorized */

	*kb = k - 1;

    }
    return 0;

/*     End of DLASYF */

} /* dlasyf_ */
コード例 #8
0
ファイル: dfgmr.c プロジェクト: gilso/Packages
int dfgmr(int n,
     void (*dmatvec) (double, double[], double, double[]),
     void (*dpsolve) (int, double[], double[]),
     double *rhs, double *sol, double tol, int im, int *itmax, FILE * fits)
{
/*----------------------------------------------------------------------
|                 *** Preconditioned FGMRES ***
+-----------------------------------------------------------------------
| This is a simple version of the ARMS preconditioned FGMRES algorithm.
+-----------------------------------------------------------------------
| Y. S. Dec. 2000. -- Apr. 2008
+-----------------------------------------------------------------------
| on entry:
|----------
|
| rhs     = real vector of length n containing the right hand side.
| sol     = real vector of length n containing an initial guess to the
|           solution on input.
| tol     = tolerance for stopping iteration
| im      = Krylov subspace dimension
| (itmax) = max number of iterations allowed.
| fits    = NULL: no output
|        != NULL: file handle to output " resid vs time and its"
|
| on return:
|----------
| fgmr      int =  0 --> successful return.
|           int =  1 --> convergence not achieved in itmax iterations.
| sol     = contains an approximate solution (upon successful return).
| itmax   = has changed. It now contains the number of steps required
|           to converge --
+-----------------------------------------------------------------------
| internal work arrays:
|----------
| vv      = work array of length [im+1][n] (used to store the Arnoldi
|           basis)
| hh      = work array of length [im][im+1] (Householder matrix)
| z       = work array of length [im][n] to store preconditioned vectors
+-----------------------------------------------------------------------
| subroutines called :
| matvec - matrix-vector multiplication operation
| psolve - (right) preconditionning operation
|	   psolve can be a NULL pointer (GMRES without preconditioner)
+---------------------------------------------------------------------*/

    int maxits = *itmax;
    int i, i1, ii, j, k, k1, its, retval, i_1 = 1, i_2 = 2;
    double beta, eps1 = 0.0, t, t0, gam;
    double **hh, *c, *s, *rs;
    double **vv, **z, tt;
    double zero = 0.0;
    double one = 1.0;

    its = 0;
    vv = (double **)SUPERLU_MALLOC((im + 1) * sizeof(double *));
    for (i = 0; i <= im; i++) vv[i] = doubleMalloc(n);
    z = (double **)SUPERLU_MALLOC(im * sizeof(double *));
    hh = (double **)SUPERLU_MALLOC(im * sizeof(double *));
    for (i = 0; i < im; i++)
    {
	hh[i] = doubleMalloc(i + 2);
	z[i] = doubleMalloc(n);
    }
    c = doubleMalloc(im);
    s = doubleMalloc(im);
    rs = doubleMalloc(im + 1);

    /*---- outer loop starts here ----*/
    do
    {
	/*---- compute initial residual vector ----*/
	dmatvec(one, sol, zero, vv[0]);
	for (j = 0; j < n; j++)
	    vv[0][j] = rhs[j] - vv[0][j];	/* vv[0]= initial residual */
	beta = dnrm2_(&n, vv[0], &i_1);

	/*---- print info if fits != null ----*/
	if (fits != NULL && its == 0)
	    fprintf(fits, "%8d   %10.2e\n", its, beta);
	/*if ( beta <= tol * dnrm2_(&n, rhs, &i_1) )*/
	if ( !(beta > tol * dnrm2_(&n, rhs, &i_1)) )
	    break;
	t = 1.0 / beta;

	/*---- normalize: vv[0] = vv[0] / beta ----*/
	for (j = 0; j < n; j++)
	    vv[0][j] = vv[0][j] * t;
	if (its == 0)
	    eps1 = tol * beta;

	/*---- initialize 1-st term of rhs of hessenberg system ----*/
	rs[0] = beta;
	for (i = 0; i < im; i++)
	{
	    its++;
	    i1 = i + 1;

	    /*------------------------------------------------------------
	    |  (Right) Preconditioning Operation   z_{j} = M^{-1} v_{j}
	    +-----------------------------------------------------------*/
	    if (dpsolve)
		dpsolve(n, z[i], vv[i]);
	    else
		dcopy_(&n, vv[i], &i_1, z[i], &i_1);

	    /*---- matvec operation w = A z_{j} = A M^{-1} v_{j} ----*/
	    dmatvec(one, z[i], zero, vv[i1]);

	    /*------------------------------------------------------------
	    |     modified gram - schmidt...
	    |     h_{i,j} = (w,v_{i})
	    |     w  = w - h_{i,j} v_{i}
	    +------------------------------------------------------------*/
	    t0 = dnrm2_(&n, vv[i1], &i_1);
	    for (j = 0; j <= i; j++)
	    {
		double negt;
		tt = ddot_(&n, vv[j], &i_1, vv[i1], &i_1);
		hh[i][j] = tt;
		negt = -tt;
		daxpy_(&n, &negt, vv[j], &i_1, vv[i1], &i_1);
	    }

	    /*---- h_{j+1,j} = ||w||_{2} ----*/
	    t = dnrm2_(&n, vv[i1], &i_1);
	    while (t < 0.5 * t0)
	    {
		t0 = t;
		for (j = 0; j <= i; j++)
		{
		    double negt;
		    tt = ddot_(&n, vv[j], &i_1, vv[i1], &i_1);
		    hh[i][j] += tt;
		    negt = -tt;
		    daxpy_(&n, &negt, vv[j], &i_1, vv[i1], &i_1);
		}
		t = dnrm2_(&n, vv[i1], &i_1);
	    }

	    hh[i][i1] = t;

	    if (t != 0.0)
	    {
		/*---- v_{j+1} = w / h_{j+1,j} ----*/
		t = 1.0 / t;
		for (k = 0; k < n; k++)
		    vv[i1][k] = vv[i1][k] * t;
	    }
	    /*---------------------------------------------------
	    |     done with modified gram schimdt and arnoldi step
	    |     now  update factorization of hh
	    +--------------------------------------------------*/

	    /*--------------------------------------------------------
	    |   perform previous transformations  on i-th column of h
	    +-------------------------------------------------------*/
	    for (k = 1; k <= i; k++)
	    {
		k1 = k - 1;
		tt = hh[i][k1];
		hh[i][k1] = c[k1] * tt + s[k1] * hh[i][k];
		hh[i][k] = -s[k1] * tt + c[k1] * hh[i][k];
	    }

	    gam = sqrt(pow(hh[i][i], 2) + pow(hh[i][i1], 2));

	    /*---------------------------------------------------
	    |     if gamma is zero then any small value will do
	    |     affect only residual estimate
	    +--------------------------------------------------*/
	    /* if (gam == 0.0) gam = epsmac; */

	    /*---- get next plane rotation ---*/
	    if (gam == 0.0)
	    {
		c[i] = one;
		s[i] = zero;
	    }
            else
	    {
		c[i] = hh[i][i] / gam;
		s[i] = hh[i][i1] / gam;
	    }

	    rs[i1] = -s[i] * rs[i];
	    rs[i] = c[i] * rs[i];

	    /*----------------------------------------------------
	    |   determine residual norm and test for convergence
	    +---------------------------------------------------*/
	    hh[i][i] = c[i] * hh[i][i] + s[i] * hh[i][i1];
	    beta = fabs(rs[i1]);
	    if (fits != NULL)
		fprintf(fits, "%8d   %10.2e\n", its, beta);
	    if (beta <= eps1 || its >= maxits)
		break;
	}

	if (i == im) i--;

	/*---- now compute solution. 1st, solve upper triangular system ----*/
	rs[i] = rs[i] / hh[i][i];

	for (ii = 1; ii <= i; ii++)
	{
	    k = i - ii;
	    k1 = k + 1;
	    tt = rs[k];
	    for (j = k1; j <= i; j++)
		tt = tt - hh[j][k] * rs[j];
	    rs[k] = tt / hh[k][k];
	}

	/*---- linear combination of v[i]'s to get sol. ----*/
	for (j = 0; j <= i; j++)
	{
	    tt = rs[j];
	    for (k = 0; k < n; k++)
		sol[k] += tt * z[j][k];
	}

	/* calculate the residual and output */
	dmatvec(one, sol, zero, vv[0]);
	for (j = 0; j < n; j++)
	    vv[0][j] = rhs[j] - vv[0][j];	/* vv[0]= initial residual */

	/*---- print info if fits != null ----*/
	beta = dnrm2_(&n, vv[0], &i_1);

	/*---- restart outer loop if needed ----*/
	/*if (beta >= eps1 / tol)*/
	if ( !(beta < eps1 / tol) )
	{
	    its = maxits + 10;
	    break;
	}
	if (beta <= eps1)
	    break;
    } while(its < maxits);

    retval = (its >= maxits);
    for (i = 0; i <= im; i++)
	SUPERLU_FREE(vv[i]);
    SUPERLU_FREE(vv);
    for (i = 0; i < im; i++)
    {
	SUPERLU_FREE(hh[i]);
	SUPERLU_FREE(z[i]);
    }
    SUPERLU_FREE(hh);
    SUPERLU_FREE(z);
    SUPERLU_FREE(c);
    SUPERLU_FREE(s);
    SUPERLU_FREE(rs);

    *itmax = its;

    return retval;
} /*----end of fgmr ----*/
コード例 #9
0
ファイル: d1merg.c プロジェクト: Rufflewind/cslatec
/* DECK D1MERG */
/* Subroutine */ int d1merg_(doublereal *tcos, integer *i1, integer *m1, 
	integer *i2, integer *m2, integer *i3)
{
    /* System generated locals */
    integer i__1;

    /* Local variables */
    static integer j1, j2, j3;
    extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *, 
	    doublereal *, integer *);

/* ***BEGIN PROLOGUE  D1MERG */
/* ***SUBSIDIARY */
/* ***PURPOSE  Merge two strings of ascending double precision numbers. */
/* ***LIBRARY   SLATEC */
/* ***TYPE      DOUBLE PRECISION (S1MERG-S, D1MERG-D, CMERGE-C, I1MERG-I) */
/* ***AUTHOR  Boland, W. Robert, (LANL) */
/*           Clemens, Reginald, (PLK) */
/* ***DESCRIPTION */

/*   This subroutine merges two ascending strings of numbers in the */
/*   array TCOS.  The first string is of length M1 and starts at */
/*   TCOS(I1+1).  The second string is of length M2 and starts at */
/*   TCOS(I2+1).  The merged string goes into TCOS(I3+1). */

/*   This routine is currently unused, but was added to complete */
/*   the set of routines S1MERG and C1MERG (both of which are used). */

/* ***ROUTINES CALLED  DCOPY */
/* ***REVISION HISTORY  (YYMMDD) */
/*   910819  DATE WRITTEN */
/* ***END PROLOGUE  D1MERG */


/* ***FIRST EXECUTABLE STATEMENT  D1MERG */
    /* Parameter adjustments */
    --tcos;

    /* Function Body */
    if (*m1 == 0 && *m2 == 0) {
	return 0;
    }

    if (*m1 == 0 && *m2 != 0) {
	dcopy_(m2, &tcos[*i2 + 1], &c__1, &tcos[*i3 + 1], &c__1);
	return 0;
    }

    if (*m1 != 0 && *m2 == 0) {
	dcopy_(m1, &tcos[*i1 + 1], &c__1, &tcos[*i3 + 1], &c__1);
	return 0;
    }

    j1 = 1;
    j2 = 1;
    j3 = 1;

L10:
    if (tcos[*i1 + j1] <= tcos[*i2 + j2]) {
	tcos[*i3 + j3] = tcos[*i1 + j1];
	++j1;
	if (j1 > *m1) {
	    i__1 = *m2 - j2 + 1;
	    dcopy_(&i__1, &tcos[*i2 + j2], &c__1, &tcos[*i3 + j3 + 1], &c__1);
	    return 0;
	}
    } else {
	tcos[*i3 + j3] = tcos[*i2 + j2];
	++j2;
	if (j2 > *m2) {
	    i__1 = *m1 - j1 + 1;
	    dcopy_(&i__1, &tcos[*i1 + j1], &c__1, &tcos[*i3 + j3 + 1], &c__1);
	    return 0;
	}
    }
    ++j3;
    goto L10;
} /* d1merg_ */
コード例 #10
0
ファイル: dcr.c プロジェクト: Electrostatics/FETK
/* Subroutine */ int dcr_(S_fp matvec, doublereal *a, integer *ia, doublereal 
	*x, doublereal *b, integer *n, integer *iparam, doublereal *rparam, 
	integer *iwork, doublereal *r__, doublereal *ar, doublereal *ap, 
	doublereal *d__, doublereal *e, doublereal *cndwk, integer *ierror)
{
    /* Format strings */
    static char fmt_6[] = "(\002 THE METHOD IS CONJUGATE RESIDUALS (CR)\002,"
	    "/)";
    static char fmt_8[] = "(4x,\002CONDA  = \002,d12.5,/)";
    static char fmt_10[] = "(\002 RESID  = 2-NORM OF R\002,/,\002 RELRSD = R"
	    "ESID / INITIAL RESID\002,/,\002 COND(A) USED IN STOPPING CRITERI"
	    "ON\002,/)";
    static char fmt_25[] = "(\002 INITIAL RESIDUAL = \002,d12.5,/)";
    static char fmt_40[] = "(/,\002 WARNING IN DCR: <R,AR> = 0\002,/)";
    static char fmt_35[] = "(\002 ITERS = \002,i5,4x,\002RESID = \002,d12.5,"
	    "4x,\002RELRSD = \002,d12.5)";
    static char fmt_70[] = "(/,\002 NEW ESTIMATES FOR A:\002)";

    /* System generated locals */
    integer i__1;
    doublereal d__1;

    /* Builtin functions */
    integer s_wsfe(cilist *), e_wsfe(void), do_fio(integer *, char *, ftnlen);
    double sqrt(doublereal);

    /* Local variables */
    static integer i__, nce, ido, isp1;
    static doublereal beta;
    extern doublereal ddot_(integer *, doublereal *, integer *, doublereal *, 
	    integer *);
    static integer kmax;
    extern doublereal dnrm2_(integer *, doublereal *, integer *);
    static doublereal conda, alpha, denom;
    extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *, 
	    doublereal *, integer *);
    static integer itmax;
    static doublereal rdumm, sdumm;
    static integer iters;
    extern /* Subroutine */ int daxpy_(integer *, doublereal *, doublereal *, 
	    integer *, doublereal *, integer *);
    static doublereal wdumm, zdumm;
    extern doublereal d1mach_(integer *);
    static integer istop, jstop;
    static doublereal rnorm, r0norm;
    extern /* Subroutine */ int dcgchk_(integer *, doublereal *, integer *);
    static doublereal ralpha;
    static integer icycle;
    static doublereal eigmin, eigmax, oldrar, rdotar;
    extern /* Subroutine */ int donest_(integer *, doublereal *, doublereal *,
	     doublereal *, doublereal *, integer *, integer *, doublereal *, 
	    doublereal *, doublereal *);
    extern integer mdstop_(integer *, integer *, integer *, doublereal *, 
	    doublereal *, integer *, doublereal *, doublereal *, doublereal *,
	     integer *, doublereal *, doublereal *, doublereal *, doublereal *
	    , doublereal *, integer *);
    static integer iounit;
    static doublereal errtol, stptst;

    /* Fortran I/O blocks */
    static cilist io___9 = { 0, 0, 0, fmt_6, 0 };
    static cilist io___10 = { 0, 0, 0, fmt_8, 0 };
    static cilist io___11 = { 0, 0, 0, fmt_10, 0 };
    static cilist io___20 = { 0, 0, 0, fmt_25, 0 };
    static cilist io___27 = { 0, 0, 0, fmt_40, 0 };
    static cilist io___30 = { 0, 0, 0, fmt_35, 0 };
    static cilist io___32 = { 0, 0, 0, fmt_40, 0 };
    static cilist io___36 = { 0, 0, 0, fmt_70, 0 };


/* ***BEGIN PROLOGUE  DCR */
/* ***DATE WRITTEN   860115   (YYMMDD) */
/* ***REVISION DATE  900210   (YYMMDD) */
/* ***CATEGORY NO. D2B4 */
/* ***KEYWORDS  LINEAR SYSTEM,SPARSE,SYMMETRIC,ITERATIVE, */
/*             CONJUGATE GRADIENTS,CONJUGATE RESIDUALS */
/* ***AUTHOR  ASHBY,STEVEN F., (UIUC) */
/*             UNIV. OF ILLINOIS */
/*             DEPT. OF COMPUTER SCIENCE */
/*             URBANA, IL 61801 */
/* ***AUTHOR  HOLST,MICHAEL J., (UIUC) */
/*             UNIV. OF ILLINOIS */
/*             DEPT. OF COMPUTER SCIENCE */
/*             URBANA, IL 61801 */
/*           MANTEUFFEL,THOMAS A., (LANL) */
/*             LOS ALAMOS NATIONAL LABORATORY */
/*             MAIL STOP B265 */
/*             LOS ALAMOS, NM 87545 */
/* ***PURPOSE  THIS SUBROUTINE SOLVES THE SYMMETRIC (POSSIBLY INDEFINITE) */
/*            LINEAR SYSTEM AX=B.  THE METHOD OF CONJUGATE RESIDUALS IS */
/*            USED. */
/* ***DEDCRIPTION */

/* --- ON ENTRY --- */

/*    MATVEC   EXTERNAL SUBROUTINE MATVEC(JOB,A,IA,W,X,Y,N) */
/*             THE USER MUST PROVIDE A SUBROUTINE HAVING THE SPECIFED */
/*             PARAMETER LIST.  THE SUBROUTINE MUST RETURN THE PRODUCT */
/*             (OR A RELATED COMPUTATION; SEE BELOW) Y=A*X, WHERE A IS */
/*             THE COEFFICIENT MATRIX OF THE LINEAR SYSTEM.  THE MATRIX */
/*             A IS REPRESENTED BY THE WORK ARRAYS A AND IA, DEDCRIBED */
/*             BELOW.  THE INTEGER PARAMETER JOB SPECIFIES THE PRODUCT */
/*             TO BE COMPUTED: */
/*                  JOB=0    Y=A*X */
/*                  JOB=1    Y=AT*X */
/*                  JOB=2    Y=W - A*X */
/*                  JOB=3    Y=W - AT*X. */
/*             IN THE ABOVE, AT DENOTES A-TRANSPOSE.  NOTE THAT */
/*             ONLY THE VALUES OF JOB=0,1 ARE REQUIRED FOR CGCODE. */
/*             ALL OF THE ROUTINES IN CGCODE REQUIRE JOB=0; THE */
/*             ROUTINES DCGNR, DCGNE, DPCGNR, AND DPCGNE ALSO REQUIRE */
/*             THE VALUE OF JOB=1.  (THE VALUES OF JOB=2,3 ARE NOT */
/*             REQUIRED BY ANY OF THE ROUTINES IN CGCODE, BUT MAY BE */
/*             REQUIRED BY OTHER ITERATIVE PACKAGES CONFORMING TO THE */
/*             PROPOSED ITERATIVE STANDARD.)  THE PARAMETERS W,X,Y ARE */
/*             ALL VECTORS OF LENGTH N.  THE ONLY PARAMETER THAT MAY BE */
/*             CHANGED INSIDE THE ROUTINE IS Y.  MATVEC WILL USUALLY */
/*             SERVE AS AN INTERFACE TO THE USER'S OWN MATRIX-VECTOR */
/*             MULTIPLY SUBROUTINE. */
/*             NOTE: MATVEC MUST BE DECLARED IN AN EXTERNAL STATEMENT */
/*             IN THE CALLING PROGRAM. */

/*    A        DBLE ARRAY ADDRESS. */
/*             THE BASE ADDRESS OF THE USER'S DBLE WORK ARRAY, USUALLY */
/*             THE MATRIX A.  SINCE A IS ONLY ACCESSED BY CALLS TO SUBR */
/*             MATVEC, IT MAY BE A DUMMY ADDRESS. */

/*    IA       INTEGER ARRAY ADDRESS. */
/*             THE BASE ADDRESS OF THE USER'S INTEGER WORK ARRAY.  THIS */
/*             USUALLY CONTAINS ADDITIONAL INFORMATION ABOUT A NEEDED BY */
/*             MATVEC.  SINCE IA IS ONLY ACCESSED BY CALLS TO MATVEC, IT */
/*             MAY BE A DUMMY ADDRESS. */

/*    X        DBLE(N). */
/*             THE INITIAL GUESS VECTOR, X0. */
/*             (ON EXIT, X IS OVERWRITTEN WITH THE APPROXIMATE SOLUTION */
/*             OF A*X=B.) */

/*    B        DBLE(N). */
/*             THE RIGHT-HAND SIDE VECTOR OF THE LINEAR SYSTEM AX=B. */
/*             NOTE: B IS CHANGED BY THE SOLVER. */

/*    N        INTEGER. */
/*             THE ORDER OF THE MATRIX A IN THE LINEAR SYSTEM AX=B. */

/*    IPARAM   INTEGER(40). */
/*             AN ARRAY OF INTEGER INPUT PARAMETERS: */
/*                NOTE: IPARAM(1) THROUGH IPARAM(10) ARE MANDATED BY THE */
/*                PROPOSED STANDARD; IPARAM(11) THROUGH IPARAM(30) ARE */
/*                RESERVED FOR EXPANSION OF THE PROPOSED STANDARD; */
/*                IPARAM(31) THROUGH IPARAM(34) ARE ADDITIONAL */
/*                PARAMETERS, SPECIFIC TO CGCODE. */

/*             IPARAM(1) = NIPAR */
/*             LENGTH OF THE IPARAM ARRAY. */

/*             IPARAM(2) = NRPAR */
/*             LENGTH OF THE RPARAM ARRAY. */

/*             IPARAM(3) = NIWK */
/*             LENGTH OF THE IWORK ARRAY. */

/*             IPARAM(4) = NRWK */
/*             LENGTH OF THE RWORK ARRAY. */

/*             IPARAM(5) = IOUNIT */
/*             IF (IOUNIT > 0) THEN ITERATION INFORMATION (AS */
/*             SPECIFIED BY IOLEVL; SEE BELOW) IS SENT TO UNIT=IOUNIT, */
/*             WHICH MUST BE OPENED IN THE CALLING PROGRAM. */
/*             IF (IOUNIT <= 0) THEN THERE IS NO OUTPUT. */

/*             IPARAM(6) = IOLEVL */
/*             SPECIFIES THE AMOUNT AND TYPE OF INFORMATION TO BE */
/*             OUTPUT IF (IOUNIT > 0): */
/*                IOLEVL = 0   OUTPUT ERROR MESSAGES ONLY */
/*                IOLEVL = 1   OUTPUT INPUT PARAMETERS AND LEVEL 0 INFO */
/*                IOLEVL = 2   OUTPUT STPTST (SEE BELOW) AND LEVEL 1 INFO */
/*                IOLEVL = 3   OUTPUT LEVEL 2 INFO AND MORE DETAILS */

/*             IPARAM(8) = ISTOP */
/*             STOPPING CRITERION FLAG, INTERPRETED AS: */
/*                ISTOP = 0  ||E||/||E0||      <= ERRTOL  (DEFAULT) */
/*                ISTOP = 1  ||R||             <= ERRTOL */
/*                ISTOP = 2  ||R||/||B||       <= ERRTOL */
/*                ISTOP = 3  ||C*R||           <= ERRTOL */
/*                ISTOP = 4  ||C*R||/||C*B||   <= ERRTOL */
/*             WHERE E=ERROR, R=RESIDUAL, B=RIGHT HAND SIDE OF A*X=B, */
/*             AND C IS THE PRECONDITIONING MATRIX OR PRECONDITIONING */
/*             POLYNOMIAL (OR BOTH.) */
/*             NOTE: IF ISTOP=0 IS SELECTED BY THE USER, THEN ERRTOL */
/*             IS THE AMOUNT BY WHICH THE INITIAL ERROR IS TO BE */
/*             REDUCED.  BY ESTIMATING THE CONDITION NUMBER OF THE */
/*             ITERATION MATRIX, THE CODE ATTEMPTS TO GUARANTEE THAT */
/*             THE FINAL RELATIVE ERROR IS .LE. ERRTOL.  SEE THE LONG */
/*             DEDCRIPTION BELOW FOR DETAILS. */

/*             IPARAM(9) = ITMAX */
/*             THE MAXIMUM NUMBER OF ITERATIVE STEPS TO BE TAKEN. */
/*             IF SOLVER IS UNABLE TO SATISFY THE STOPPING CRITERION */
/*             WITHIN ITMAX ITERATIONS, IT RETURNS TO THE CALLING */
/*             PROGRAM WITH IERROR=-1000. */

/*             IPARAM(31) = ICYCLE */
/*             THE FREQUENCY WITH WHICH A CONDITION NUMBER ESTIMATE IS */
/*             COMPUTED; SEE THE LONG DEDCRIPTION BELOW. */

/*             IPARAM(32) = NCE */
/*             THE MAXIMUM NUMBER OF CONDITION NUMBER ESTIMATES TO BE */
/*             COMPUTED.  IF NCE = 0 NO ESTIMATES ARE COMPUTED.  SEE */
/*             THE LONG DEDCRIPTION BELOW. */

/*             NOTE:  KMAX = ICYCLE*NCE IS THE ORDER OF THE LARGEST */
/*             ORTHOGONAL SECTION OF C*A USED TO COMPUTE A CONDITION */
/*             NUMBER ESTIMATE.  THIS ESTIMATE IS ONLY USED IN THE */
/*             STOPPING CRITERION.  AS SUCH, KMAX SHOULD BE MUCH LESS */
/*             THAN N.  OTHERWISE THE CODE WILL HAVE EXCESSIVE STORAGE */
/*             AND WORK REQUIREMENTS. */

/*    RPARAM   DBLE(40). */
/*             AN ARRAY OF DBLE INPUT PARAMETERS: */
/*                NOTE: RPARAM(1) AND RPARAM(2) ARE MANDATED BY THE */
/*                PROPOSED STANDARD; RPARAM(3) THROUGH RPARAM(30) ARE */
/*                RESERVED FOR EXPANSION OF THE PROPOSED STANDARD; */
/*                RPARAM(31) THROUGH RPARAM(34) ARE ADDITIONAL */
/*                PARAMETERS, SPECIFIC TO CGCODE. */

/*             RPARAM(1) = ERRTOL */
/*             USER PROVIDED ERROR TOLERANCE; SEE ISTOP ABOVE, AND THE */
/*             LONG DEDCRIPTION BELOW. */

/*             RPARAM(31) = CONDES */
/*             AN INITIAL ESTIMATE FOR THE COND NUMBER OF THE ITERATION */
/*             MATRIX; SEE THE INDIVIDUAL SUBROUTINE'S PROLOGUE. AN */
/*             ACCEPTABLE INITIAL VALUE IS 1.0. */

/*    R        DBLE(N). */
/*             WORK ARRAY OF LENGTH .GE. N. */

/*    AR       DBLE(N). */
/*             WORK ARRAY OF LENGTH .GE. N. */

/*    AP       DBLE(N). */
/*             WORK ARRAY OF LENGTH .GE. N. */

/*    D,E      DBLE(ICYCLE*NCE + 1), DBLE(ICYCLE*NCE + 1). */
/*    CNDWK    DBLE(2*ICYCLE*NCE). */
/*    IWORK    INTEGER(ICYCLE*NCE). */
/*             WORK ARRAYS FOR COMPUTING CONDITION NUMBER ESTIMATES. */
/*             IF NCE = 0 THESE MAY BE DUMMY ADDRESSES. */

/* --- ON RETURN --- */

/*    IPARAM   THE FOLLOWING ITERATION INFO IS RETURNED VIA THIS ARRAY: */

/*             IPARAM(10) = ITERS */
/*             THE NUMBER OF ITERATIONS TAKEN.  IF IERROR=0, THEN X_ITERS */
/*             SATISFIES THE SPECIFIED STOPPING CRITERION.  IF */
/*             IERROR=-1000, CGCODE WAS UNABLE TO CONVERGE WITHIN ITMAX */
/*             ITERATIONS, AND X_ITERS IS CGCODE'S BEST APPROXIMATION TO */
/*             THE SOLUTION OF A*X=B. */

/*    RPARAM   THE FOLLOWING ITERATION INFO IS RETURNED VIA THIS ARRAY: */

/*             RPARAM(2) = STPTST */
/*             FINAL QUANTITY USED IN THE STOPPING CRITERION; SEE ISTOP */
/*             ABOVE, AND THE LONG DEDCRIPTION BELOW. */

/*             RPARAM(31) = CONDES */
/*             CONDITION NUMBER ESTIMATE; FINAL ESTIMATE USED IN THE */
/*             STOPPING CRITERION; SEE ISTOP ABOVE, AND THE LONG */
/*             DEDCRIPTION BELOW. */

/*             RPARAM(34) = DCRLRS */
/*             THE SCALED RELATIVE RESIDUAL USING THE LAST COMPUTED */
/*             RESIDUAL. */

/*    X        THE COMPUTED SOLUTION OF THE LINEAR SYSTEM AX=B. */

/*    IERROR   INTEGER. */
/*             ERROR FLAG (NEGATIVE ERRORS ARE FATAL): */
/*             (BELOW, A=SYSTEM MATRIX, Q=LEFT PRECONDITIONING MATRIX.) */
/*             IERROR =  0      NORMAL RETURN: ITERATION CONVERGED */
/*             IERROR =  -1000  METHOD FAILED TO CONVERGE IN ITMAX STEPS */
/*             IERROR = +-2000  ERROR IN USER INPUT */
/*             IERROR = +-3000  METHOD BREAKDOWN */
/*             IERROR =  -6000  A DOES NOT SATISTY ASSUMPTIONS OF METHOD */
/*             IERROR =  -7000  Q DOES NOT SATISTY ASSUMPTIONS OF METHOD */

/* ***LONG DEDCRIPTION */

/*    DCR IMPLEMENTS THE CONJUGATE RESIDUAL METHOD FOR SYMMETRIC */
/*    POSITIVE DEFINITE MATRICES, USING THE OMIN ALGORITHM GIVEN BY: */

/*                   P0 = R0 */
/*                   ALPHA = <A*R,R>/<A*P,A*P> */
/*                   XNEW = X + ALPHA*P */
/*                   RNEW = R - ALPHA*(A*P) */
/*                   BETA = <A*RNEW,RNEW>/<A*R,R> */
/*                   PNEW = RNEW + BETA*P */

/*    THIS ALGORITHM IS GUARANTEED TO CONVERGE FOR SYMMETRIC POSITIVE */
/*    DEFINITE MATRICES.  MATHEMATICALLY, IF THE MATRIX HAS M DISTINCT */
/*    EIGENVALUES, THE ALGORITHM WILL CONVERGE IN AT MOST M STEPS.  IF */
/*    A IS SYMMETRIC INDEFINITE, THE CURRENT IMPLEMENTATION MAY HALT */
/*    PREMATURELY.  IN THIS CASE A WARNING MESSAGE IS PRINTED.  AT EACH */
/*    STEP THE ALGORITHM MINIMIZES THE 2-NORM OF THE RESIDUAL. */

/*    WHEN THE USER SELECTS THE STOPPING CRITERION OPTION ISTOP=0, THEN */
/*    THE CODE STOPS WHEN  COND(A)*(RNORM/R0NORM) .LE. ERRTOL, THEREBY */
/*    ATTEMPTING TO GUARANTEE THAT (FINAL RELATIVE ERROR) .LE. ERRTOL. */
/*    A NEW ESTIMATE FOR COND(A) IS COMPUTED EVERY ICYCLE STEPS. THIS */
/*    IS DONE BY COMPUTING THE MIN AND MAX EIGENVALUES OF AN ORTHOGONAL */
/*    SECTION OF A.  THE LARGEST ORTHOG SECTION HAS ORDER ICYCLE*NCE, */
/*    WHERE NCE IS THE MAXIMUM NUMBER OF CONDITION ESTIMATES.  IF NCE=0, */
/*    NO CONDITION ESTIMATES ARE COMPUTED.  IN THIS CASE, THE CODE STOPS */
/*    WHEN RNORM/R0NORM .LE. ERRTOL.  (ALSO SEE THE PROLOGUE TO DCGDRV.) */

/*    THIS STOPPING CRITERION WAS IMPLEMENTED BY A.J. ROBERTSON, III */
/*    (DEPT. OF MATHEMATICS, UNIV. OF COLORADO AT DENVER).  QUESTIONS */
/*    MAY BE DIRECTED TO HIM OR TO ONE OF THE AUTHORS. */

/*    DCR IS ONE ROUTINE IN A PACKAGE OF CG CODES; THE OTHERS ARE: */

/*    DCGDRV : AN INTERFACE TO ANY ROUTINE IN THE PACKAGE */
/*    DCG    : CONJUGATE GRADIENTS ON A, A SPD (CGHS) */
/*    DCR    : CONJUGATE RESIDUALS ON A, A SPD (CR) */
/*    DCRIND : CR ON A, A SYMMETRIC (CRIND) */
/*    DPCG   : PRECONITIONED CG ON A, A AND C SPD (PCG) */
/*    DCGNR  : CGHS ON AT*A, A ARBITRARY (CGNR) */
/*    DCGNE  : CGHS ON A*AT, A ARBITRARY (CGNE) */
/*    DPCGNR : CGNR ON A*C, A AND C ARBITRARY (PCGNR) */
/*    DPCGNE : CGNE ON C*A, A AND C ARBITRARY (PCGNE) */
/*    DPPCG  : POLYNOMIAL PCG ON A, A AND C SPD (PPCG) */
/*    DPCGCA : CGHS ON C(A)*A, A AND C SPD (PCGCA) */

/* ***REFERENCES  HOWARD C. ELMAN, "ITERATIVE METHODS FOR LARGE, SPARSE, */
/*                 NONSYMMETRIC SYSTEMS OF LINEAR EQUATIONS", YALE UNIV. */
/*                 DCS RESEARCH REPORT NO. 229 (APRIL 1982). */
/*               VANCE FABER AND THOMAS MANTEUFFEL, "NECESSARY AND */
/*                 SUFFICIENT CONDITIONS FOR THE EXISTENCE OF A */
/*                 CONJUGATE GRADIENT METHODS", SIAM J. NUM ANAL 21(2), */
/*                 PP. 352-362, 1984. */
/*               S. ASHBY, T. MANTEUFFEL, AND P. SAYLOR, "A TAXONOMY FOR */
/*                 CONJUGATE GRADIENT METHODS", SIAM J. NUM ANAL 27(6), */
/*                 PP. 1542-1568, 1990. */
/*               S. ASHBY, M. HOLST, T. MANTEUFFEL, AND P. SAYLOR, */
/*                 THE ROLE OF THE INNER PRODUCT IN STOPPING CRITERIA */
/*                 FOR CONJUGATE GRADIENT ITERATIONS", BIT 41(1), */
/*                 PP. 26-53, 2001. */
/*               M. HOLST, "CGCODE: SOFTWARE FOR SOLVING LINEAR SYSTEMS */
/*                 WITH CONJUGATE GRADIENT METHODS", M.S. THESIS, UNIV. */
/*                 OF ILLINOIS DCS RESEARCH REPORT (MAY 1990). */
/*               S. ASHBY, "POLYNOMIAL PRECONDITIONG FOR CONJUGATE */
/*                 GRADIENT METHODS", PH.D. THESIS, UNIV. OF ILLINOIS */
/*                 DCS RESEARCH REPORT NO. R-87-1355 (DECEMBER 1987). */
/*               S. ASHBY, M. SEAGER, "A PROPOSED STANDARD FOR ITERATIVE */
/*                 LINEAR SOLVERS", LAWRENCE LIVERMORE NATIONAL */
/*                 LABORATORY REPORT (TO APPEAR). */

/* ***ROUTINES CALLED  DONEST,D1MACH,DCGCHK,DAXPY,DCOPY,DDOT,DNRM2 */
/* ***END PROLOGUE  DCR */

/*     *** DECLARATIONS *** */

/* ***FIRST EXECUTABLE STATEMENT  DCR */
    /* Parameter adjustments */
    --ap;
    --ar;
    --r__;
    --b;
    --x;
    --iparam;
    --rparam;
    --iwork;
    --d__;
    --e;
    --cndwk;

    /* Function Body */
/* L1: */

/*     *** INITIALIZE INPUT PARAMETERS *** */
    iounit = iparam[5];
    istop = iparam[8];
    itmax = iparam[9];
    icycle = iparam[31];
    nce = iparam[32];
    kmax = icycle * nce;
    errtol = rparam[1];
    conda = max(1.,rparam[31]);

/*     *** CHECK THE INPUT PARAMETERS *** */
    if (iounit > 0) {
	io___9.ciunit = iounit;
	s_wsfe(&io___9);
	e_wsfe();
    }
    dcgchk_(&iparam[1], &rparam[1], n);
    if (iounit > 0) {
	io___10.ciunit = iounit;
	s_wsfe(&io___10);
	do_fio(&c__1, (char *)&conda, (ftnlen)sizeof(doublereal));
	e_wsfe();
    }
    if (iounit > 0) {
	io___11.ciunit = iounit;
	s_wsfe(&io___11);
	e_wsfe();
    }

/*     *** INITIALIZE D(1), EIGMIN, EIGMAX, ITERS *** */
    d__[1] = 0.;
    eigmin = d1mach_(&c__2);
    eigmax = d1mach_(&c__1);
    iters = 0;

/*     *** COMPUTE STOPPING CRITERION DENOMINATOR *** */
    denom = 1.;
    if (istop == 0) {
	denom = dnrm2_(n, &b[1], &c__1);
    }
    if (istop == 2) {
	denom = dnrm2_(n, &b[1], &c__1);
    }
    if (istop == 4) {
	denom = dnrm2_(n, &b[1], &c__1);
    }

/*     *** TELL MDSTOP WHETHER OR NOT I AM SUPPLYING THE STOPPING QUANTITY *** */
    ido = 1;

/*     *** COMPUTE THE INITIAL RESIDUAL *** */
    (*matvec)(&c__0, a, ia, &wdumm, &x[1], &r__[1], n);
    i__1 = *n;
    for (i__ = 1; i__ <= i__1; ++i__) {
	r__[i__] = b[i__] - r__[i__];
/* L20: */
    }
    r0norm = dnrm2_(n, &r__[1], &c__1);
    if (iounit > 0) {
	io___20.ciunit = iounit;
	s_wsfe(&io___20);
	do_fio(&c__1, (char *)&r0norm, (ftnlen)sizeof(doublereal));
	e_wsfe();
    }

/*     *** CHECK THE INITIAL RESIDUAL *** */
    jstop = mdstop_(&istop, &iters, &itmax, &errtol, &stptst, ierror, &rdumm, 
	    &sdumm, &zdumm, n, &r0norm, &r0norm, &r0norm, &denom, &conda, &
	    ido);
    if (jstop == 1) {
	goto L90;
    }

/*     *** INITIALIZE P, AP *** */
    (*matvec)(&c__0, a, ia, &wdumm, &r__[1], &ar[1], n);
    rdotar = ddot_(n, &r__[1], &c__1, &ar[1], &c__1);
    if (rdotar == 0.f) {
	io___27.ciunit = iounit;
	s_wsfe(&io___27);
	e_wsfe();
	goto L90;
    }
    dcopy_(n, &r__[1], &c__1, &b[1], &c__1);
    dcopy_(n, &ar[1], &c__1, &ap[1], &c__1);

/*     *** UPDATE ITERS *** */
L30:
    ++iters;

/*     *** COMPUTE NEW X *** */
/* Computing 2nd power */
    d__1 = dnrm2_(n, &ap[1], &c__1);
    alpha = rdotar / (d__1 * d__1);
    daxpy_(n, &alpha, &b[1], &c__1, &x[1], &c__1);

/*     *** COMPUTE AND CHECK NEW R *** */
    d__1 = -alpha;
    daxpy_(n, &d__1, &ap[1], &c__1, &r__[1], &c__1);
    rnorm = dnrm2_(n, &r__[1], &c__1);
    if (iounit > 0) {
	io___30.ciunit = iounit;
	s_wsfe(&io___30);
	do_fio(&c__1, (char *)&iters, (ftnlen)sizeof(integer));
	do_fio(&c__1, (char *)&rnorm, (ftnlen)sizeof(doublereal));
	d__1 = rnorm / r0norm;
	do_fio(&c__1, (char *)&d__1, (ftnlen)sizeof(doublereal));
	e_wsfe();
    }

/*     *** TEST TO HALT *** */
    jstop = mdstop_(&istop, &iters, &itmax, &errtol, &stptst, ierror, &rdumm, 
	    &sdumm, &zdumm, n, &rnorm, &rnorm, &rnorm, &denom, &conda, &ido);
    if (jstop == 1) {
	goto L90;
    }

/*     *** COMPUTE NEW P, AP *** */
    (*matvec)(&c__0, a, ia, &wdumm, &r__[1], &ar[1], n);
    oldrar = rdotar;
    rdotar = ddot_(n, &r__[1], &c__1, &ar[1], &c__1);
    if (rdotar == 0.f) {
	io___32.ciunit = iounit;
	s_wsfe(&io___32);
	e_wsfe();
	goto L90;
    }
    beta = rdotar / oldrar;
    i__1 = *n;
    for (i__ = 1; i__ <= i__1; ++i__) {
	b[i__] = r__[i__] + beta * b[i__];
	ap[i__] = ar[i__] + beta * ap[i__];
/* L45: */
    }

/*     *** UPDATE CONDITION NUMBER *** */
    if (iters <= kmax && istop == 0) {
/*        *** UPDATE PARAMETERS *** */
	isp1 = iters + 1;
	ralpha = 1. / alpha;
	d__[iters] += ralpha;
	d__[isp1] = beta * ralpha;
	e[isp1] = -sqrt(beta) * ralpha;
	if (iters % icycle == 0) {
	    if (iounit > 0) {
		io___36.ciunit = iounit;
		s_wsfe(&io___36);
		e_wsfe();
	    }
	    donest_(&iounit, &d__[1], &e[1], &cndwk[1], &cndwk[kmax + 1], &
		    iwork[1], &iters, &eigmin, &eigmax, &conda);
	}
    }

/*     *** RESUME CR ITERATION *** */
    goto L30;

/*     *** FINISHED: PASS BACK ITERATION INFO *** */
L90:
    iparam[10] = iters;
    rparam[2] = stptst;
    rparam[31] = conda;
    rparam[34] = rnorm / r0norm;

    return 0;
} /* dcr_ */
コード例 #11
0
ファイル: dlasd9.c プロジェクト: MichaelH13/sdkpub
/* Subroutine */ int dlasd9_(integer *icompq, integer *ldu, integer *k, 
	doublereal *d__, doublereal *z__, doublereal *vf, doublereal *vl, 
	doublereal *difl, doublereal *difr, doublereal *dsigma, doublereal *
	work, integer *info)
{
/*  -- LAPACK auxiliary routine (version 3.0) --   
       Univ. of Tennessee, Oak Ridge National Lab, Argonne National Lab,   
       Courant Institute, NAG Ltd., and Rice University   
       June 30, 1999   


    Purpose   
    =======   

    DLASD9 finds the square roots of the roots of the secular equation,   
    as defined by the values in DSIGMA and Z.  It makes the   
    appropriate calls to DLASD4, and stores, for each  element in D,   
    the distance to its two nearest poles (elements in DSIGMA). It also   
    updates the arrays VF and VL, the first and last components of all   
    the right singular vectors of the original bidiagonal matrix.   

    DLASD9 is called from DLASD7.   

    Arguments   
    =========   

    ICOMPQ  (input) INTEGER   
            Specifies whether singular vectors are to be computed in   
            factored form in the calling routine:   

               ICOMPQ = 0             Compute singular values only.   

               ICOMPQ = 1             Compute singular vector matrices in   
                                      factored form also.   
    K       (input) INTEGER   
            The number of terms in the rational function to be solved by   
            DLASD4.  K >= 1.   

    D       (output) DOUBLE PRECISION array, dimension(K)   
            D(I) contains the updated singular values.   

    DSIGMA  (input) DOUBLE PRECISION array, dimension(K)   
            The first K elements of this array contain the old roots   
            of the deflated updating problem.  These are the poles   
            of the secular equation.   

    Z       (input) DOUBLE PRECISION array, dimension (K)   
            The first K elements of this array contain the components   
            of the deflation-adjusted updating row vector.   

    VF      (input/output) DOUBLE PRECISION array, dimension(K)   
            On entry, VF contains  information passed through SBEDE8.f   
            On exit, VF contains the first K components of the first   
            components of all right singular vectors of the bidiagonal   
            matrix.   

    VL      (input/output) DOUBLE PRECISION array, dimension(K)   
            On entry, VL contains  information passed through SBEDE8.f   
            On exit, VL contains the first K components of the last   
            components of all right singular vectors of the bidiagonal   
            matrix.   

    DIFL    (output) DOUBLE PRECISION array, dimension (K).   
            On exit, DIFL(I) = D(I) - DSIGMA(I).   

    DIFR    (output) DOUBLE PRECISION array,   
                                dimension (LDU, 2) if ICOMPQ =1 and   
                                dimension (K) if ICOMPQ = 0.   
            On exit, DIFR(I, 1) = D(I) - DSIGMA(I+1), DIFR(K, 1) is not   
            defined and will not be referenced.   

            If ICOMPQ = 1, DIFR(1:K, 2) is an array containing the   
            normalizing factors for the right singular vector matrix.   

    WORK    (workspace) DOUBLE PRECISION array,   
                                   dimension at least (3 * K)   
            Workspace.   

    INFO    (output) INTEGER   
            = 0:  successful exit.   
            < 0:  if INFO = -i, the i-th argument had an illegal value.   
            > 0:  if INFO = 1, an singular value did not converge   

    Further Details   
    ===============   

    Based on contributions by   
       Ming Gu and Huan Ren, Computer Science Division, University of   
       California at Berkeley, USA   

    =====================================================================   


       Test the input parameters.   

       Parameter adjustments */
    /* Table of constant values */
    static integer c__1 = 1;
    static integer c__0 = 0;
    static doublereal c_b8 = 1.;
    
    /* System generated locals */
    integer difr_dim1, difr_offset, i__1, i__2;
    doublereal d__1, d__2;
    /* Builtin functions */
    double sqrt(doublereal), d_sign(doublereal *, doublereal *);
    /* Local variables */
    extern doublereal ddot_(integer *, doublereal *, integer *, doublereal *, 
	    integer *);
    static doublereal temp;
    extern doublereal dnrm2_(integer *, doublereal *, integer *);
    static integer iwk2i, iwk3i, i__, j;
    static doublereal diflj, difrj, dsigj;
    extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *, 
	    doublereal *, integer *);
    extern doublereal dlamc3_(doublereal *, doublereal *);
    extern /* Subroutine */ int dlasd4_(integer *, integer *, doublereal *, 
	    doublereal *, doublereal *, doublereal *, doublereal *, 
	    doublereal *, integer *);
    static doublereal dj;
    extern /* Subroutine */ int dlascl_(char *, integer *, integer *, 
	    doublereal *, doublereal *, integer *, integer *, doublereal *, 
	    integer *, integer *), dlaset_(char *, integer *, integer 
	    *, doublereal *, doublereal *, doublereal *, integer *), 
	    xerbla_(char *, integer *);
    static doublereal dsigjp, rho, djp1;
    static integer iwk1, iwk2, iwk3;
#define difr_ref(a_1,a_2) difr[(a_2)*difr_dim1 + a_1]


    difr_dim1 = *ldu;
    difr_offset = 1 + difr_dim1 * 1;
    difr -= difr_offset;
    --d__;
    --z__;
    --vf;
    --vl;
    --difl;
    --dsigma;
    --work;

    /* Function Body */
    *info = 0;

    if (*icompq < 0 || *icompq > 1) {
	*info = -1;
    } else if (*k < 1) {
	*info = -3;
    } else if (*ldu < *k) {
	*info = -2;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("DLASD9", &i__1);
	return 0;
    }

/*     Quick return if possible */

    if (*k == 1) {
	d__[1] = abs(z__[1]);
	difl[1] = d__[1];
	if (*icompq == 1) {
	    difl[2] = 1.;
	    difr_ref(1, 2) = 1.;
	}
	return 0;
    }

/*     Modify values DSIGMA(i) to make sure all DSIGMA(i)-DSIGMA(j) can   
       be computed with high relative accuracy (barring over/underflow).   
       This is a problem on machines without a guard digit in   
       add/subtract (Cray XMP, Cray YMP, Cray C 90 and Cray 2).   
       The following code replaces DSIGMA(I) by 2*DSIGMA(I)-DSIGMA(I),   
       which on any of these machines zeros out the bottommost   
       bit of DSIGMA(I) if it is 1; this makes the subsequent   
       subtractions DSIGMA(I)-DSIGMA(J) unproblematic when cancellation   
       occurs. On binary machines with a guard digit (almost all   
       machines) it does not change DSIGMA(I) at all. On hexadecimal   
       and decimal machines with a guard digit, it slightly   
       changes the bottommost bits of DSIGMA(I). It does not account   
       for hexadecimal or decimal machines without guard digits   
       (we know of none). We use a subroutine call to compute   
       2*DLAMBDA(I) to prevent optimizing compilers from eliminating   
       this code. */

    i__1 = *k;
    for (i__ = 1; i__ <= i__1; ++i__) {
	dsigma[i__] = dlamc3_(&dsigma[i__], &dsigma[i__]) - dsigma[i__];
/* L10: */
    }

/*     Book keeping. */

    iwk1 = 1;
    iwk2 = iwk1 + *k;
    iwk3 = iwk2 + *k;
    iwk2i = iwk2 - 1;
    iwk3i = iwk3 - 1;

/*     Normalize Z. */

    rho = dnrm2_(k, &z__[1], &c__1);
    dlascl_("G", &c__0, &c__0, &rho, &c_b8, k, &c__1, &z__[1], k, info);
    rho *= rho;

/*     Initialize WORK(IWK3). */

    dlaset_("A", k, &c__1, &c_b8, &c_b8, &work[iwk3], k);

/*     Compute the updated singular values, the arrays DIFL, DIFR,   
       and the updated Z. */

    i__1 = *k;
    for (j = 1; j <= i__1; ++j) {
	dlasd4_(k, &j, &dsigma[1], &z__[1], &work[iwk1], &rho, &d__[j], &work[
		iwk2], info);

/*        If the root finder fails, the computation is terminated. */

	if (*info != 0) {
	    return 0;
	}
	work[iwk3i + j] = work[iwk3i + j] * work[j] * work[iwk2i + j];
	difl[j] = -work[j];
	difr_ref(j, 1) = -work[j + 1];
	i__2 = j - 1;
	for (i__ = 1; i__ <= i__2; ++i__) {
	    work[iwk3i + i__] = work[iwk3i + i__] * work[i__] * work[iwk2i + 
		    i__] / (dsigma[i__] - dsigma[j]) / (dsigma[i__] + dsigma[
		    j]);
/* L20: */
	}
	i__2 = *k;
	for (i__ = j + 1; i__ <= i__2; ++i__) {
	    work[iwk3i + i__] = work[iwk3i + i__] * work[i__] * work[iwk2i + 
		    i__] / (dsigma[i__] - dsigma[j]) / (dsigma[i__] + dsigma[
		    j]);
/* L30: */
	}
/* L40: */
    }

/*     Compute updated Z. */

    i__1 = *k;
    for (i__ = 1; i__ <= i__1; ++i__) {
	d__2 = sqrt((d__1 = work[iwk3i + i__], abs(d__1)));
	z__[i__] = d_sign(&d__2, &z__[i__]);
/* L50: */
    }

/*     Update VF and VL. */

    i__1 = *k;
    for (j = 1; j <= i__1; ++j) {
	diflj = difl[j];
	dj = d__[j];
	dsigj = -dsigma[j];
	if (j < *k) {
	    difrj = -difr_ref(j, 1);
	    djp1 = d__[j + 1];
	    dsigjp = -dsigma[j + 1];
	}
	work[j] = -z__[j] / diflj / (dsigma[j] + dj);
	i__2 = j - 1;
	for (i__ = 1; i__ <= i__2; ++i__) {
	    work[i__] = z__[i__] / (dlamc3_(&dsigma[i__], &dsigj) - diflj) / (
		    dsigma[i__] + dj);
/* L60: */
	}
	i__2 = *k;
	for (i__ = j + 1; i__ <= i__2; ++i__) {
	    work[i__] = z__[i__] / (dlamc3_(&dsigma[i__], &dsigjp) + difrj) / 
		    (dsigma[i__] + dj);
/* L70: */
	}
	temp = dnrm2_(k, &work[1], &c__1);
	work[iwk2i + j] = ddot_(k, &work[1], &c__1, &vf[1], &c__1) / temp;
	work[iwk3i + j] = ddot_(k, &work[1], &c__1, &vl[1], &c__1) / temp;
	if (*icompq == 1) {
	    difr_ref(j, 2) = temp;
	}
/* L80: */
    }

    dcopy_(k, &work[iwk2], &c__1, &vf[1], &c__1);
    dcopy_(k, &work[iwk3], &c__1, &vl[1], &c__1);

    return 0;

/*     End of DLASD9 */

} /* dlasd9_ */
コード例 #12
0
ファイル: dbdt02.c プロジェクト: nya3jp/python-animeface
/* Subroutine */ int dbdt02_(integer *m, integer *n, doublereal *b, integer *
	ldb, doublereal *c__, integer *ldc, doublereal *u, integer *ldu, 
	doublereal *work, doublereal *resid)
{
    /* System generated locals */
    integer b_dim1, b_offset, c_dim1, c_offset, u_dim1, u_offset, i__1;
    doublereal d__1, d__2;

    /* Local variables */
    integer j;
    doublereal eps;
    extern /* Subroutine */ int dgemv_(char *, integer *, integer *, 
	    doublereal *, doublereal *, integer *, doublereal *, integer *, 
	    doublereal *, doublereal *, integer *);
    extern doublereal dasum_(integer *, doublereal *, integer *);
    doublereal bnorm;
    extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *, 
	    doublereal *, integer *);
    extern doublereal dlamch_(char *), dlange_(char *, integer *, 
	    integer *, doublereal *, integer *, doublereal *);
    doublereal realmn;


/*  -- LAPACK test routine (version 3.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  DBDT02 tests the change of basis C = U' * B by computing the residual */

/*     RESID = norm( B - U * C ) / ( max(m,n) * norm(B) * EPS ), */

/*  where B and C are M by N matrices, U is an M by M orthogonal matrix, */
/*  and EPS is the machine precision. */

/*  Arguments */
/*  ========= */

/*  M       (input) INTEGER */
/*          The number of rows of the matrices B and C and the order of */
/*          the matrix Q. */

/*  N       (input) INTEGER */
/*          The number of columns of the matrices B and C. */

/*  B       (input) DOUBLE PRECISION array, dimension (LDB,N) */
/*          The m by n matrix B. */

/*  LDB     (input) INTEGER */
/*          The leading dimension of the array B.  LDB >= max(1,M). */

/*  C       (input) DOUBLE PRECISION array, dimension (LDC,N) */
/*          The m by n matrix C, assumed to contain U' * B. */

/*  LDC     (input) INTEGER */
/*          The leading dimension of the array C.  LDC >= max(1,M). */

/*  U       (input) DOUBLE PRECISION array, dimension (LDU,M) */
/*          The m by m orthogonal matrix U. */

/*  LDU     (input) INTEGER */
/*          The leading dimension of the array U.  LDU >= max(1,M). */

/*  WORK    (workspace) DOUBLE PRECISION array, dimension (M) */

/*  RESID   (output) DOUBLE PRECISION */
/*          RESID = norm( B - U * C ) / ( max(m,n) * norm(B) * EPS ), */

/* ====================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Quick return if possible */

    /* Parameter adjustments */
    b_dim1 = *ldb;
    b_offset = 1 + b_dim1;
    b -= b_offset;
    c_dim1 = *ldc;
    c_offset = 1 + c_dim1;
    c__ -= c_offset;
    u_dim1 = *ldu;
    u_offset = 1 + u_dim1;
    u -= u_offset;
    --work;

    /* Function Body */
    *resid = 0.;
    if (*m <= 0 || *n <= 0) {
	return 0;
    }
    realmn = (doublereal) max(*m,*n);
    eps = dlamch_("Precision");

/*     Compute norm( B - U * C ) */

    i__1 = *n;
    for (j = 1; j <= i__1; ++j) {
	dcopy_(m, &b[j * b_dim1 + 1], &c__1, &work[1], &c__1);
	dgemv_("No transpose", m, m, &c_b7, &u[u_offset], ldu, &c__[j * 
		c_dim1 + 1], &c__1, &c_b9, &work[1], &c__1);
/* Computing MAX */
	d__1 = *resid, d__2 = dasum_(m, &work[1], &c__1);
	*resid = max(d__1,d__2);
/* L10: */
    }

/*     Compute norm of B. */

    bnorm = dlange_("1", m, n, &b[b_offset], ldb, &work[1]);

    if (bnorm <= 0.) {
	if (*resid != 0.) {
	    *resid = 1. / eps;
	}
    } else {
	if (bnorm >= *resid) {
	    *resid = *resid / bnorm / (realmn * eps);
	} else {
	    if (bnorm < 1.) {
/* Computing MIN */
		d__1 = *resid, d__2 = realmn * bnorm;
		*resid = min(d__1,d__2) / bnorm / (realmn * eps);
	    } else {
/* Computing MIN */
		d__1 = *resid / bnorm;
		*resid = min(d__1,realmn) / (realmn * eps);
	    }
	}
    }
    return 0;

/*     End of DBDT02 */

} /* dbdt02_ */
コード例 #13
0
ファイル: dlasy2.c プロジェクト: GuillaumeFuchs/Ensimag
 int dlasy2_(int *ltranl, int *ltranr, int *isgn, 
	int *n1, int *n2, double *tl, int *ldtl, double *
	tr, int *ldtr, double *b, int *ldb, double *scale, 
	double *x, int *ldx, double *xnorm, int *info)
{
    /* Initialized data */

    static int locu12[4] = { 3,4,1,2 };
    static int locl21[4] = { 2,1,4,3 };
    static int locu22[4] = { 4,3,2,1 };
    static int xswpiv[4] = { FALSE,FALSE,TRUE,TRUE };
    static int bswpiv[4] = { FALSE,TRUE,FALSE,TRUE };

    /* System generated locals */
    int b_dim1, b_offset, tl_dim1, tl_offset, tr_dim1, tr_offset, x_dim1, 
	    x_offset;
    double d__1, d__2, d__3, d__4, d__5, d__6, d__7, d__8;

    /* Local variables */
    int i__, j, k;
    double x2[2], l21, u11, u12;
    int ip, jp;
    double u22, t16[16]	/* was [4][4] */, gam, bet, eps, sgn, tmp[4], 
	    tau1, btmp[4], smin;
    int ipiv;
    double temp;
    int jpiv[4];
    double xmax;
    int ipsv, jpsv;
    int bswap;
    extern  int dcopy_(int *, double *, int *, 
	    double *, int *), dswap_(int *, double *, int 
	    *, double *, int *);
    int xswap;
    extern double dlamch_(char *);
    extern int idamax_(int *, double *, int *);
    double smlnum;


/*  -- LAPACK auxiliary routine (version 3.2) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  DLASY2 solves for the N1 by N2 matrix X, 1 <= N1,N2 <= 2, in */

/*         op(TL)*X + ISGN*X*op(TR) = SCALE*B, */

/*  where TL is N1 by N1, TR is N2 by N2, B is N1 by N2, and ISGN = 1 or */
/*  -1.  op(T) = T or T', where T' denotes the transpose of T. */

/*  Arguments */
/*  ========= */

/*  LTRANL  (input) LOGICAL */
/*          On entry, LTRANL specifies the op(TL): */
/*             = .FALSE., op(TL) = TL, */
/*             = .TRUE., op(TL) = TL'. */

/*  LTRANR  (input) LOGICAL */
/*          On entry, LTRANR specifies the op(TR): */
/*            = .FALSE., op(TR) = TR, */
/*            = .TRUE., op(TR) = TR'. */

/*  ISGN    (input) INTEGER */
/*          On entry, ISGN specifies the sign of the equation */
/*          as described before. ISGN may only be 1 or -1. */

/*  N1      (input) INTEGER */
/*          On entry, N1 specifies the order of matrix TL. */
/*          N1 may only be 0, 1 or 2. */

/*  N2      (input) INTEGER */
/*          On entry, N2 specifies the order of matrix TR. */
/*          N2 may only be 0, 1 or 2. */

/*  TL      (input) DOUBLE PRECISION array, dimension (LDTL,2) */
/*          On entry, TL contains an N1 by N1 matrix. */

/*  LDTL    (input) INTEGER */
/*          The leading dimension of the matrix TL. LDTL >= MAX(1,N1). */

/*  TR      (input) DOUBLE PRECISION array, dimension (LDTR,2) */
/*          On entry, TR contains an N2 by N2 matrix. */

/*  LDTR    (input) INTEGER */
/*          The leading dimension of the matrix TR. LDTR >= MAX(1,N2). */

/*  B       (input) DOUBLE PRECISION array, dimension (LDB,2) */
/*          On entry, the N1 by N2 matrix B contains the right-hand */
/*          side of the equation. */

/*  LDB     (input) INTEGER */
/*          The leading dimension of the matrix B. LDB >= MAX(1,N1). */

/*  SCALE   (output) DOUBLE PRECISION */
/*          On exit, SCALE contains the scale factor. SCALE is chosen */
/*          less than or equal to 1 to prevent the solution overflowing. */

/*  X       (output) DOUBLE PRECISION array, dimension (LDX,2) */
/*          On exit, X contains the N1 by N2 solution. */

/*  LDX     (input) INTEGER */
/*          The leading dimension of the matrix X. LDX >= MAX(1,N1). */

/*  XNORM   (output) DOUBLE PRECISION */
/*          On exit, XNORM is the infinity-norm of the solution. */

/*  INFO    (output) INTEGER */
/*          On exit, INFO is set to */
/*             0: successful exit. */
/*             1: TL and TR have too close eigenvalues, so TL or */
/*                TR is perturbed to get a nonsingular equation. */
/*          NOTE: In the interests of speed, this routine does not */
/*                check the inputs for errors. */

/* ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. Local Arrays .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Data statements .. */
    /* Parameter adjustments */
    tl_dim1 = *ldtl;
    tl_offset = 1 + tl_dim1;
    tl -= tl_offset;
    tr_dim1 = *ldtr;
    tr_offset = 1 + tr_dim1;
    tr -= tr_offset;
    b_dim1 = *ldb;
    b_offset = 1 + b_dim1;
    b -= b_offset;
    x_dim1 = *ldx;
    x_offset = 1 + x_dim1;
    x -= x_offset;

    /* Function Body */
/*     .. */
/*     .. Executable Statements .. */

/*     Do not check the input parameters for errors */

    *info = 0;

/*     Quick return if possible */

    if (*n1 == 0 || *n2 == 0) {
	return 0;
    }

/*     Set constants to control overflow */

    eps = dlamch_("P");
    smlnum = dlamch_("S") / eps;
    sgn = (double) (*isgn);

    k = *n1 + *n1 + *n2 - 2;
    switch (k) {
	case 1:  goto L10;
	case 2:  goto L20;
	case 3:  goto L30;
	case 4:  goto L50;
    }

/*     1 by 1: TL11*X + SGN*X*TR11 = B11 */

L10:
    tau1 = tl[tl_dim1 + 1] + sgn * tr[tr_dim1 + 1];
    bet = ABS(tau1);
    if (bet <= smlnum) {
	tau1 = smlnum;
	bet = smlnum;
	*info = 1;
    }

    *scale = 1.;
    gam = (d__1 = b[b_dim1 + 1], ABS(d__1));
    if (smlnum * gam > bet) {
	*scale = 1. / gam;
    }

    x[x_dim1 + 1] = b[b_dim1 + 1] * *scale / tau1;
    *xnorm = (d__1 = x[x_dim1 + 1], ABS(d__1));
    return 0;

/*     1 by 2: */
/*     TL11*[X11 X12] + ISGN*[X11 X12]*op[TR11 TR12]  = [B11 B12] */
/*                                       [TR21 TR22] */

L20:

/* Computing MAX */
/* Computing MAX */
    d__7 = (d__1 = tl[tl_dim1 + 1], ABS(d__1)), d__8 = (d__2 = tr[tr_dim1 + 1]
	    , ABS(d__2)), d__7 = MAX(d__7,d__8), d__8 = (d__3 = tr[(tr_dim1 <<
	     1) + 1], ABS(d__3)), d__7 = MAX(d__7,d__8), d__8 = (d__4 = tr[
	    tr_dim1 + 2], ABS(d__4)), d__7 = MAX(d__7,d__8), d__8 = (d__5 = 
	    tr[(tr_dim1 << 1) + 2], ABS(d__5));
    d__6 = eps * MAX(d__7,d__8);
    smin = MAX(d__6,smlnum);
    tmp[0] = tl[tl_dim1 + 1] + sgn * tr[tr_dim1 + 1];
    tmp[3] = tl[tl_dim1 + 1] + sgn * tr[(tr_dim1 << 1) + 2];
    if (*ltranr) {
	tmp[1] = sgn * tr[tr_dim1 + 2];
	tmp[2] = sgn * tr[(tr_dim1 << 1) + 1];
    } else {
	tmp[1] = sgn * tr[(tr_dim1 << 1) + 1];
	tmp[2] = sgn * tr[tr_dim1 + 2];
    }
    btmp[0] = b[b_dim1 + 1];
    btmp[1] = b[(b_dim1 << 1) + 1];
    goto L40;

/*     2 by 1: */
/*          op[TL11 TL12]*[X11] + ISGN* [X11]*TR11  = [B11] */
/*            [TL21 TL22] [X21]         [X21]         [B21] */

L30:
/* Computing MAX */
/* Computing MAX */
    d__7 = (d__1 = tr[tr_dim1 + 1], ABS(d__1)), d__8 = (d__2 = tl[tl_dim1 + 1]
	    , ABS(d__2)), d__7 = MAX(d__7,d__8), d__8 = (d__3 = tl[(tl_dim1 <<
	     1) + 1], ABS(d__3)), d__7 = MAX(d__7,d__8), d__8 = (d__4 = tl[
	    tl_dim1 + 2], ABS(d__4)), d__7 = MAX(d__7,d__8), d__8 = (d__5 = 
	    tl[(tl_dim1 << 1) + 2], ABS(d__5));
    d__6 = eps * MAX(d__7,d__8);
    smin = MAX(d__6,smlnum);
    tmp[0] = tl[tl_dim1 + 1] + sgn * tr[tr_dim1 + 1];
    tmp[3] = tl[(tl_dim1 << 1) + 2] + sgn * tr[tr_dim1 + 1];
    if (*ltranl) {
	tmp[1] = tl[(tl_dim1 << 1) + 1];
	tmp[2] = tl[tl_dim1 + 2];
    } else {
	tmp[1] = tl[tl_dim1 + 2];
	tmp[2] = tl[(tl_dim1 << 1) + 1];
    }
    btmp[0] = b[b_dim1 + 1];
    btmp[1] = b[b_dim1 + 2];
L40:

/*     Solve 2 by 2 system using complete pivoting. */
/*     Set pivots less than SMIN to SMIN. */

    ipiv = idamax_(&c__4, tmp, &c__1);
    u11 = tmp[ipiv - 1];
    if (ABS(u11) <= smin) {
	*info = 1;
	u11 = smin;
    }
    u12 = tmp[locu12[ipiv - 1] - 1];
    l21 = tmp[locl21[ipiv - 1] - 1] / u11;
    u22 = tmp[locu22[ipiv - 1] - 1] - u12 * l21;
    xswap = xswpiv[ipiv - 1];
    bswap = bswpiv[ipiv - 1];
    if (ABS(u22) <= smin) {
	*info = 1;
	u22 = smin;
    }
    if (bswap) {
	temp = btmp[1];
	btmp[1] = btmp[0] - l21 * temp;
	btmp[0] = temp;
    } else {
	btmp[1] -= l21 * btmp[0];
    }
    *scale = 1.;
    if (smlnum * 2. * ABS(btmp[1]) > ABS(u22) || smlnum * 2. * ABS(btmp[0]) > 
	    ABS(u11)) {
/* Computing MAX */
	d__1 = ABS(btmp[0]), d__2 = ABS(btmp[1]);
	*scale = .5 / MAX(d__1,d__2);
	btmp[0] *= *scale;
	btmp[1] *= *scale;
    }
    x2[1] = btmp[1] / u22;
    x2[0] = btmp[0] / u11 - u12 / u11 * x2[1];
    if (xswap) {
	temp = x2[1];
	x2[1] = x2[0];
	x2[0] = temp;
    }
    x[x_dim1 + 1] = x2[0];
    if (*n1 == 1) {
	x[(x_dim1 << 1) + 1] = x2[1];
	*xnorm = (d__1 = x[x_dim1 + 1], ABS(d__1)) + (d__2 = x[(x_dim1 << 1) 
		+ 1], ABS(d__2));
    } else {
	x[x_dim1 + 2] = x2[1];
/* Computing MAX */
	d__3 = (d__1 = x[x_dim1 + 1], ABS(d__1)), d__4 = (d__2 = x[x_dim1 + 2]
		, ABS(d__2));
	*xnorm = MAX(d__3,d__4);
    }
    return 0;

/*     2 by 2: */
/*     op[TL11 TL12]*[X11 X12] +ISGN* [X11 X12]*op[TR11 TR12] = [B11 B12] */
/*       [TL21 TL22] [X21 X22]        [X21 X22]   [TR21 TR22]   [B21 B22] */

/*     Solve equivalent 4 by 4 system using complete pivoting. */
/*     Set pivots less than SMIN to SMIN. */

L50:
/* Computing MAX */
    d__5 = (d__1 = tr[tr_dim1 + 1], ABS(d__1)), d__6 = (d__2 = tr[(tr_dim1 << 
	    1) + 1], ABS(d__2)), d__5 = MAX(d__5,d__6), d__6 = (d__3 = tr[
	    tr_dim1 + 2], ABS(d__3)), d__5 = MAX(d__5,d__6), d__6 = (d__4 = 
	    tr[(tr_dim1 << 1) + 2], ABS(d__4));
    smin = MAX(d__5,d__6);
/* Computing MAX */
    d__5 = smin, d__6 = (d__1 = tl[tl_dim1 + 1], ABS(d__1)), d__5 = MAX(d__5,
	    d__6), d__6 = (d__2 = tl[(tl_dim1 << 1) + 1], ABS(d__2)), d__5 = 
	    MAX(d__5,d__6), d__6 = (d__3 = tl[tl_dim1 + 2], ABS(d__3)), d__5 =
	     MAX(d__5,d__6), d__6 = (d__4 = tl[(tl_dim1 << 1) + 2], ABS(d__4))
	    ;
    smin = MAX(d__5,d__6);
/* Computing MAX */
    d__1 = eps * smin;
    smin = MAX(d__1,smlnum);
    btmp[0] = 0.;
    dcopy_(&c__16, btmp, &c__0, t16, &c__1);
    t16[0] = tl[tl_dim1 + 1] + sgn * tr[tr_dim1 + 1];
    t16[5] = tl[(tl_dim1 << 1) + 2] + sgn * tr[tr_dim1 + 1];
    t16[10] = tl[tl_dim1 + 1] + sgn * tr[(tr_dim1 << 1) + 2];
    t16[15] = tl[(tl_dim1 << 1) + 2] + sgn * tr[(tr_dim1 << 1) + 2];
    if (*ltranl) {
	t16[4] = tl[tl_dim1 + 2];
	t16[1] = tl[(tl_dim1 << 1) + 1];
	t16[14] = tl[tl_dim1 + 2];
	t16[11] = tl[(tl_dim1 << 1) + 1];
    } else {
	t16[4] = tl[(tl_dim1 << 1) + 1];
	t16[1] = tl[tl_dim1 + 2];
	t16[14] = tl[(tl_dim1 << 1) + 1];
	t16[11] = tl[tl_dim1 + 2];
    }
    if (*ltranr) {
	t16[8] = sgn * tr[(tr_dim1 << 1) + 1];
	t16[13] = sgn * tr[(tr_dim1 << 1) + 1];
	t16[2] = sgn * tr[tr_dim1 + 2];
	t16[7] = sgn * tr[tr_dim1 + 2];
    } else {
	t16[8] = sgn * tr[tr_dim1 + 2];
	t16[13] = sgn * tr[tr_dim1 + 2];
	t16[2] = sgn * tr[(tr_dim1 << 1) + 1];
	t16[7] = sgn * tr[(tr_dim1 << 1) + 1];
    }
    btmp[0] = b[b_dim1 + 1];
    btmp[1] = b[b_dim1 + 2];
    btmp[2] = b[(b_dim1 << 1) + 1];
    btmp[3] = b[(b_dim1 << 1) + 2];

/*     Perform elimination */

    for (i__ = 1; i__ <= 3; ++i__) {
	xmax = 0.;
	for (ip = i__; ip <= 4; ++ip) {
	    for (jp = i__; jp <= 4; ++jp) {
		if ((d__1 = t16[ip + (jp << 2) - 5], ABS(d__1)) >= xmax) {
		    xmax = (d__1 = t16[ip + (jp << 2) - 5], ABS(d__1));
		    ipsv = ip;
		    jpsv = jp;
		}
/* L60: */
	    }
/* L70: */
	}
	if (ipsv != i__) {
	    dswap_(&c__4, &t16[ipsv - 1], &c__4, &t16[i__ - 1], &c__4);
	    temp = btmp[i__ - 1];
	    btmp[i__ - 1] = btmp[ipsv - 1];
	    btmp[ipsv - 1] = temp;
	}
	if (jpsv != i__) {
	    dswap_(&c__4, &t16[(jpsv << 2) - 4], &c__1, &t16[(i__ << 2) - 4], 
		    &c__1);
	}
	jpiv[i__ - 1] = jpsv;
	if ((d__1 = t16[i__ + (i__ << 2) - 5], ABS(d__1)) < smin) {
	    *info = 1;
	    t16[i__ + (i__ << 2) - 5] = smin;
	}
	for (j = i__ + 1; j <= 4; ++j) {
	    t16[j + (i__ << 2) - 5] /= t16[i__ + (i__ << 2) - 5];
	    btmp[j - 1] -= t16[j + (i__ << 2) - 5] * btmp[i__ - 1];
	    for (k = i__ + 1; k <= 4; ++k) {
		t16[j + (k << 2) - 5] -= t16[j + (i__ << 2) - 5] * t16[i__ + (
			k << 2) - 5];
/* L80: */
	    }
/* L90: */
	}
/* L100: */
    }
    if (ABS(t16[15]) < smin) {
	t16[15] = smin;
    }
    *scale = 1.;
    if (smlnum * 8. * ABS(btmp[0]) > ABS(t16[0]) || smlnum * 8. * ABS(btmp[1])
	     > ABS(t16[5]) || smlnum * 8. * ABS(btmp[2]) > ABS(t16[10]) || 
	    smlnum * 8. * ABS(btmp[3]) > ABS(t16[15])) {
/* Computing MAX */
	d__1 = ABS(btmp[0]), d__2 = ABS(btmp[1]), d__1 = MAX(d__1,d__2), d__2 
		= ABS(btmp[2]), d__1 = MAX(d__1,d__2), d__2 = ABS(btmp[3]);
	*scale = .125 / MAX(d__1,d__2);
	btmp[0] *= *scale;
	btmp[1] *= *scale;
	btmp[2] *= *scale;
	btmp[3] *= *scale;
    }
    for (i__ = 1; i__ <= 4; ++i__) {
	k = 5 - i__;
	temp = 1. / t16[k + (k << 2) - 5];
	tmp[k - 1] = btmp[k - 1] * temp;
	for (j = k + 1; j <= 4; ++j) {
	    tmp[k - 1] -= temp * t16[k + (j << 2) - 5] * tmp[j - 1];
/* L110: */
	}
/* L120: */
    }
    for (i__ = 1; i__ <= 3; ++i__) {
	if (jpiv[4 - i__ - 1] != 4 - i__) {
	    temp = tmp[4 - i__ - 1];
	    tmp[4 - i__ - 1] = tmp[jpiv[4 - i__ - 1] - 1];
	    tmp[jpiv[4 - i__ - 1] - 1] = temp;
	}
/* L130: */
    }
    x[x_dim1 + 1] = tmp[0];
    x[x_dim1 + 2] = tmp[1];
    x[(x_dim1 << 1) + 1] = tmp[2];
    x[(x_dim1 << 1) + 2] = tmp[3];
/* Computing MAX */
    d__1 = ABS(tmp[0]) + ABS(tmp[2]), d__2 = ABS(tmp[1]) + ABS(tmp[3]);
    *xnorm = MAX(d__1,d__2);
    return 0;

/*     End of DLASY2 */

} /* dlasy2_ */
コード例 #14
0
ファイル: dppsvx.c プロジェクト: Ayato-Harashima/Bundler
/* Subroutine */ int dppsvx_(char *fact, char *uplo, integer *n, integer *
	nrhs, doublereal *ap, doublereal *afp, char *equed, doublereal *s, 
	doublereal *b, integer *ldb, doublereal *x, integer *ldx, doublereal *
	rcond, doublereal *ferr, doublereal *berr, doublereal *work, integer *
	iwork, integer *info)
{
    /* System generated locals */
    integer b_dim1, b_offset, x_dim1, x_offset, i__1, i__2;
    doublereal d__1, d__2;

    /* Local variables */
    integer i__, j;
    doublereal amax, smin, smax;
    extern logical lsame_(char *, char *);
    doublereal scond, anorm;
    extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *, 
	    doublereal *, integer *);
    logical equil, rcequ;
    extern doublereal dlamch_(char *);
    logical nofact;
    extern /* Subroutine */ int dlacpy_(char *, integer *, integer *, 
	    doublereal *, integer *, doublereal *, integer *), 
	    xerbla_(char *, integer *);
    doublereal bignum;
    extern doublereal dlansp_(char *, char *, integer *, doublereal *, 
	    doublereal *);
    extern /* Subroutine */ int dppcon_(char *, integer *, doublereal *, 
	    doublereal *, doublereal *, doublereal *, integer *, integer *), dlaqsp_(char *, integer *, doublereal *, doublereal *, 
	    doublereal *, doublereal *, char *);
    integer infequ;
    extern /* Subroutine */ int dppequ_(char *, integer *, doublereal *, 
	    doublereal *, doublereal *, doublereal *, integer *), 
	    dpprfs_(char *, integer *, integer *, doublereal *, doublereal *, 
	    doublereal *, integer *, doublereal *, integer *, doublereal *, 
	    doublereal *, doublereal *, integer *, integer *), 
	    dpptrf_(char *, integer *, doublereal *, integer *);
    doublereal smlnum;
    extern /* Subroutine */ int dpptrs_(char *, integer *, integer *, 
	    doublereal *, doublereal *, integer *, integer *);


/*  -- LAPACK driver routine (version 3.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  DPPSVX uses the Cholesky factorization A = U**T*U or A = L*L**T to */
/*  compute the solution to a real system of linear equations */
/*     A * X = B, */
/*  where A is an N-by-N symmetric positive definite matrix stored in */
/*  packed format and X and B are N-by-NRHS matrices. */

/*  Error bounds on the solution and a condition estimate are also */
/*  provided. */

/*  Description */
/*  =========== */

/*  The following steps are performed: */

/*  1. If FACT = 'E', real scaling factors are computed to equilibrate */
/*     the system: */
/*        diag(S) * A * diag(S) * inv(diag(S)) * X = diag(S) * B */
/*     Whether or not the system will be equilibrated depends on the */
/*     scaling of the matrix A, but if equilibration is used, A is */
/*     overwritten by diag(S)*A*diag(S) and B by diag(S)*B. */

/*  2. If FACT = 'N' or 'E', the Cholesky decomposition is used to */
/*     factor the matrix A (after equilibration if FACT = 'E') as */
/*        A = U**T* U,  if UPLO = 'U', or */
/*        A = L * L**T,  if UPLO = 'L', */
/*     where U is an upper triangular matrix and L is a lower triangular */
/*     matrix. */

/*  3. If the leading i-by-i principal minor is not positive definite, */
/*     then the routine returns with INFO = i. Otherwise, the factored */
/*     form of A is used to estimate the condition number of the matrix */
/*     A.  If the reciprocal of the condition number is less than machine */
/*     precision, INFO = N+1 is returned as a warning, but the routine */
/*     still goes on to solve for X and compute error bounds as */
/*     described below. */

/*  4. The system of equations is solved for X using the factored form */
/*     of A. */

/*  5. Iterative refinement is applied to improve the computed solution */
/*     matrix and calculate error bounds and backward error estimates */
/*     for it. */

/*  6. If equilibration was used, the matrix X is premultiplied by */
/*     diag(S) so that it solves the original system before */
/*     equilibration. */

/*  Arguments */
/*  ========= */

/*  FACT    (input) CHARACTER*1 */
/*          Specifies whether or not the factored form of the matrix A is */
/*          supplied on entry, and if not, whether the matrix A should be */
/*          equilibrated before it is factored. */
/*          = 'F':  On entry, AFP contains the factored form of A. */
/*                  If EQUED = 'Y', the matrix A has been equilibrated */
/*                  with scaling factors given by S.  AP and AFP will not */
/*                  be modified. */
/*          = 'N':  The matrix A will be copied to AFP and factored. */
/*          = 'E':  The matrix A will be equilibrated if necessary, then */
/*                  copied to AFP and factored. */

/*  UPLO    (input) CHARACTER*1 */
/*          = 'U':  Upper triangle of A is stored; */
/*          = 'L':  Lower triangle of A is stored. */

/*  N       (input) INTEGER */
/*          The number of linear equations, i.e., the order of the */
/*          matrix A.  N >= 0. */

/*  NRHS    (input) INTEGER */
/*          The number of right hand sides, i.e., the number of columns */
/*          of the matrices B and X.  NRHS >= 0. */

/*  AP      (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2) */
/*          On entry, the upper or lower triangle of the symmetric matrix */
/*          A, packed columnwise in a linear array, except if FACT = 'F' */
/*          and EQUED = 'Y', then A must contain the equilibrated matrix */
/*          diag(S)*A*diag(S).  The j-th column of A is stored in the */
/*          array AP as follows: */
/*          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; */
/*          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n. */
/*          See below for further details.  A is not modified if */
/*          FACT = 'F' or 'N', or if FACT = 'E' and EQUED = 'N' on exit. */

/*          On exit, if FACT = 'E' and EQUED = 'Y', A is overwritten by */
/*          diag(S)*A*diag(S). */

/*  AFP     (input or output) DOUBLE PRECISION array, dimension */
/*                            (N*(N+1)/2) */
/*          If FACT = 'F', then AFP is an input argument and on entry */
/*          contains the triangular factor U or L from the Cholesky */
/*          factorization A = U'*U or A = L*L', in the same storage */
/*          format as A.  If EQUED .ne. 'N', then AFP is the factored */
/*          form of the equilibrated matrix A. */

/*          If FACT = 'N', then AFP is an output argument and on exit */
/*          returns the triangular factor U or L from the Cholesky */
/*          factorization A = U'*U or A = L*L' of the original matrix A. */

/*          If FACT = 'E', then AFP is an output argument and on exit */
/*          returns the triangular factor U or L from the Cholesky */
/*          factorization A = U'*U or A = L*L' of the equilibrated */
/*          matrix A (see the description of AP for the form of the */
/*          equilibrated matrix). */

/*  EQUED   (input or output) CHARACTER*1 */
/*          Specifies the form of equilibration that was done. */
/*          = 'N':  No equilibration (always true if FACT = 'N'). */
/*          = 'Y':  Equilibration was done, i.e., A has been replaced by */
/*                  diag(S) * A * diag(S). */
/*          EQUED is an input argument if FACT = 'F'; otherwise, it is an */
/*          output argument. */

/*  S       (input or output) DOUBLE PRECISION array, dimension (N) */
/*          The scale factors for A; not accessed if EQUED = 'N'.  S is */
/*          an input argument if FACT = 'F'; otherwise, S is an output */
/*          argument.  If FACT = 'F' and EQUED = 'Y', each element of S */
/*          must be positive. */

/*  B       (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS) */
/*          On entry, the N-by-NRHS right hand side matrix B. */
/*          On exit, if EQUED = 'N', B is not modified; if EQUED = 'Y', */
/*          B is overwritten by diag(S) * B. */

/*  LDB     (input) INTEGER */
/*          The leading dimension of the array B.  LDB >= max(1,N). */

/*  X       (output) DOUBLE PRECISION array, dimension (LDX,NRHS) */
/*          If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X to */
/*          the original system of equations.  Note that if EQUED = 'Y', */
/*          A and B are modified on exit, and the solution to the */
/*          equilibrated system is inv(diag(S))*X. */

/*  LDX     (input) INTEGER */
/*          The leading dimension of the array X.  LDX >= max(1,N). */

/*  RCOND   (output) DOUBLE PRECISION */
/*          The estimate of the reciprocal condition number of the matrix */
/*          A after equilibration (if done).  If RCOND is less than the */
/*          machine precision (in particular, if RCOND = 0), the matrix */
/*          is singular to working precision.  This condition is */
/*          indicated by a return code of INFO > 0. */

/*  FERR    (output) DOUBLE PRECISION array, dimension (NRHS) */
/*          The estimated forward error bound for each solution vector */
/*          X(j) (the j-th column of the solution matrix X). */
/*          If XTRUE is the true solution corresponding to X(j), FERR(j) */
/*          is an estimated upper bound for the magnitude of the largest */
/*          element in (X(j) - XTRUE) divided by the magnitude of the */
/*          largest element in X(j).  The estimate is as reliable as */
/*          the estimate for RCOND, and is almost always a slight */
/*          overestimate of the true error. */

/*  BERR    (output) DOUBLE PRECISION array, dimension (NRHS) */
/*          The componentwise relative backward error of each solution */
/*          vector X(j) (i.e., the smallest relative change in */
/*          any element of A or B that makes X(j) an exact solution). */

/*  WORK    (workspace) DOUBLE PRECISION array, dimension (3*N) */

/*  IWORK   (workspace) INTEGER array, dimension (N) */

/*  INFO    (output) INTEGER */
/*          = 0:  successful exit */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value */
/*          > 0:  if INFO = i, and i is */
/*                <= N:  the leading minor of order i of A is */
/*                       not positive definite, so the factorization */
/*                       could not be completed, and the solution has not */
/*                       been computed. RCOND = 0 is returned. */
/*                = N+1: U is nonsingular, but RCOND is less than machine */
/*                       precision, meaning that the matrix is singular */
/*                       to working precision.  Nevertheless, the */
/*                       solution and error bounds are computed because */
/*                       there are a number of situations where the */
/*                       computed solution can be more accurate than the */
/*                       value of RCOND would suggest. */

/*  Further Details */
/*  =============== */

/*  The packed storage scheme is illustrated by the following example */
/*  when N = 4, UPLO = 'U': */

/*  Two-dimensional storage of the symmetric matrix A: */

/*     a11 a12 a13 a14 */
/*         a22 a23 a24 */
/*             a33 a34     (aij = conjg(aji)) */
/*                 a44 */

/*  Packed storage of the upper triangle of A: */

/*  AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ] */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

    /* Parameter adjustments */
    --ap;
    --afp;
    --s;
    b_dim1 = *ldb;
    b_offset = 1 + b_dim1;
    b -= b_offset;
    x_dim1 = *ldx;
    x_offset = 1 + x_dim1;
    x -= x_offset;
    --ferr;
    --berr;
    --work;
    --iwork;

    /* Function Body */
    *info = 0;
    nofact = lsame_(fact, "N");
    equil = lsame_(fact, "E");
    if (nofact || equil) {
	*(unsigned char *)equed = 'N';
	rcequ = FALSE_;
    } else {
	rcequ = lsame_(equed, "Y");
	smlnum = dlamch_("Safe minimum");
	bignum = 1. / smlnum;
    }

/*     Test the input parameters. */

    if (! nofact && ! equil && ! lsame_(fact, "F")) {
	*info = -1;
    } else if (! lsame_(uplo, "U") && ! lsame_(uplo, 
	    "L")) {
	*info = -2;
    } else if (*n < 0) {
	*info = -3;
    } else if (*nrhs < 0) {
	*info = -4;
    } else if (lsame_(fact, "F") && ! (rcequ || lsame_(
	    equed, "N"))) {
	*info = -7;
    } else {
	if (rcequ) {
	    smin = bignum;
	    smax = 0.;
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
/* Computing MIN */
		d__1 = smin, d__2 = s[j];
		smin = min(d__1,d__2);
/* Computing MAX */
		d__1 = smax, d__2 = s[j];
		smax = max(d__1,d__2);
/* L10: */
	    }
	    if (smin <= 0.) {
		*info = -8;
	    } else if (*n > 0) {
		scond = max(smin,smlnum) / min(smax,bignum);
	    } else {
		scond = 1.;
	    }
	}
	if (*info == 0) {
	    if (*ldb < max(1,*n)) {
		*info = -10;
	    } else if (*ldx < max(1,*n)) {
		*info = -12;
	    }
	}
    }

    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("DPPSVX", &i__1);
	return 0;
    }

    if (equil) {

/*        Compute row and column scalings to equilibrate the matrix A. */

	dppequ_(uplo, n, &ap[1], &s[1], &scond, &amax, &infequ);
	if (infequ == 0) {

/*           Equilibrate the matrix. */

	    dlaqsp_(uplo, n, &ap[1], &s[1], &scond, &amax, equed);
	    rcequ = lsame_(equed, "Y");
	}
    }

/*     Scale the right-hand side. */

    if (rcequ) {
	i__1 = *nrhs;
	for (j = 1; j <= i__1; ++j) {
	    i__2 = *n;
	    for (i__ = 1; i__ <= i__2; ++i__) {
		b[i__ + j * b_dim1] = s[i__] * b[i__ + j * b_dim1];
/* L20: */
	    }
/* L30: */
	}
    }

    if (nofact || equil) {

/*        Compute the Cholesky factorization A = U'*U or A = L*L'. */

	i__1 = *n * (*n + 1) / 2;
	dcopy_(&i__1, &ap[1], &c__1, &afp[1], &c__1);
	dpptrf_(uplo, n, &afp[1], info);

/*        Return if INFO is non-zero. */

	if (*info > 0) {
	    *rcond = 0.;
	    return 0;
	}
    }

/*     Compute the norm of the matrix A. */

    anorm = dlansp_("I", uplo, n, &ap[1], &work[1]);

/*     Compute the reciprocal of the condition number of A. */

    dppcon_(uplo, n, &afp[1], &anorm, rcond, &work[1], &iwork[1], info);

/*     Compute the solution matrix X. */

    dlacpy_("Full", n, nrhs, &b[b_offset], ldb, &x[x_offset], ldx);
    dpptrs_(uplo, n, nrhs, &afp[1], &x[x_offset], ldx, info);

/*     Use iterative refinement to improve the computed solution and */
/*     compute error bounds and backward error estimates for it. */

    dpprfs_(uplo, n, nrhs, &ap[1], &afp[1], &b[b_offset], ldb, &x[x_offset], 
	    ldx, &ferr[1], &berr[1], &work[1], &iwork[1], info);

/*     Transform the solution matrix X to a solution of the original */
/*     system. */

    if (rcequ) {
	i__1 = *nrhs;
	for (j = 1; j <= i__1; ++j) {
	    i__2 = *n;
	    for (i__ = 1; i__ <= i__2; ++i__) {
		x[i__ + j * x_dim1] = s[i__] * x[i__ + j * x_dim1];
/* L40: */
	    }
/* L50: */
	}
	i__1 = *nrhs;
	for (j = 1; j <= i__1; ++j) {
	    ferr[j] /= scond;
/* L60: */
	}
    }

/*     Set INFO = N+1 if the matrix is singular to working precision. */

    if (*rcond < dlamch_("Epsilon")) {
	*info = *n + 1;
    }

    return 0;

/*     End of DPPSVX */

} /* dppsvx_ */
コード例 #15
0
ファイル: zstemr.c プロジェクト: flame/libflame
/* Subroutine */
int zstemr_(char *jobz, char *range, integer *n, doublereal * d__, doublereal *e, doublereal *vl, doublereal *vu, integer *il, integer *iu, integer *m, doublereal *w, doublecomplex *z__, integer * ldz, integer *nzc, integer *isuppz, logical *tryrac, doublereal *work, integer *lwork, integer *iwork, integer *liwork, integer *info)
{
    /* System generated locals */
    integer z_dim1, z_offset, i__1, i__2;
    doublereal d__1, d__2;
    /* Builtin functions */
    double sqrt(doublereal);
    /* Local variables */
    integer i__, j;
    doublereal r1, r2;
    integer jj;
    doublereal cs;
    integer in;
    doublereal sn, wl, wu;
    integer iil, iiu;
    doublereal eps, tmp;
    integer indd, iend, jblk, wend;
    doublereal rmin, rmax;
    integer itmp;
    doublereal tnrm;
    extern /* Subroutine */
    int dlae2_(doublereal *, doublereal *, doublereal *, doublereal *, doublereal *);
    integer inde2, itmp2;
    doublereal rtol1, rtol2;
    extern /* Subroutine */
    int dscal_(integer *, doublereal *, doublereal *, integer *);
    doublereal scale;
    integer indgp;
    extern logical lsame_(char *, char *);
    integer iinfo, iindw, ilast;
    extern /* Subroutine */
    int dcopy_(integer *, doublereal *, integer *, doublereal *, integer *);
    integer lwmin;
    logical wantz;
    extern /* Subroutine */
    int zswap_(integer *, doublecomplex *, integer *, doublecomplex *, integer *), dlaev2_(doublereal *, doublereal *, doublereal *, doublereal *, doublereal *, doublereal *, doublereal *);
    extern doublereal dlamch_(char *);
    logical alleig;
    integer ibegin;
    logical indeig;
    integer iindbl;
    logical valeig;
    extern /* Subroutine */
    int dlarrc_(char *, integer *, doublereal *, doublereal *, doublereal *, doublereal *, doublereal *, integer *, integer *, integer *, integer *), dlarre_(char *, integer *, doublereal *, doublereal *, integer *, integer *, doublereal *, doublereal *, doublereal *, doublereal *, doublereal *, doublereal *, integer *, integer *, integer *, doublereal *, doublereal *, doublereal *, integer *, integer *, doublereal *, doublereal *, doublereal *, integer *, integer *);
    integer wbegin;
    doublereal safmin;
    extern /* Subroutine */
    int dlarrj_(integer *, doublereal *, doublereal *, integer *, integer *, doublereal *, integer *, doublereal *, doublereal *, doublereal *, integer *, doublereal *, doublereal *, integer *), xerbla_(char *, integer *);
    doublereal bignum;
    integer inderr, iindwk, indgrs, offset;
    extern doublereal dlanst_(char *, integer *, doublereal *, doublereal *);
    extern /* Subroutine */
    int dlarrr_(integer *, doublereal *, doublereal *, integer *), dlasrt_(char *, integer *, doublereal *, integer *);
    doublereal thresh;
    integer iinspl, indwrk, ifirst, liwmin, nzcmin;
    doublereal pivmin;
    integer nsplit;
    doublereal smlnum;
    extern /* Subroutine */
    int zlarrv_(integer *, doublereal *, doublereal *, doublereal *, doublereal *, doublereal *, integer *, integer *, integer *, integer *, doublereal *, doublereal *, doublereal *, doublereal *, doublereal *, doublereal *, integer *, integer *, doublereal *, doublecomplex *, integer *, integer *, doublereal *, integer *, integer *);
    logical lquery, zquery;
    /* -- LAPACK computational routine (version 3.5.0) -- */
    /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
    /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
    /* November 2013 */
    /* .. Scalar Arguments .. */
    /* .. */
    /* .. Array Arguments .. */
    /* .. */
    /* ===================================================================== */
    /* .. Parameters .. */
    /* .. */
    /* .. Local Scalars .. */
    /* .. */
    /* .. */
    /* .. External Functions .. */
    /* .. */
    /* .. External Subroutines .. */
    /* .. */
    /* .. Intrinsic Functions .. */
    /* .. */
    /* .. Executable Statements .. */
    /* Test the input parameters. */
    /* Parameter adjustments */
    --d__;
    --e;
    --w;
    z_dim1 = *ldz;
    z_offset = 1 + z_dim1;
    z__ -= z_offset;
    --isuppz;
    --work;
    --iwork;
    /* Function Body */
    wantz = lsame_(jobz, "V");
    alleig = lsame_(range, "A");
    valeig = lsame_(range, "V");
    indeig = lsame_(range, "I");
    lquery = *lwork == -1 || *liwork == -1;
    zquery = *nzc == -1;
    /* DSTEMR needs WORK of size 6*N, IWORK of size 3*N. */
    /* In addition, DLARRE needs WORK of size 6*N, IWORK of size 5*N. */
    /* Furthermore, ZLARRV needs WORK of size 12*N, IWORK of size 7*N. */
    if (wantz)
    {
        lwmin = *n * 18;
        liwmin = *n * 10;
    }
    else
    {
        /* need less workspace if only the eigenvalues are wanted */
        lwmin = *n * 12;
        liwmin = *n << 3;
    }
    wl = 0.;
    wu = 0.;
    iil = 0;
    iiu = 0;
    nsplit = 0;
    if (valeig)
    {
        /* We do not reference VL, VU in the cases RANGE = 'I','A' */
        /* The interval (WL, WU] contains all the wanted eigenvalues. */
        /* It is either given by the user or computed in DLARRE. */
        wl = *vl;
        wu = *vu;
    }
    else if (indeig)
    {
        /* We do not reference IL, IU in the cases RANGE = 'V','A' */
        iil = *il;
        iiu = *iu;
    }
    *info = 0;
    if (! (wantz || lsame_(jobz, "N")))
    {
        *info = -1;
    }
    else if (! (alleig || valeig || indeig))
    {
        *info = -2;
    }
    else if (*n < 0)
    {
        *info = -3;
    }
    else if (valeig && *n > 0 && wu <= wl)
    {
        *info = -7;
    }
    else if (indeig && (iil < 1 || iil > *n))
    {
        *info = -8;
    }
    else if (indeig && (iiu < iil || iiu > *n))
    {
        *info = -9;
    }
    else if (*ldz < 1 || wantz && *ldz < *n)
    {
        *info = -13;
    }
    else if (*lwork < lwmin && ! lquery)
    {
        *info = -17;
    }
    else if (*liwork < liwmin && ! lquery)
    {
        *info = -19;
    }
    /* Get machine constants. */
    safmin = dlamch_("Safe minimum");
    eps = dlamch_("Precision");
    smlnum = safmin / eps;
    bignum = 1. / smlnum;
    rmin = sqrt(smlnum);
    /* Computing MIN */
    d__1 = sqrt(bignum);
    d__2 = 1. / sqrt(sqrt(safmin)); // , expr subst
    rmax = min(d__1,d__2);
    if (*info == 0)
    {
        work[1] = (doublereal) lwmin;
        iwork[1] = liwmin;
        if (wantz && alleig)
        {
            nzcmin = *n;
        }
        else if (wantz && valeig)
        {
            dlarrc_("T", n, vl, vu, &d__[1], &e[1], &safmin, &nzcmin, &itmp, & itmp2, info);
        }
        else if (wantz && indeig)
        {
            nzcmin = iiu - iil + 1;
        }
        else
        {
            /* WANTZ .EQ. FALSE. */
            nzcmin = 0;
        }
        if (zquery && *info == 0)
        {
            i__1 = z_dim1 + 1;
            z__[i__1].r = (doublereal) nzcmin;
            z__[i__1].i = 0.; // , expr subst
        }
        else if (*nzc < nzcmin && ! zquery)
        {
            *info = -14;
        }
    }
    if (*info != 0)
    {
        i__1 = -(*info);
        xerbla_("ZSTEMR", &i__1);
        return 0;
    }
    else if (lquery || zquery)
    {
        return 0;
    }
    /* Handle N = 0, 1, and 2 cases immediately */
    *m = 0;
    if (*n == 0)
    {
        return 0;
    }
    if (*n == 1)
    {
        if (alleig || indeig)
        {
            *m = 1;
            w[1] = d__[1];
        }
        else
        {
            if (wl < d__[1] && wu >= d__[1])
            {
                *m = 1;
                w[1] = d__[1];
            }
        }
        if (wantz && ! zquery)
        {
            i__1 = z_dim1 + 1;
            z__[i__1].r = 1.;
            z__[i__1].i = 0.; // , expr subst
            isuppz[1] = 1;
            isuppz[2] = 1;
        }
        return 0;
    }
    if (*n == 2)
    {
        if (! wantz)
        {
            dlae2_(&d__[1], &e[1], &d__[2], &r1, &r2);
        }
        else if (wantz && ! zquery)
        {
            dlaev2_(&d__[1], &e[1], &d__[2], &r1, &r2, &cs, &sn);
        }
        if (alleig || valeig && r2 > wl && r2 <= wu || indeig && iil == 1)
        {
            ++(*m);
            w[*m] = r2;
            if (wantz && ! zquery)
            {
                i__1 = *m * z_dim1 + 1;
                d__1 = -sn;
                z__[i__1].r = d__1;
                z__[i__1].i = 0.; // , expr subst
                i__1 = *m * z_dim1 + 2;
                z__[i__1].r = cs;
                z__[i__1].i = 0.; // , expr subst
                /* Note: At most one of SN and CS can be zero. */
                if (sn != 0.)
                {
                    if (cs != 0.)
                    {
                        isuppz[(*m << 1) - 1] = 1;
                        isuppz[(*m << 1) - 1] = 2;
                    }
                    else
                    {
                        isuppz[(*m << 1) - 1] = 1;
                        isuppz[(*m << 1) - 1] = 1;
                    }
                }
                else
                {
                    isuppz[(*m << 1) - 1] = 2;
                    isuppz[*m * 2] = 2;
                }
            }
        }
        if (alleig || valeig && r1 > wl && r1 <= wu || indeig && iiu == 2)
        {
            ++(*m);
            w[*m] = r1;
            if (wantz && ! zquery)
            {
                i__1 = *m * z_dim1 + 1;
                z__[i__1].r = cs;
                z__[i__1].i = 0.; // , expr subst
                i__1 = *m * z_dim1 + 2;
                z__[i__1].r = sn;
                z__[i__1].i = 0.; // , expr subst
                /* Note: At most one of SN and CS can be zero. */
                if (sn != 0.)
                {
                    if (cs != 0.)
                    {
                        isuppz[(*m << 1) - 1] = 1;
                        isuppz[(*m << 1) - 1] = 2;
                    }
                    else
                    {
                        isuppz[(*m << 1) - 1] = 1;
                        isuppz[(*m << 1) - 1] = 1;
                    }
                }
                else
                {
                    isuppz[(*m << 1) - 1] = 2;
                    isuppz[*m * 2] = 2;
                }
            }
        }
    }
    else
    {
        /* Continue with general N */
        indgrs = 1;
        inderr = (*n << 1) + 1;
        indgp = *n * 3 + 1;
        indd = (*n << 2) + 1;
        inde2 = *n * 5 + 1;
        indwrk = *n * 6 + 1;
        iinspl = 1;
        iindbl = *n + 1;
        iindw = (*n << 1) + 1;
        iindwk = *n * 3 + 1;
        /* Scale matrix to allowable range, if necessary. */
        /* The allowable range is related to the PIVMIN parameter;
        see the */
        /* comments in DLARRD. The preference for scaling small values */
        /* up is heuristic;
        we expect users' matrices not to be close to the */
        /* RMAX threshold. */
        scale = 1.;
        tnrm = dlanst_("M", n, &d__[1], &e[1]);
        if (tnrm > 0. && tnrm < rmin)
        {
            scale = rmin / tnrm;
        }
        else if (tnrm > rmax)
        {
            scale = rmax / tnrm;
        }
        if (scale != 1.)
        {
            dscal_(n, &scale, &d__[1], &c__1);
            i__1 = *n - 1;
            dscal_(&i__1, &scale, &e[1], &c__1);
            tnrm *= scale;
            if (valeig)
            {
                /* If eigenvalues in interval have to be found, */
                /* scale (WL, WU] accordingly */
                wl *= scale;
                wu *= scale;
            }
        }
        /* Compute the desired eigenvalues of the tridiagonal after splitting */
        /* into smaller subblocks if the corresponding off-diagonal elements */
        /* are small */
        /* THRESH is the splitting parameter for DLARRE */
        /* A negative THRESH forces the old splitting criterion based on the */
        /* size of the off-diagonal. A positive THRESH switches to splitting */
        /* which preserves relative accuracy. */
        if (*tryrac)
        {
            /* Test whether the matrix warrants the more expensive relative approach. */
            dlarrr_(n, &d__[1], &e[1], &iinfo);
        }
        else
        {
            /* The user does not care about relative accurately eigenvalues */
            iinfo = -1;
        }
        /* Set the splitting criterion */
        if (iinfo == 0)
        {
            thresh = eps;
        }
        else
        {
            thresh = -eps;
            /* relative accuracy is desired but T does not guarantee it */
            *tryrac = FALSE_;
        }
        if (*tryrac)
        {
            /* Copy original diagonal, needed to guarantee relative accuracy */
            dcopy_(n, &d__[1], &c__1, &work[indd], &c__1);
        }
        /* Store the squares of the offdiagonal values of T */
        i__1 = *n - 1;
        for (j = 1;
                j <= i__1;
                ++j)
        {
            /* Computing 2nd power */
            d__1 = e[j];
            work[inde2 + j - 1] = d__1 * d__1;
            /* L5: */
        }
        /* Set the tolerance parameters for bisection */
        if (! wantz)
        {
            /* DLARRE computes the eigenvalues to full precision. */
            rtol1 = eps * 4.;
            rtol2 = eps * 4.;
        }
        else
        {
            /* DLARRE computes the eigenvalues to less than full precision. */
            /* ZLARRV will refine the eigenvalue approximations, and we only */
            /* need less accurate initial bisection in DLARRE. */
            /* Note: these settings do only affect the subset case and DLARRE */
            rtol1 = sqrt(eps);
            /* Computing MAX */
            d__1 = sqrt(eps) * .005;
            d__2 = eps * 4.; // , expr subst
            rtol2 = max(d__1,d__2);
        }
        dlarre_(range, n, &wl, &wu, &iil, &iiu, &d__[1], &e[1], &work[inde2], &rtol1, &rtol2, &thresh, &nsplit, &iwork[iinspl], m, &w[1], & work[inderr], &work[indgp], &iwork[iindbl], &iwork[iindw], & work[indgrs], &pivmin, &work[indwrk], &iwork[iindwk], &iinfo);
        if (iinfo != 0)
        {
            *info = f2c_abs(iinfo) + 10;
            return 0;
        }
        /* Note that if RANGE .NE. 'V', DLARRE computes bounds on the desired */
        /* part of the spectrum. All desired eigenvalues are contained in */
        /* (WL,WU] */
        if (wantz)
        {
            /* Compute the desired eigenvectors corresponding to the computed */
            /* eigenvalues */
            zlarrv_(n, &wl, &wu, &d__[1], &e[1], &pivmin, &iwork[iinspl], m, & c__1, m, &c_b18, &rtol1, &rtol2, &w[1], &work[inderr], & work[indgp], &iwork[iindbl], &iwork[iindw], &work[indgrs], &z__[z_offset], ldz, &isuppz[1], &work[indwrk], &iwork[ iindwk], &iinfo);
            if (iinfo != 0)
            {
                *info = f2c_abs(iinfo) + 20;
                return 0;
            }
        }
        else
        {
            /* DLARRE computes eigenvalues of the (shifted) root representation */
            /* ZLARRV returns the eigenvalues of the unshifted matrix. */
            /* However, if the eigenvectors are not desired by the user, we need */
            /* to apply the corresponding shifts from DLARRE to obtain the */
            /* eigenvalues of the original matrix. */
            i__1 = *m;
            for (j = 1;
                    j <= i__1;
                    ++j)
            {
                itmp = iwork[iindbl + j - 1];
                w[j] += e[iwork[iinspl + itmp - 1]];
                /* L20: */
            }
        }
        if (*tryrac)
        {
            /* Refine computed eigenvalues so that they are relatively accurate */
            /* with respect to the original matrix T. */
            ibegin = 1;
            wbegin = 1;
            i__1 = iwork[iindbl + *m - 1];
            for (jblk = 1;
                    jblk <= i__1;
                    ++jblk)
            {
                iend = iwork[iinspl + jblk - 1];
                in = iend - ibegin + 1;
                wend = wbegin - 1;
                /* check if any eigenvalues have to be refined in this block */
L36:
                if (wend < *m)
                {
                    if (iwork[iindbl + wend] == jblk)
                    {
                        ++wend;
                        goto L36;
                    }
                }
                if (wend < wbegin)
                {
                    ibegin = iend + 1;
                    goto L39;
                }
                offset = iwork[iindw + wbegin - 1] - 1;
                ifirst = iwork[iindw + wbegin - 1];
                ilast = iwork[iindw + wend - 1];
                rtol2 = eps * 4.;
                dlarrj_(&in, &work[indd + ibegin - 1], &work[inde2 + ibegin - 1], &ifirst, &ilast, &rtol2, &offset, &w[wbegin], & work[inderr + wbegin - 1], &work[indwrk], &iwork[ iindwk], &pivmin, &tnrm, &iinfo);
                ibegin = iend + 1;
                wbegin = wend + 1;
L39:
                ;
            }
        }
        /* If matrix was scaled, then rescale eigenvalues appropriately. */
        if (scale != 1.)
        {
            d__1 = 1. / scale;
            dscal_(m, &d__1, &w[1], &c__1);
        }
    }
    /* If eigenvalues are not in increasing order, then sort them, */
    /* possibly along with eigenvectors. */
    if (nsplit > 1 || *n == 2)
    {
        if (! wantz)
        {
            dlasrt_("I", m, &w[1], &iinfo);
            if (iinfo != 0)
            {
                *info = 3;
                return 0;
            }
        }
        else
        {
            i__1 = *m - 1;
            for (j = 1;
                    j <= i__1;
                    ++j)
            {
                i__ = 0;
                tmp = w[j];
                i__2 = *m;
                for (jj = j + 1;
                        jj <= i__2;
                        ++jj)
                {
                    if (w[jj] < tmp)
                    {
                        i__ = jj;
                        tmp = w[jj];
                    }
                    /* L50: */
                }
                if (i__ != 0)
                {
                    w[i__] = w[j];
                    w[j] = tmp;
                    if (wantz)
                    {
                        zswap_(n, &z__[i__ * z_dim1 + 1], &c__1, &z__[j * z_dim1 + 1], &c__1);
                        itmp = isuppz[(i__ << 1) - 1];
                        isuppz[(i__ << 1) - 1] = isuppz[(j << 1) - 1];
                        isuppz[(j << 1) - 1] = itmp;
                        itmp = isuppz[i__ * 2];
                        isuppz[i__ * 2] = isuppz[j * 2];
                        isuppz[j * 2] = itmp;
                    }
                }
                /* L60: */
            }
        }
    }
    work[1] = (doublereal) lwmin;
    iwork[1] = liwmin;
    return 0;
    /* End of ZSTEMR */
}
コード例 #16
0
/* Subroutine */ int dsbgvx_(char *jobz, char *range, char *uplo, integer *n, 
	integer *ka, integer *kb, doublereal *ab, integer *ldab, doublereal *
	bb, integer *ldbb, doublereal *q, integer *ldq, doublereal *vl, 
	doublereal *vu, integer *il, integer *iu, doublereal *abstol, integer 
	*m, doublereal *w, doublereal *z__, integer *ldz, doublereal *work, 
	integer *iwork, integer *ifail, integer *info)
{
    /* System generated locals */
    integer ab_dim1, ab_offset, bb_dim1, bb_offset, q_dim1, q_offset, z_dim1, 
	    z_offset, i__1, i__2;

    /* Local variables */
    integer i__, j, jj;
    doublereal tmp1;
    integer indd, inde;
    char vect[1];
    logical test;
    integer itmp1, indee;
    integer iinfo;
    char order[1];
    logical upper, wantz, alleig, indeig;
    integer indibl;
    logical valeig;
    integer indisp;
    integer indiwo;
    integer indwrk;
    integer nsplit;

/*  -- LAPACK driver routine (version 3.2) -- */
/*     November 2006 */

/*  Purpose */
/*  ======= */

/*  DSBGVX computes selected eigenvalues, and optionally, eigenvectors */
/*  of a real generalized symmetric-definite banded eigenproblem, of */
/*  the form A*x=(lambda)*B*x.  Here A and B are assumed to be symmetric */
/*  and banded, and B is also positive definite.  Eigenvalues and */
/*  eigenvectors can be selected by specifying either all eigenvalues, */
/*  a range of values or a range of indices for the desired eigenvalues. */

/*  Arguments */
/*  ========= */

/*  JOBZ    (input) CHARACTER*1 */
/*          = 'N':  Compute eigenvalues only; */
/*          = 'V':  Compute eigenvalues and eigenvectors. */

/*  RANGE   (input) CHARACTER*1 */
/*          = 'A': all eigenvalues will be found. */
/*          = 'V': all eigenvalues in the half-open interval (VL,VU] */
/*                 will be found. */
/*          = 'I': the IL-th through IU-th eigenvalues will be found. */

/*  UPLO    (input) CHARACTER*1 */
/*          = 'U':  Upper triangles of A and B are stored; */
/*          = 'L':  Lower triangles of A and B are stored. */

/*  N       (input) INTEGER */
/*          The order of the matrices A and B.  N >= 0. */

/*  KA      (input) INTEGER */
/*          The number of superdiagonals of the matrix A if UPLO = 'U', */
/*          or the number of subdiagonals if UPLO = 'L'.  KA >= 0. */

/*  KB      (input) INTEGER */
/*          The number of superdiagonals of the matrix B if UPLO = 'U', */
/*          or the number of subdiagonals if UPLO = 'L'.  KB >= 0. */

/*  AB      (input/output) DOUBLE PRECISION array, dimension (LDAB, N) */
/*          On entry, the upper or lower triangle of the symmetric band */
/*          matrix A, stored in the first ka+1 rows of the array.  The */
/*          j-th column of A is stored in the j-th column of the array AB */
/*          as follows: */
/*          if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j; */
/*          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+ka). */

/*          On exit, the contents of AB are destroyed. */

/*  LDAB    (input) INTEGER */
/*          The leading dimension of the array AB.  LDAB >= KA+1. */

/*  BB      (input/output) DOUBLE PRECISION array, dimension (LDBB, N) */
/*          On entry, the upper or lower triangle of the symmetric band */
/*          matrix B, stored in the first kb+1 rows of the array.  The */
/*          j-th column of B is stored in the j-th column of the array BB */
/*          as follows: */
/*          if UPLO = 'U', BB(ka+1+i-j,j) = B(i,j) for max(1,j-kb)<=i<=j; */
/*          if UPLO = 'L', BB(1+i-j,j)    = B(i,j) for j<=i<=min(n,j+kb). */

/*          On exit, the factor S from the split Cholesky factorization */
/*          B = S**T*S, as returned by DPBSTF. */

/*  LDBB    (input) INTEGER */
/*          The leading dimension of the array BB.  LDBB >= KB+1. */

/*  Q       (output) DOUBLE PRECISION array, dimension (LDQ, N) */
/*          If JOBZ = 'V', the n-by-n matrix used in the reduction of */
/*          A*x = (lambda)*B*x to standard form, i.e. C*x = (lambda)*x, */
/*          and consequently C to tridiagonal form. */
/*          If JOBZ = 'N', the array Q is not referenced. */

/*  LDQ     (input) INTEGER */
/*          The leading dimension of the array Q.  If JOBZ = 'N', */
/*          LDQ >= 1. If JOBZ = 'V', LDQ >= max(1,N). */

/*  VL      (input) DOUBLE PRECISION */
/*  VU      (input) DOUBLE PRECISION */
/*          If RANGE='V', the lower and upper bounds of the interval to */
/*          be searched for eigenvalues. VL < VU. */
/*          Not referenced if RANGE = 'A' or 'I'. */

/*  IL      (input) INTEGER */
/*  IU      (input) INTEGER */
/*          If RANGE='I', the indices (in ascending order) of the */
/*          smallest and largest eigenvalues to be returned. */
/*          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. */
/*          Not referenced if RANGE = 'A' or 'V'. */

/*  ABSTOL  (input) DOUBLE PRECISION */
/*          The absolute error tolerance for the eigenvalues. */
/*          An approximate eigenvalue is accepted as converged */
/*          when it is determined to lie in an interval [a,b] */
/*          of width less than or equal to */

/*                  ABSTOL + EPS *   max( |a|,|b| ) , */

/*          where EPS is the machine precision.  If ABSTOL is less than */
/*          or equal to zero, then  EPS*|T|  will be used in its place, */
/*          where |T| is the 1-norm of the tridiagonal matrix obtained */
/*          by reducing A to tridiagonal form. */

/*          Eigenvalues will be computed most accurately when ABSTOL is */
/*          set to twice the underflow threshold 2*DLAMCH('S'), not zero. */
/*          If this routine returns with INFO>0, indicating that some */
/*          eigenvectors did not converge, try setting ABSTOL to */
/*          2*DLAMCH('S'). */

/*  M       (output) INTEGER */
/*          The total number of eigenvalues found.  0 <= M <= N. */
/*          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1. */

/*  W       (output) DOUBLE PRECISION array, dimension (N) */
/*          If INFO = 0, the eigenvalues in ascending order. */

/*  Z       (output) DOUBLE PRECISION array, dimension (LDZ, N) */
/*          If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of */
/*          eigenvectors, with the i-th column of Z holding the */
/*          eigenvector associated with W(i).  The eigenvectors are */
/*          normalized so Z**T*B*Z = I. */
/*          If JOBZ = 'N', then Z is not referenced. */

/*  LDZ     (input) INTEGER */
/*          The leading dimension of the array Z.  LDZ >= 1, and if */
/*          JOBZ = 'V', LDZ >= max(1,N). */

/*  WORK    (workspace/output) DOUBLE PRECISION array, dimension (7*N) */

/*  IWORK   (workspace/output) INTEGER array, dimension (5*N) */

/*  IFAIL   (output) INTEGER array, dimension (M) */
/*          If JOBZ = 'V', then if INFO = 0, the first M elements of */
/*          IFAIL are zero.  If INFO > 0, then IFAIL contains the */
/*          indices of the eigenvalues that failed to converge. */
/*          If JOBZ = 'N', then IFAIL is not referenced. */

/*  INFO    (output) INTEGER */
/*          = 0 : successful exit */
/*          < 0 : if INFO = -i, the i-th argument had an illegal value */
/*          <= N: if INFO = i, then i eigenvectors failed to converge. */
/*                  Their indices are stored in IFAIL. */
/*          > N : DPBSTF returned an error code; i.e., */
/*                if INFO = N + i, for 1 <= i <= N, then the leading */
/*                minor of order i of B is not positive definite. */
/*                The factorization of B could not be completed and */
/*                no eigenvalues or eigenvectors were computed. */

/*  Further Details */
/*  =============== */

/*  Based on contributions by */
/*     Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA */

/*  ===================================================================== */

/*     Test the input parameters. */

    /* Parameter adjustments */
    ab_dim1 = *ldab;
    ab_offset = 1 + ab_dim1;
    ab -= ab_offset;
    bb_dim1 = *ldbb;
    bb_offset = 1 + bb_dim1;
    bb -= bb_offset;
    q_dim1 = *ldq;
    q_offset = 1 + q_dim1;
    q -= q_offset;
    --w;
    z_dim1 = *ldz;
    z_offset = 1 + z_dim1;
    z__ -= z_offset;
    --work;
    --iwork;
    --ifail;

    /* Function Body */
    wantz = lsame_(jobz, "V");
    upper = lsame_(uplo, "U");
    alleig = lsame_(range, "A");
    valeig = lsame_(range, "V");
    indeig = lsame_(range, "I");

    *info = 0;
    if (! (wantz || lsame_(jobz, "N"))) {
	*info = -1;
    } else if (! (alleig || valeig || indeig)) {
	*info = -2;
    } else if (! (upper || lsame_(uplo, "L"))) {
	*info = -3;
    } else if (*n < 0) {
	*info = -4;
    } else if (*ka < 0) {
	*info = -5;
    } else if (*kb < 0 || *kb > *ka) {
	*info = -6;
    } else if (*ldab < *ka + 1) {
	*info = -8;
    } else if (*ldbb < *kb + 1) {
	*info = -10;
    } else if (*ldq < 1 || wantz && *ldq < *n) {
	*info = -12;
    } else {
	if (valeig) {
	    if (*n > 0 && *vu <= *vl) {
		*info = -14;
	    }
	} else if (indeig) {
	    if (*il < 1 || *il > max(1,*n)) {
		*info = -15;
	    } else if (*iu < min(*n,*il) || *iu > *n) {
		*info = -16;
	    }
	}
    }
    if (*info == 0) {
	if (*ldz < 1 || wantz && *ldz < *n) {
	    *info = -21;
	}
    }

    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("DSBGVX", &i__1);
	return 0;
    }

/*     Quick return if possible */

    *m = 0;
    if (*n == 0) {
	return 0;
    }

/*     Form a split Cholesky factorization of B. */

    dpbstf_(uplo, n, kb, &bb[bb_offset], ldbb, info);
    if (*info != 0) {
	*info = *n + *info;
	return 0;
    }

/*     Transform problem to standard eigenvalue problem. */

    dsbgst_(jobz, uplo, n, ka, kb, &ab[ab_offset], ldab, &bb[bb_offset], ldbb, 
	     &q[q_offset], ldq, &work[1], &iinfo);

/*     Reduce symmetric band matrix to tridiagonal form. */

    indd = 1;
    inde = indd + *n;
    indwrk = inde + *n;
    if (wantz) {
	*(unsigned char *)vect = 'U';
    } else {
	*(unsigned char *)vect = 'N';
    }
    dsbtrd_(vect, uplo, n, ka, &ab[ab_offset], ldab, &work[indd], &work[inde], 
	     &q[q_offset], ldq, &work[indwrk], &iinfo);

/*     If all eigenvalues are desired and ABSTOL is less than or equal */
/*     to zero, then call DSTERF or SSTEQR.  If this fails for some */
/*     eigenvalue, then try DSTEBZ. */

    test = FALSE_;
    if (indeig) {
	if (*il == 1 && *iu == *n) {
	    test = TRUE_;
	}
    }
    if ((alleig || test) && *abstol <= 0.) {
	dcopy_(n, &work[indd], &c__1, &w[1], &c__1);
	indee = indwrk + (*n << 1);
	i__1 = *n - 1;
	dcopy_(&i__1, &work[inde], &c__1, &work[indee], &c__1);
	if (! wantz) {
	    dsterf_(n, &w[1], &work[indee], info);
	} else {
	    dlacpy_("A", n, n, &q[q_offset], ldq, &z__[z_offset], ldz);
	    dsteqr_(jobz, n, &w[1], &work[indee], &z__[z_offset], ldz, &work[
		    indwrk], info);
	    if (*info == 0) {
		i__1 = *n;
		for (i__ = 1; i__ <= i__1; ++i__) {
		    ifail[i__] = 0;
		}
	    }
	}
	if (*info == 0) {
	    *m = *n;
	    goto L30;
	}
	*info = 0;
    }

/*     Otherwise, call DSTEBZ and, if eigenvectors are desired, */
/*     call DSTEIN. */

    if (wantz) {
	*(unsigned char *)order = 'B';
    } else {
	*(unsigned char *)order = 'E';
    }
    indibl = 1;
    indisp = indibl + *n;
    indiwo = indisp + *n;
    dstebz_(range, order, n, vl, vu, il, iu, abstol, &work[indd], &work[inde], 
	     m, &nsplit, &w[1], &iwork[indibl], &iwork[indisp], &work[indwrk], 
	     &iwork[indiwo], info);

    if (wantz) {
	dstein_(n, &work[indd], &work[inde], m, &w[1], &iwork[indibl], &iwork[
		indisp], &z__[z_offset], ldz, &work[indwrk], &iwork[indiwo], &
		ifail[1], info);

/*        Apply transformation matrix used in reduction to tridiagonal */
/*        form to eigenvectors returned by DSTEIN. */

	i__1 = *m;
	for (j = 1; j <= i__1; ++j) {
	    dcopy_(n, &z__[j * z_dim1 + 1], &c__1, &work[1], &c__1);
	    dgemv_("N", n, n, &c_b25, &q[q_offset], ldq, &work[1], &c__1, &
		    c_b27, &z__[j * z_dim1 + 1], &c__1);
	}
    }

L30:

/*     If eigenvalues are not in order, then sort them, along with */
/*     eigenvectors. */

    if (wantz) {
	i__1 = *m - 1;
	for (j = 1; j <= i__1; ++j) {
	    i__ = 0;
	    tmp1 = w[j];
	    i__2 = *m;
	    for (jj = j + 1; jj <= i__2; ++jj) {
		if (w[jj] < tmp1) {
		    i__ = jj;
		    tmp1 = w[jj];
		}
	    }

	    if (i__ != 0) {
		itmp1 = iwork[indibl + i__ - 1];
		w[i__] = w[j];
		iwork[indibl + i__ - 1] = iwork[indibl + j - 1];
		w[j] = tmp1;
		iwork[indibl + j - 1] = itmp1;
		dswap_(n, &z__[i__ * z_dim1 + 1], &c__1, &z__[j * z_dim1 + 1], 
			 &c__1);
		if (*info != 0) {
		    itmp1 = ifail[i__];
		    ifail[i__] = ifail[j];
		    ifail[j] = itmp1;
		}
	    }
	}
    }

    return 0;

/*     End of DSBGVX */

} /* dsbgvx_ */
コード例 #17
0
/* Subroutine */ int dla_gerfsx_extended__(integer *prec_type__, integer *
	trans_type__, integer *n, integer *nrhs, doublereal *a, integer *lda, 
	doublereal *af, integer *ldaf, integer *ipiv, logical *colequ, 
	doublereal *c__, doublereal *b, integer *ldb, doublereal *y, integer *
	ldy, doublereal *berr_out__, integer *n_norms__, doublereal *errs_n__,
	 doublereal *errs_c__, doublereal *res, doublereal *ayb, doublereal *
	dy, doublereal *y_tail__, doublereal *rcond, integer *ithresh, 
	doublereal *rthresh, doublereal *dz_ub__, logical *ignore_cwise__, 
	integer *info)
{
    /* System generated locals */
    integer a_dim1, a_offset, af_dim1, af_offset, b_dim1, b_offset, y_dim1, 
	    y_offset, errs_n_dim1, errs_n_offset, errs_c_dim1, errs_c_offset, 
	    i__1, i__2, i__3;
    doublereal d__1, d__2;
    char ch__1[1];

    /* Local variables */
    doublereal dxratmax, dzratmax;
    integer i__, j;
    extern /* Subroutine */ int dla_geamv__(integer *, integer *, integer *, 
	    doublereal *, doublereal *, integer *, doublereal *, integer *, 
	    doublereal *, doublereal *, integer *);
    logical incr_prec__;
    doublereal prev_dz_z__, yk, final_dx_x__;
    extern /* Subroutine */ int dla_wwaddw__(integer *, doublereal *, 
	    doublereal *, doublereal *);
    doublereal final_dz_z__, prevnormdx;
    integer cnt;
    doublereal dyk, eps, incr_thresh__, dx_x__, dz_z__;
    extern /* Subroutine */ int dla_lin_berr__(integer *, integer *, integer *
	    , doublereal *, doublereal *, doublereal *);
    doublereal ymin;
    extern /* Subroutine */ int blas_dgemv_x__(integer *, integer *, integer *
	    , doublereal *, doublereal *, integer *, doublereal *, integer *, 
	    doublereal *, doublereal *, integer *, integer *);
    integer y_prec_state__;
    extern /* Subroutine */ int blas_dgemv2_x__(integer *, integer *, integer 
	    *, doublereal *, doublereal *, integer *, doublereal *, 
	    doublereal *, integer *, doublereal *, doublereal *, integer *, 
	    integer *), dgemv_(char *, integer *, integer *, doublereal *, 
	    doublereal *, integer *, doublereal *, integer *, doublereal *, 
	    doublereal *, integer *), dcopy_(integer *, doublereal *, 
	    integer *, doublereal *, integer *);
    doublereal dxrat, dzrat;
    extern /* Subroutine */ int daxpy_(integer *, doublereal *, doublereal *, 
	    integer *, doublereal *, integer *);
    char trans[1];
    doublereal normx, normy;
    extern doublereal dlamch_(char *);
    extern /* Subroutine */ int dgetrs_(char *, integer *, integer *, 
	    doublereal *, integer *, integer *, doublereal *, integer *, 
	    integer *);
    doublereal normdx;
    extern /* Character */ VOID chla_transtype__(char *, ftnlen, integer *);
    doublereal hugeval;
    integer x_state__, z_state__;


/*     -- LAPACK routine (version 3.2.1)                                 -- */
/*     -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and -- */
/*     -- Jason Riedy of Univ. of California Berkeley.                 -- */
/*     -- April 2009                                                   -- */

/*     -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/*     -- Univ. of California Berkeley and NAG Ltd.                    -- */

/*     .. */
/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  DLA_GERFSX_EXTENDED improves the computed solution to a system of */
/*  linear equations by performing extra-precise iterative refinement */
/*  and provides error bounds and backward error estimates for the solution. */
/*  This subroutine is called by DGERFSX to perform iterative refinement. */
/*  In addition to normwise error bound, the code provides maximum */
/*  componentwise error bound if possible. See comments for ERR_BNDS_NORM */
/*  and ERR_BNDS_COMP for details of the error bounds. Note that this */
/*  subroutine is only resonsible for setting the second fields of */
/*  ERR_BNDS_NORM and ERR_BNDS_COMP. */

/*  Arguments */
/*  ========= */

/*     PREC_TYPE      (input) INTEGER */
/*     Specifies the intermediate precision to be used in refinement. */
/*     The value is defined by ILAPREC(P) where P is a CHARACTER and */
/*     P    = 'S':  Single */
/*          = 'D':  Double */
/*          = 'I':  Indigenous */
/*          = 'X', 'E':  Extra */

/*     TRANS_TYPE     (input) INTEGER */
/*     Specifies the transposition operation on A. */
/*     The value is defined by ILATRANS(T) where T is a CHARACTER and */
/*     T    = 'N':  No transpose */
/*          = 'T':  Transpose */
/*          = 'C':  Conjugate transpose */

/*     N              (input) INTEGER */
/*     The number of linear equations, i.e., the order of the */
/*     matrix A.  N >= 0. */

/*     NRHS           (input) INTEGER */
/*     The number of right-hand-sides, i.e., the number of columns of the */
/*     matrix B. */

/*     A              (input) DOUBLE PRECISION array, dimension (LDA,N) */
/*     On entry, the N-by-N matrix A. */

/*     LDA            (input) INTEGER */
/*     The leading dimension of the array A.  LDA >= max(1,N). */

/*     AF             (input) DOUBLE PRECISION array, dimension (LDAF,N) */
/*     The factors L and U from the factorization */
/*     A = P*L*U as computed by DGETRF. */

/*     LDAF           (input) INTEGER */
/*     The leading dimension of the array AF.  LDAF >= max(1,N). */

/*     IPIV           (input) INTEGER array, dimension (N) */
/*     The pivot indices from the factorization A = P*L*U */
/*     as computed by DGETRF; row i of the matrix was interchanged */
/*     with row IPIV(i). */

/*     COLEQU         (input) LOGICAL */
/*     If .TRUE. then column equilibration was done to A before calling */
/*     this routine. This is needed to compute the solution and error */
/*     bounds correctly. */

/*     C              (input) DOUBLE PRECISION  array, dimension (N) */
/*     The column scale factors for A. If COLEQU = .FALSE., C */
/*     is not accessed. If C is input, each element of C should be a power */
/*     of the radix to ensure a reliable solution and error estimates. */
/*     Scaling by powers of the radix does not cause rounding errors unless */
/*     the result underflows or overflows. Rounding errors during scaling */
/*     lead to refining with a matrix that is not equivalent to the */
/*     input matrix, producing error estimates that may not be */
/*     reliable. */

/*     B              (input) DOUBLE PRECISION array, dimension (LDB,NRHS) */
/*     The right-hand-side matrix B. */

/*     LDB            (input) INTEGER */
/*     The leading dimension of the array B.  LDB >= max(1,N). */

/*     Y              (input/output) DOUBLE PRECISION array, dimension */
/*                    (LDY,NRHS) */
/*     On entry, the solution matrix X, as computed by DGETRS. */
/*     On exit, the improved solution matrix Y. */

/*     LDY            (input) INTEGER */
/*     The leading dimension of the array Y.  LDY >= max(1,N). */

/*     BERR_OUT       (output) DOUBLE PRECISION array, dimension (NRHS) */
/*     On exit, BERR_OUT(j) contains the componentwise relative backward */
/*     error for right-hand-side j from the formula */
/*         max(i) ( abs(RES(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) ) */
/*     where abs(Z) is the componentwise absolute value of the matrix */
/*     or vector Z. This is computed by DLA_LIN_BERR. */

/*     N_NORMS        (input) INTEGER */
/*     Determines which error bounds to return (see ERR_BNDS_NORM */
/*     and ERR_BNDS_COMP). */
/*     If N_NORMS >= 1 return normwise error bounds. */
/*     If N_NORMS >= 2 return componentwise error bounds. */

/*     ERR_BNDS_NORM  (input/output) DOUBLE PRECISION array, dimension */
/*                    (NRHS, N_ERR_BNDS) */
/*     For each right-hand side, this array contains information about */
/*     various error bounds and condition numbers corresponding to the */
/*     normwise relative error, which is defined as follows: */

/*     Normwise relative error in the ith solution vector: */
/*             max_j (abs(XTRUE(j,i) - X(j,i))) */
/*            ------------------------------ */
/*                  max_j abs(X(j,i)) */

/*     The array is indexed by the type of error information as described */
/*     below. There currently are up to three pieces of information */
/*     returned. */

/*     The first index in ERR_BNDS_NORM(i,:) corresponds to the ith */
/*     right-hand side. */

/*     The second index in ERR_BNDS_NORM(:,err) contains the following */
/*     three fields: */
/*     err = 1 "Trust/don't trust" boolean. Trust the answer if the */
/*              reciprocal condition number is less than the threshold */
/*              sqrt(n) * slamch('Epsilon'). */

/*     err = 2 "Guaranteed" error bound: The estimated forward error, */
/*              almost certainly within a factor of 10 of the true error */
/*              so long as the next entry is greater than the threshold */
/*              sqrt(n) * slamch('Epsilon'). This error bound should only */
/*              be trusted if the previous boolean is true. */

/*     err = 3  Reciprocal condition number: Estimated normwise */
/*              reciprocal condition number.  Compared with the threshold */
/*              sqrt(n) * slamch('Epsilon') to determine if the error */
/*              estimate is "guaranteed". These reciprocal condition */
/*              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some */
/*              appropriately scaled matrix Z. */
/*              Let Z = S*A, where S scales each row by a power of the */
/*              radix so all absolute row sums of Z are approximately 1. */

/*     This subroutine is only responsible for setting the second field */
/*     above. */
/*     See Lapack Working Note 165 for further details and extra */
/*     cautions. */

/*     ERR_BNDS_COMP  (input/output) DOUBLE PRECISION array, dimension */
/*                    (NRHS, N_ERR_BNDS) */
/*     For each right-hand side, this array contains information about */
/*     various error bounds and condition numbers corresponding to the */
/*     componentwise relative error, which is defined as follows: */

/*     Componentwise relative error in the ith solution vector: */
/*                    abs(XTRUE(j,i) - X(j,i)) */
/*             max_j ---------------------- */
/*                         abs(X(j,i)) */

/*     The array is indexed by the right-hand side i (on which the */
/*     componentwise relative error depends), and the type of error */
/*     information as described below. There currently are up to three */
/*     pieces of information returned for each right-hand side. If */
/*     componentwise accuracy is not requested (PARAMS(3) = 0.0), then */
/*     ERR_BNDS_COMP is not accessed.  If N_ERR_BNDS .LT. 3, then at most */
/*     the first (:,N_ERR_BNDS) entries are returned. */

/*     The first index in ERR_BNDS_COMP(i,:) corresponds to the ith */
/*     right-hand side. */

/*     The second index in ERR_BNDS_COMP(:,err) contains the following */
/*     three fields: */
/*     err = 1 "Trust/don't trust" boolean. Trust the answer if the */
/*              reciprocal condition number is less than the threshold */
/*              sqrt(n) * slamch('Epsilon'). */

/*     err = 2 "Guaranteed" error bound: The estimated forward error, */
/*              almost certainly within a factor of 10 of the true error */
/*              so long as the next entry is greater than the threshold */
/*              sqrt(n) * slamch('Epsilon'). This error bound should only */
/*              be trusted if the previous boolean is true. */

/*     err = 3  Reciprocal condition number: Estimated componentwise */
/*              reciprocal condition number.  Compared with the threshold */
/*              sqrt(n) * slamch('Epsilon') to determine if the error */
/*              estimate is "guaranteed". These reciprocal condition */
/*              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some */
/*              appropriately scaled matrix Z. */
/*              Let Z = S*(A*diag(x)), where x is the solution for the */
/*              current right-hand side and S scales each row of */
/*              A*diag(x) by a power of the radix so all absolute row */
/*              sums of Z are approximately 1. */

/*     This subroutine is only responsible for setting the second field */
/*     above. */
/*     See Lapack Working Note 165 for further details and extra */
/*     cautions. */

/*     RES            (input) DOUBLE PRECISION array, dimension (N) */
/*     Workspace to hold the intermediate residual. */

/*     AYB            (input) DOUBLE PRECISION array, dimension (N) */
/*     Workspace. This can be the same workspace passed for Y_TAIL. */

/*     DY             (input) DOUBLE PRECISION array, dimension (N) */
/*     Workspace to hold the intermediate solution. */

/*     Y_TAIL         (input) DOUBLE PRECISION array, dimension (N) */
/*     Workspace to hold the trailing bits of the intermediate solution. */

/*     RCOND          (input) DOUBLE PRECISION */
/*     Reciprocal scaled condition number.  This is an estimate of the */
/*     reciprocal Skeel condition number of the matrix A after */
/*     equilibration (if done).  If this is less than the machine */
/*     precision (in particular, if it is zero), the matrix is singular */
/*     to working precision.  Note that the error may still be small even */
/*     if this number is very small and the matrix appears ill- */
/*     conditioned. */

/*     ITHRESH        (input) INTEGER */
/*     The maximum number of residual computations allowed for */
/*     refinement. The default is 10. For 'aggressive' set to 100 to */
/*     permit convergence using approximate factorizations or */
/*     factorizations other than LU. If the factorization uses a */
/*     technique other than Gaussian elimination, the guarantees in */
/*     ERR_BNDS_NORM and ERR_BNDS_COMP may no longer be trustworthy. */

/*     RTHRESH        (input) DOUBLE PRECISION */
/*     Determines when to stop refinement if the error estimate stops */
/*     decreasing. Refinement will stop when the next solution no longer */
/*     satisfies norm(dx_{i+1}) < RTHRESH * norm(dx_i) where norm(Z) is */
/*     the infinity norm of Z. RTHRESH satisfies 0 < RTHRESH <= 1. The */
/*     default value is 0.5. For 'aggressive' set to 0.9 to permit */
/*     convergence on extremely ill-conditioned matrices. See LAWN 165 */
/*     for more details. */

/*     DZ_UB          (input) DOUBLE PRECISION */
/*     Determines when to start considering componentwise convergence. */
/*     Componentwise convergence is only considered after each component */
/*     of the solution Y is stable, which we definte as the relative */
/*     change in each component being less than DZ_UB. The default value */
/*     is 0.25, requiring the first bit to be stable. See LAWN 165 for */
/*     more details. */

/*     IGNORE_CWISE   (input) LOGICAL */
/*     If .TRUE. then ignore componentwise convergence. Default value */
/*     is .FALSE.. */

/*     INFO           (output) INTEGER */
/*       = 0:  Successful exit. */
/*       < 0:  if INFO = -i, the ith argument to DGETRS had an illegal */
/*             value */

/*  ===================================================================== */

/*     .. Local Scalars .. */
/*     .. */
/*     .. Parameters .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

    /* Parameter adjustments */
    errs_c_dim1 = *nrhs;
    errs_c_offset = 1 + errs_c_dim1;
    errs_c__ -= errs_c_offset;
    errs_n_dim1 = *nrhs;
    errs_n_offset = 1 + errs_n_dim1;
    errs_n__ -= errs_n_offset;
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    af_dim1 = *ldaf;
    af_offset = 1 + af_dim1;
    af -= af_offset;
    --ipiv;
    --c__;
    b_dim1 = *ldb;
    b_offset = 1 + b_dim1;
    b -= b_offset;
    y_dim1 = *ldy;
    y_offset = 1 + y_dim1;
    y -= y_offset;
    --berr_out__;
    --res;
    --ayb;
    --dy;
    --y_tail__;

    /* Function Body */
    if (*info != 0) {
	return 0;
    }
    chla_transtype__(ch__1, (ftnlen)1, trans_type__);
    *(unsigned char *)trans = *(unsigned char *)&ch__1[0];
    eps = dlamch_("Epsilon");
    hugeval = dlamch_("Overflow");
/*     Force HUGEVAL to Inf */
    hugeval *= hugeval;
/*     Using HUGEVAL may lead to spurious underflows. */
    incr_thresh__ = (doublereal) (*n) * eps;

    i__1 = *nrhs;
    for (j = 1; j <= i__1; ++j) {
	y_prec_state__ = 1;
	if (y_prec_state__ == 2) {
	    i__2 = *n;
	    for (i__ = 1; i__ <= i__2; ++i__) {
		y_tail__[i__] = 0.;
	    }
	}
	dxrat = 0.;
	dxratmax = 0.;
	dzrat = 0.;
	dzratmax = 0.;
	final_dx_x__ = hugeval;
	final_dz_z__ = hugeval;
	prevnormdx = hugeval;
	prev_dz_z__ = hugeval;
	dz_z__ = hugeval;
	dx_x__ = hugeval;
	x_state__ = 1;
	z_state__ = 0;
	incr_prec__ = FALSE_;
	i__2 = *ithresh;
	for (cnt = 1; cnt <= i__2; ++cnt) {

/*         Compute residual RES = B_s - op(A_s) * Y, */
/*             op(A) = A, A**T, or A**H depending on TRANS (and type). */

	    dcopy_(n, &b[j * b_dim1 + 1], &c__1, &res[1], &c__1);
	    if (y_prec_state__ == 0) {
		dgemv_(trans, n, n, &c_b6, &a[a_offset], lda, &y[j * y_dim1 + 
			1], &c__1, &c_b8, &res[1], &c__1);
	    } else if (y_prec_state__ == 1) {
		blas_dgemv_x__(trans_type__, n, n, &c_b6, &a[a_offset], lda, &
			y[j * y_dim1 + 1], &c__1, &c_b8, &res[1], &c__1, 
			prec_type__);
	    } else {
		blas_dgemv2_x__(trans_type__, n, n, &c_b6, &a[a_offset], lda, 
			&y[j * y_dim1 + 1], &y_tail__[1], &c__1, &c_b8, &res[
			1], &c__1, prec_type__);
	    }
/*        XXX: RES is no longer needed. */
	    dcopy_(n, &res[1], &c__1, &dy[1], &c__1);
	    dgetrs_(trans, n, &c__1, &af[af_offset], ldaf, &ipiv[1], &dy[1], 
		    n, info);

/*         Calculate relative changes DX_X, DZ_Z and ratios DXRAT, DZRAT. */

	    normx = 0.;
	    normy = 0.;
	    normdx = 0.;
	    dz_z__ = 0.;
	    ymin = hugeval;

	    i__3 = *n;
	    for (i__ = 1; i__ <= i__3; ++i__) {
		yk = (d__1 = y[i__ + j * y_dim1], abs(d__1));
		dyk = (d__1 = dy[i__], abs(d__1));
		if (yk != 0.) {
/* Computing MAX */
		    d__1 = dz_z__, d__2 = dyk / yk;
		    dz_z__ = max(d__1,d__2);
		} else if (dyk != 0.) {
		    dz_z__ = hugeval;
		}
		ymin = min(ymin,yk);
		normy = max(normy,yk);
		if (*colequ) {
/* Computing MAX */
		    d__1 = normx, d__2 = yk * c__[i__];
		    normx = max(d__1,d__2);
/* Computing MAX */
		    d__1 = normdx, d__2 = dyk * c__[i__];
		    normdx = max(d__1,d__2);
		} else {
		    normx = normy;
		    normdx = max(normdx,dyk);
		}
	    }
	    if (normx != 0.) {
		dx_x__ = normdx / normx;
	    } else if (normdx == 0.) {
		dx_x__ = 0.;
	    } else {
		dx_x__ = hugeval;
	    }
	    dxrat = normdx / prevnormdx;
	    dzrat = dz_z__ / prev_dz_z__;

/*         Check termination criteria */

	    if (! (*ignore_cwise__) && ymin * *rcond < incr_thresh__ * normy 
		    && y_prec_state__ < 2) {
		incr_prec__ = TRUE_;
	    }
	    if (x_state__ == 3 && dxrat <= *rthresh) {
		x_state__ = 1;
	    }
	    if (x_state__ == 1) {
		if (dx_x__ <= eps) {
		    x_state__ = 2;
		} else if (dxrat > *rthresh) {
		    if (y_prec_state__ != 2) {
			incr_prec__ = TRUE_;
		    } else {
			x_state__ = 3;
		    }
		} else {
		    if (dxrat > dxratmax) {
			dxratmax = dxrat;
		    }
		}
		if (x_state__ > 1) {
		    final_dx_x__ = dx_x__;
		}
	    }
	    if (z_state__ == 0 && dz_z__ <= *dz_ub__) {
		z_state__ = 1;
	    }
	    if (z_state__ == 3 && dzrat <= *rthresh) {
		z_state__ = 1;
	    }
	    if (z_state__ == 1) {
		if (dz_z__ <= eps) {
		    z_state__ = 2;
		} else if (dz_z__ > *dz_ub__) {
		    z_state__ = 0;
		    dzratmax = 0.;
		    final_dz_z__ = hugeval;
		} else if (dzrat > *rthresh) {
		    if (y_prec_state__ != 2) {
			incr_prec__ = TRUE_;
		    } else {
			z_state__ = 3;
		    }
		} else {
		    if (dzrat > dzratmax) {
			dzratmax = dzrat;
		    }
		}
		if (z_state__ > 1) {
		    final_dz_z__ = dz_z__;
		}
	    }

/*           Exit if both normwise and componentwise stopped working, */
/*           but if componentwise is unstable, let it go at least two */
/*           iterations. */

	    if (x_state__ != 1) {
		if (*ignore_cwise__) {
		    goto L666;
		}
		if (z_state__ == 3 || z_state__ == 2) {
		    goto L666;
		}
		if (z_state__ == 0 && cnt > 1) {
		    goto L666;
		}
	    }
	    if (incr_prec__) {
		incr_prec__ = FALSE_;
		++y_prec_state__;
		i__3 = *n;
		for (i__ = 1; i__ <= i__3; ++i__) {
		    y_tail__[i__] = 0.;
		}
	    }
	    prevnormdx = normdx;
	    prev_dz_z__ = dz_z__;

/*           Update soluton. */

	    if (y_prec_state__ < 2) {
		daxpy_(n, &c_b8, &dy[1], &c__1, &y[j * y_dim1 + 1], &c__1);
	    } else {
		dla_wwaddw__(n, &y[j * y_dim1 + 1], &y_tail__[1], &dy[1]);
	    }
	}
/*        Target of "IF (Z_STOP .AND. X_STOP)".  Sun's f77 won't EXIT. */
L666:

/*     Set final_* when cnt hits ithresh. */

	if (x_state__ == 1) {
	    final_dx_x__ = dx_x__;
	}
	if (z_state__ == 1) {
	    final_dz_z__ = dz_z__;
	}

/*     Compute error bounds */

	if (*n_norms__ >= 1) {
	    errs_n__[j + (errs_n_dim1 << 1)] = final_dx_x__ / (1 - dxratmax);
	}
	if (*n_norms__ >= 2) {
	    errs_c__[j + (errs_c_dim1 << 1)] = final_dz_z__ / (1 - dzratmax);
	}

/*     Compute componentwise relative backward error from formula */
/*         max(i) ( abs(R(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) ) */
/*     where abs(Z) is the componentwise absolute value of the matrix */
/*     or vector Z. */

/*         Compute residual RES = B_s - op(A_s) * Y, */
/*             op(A) = A, A**T, or A**H depending on TRANS (and type). */

	dcopy_(n, &b[j * b_dim1 + 1], &c__1, &res[1], &c__1);
	dgemv_(trans, n, n, &c_b6, &a[a_offset], lda, &y[j * y_dim1 + 1], &
		c__1, &c_b8, &res[1], &c__1);
	i__2 = *n;
	for (i__ = 1; i__ <= i__2; ++i__) {
	    ayb[i__] = (d__1 = b[i__ + j * b_dim1], abs(d__1));
	}

/*     Compute abs(op(A_s))*abs(Y) + abs(B_s). */

	dla_geamv__(trans_type__, n, n, &c_b8, &a[a_offset], lda, &y[j * 
		y_dim1 + 1], &c__1, &c_b8, &ayb[1], &c__1);
	dla_lin_berr__(n, n, &c__1, &res[1], &ayb[1], &berr_out__[j]);

/*     End of loop for each RHS. */

    }

    return 0;
} /* dla_gerfsx_extended__ */
コード例 #18
0
ファイル: dtzrqf.c プロジェクト: GuillaumeFuchs/Ensimag
 int dtzrqf_(int *m, int *n, double *a, int *
	lda, double *tau, int *info)
{
    /* System generated locals */
    int a_dim1, a_offset, i__1, i__2;
    double d__1;

    /* Local variables */
    int i__, k, m1;
    extern  int dger_(int *, int *, double *, 
	    double *, int *, double *, int *, double *, 
	    int *), dgemv_(char *, int *, int *, double *, 
	    double *, int *, double *, int *, double *, 
	    double *, int *), dcopy_(int *, double *, 
	    int *, double *, int *), daxpy_(int *, double 
	    *, double *, int *, double *, int *), dlarfp_(
	    int *, double *, double *, int *, double *), 
	    xerbla_(char *, int *);


/*  -- LAPACK routine (version 3.2) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  This routine is deprecated and has been replaced by routine DTZRZF. */

/*  DTZRQF reduces the M-by-N ( M<=N ) float upper trapezoidal matrix A */
/*  to upper triangular form by means of orthogonal transformations. */

/*  The upper trapezoidal matrix A is factored as */

/*     A = ( R  0 ) * Z, */

/*  where Z is an N-by-N orthogonal matrix and R is an M-by-M upper */
/*  triangular matrix. */

/*  Arguments */
/*  ========= */

/*  M       (input) INTEGER */
/*          The number of rows of the matrix A.  M >= 0. */

/*  N       (input) INTEGER */
/*          The number of columns of the matrix A.  N >= M. */

/*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N) */
/*          On entry, the leading M-by-N upper trapezoidal part of the */
/*          array A must contain the matrix to be factorized. */
/*          On exit, the leading M-by-M upper triangular part of A */
/*          contains the upper triangular matrix R, and elements M+1 to */
/*          N of the first M rows of A, with the array TAU, represent the */
/*          orthogonal matrix Z as a product of M elementary reflectors. */

/*  LDA     (input) INTEGER */
/*          The leading dimension of the array A.  LDA >= MAX(1,M). */

/*  TAU     (output) DOUBLE PRECISION array, dimension (M) */
/*          The scalar factors of the elementary reflectors. */

/*  INFO    (output) INTEGER */
/*          = 0:  successful exit */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value */

/*  Further Details */
/*  =============== */

/*  The factorization is obtained by Householder's method.  The kth */
/*  transformation matrix, Z( k ), which is used to introduce zeros into */
/*  the ( m - k + 1 )th row of A, is given in the form */

/*     Z( k ) = ( I     0   ), */
/*              ( 0  T( k ) ) */

/*  where */

/*     T( k ) = I - tau*u( k )*u( k )',   u( k ) = (   1    ), */
/*                                                 (   0    ) */
/*                                                 ( z( k ) ) */

/*  tau is a scalar and z( k ) is an ( n - m ) element vector. */
/*  tau and z( k ) are chosen to annihilate the elements of the kth row */
/*  of X. */

/*  The scalar tau is returned in the kth element of TAU and the vector */
/*  u( k ) in the kth row of A, such that the elements of z( k ) are */
/*  in  a( k, m + 1 ), ..., a( k, n ). The elements of R are returned in */
/*  the upper triangular part of A. */

/*  Z is given by */

/*     Z =  Z( 1 ) * Z( 2 ) * ... * Z( m ). */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input parameters. */

    /* Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    --tau;

    /* Function Body */
    *info = 0;
    if (*m < 0) {
	*info = -1;
    } else if (*n < *m) {
	*info = -2;
    } else if (*lda < MAX(1,*m)) {
	*info = -4;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("DTZRQF", &i__1);
	return 0;
    }

/*     Perform the factorization. */

    if (*m == 0) {
	return 0;
    }
    if (*m == *n) {
	i__1 = *n;
	for (i__ = 1; i__ <= i__1; ++i__) {
	    tau[i__] = 0.;
/* L10: */
	}
    } else {
/* Computing MIN */
	i__1 = *m + 1;
	m1 = MIN(i__1,*n);
	for (k = *m; k >= 1; --k) {

/*           Use a Householder reflection to zero the kth row of A. */
/*           First set up the reflection. */

	    i__1 = *n - *m + 1;
	    dlarfp_(&i__1, &a[k + k * a_dim1], &a[k + m1 * a_dim1], lda, &tau[
		    k]);

	    if (tau[k] != 0. && k > 1) {

/*              We now perform the operation  A := A*P( k ). */

/*              Use the first ( k - 1 ) elements of TAU to store  a( k ), */
/*              where  a( k ) consists of the first ( k - 1 ) elements of */
/*              the  kth column  of  A.  Also  let  B  denote  the  first */
/*              ( k - 1 ) rows of the last ( n - m ) columns of A. */

		i__1 = k - 1;
		dcopy_(&i__1, &a[k * a_dim1 + 1], &c__1, &tau[1], &c__1);

/*              Form   w = a( k ) + B*z( k )  in TAU. */

		i__1 = k - 1;
		i__2 = *n - *m;
		dgemv_("No transpose", &i__1, &i__2, &c_b8, &a[m1 * a_dim1 + 
			1], lda, &a[k + m1 * a_dim1], lda, &c_b8, &tau[1], &
			c__1);

/*              Now form  a( k ) := a( k ) - tau*w */
/*              and       B      := B      - tau*w*z( k )'. */

		i__1 = k - 1;
		d__1 = -tau[k];
		daxpy_(&i__1, &d__1, &tau[1], &c__1, &a[k * a_dim1 + 1], &
			c__1);
		i__1 = k - 1;
		i__2 = *n - *m;
		d__1 = -tau[k];
		dger_(&i__1, &i__2, &d__1, &tau[1], &c__1, &a[k + m1 * a_dim1]
, lda, &a[m1 * a_dim1 + 1], lda);
	    }
/* L20: */
	}
    }

    return 0;

/*     End of DTZRQF */

} /* dtzrqf_ */
コード例 #19
0
ファイル: dlaed0.c プロジェクト: duforetn/PCAdapt
/* Subroutine */ int dlaed0_(integer *icompq, integer *qsiz, integer *n, 
	doublereal *d__, doublereal *e, doublereal *q, integer *ldq, 
	doublereal *qstore, integer *ldqs, doublereal *work, integer *iwork, 
	integer *info)
{
    /* System generated locals */
    integer q_dim1, q_offset, qstore_dim1, qstore_offset, i__1, i__2;
    doublereal d__1;

    /* Builtin functions */
    double log(doublereal);
    integer pow_ii(integer *, integer *);

    /* Local variables */
    static integer i__, j, k, iq, lgn, msd2, smm1, spm1, spm2;
    static doublereal temp;
    static integer curr;
    extern /* Subroutine */ int dgemm_(char *, char *, integer *, integer *, 
	    integer *, doublereal *, doublereal *, integer *, doublereal *, 
	    integer *, doublereal *, doublereal *, integer *);
    static integer iperm;
    extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *, 
	    doublereal *, integer *);
    static integer indxq, iwrem;
    extern /* Subroutine */ int dlaed1_(integer *, doublereal *, doublereal *,
	     integer *, integer *, doublereal *, integer *, doublereal *, 
	    integer *, integer *);
    static integer iqptr;
    extern /* Subroutine */ int dlaed7_(integer *, integer *, integer *, 
	    integer *, integer *, integer *, doublereal *, doublereal *, 
	    integer *, integer *, doublereal *, integer *, doublereal *, 
	    integer *, integer *, integer *, integer *, integer *, doublereal 
	    *, doublereal *, integer *, integer *);
    static integer tlvls;
    extern /* Subroutine */ int dlacpy_(char *, integer *, integer *, 
	    doublereal *, integer *, doublereal *, integer *);
    static integer igivcl;
    extern /* Subroutine */ int xerbla_(char *, integer *);
    extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
	    integer *, integer *, ftnlen, ftnlen);
    static integer igivnm, submat, curprb, subpbs, igivpt;
    extern /* Subroutine */ int dsteqr_(char *, integer *, doublereal *, 
	    doublereal *, doublereal *, integer *, doublereal *, integer *);
    static integer curlvl, matsiz, iprmpt, smlsiz;


/*  -- LAPACK routine (version 3.1) --   
       Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..   
       November 2006   


    Purpose   
    =======   

    DLAED0 computes all eigenvalues and corresponding eigenvectors of a   
    symmetric tridiagonal matrix using the divide and conquer method.   

    Arguments   
    =========   

    ICOMPQ  (input) INTEGER   
            = 0:  Compute eigenvalues only.   
            = 1:  Compute eigenvectors of original dense symmetric matrix   
                  also.  On entry, Q contains the orthogonal matrix used   
                  to reduce the original matrix to tridiagonal form.   
            = 2:  Compute eigenvalues and eigenvectors of tridiagonal   
                  matrix.   

    QSIZ   (input) INTEGER   
           The dimension of the orthogonal matrix used to reduce   
           the full matrix to tridiagonal form.  QSIZ >= N if ICOMPQ = 1.   

    N      (input) INTEGER   
           The dimension of the symmetric tridiagonal matrix.  N >= 0.   

    D      (input/output) DOUBLE PRECISION array, dimension (N)   
           On entry, the main diagonal of the tridiagonal matrix.   
           On exit, its eigenvalues.   

    E      (input) DOUBLE PRECISION array, dimension (N-1)   
           The off-diagonal elements of the tridiagonal matrix.   
           On exit, E has been destroyed.   

    Q      (input/output) DOUBLE PRECISION array, dimension (LDQ, N)   
           On entry, Q must contain an N-by-N orthogonal matrix.   
           If ICOMPQ = 0    Q is not referenced.   
           If ICOMPQ = 1    On entry, Q is a subset of the columns of the   
                            orthogonal matrix used to reduce the full   
                            matrix to tridiagonal form corresponding to   
                            the subset of the full matrix which is being   
                            decomposed at this time.   
           If ICOMPQ = 2    On entry, Q will be the identity matrix.   
                            On exit, Q contains the eigenvectors of the   
                            tridiagonal matrix.   

    LDQ    (input) INTEGER   
           The leading dimension of the array Q.  If eigenvectors are   
           desired, then  LDQ >= max(1,N).  In any case,  LDQ >= 1.   

    QSTORE (workspace) DOUBLE PRECISION array, dimension (LDQS, N)   
           Referenced only when ICOMPQ = 1.  Used to store parts of   
           the eigenvector matrix when the updating matrix multiplies   
           take place.   

    LDQS   (input) INTEGER   
           The leading dimension of the array QSTORE.  If ICOMPQ = 1,   
           then  LDQS >= max(1,N).  In any case,  LDQS >= 1.   

    WORK   (workspace) DOUBLE PRECISION array,   
           If ICOMPQ = 0 or 1, the dimension of WORK must be at least   
                       1 + 3*N + 2*N*lg N + 2*N**2   
                       ( lg( N ) = smallest integer k   
                                   such that 2^k >= N )   
           If ICOMPQ = 2, the dimension of WORK must be at least   
                       4*N + N**2.   

    IWORK  (workspace) INTEGER array,   
           If ICOMPQ = 0 or 1, the dimension of IWORK must be at least   
                          6 + 6*N + 5*N*lg N.   
                          ( lg( N ) = smallest integer k   
                                      such that 2^k >= N )   
           If ICOMPQ = 2, the dimension of IWORK must be at least   
                          3 + 5*N.   

    INFO   (output) INTEGER   
            = 0:  successful exit.   
            < 0:  if INFO = -i, the i-th argument had an illegal value.   
            > 0:  The algorithm failed to compute an eigenvalue while   
                  working on the submatrix lying in rows and columns   
                  INFO/(N+1) through mod(INFO,N+1).   

    Further Details   
    ===============   

    Based on contributions by   
       Jeff Rutter, Computer Science Division, University of California   
       at Berkeley, USA   

    =====================================================================   


       Test the input parameters.   

       Parameter adjustments */
    --d__;
    --e;
    q_dim1 = *ldq;
    q_offset = 1 + q_dim1;
    q -= q_offset;
    qstore_dim1 = *ldqs;
    qstore_offset = 1 + qstore_dim1;
    qstore -= qstore_offset;
    --work;
    --iwork;

    /* Function Body */
    *info = 0;

    if (*icompq < 0 || *icompq > 2) {
	*info = -1;
    } else if (*icompq == 1 && *qsiz < max(0,*n)) {
	*info = -2;
    } else if (*n < 0) {
	*info = -3;
    } else if (*ldq < max(1,*n)) {
	*info = -7;
    } else if (*ldqs < max(1,*n)) {
	*info = -9;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("DLAED0", &i__1);
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0) {
	return 0;
    }

    smlsiz = ilaenv_(&c__9, "DLAED0", " ", &c__0, &c__0, &c__0, &c__0, (
            ftnlen)6, (ftnlen)1);

/*     Determine the size and placement of the submatrices, and save in   
       the leading elements of IWORK. */

    iwork[1] = *n;
    subpbs = 1;
    tlvls = 0;
L10:
    if (iwork[subpbs] > smlsiz) {
	for (j = subpbs; j >= 1; --j) {
	    iwork[j * 2] = (iwork[j] + 1) / 2;
	    iwork[(j << 1) - 1] = iwork[j] / 2;
/* L20: */
	}
	++tlvls;
	subpbs <<= 1;
	goto L10;
    }
    i__1 = subpbs;
    for (j = 2; j <= i__1; ++j) {
	iwork[j] += iwork[j - 1];
/* L30: */
    }

/*     Divide the matrix into SUBPBS submatrices of size at most SMLSIZ+1   
       using rank-1 modifications (cuts). */

    spm1 = subpbs - 1;
    i__1 = spm1;
    for (i__ = 1; i__ <= i__1; ++i__) {
	submat = iwork[i__] + 1;
	smm1 = submat - 1;
	d__[smm1] -= (d__1 = e[smm1], abs(d__1));
	d__[submat] -= (d__1 = e[smm1], abs(d__1));
/* L40: */
    }

    indxq = (*n << 2) + 3;
    if (*icompq != 2) {

/*        Set up workspaces for eigenvalues only/accumulate new vectors   
          routine */

	temp = log((doublereal) (*n)) / log(2.);
	lgn = (integer) temp;
	if (pow_ii(&c__2, &lgn) < *n) {
	    ++lgn;
	}
	if (pow_ii(&c__2, &lgn) < *n) {
	    ++lgn;
	}
	iprmpt = indxq + *n + 1;
	iperm = iprmpt + *n * lgn;
	iqptr = iperm + *n * lgn;
	igivpt = iqptr + *n + 2;
	igivcl = igivpt + *n * lgn;

	igivnm = 1;
	iq = igivnm + (*n << 1) * lgn;
/* Computing 2nd power */
	i__1 = *n;
	iwrem = iq + i__1 * i__1 + 1;

/*        Initialize pointers */

	i__1 = subpbs;
	for (i__ = 0; i__ <= i__1; ++i__) {
	    iwork[iprmpt + i__] = 1;
	    iwork[igivpt + i__] = 1;
/* L50: */
	}
	iwork[iqptr] = 1;
    }

/*     Solve each submatrix eigenproblem at the bottom of the divide and   
       conquer tree. */

    curr = 0;
    i__1 = spm1;
    for (i__ = 0; i__ <= i__1; ++i__) {
	if (i__ == 0) {
	    submat = 1;
	    matsiz = iwork[1];
	} else {
	    submat = iwork[i__] + 1;
	    matsiz = iwork[i__ + 1] - iwork[i__];
	}
	if (*icompq == 2) {
	    dsteqr_("I", &matsiz, &d__[submat], &e[submat], &q[submat + 
		    submat * q_dim1], ldq, &work[1], info);
	    if (*info != 0) {
		goto L130;
	    }
	} else {
	    dsteqr_("I", &matsiz, &d__[submat], &e[submat], &work[iq - 1 + 
		    iwork[iqptr + curr]], &matsiz, &work[1], info);
	    if (*info != 0) {
		goto L130;
	    }
	    if (*icompq == 1) {
		dgemm_("N", "N", qsiz, &matsiz, &matsiz, &c_b23, &q[submat * 
			q_dim1 + 1], ldq, &work[iq - 1 + iwork[iqptr + curr]], 
			 &matsiz, &c_b24, &qstore[submat * qstore_dim1 + 1], 
			ldqs);
	    }
/* Computing 2nd power */
	    i__2 = matsiz;
	    iwork[iqptr + curr + 1] = iwork[iqptr + curr] + i__2 * i__2;
	    ++curr;
	}
	k = 1;
	i__2 = iwork[i__ + 1];
	for (j = submat; j <= i__2; ++j) {
	    iwork[indxq + j] = k;
	    ++k;
/* L60: */
	}
/* L70: */
    }

/*     Successively merge eigensystems of adjacent submatrices   
       into eigensystem for the corresponding larger matrix.   

       while ( SUBPBS > 1 ) */

    curlvl = 1;
L80:
    if (subpbs > 1) {
	spm2 = subpbs - 2;
	i__1 = spm2;
	for (i__ = 0; i__ <= i__1; i__ += 2) {
	    if (i__ == 0) {
		submat = 1;
		matsiz = iwork[2];
		msd2 = iwork[1];
		curprb = 0;
	    } else {
		submat = iwork[i__] + 1;
		matsiz = iwork[i__ + 2] - iwork[i__];
		msd2 = matsiz / 2;
		++curprb;
	    }

/*     Merge lower order eigensystems (of size MSD2 and MATSIZ - MSD2)   
       into an eigensystem of size MATSIZ.   
       DLAED1 is used only for the full eigensystem of a tridiagonal   
       matrix.   
       DLAED7 handles the cases in which eigenvalues only or eigenvalues   
       and eigenvectors of a full symmetric matrix (which was reduced to   
       tridiagonal form) are desired. */

	    if (*icompq == 2) {
		dlaed1_(&matsiz, &d__[submat], &q[submat + submat * q_dim1], 
			ldq, &iwork[indxq + submat], &e[submat + msd2 - 1], &
			msd2, &work[1], &iwork[subpbs + 1], info);
	    } else {
		dlaed7_(icompq, &matsiz, qsiz, &tlvls, &curlvl, &curprb, &d__[
			submat], &qstore[submat * qstore_dim1 + 1], ldqs, &
			iwork[indxq + submat], &e[submat + msd2 - 1], &msd2, &
			work[iq], &iwork[iqptr], &iwork[iprmpt], &iwork[iperm]
			, &iwork[igivpt], &iwork[igivcl], &work[igivnm], &
			work[iwrem], &iwork[subpbs + 1], info);
	    }
	    if (*info != 0) {
		goto L130;
	    }
	    iwork[i__ / 2 + 1] = iwork[i__ + 2];
/* L90: */
	}
	subpbs /= 2;
	++curlvl;
	goto L80;
    }

/*     end while   

       Re-merge the eigenvalues/vectors which were deflated at the final   
       merge step. */

    if (*icompq == 1) {
	i__1 = *n;
	for (i__ = 1; i__ <= i__1; ++i__) {
	    j = iwork[indxq + i__];
	    work[i__] = d__[j];
	    dcopy_(qsiz, &qstore[j * qstore_dim1 + 1], &c__1, &q[i__ * q_dim1 
		    + 1], &c__1);
/* L100: */
	}
	dcopy_(n, &work[1], &c__1, &d__[1], &c__1);
    } else if (*icompq == 2) {
	i__1 = *n;
	for (i__ = 1; i__ <= i__1; ++i__) {
	    j = iwork[indxq + i__];
	    work[i__] = d__[j];
	    dcopy_(n, &q[j * q_dim1 + 1], &c__1, &work[*n * i__ + 1], &c__1);
/* L110: */
	}
	dcopy_(n, &work[1], &c__1, &d__[1], &c__1);
	dlacpy_("A", n, n, &work[*n + 1], n, &q[q_offset], ldq);
    } else {
	i__1 = *n;
	for (i__ = 1; i__ <= i__1; ++i__) {
	    j = iwork[indxq + i__];
	    work[i__] = d__[j];
/* L120: */
	}
	dcopy_(n, &work[1], &c__1, &d__[1], &c__1);
    }
    goto L140;

L130:
    *info = submat * (*n + 1) + submat + matsiz - 1;

L140:
    return 0;

/*     End of DLAED0 */

} /* dlaed0_ */
コード例 #20
0
/* Subroutine */ int zdrvpt_(logical *dotype, integer *nn, integer *nval, 
	integer *nrhs, doublereal *thresh, logical *tsterr, doublecomplex *a, 
	doublereal *d__, doublecomplex *e, doublecomplex *b, doublecomplex *x, 
	 doublecomplex *xact, doublecomplex *work, doublereal *rwork, integer 
	*nout)
{
    /* Initialized data */

    static integer iseedy[4] = { 0,0,0,1 };

    /* Format strings */
    static char fmt_9999[] = "(1x,a,\002, N =\002,i5,\002, type \002,i2,\002"
	    ", test \002,i2,\002, ratio = \002,g12.5)";
    static char fmt_9998[] = "(1x,a,\002, FACT='\002,a1,\002', N =\002,i5"
	    ",\002, type \002,i2,\002, test \002,i2,\002, ratio = \002,g12.5)";

    /* System generated locals */
    integer i__1, i__2, i__3, i__4, i__5;
    doublereal d__1, d__2;

    /* Local variables */
    integer i__, j, k, n;
    doublereal z__[3];
    integer k1, ia, in, kl, ku, ix, nt, lda;
    char fact[1];
    doublereal cond;
    integer mode;
    doublereal dmax__;
    integer imat, info;
    char path[3], dist[1], type__[1];
    integer nrun, ifact;
    integer nfail, iseed[4];
    doublereal rcond;
    integer nimat;
    doublereal anorm;
    integer izero, nerrs;
    logical zerot;
    doublereal rcondc;
    doublereal ainvnm;
    doublereal result[6];

    /* Fortran I/O blocks */
    static cilist io___35 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___38 = { 0, 0, 0, fmt_9998, 0 };



/*  -- LAPACK test routine (version 3.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  ZDRVPT tests ZPTSV and -SVX. */

/*  Arguments */
/*  ========= */

/*  DOTYPE  (input) LOGICAL array, dimension (NTYPES) */
/*          The matrix types to be used for testing.  Matrices of type j */
/*          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = */
/*          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used. */

/*  NN      (input) INTEGER */
/*          The number of values of N contained in the vector NVAL. */

/*  NVAL    (input) INTEGER array, dimension (NN) */
/*          The values of the matrix dimension N. */

/*  NRHS    (input) INTEGER */
/*          The number of right hand side vectors to be generated for */
/*          each linear system. */

/*  THRESH  (input) DOUBLE PRECISION */
/*          The threshold value for the test ratios.  A result is */
/*          included in the output file if RESULT >= THRESH.  To have */
/*          every test ratio printed, use THRESH = 0. */

/*  TSTERR  (input) LOGICAL */
/*          Flag that indicates whether error exits are to be tested. */

/*  A       (workspace) COMPLEX*16 array, dimension (NMAX*2) */

/*  D       (workspace) DOUBLE PRECISION array, dimension (NMAX*2) */

/*  E       (workspace) COMPLEX*16 array, dimension (NMAX*2) */

/*  B       (workspace) COMPLEX*16 array, dimension (NMAX*NRHS) */

/*  X       (workspace) COMPLEX*16 array, dimension (NMAX*NRHS) */

/*  XACT    (workspace) COMPLEX*16 array, dimension (NMAX*NRHS) */

/*  WORK    (workspace) COMPLEX*16 array, dimension */
/*                      (NMAX*max(3,NRHS)) */

/*  RWORK   (workspace) DOUBLE PRECISION array, dimension (NMAX+2*NRHS) */

/*  NOUT    (input) INTEGER */
/*          The unit number for output. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. Local Arrays .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Scalars in Common .. */
/*     .. */
/*     .. Common blocks .. */
/*     .. */
/*     .. Data statements .. */
    /* Parameter adjustments */
    --rwork;
    --work;
    --xact;
    --x;
    --b;
    --e;
    --d__;
    --a;
    --nval;
    --dotype;

    /* Function Body */
/*     .. */
/*     .. Executable Statements .. */

    s_copy(path, "Zomplex precision", (ftnlen)1, (ftnlen)17);
    s_copy(path + 1, "PT", (ftnlen)2, (ftnlen)2);
    nrun = 0;
    nfail = 0;
    nerrs = 0;
    for (i__ = 1; i__ <= 4; ++i__) {
	iseed[i__ - 1] = iseedy[i__ - 1];
/* L10: */
    }

/*     Test the error exits */

    if (*tsterr) {
	zerrvx_(path, nout);
    }
    infoc_1.infot = 0;

    i__1 = *nn;
    for (in = 1; in <= i__1; ++in) {

/*        Do for each value of N in NVAL. */

	n = nval[in];
	lda = max(1,n);
	nimat = 12;
	if (n <= 0) {
	    nimat = 1;
	}

	i__2 = nimat;
	for (imat = 1; imat <= i__2; ++imat) {

/*           Do the tests only if DOTYPE( IMAT ) is true. */

	    if (n > 0 && ! dotype[imat]) {
		goto L110;
	    }

/*           Set up parameters with ZLATB4. */

	    zlatb4_(path, &imat, &n, &n, type__, &kl, &ku, &anorm, &mode, &
		    cond, dist);

	    zerot = imat >= 8 && imat <= 10;
	    if (imat <= 6) {

/*              Type 1-6:  generate a symmetric tridiagonal matrix of */
/*              known condition number in lower triangular band storage. */

		s_copy(srnamc_1.srnamt, "ZLATMS", (ftnlen)32, (ftnlen)6);
		zlatms_(&n, &n, dist, iseed, type__, &rwork[1], &mode, &cond, 
			&anorm, &kl, &ku, "B", &a[1], &c__2, &work[1], &info);

/*              Check the error code from ZLATMS. */

		if (info != 0) {
		    alaerh_(path, "ZLATMS", &info, &c__0, " ", &n, &n, &kl, &
			    ku, &c_n1, &imat, &nfail, &nerrs, nout);
		    goto L110;
		}
		izero = 0;

/*              Copy the matrix to D and E. */

		ia = 1;
		i__3 = n - 1;
		for (i__ = 1; i__ <= i__3; ++i__) {
		    i__4 = i__;
		    i__5 = ia;
		    d__[i__4] = a[i__5].r;
		    i__4 = i__;
		    i__5 = ia + 1;
		    e[i__4].r = a[i__5].r, e[i__4].i = a[i__5].i;
		    ia += 2;
/* L20: */
		}
		if (n > 0) {
		    i__3 = n;
		    i__4 = ia;
		    d__[i__3] = a[i__4].r;
		}
	    } else {

/*              Type 7-12:  generate a diagonally dominant matrix with */
/*              unknown condition number in the vectors D and E. */

		if (! zerot || ! dotype[7]) {

/*                 Let D and E have values from [-1,1]. */

		    dlarnv_(&c__2, iseed, &n, &d__[1]);
		    i__3 = n - 1;
		    zlarnv_(&c__2, iseed, &i__3, &e[1]);

/*                 Make the tridiagonal matrix diagonally dominant. */

		    if (n == 1) {
			d__[1] = abs(d__[1]);
		    } else {
			d__[1] = abs(d__[1]) + z_abs(&e[1]);
			d__[n] = (d__1 = d__[n], abs(d__1)) + z_abs(&e[n - 1])
				;
			i__3 = n - 1;
			for (i__ = 2; i__ <= i__3; ++i__) {
			    d__[i__] = (d__1 = d__[i__], abs(d__1)) + z_abs(&
				    e[i__]) + z_abs(&e[i__ - 1]);
/* L30: */
			}
		    }

/*                 Scale D and E so the maximum element is ANORM. */

		    ix = idamax_(&n, &d__[1], &c__1);
		    dmax__ = d__[ix];
		    d__1 = anorm / dmax__;
		    dscal_(&n, &d__1, &d__[1], &c__1);
		    if (n > 1) {
			i__3 = n - 1;
			d__1 = anorm / dmax__;
			zdscal_(&i__3, &d__1, &e[1], &c__1);
		    }

		} else if (izero > 0) {

/*                 Reuse the last matrix by copying back the zeroed out */
/*                 elements. */

		    if (izero == 1) {
			d__[1] = z__[1];
			if (n > 1) {
			    e[1].r = z__[2], e[1].i = 0.;
			}
		    } else if (izero == n) {
			i__3 = n - 1;
			e[i__3].r = z__[0], e[i__3].i = 0.;
			d__[n] = z__[1];
		    } else {
			i__3 = izero - 1;
			e[i__3].r = z__[0], e[i__3].i = 0.;
			d__[izero] = z__[1];
			i__3 = izero;
			e[i__3].r = z__[2], e[i__3].i = 0.;
		    }
		}

/*              For types 8-10, set one row and column of the matrix to */
/*              zero. */

		izero = 0;
		if (imat == 8) {
		    izero = 1;
		    z__[1] = d__[1];
		    d__[1] = 0.;
		    if (n > 1) {
			z__[2] = e[1].r;
			e[1].r = 0., e[1].i = 0.;
		    }
		} else if (imat == 9) {
		    izero = n;
		    if (n > 1) {
			i__3 = n - 1;
			z__[0] = e[i__3].r;
			i__3 = n - 1;
			e[i__3].r = 0., e[i__3].i = 0.;
		    }
		    z__[1] = d__[n];
		    d__[n] = 0.;
		} else if (imat == 10) {
		    izero = (n + 1) / 2;
		    if (izero > 1) {
			i__3 = izero - 1;
			z__[0] = e[i__3].r;
			i__3 = izero - 1;
			e[i__3].r = 0., e[i__3].i = 0.;
			i__3 = izero;
			z__[2] = e[i__3].r;
			i__3 = izero;
			e[i__3].r = 0., e[i__3].i = 0.;
		    }
		    z__[1] = d__[izero];
		    d__[izero] = 0.;
		}
	    }

/*           Generate NRHS random solution vectors. */

	    ix = 1;
	    i__3 = *nrhs;
	    for (j = 1; j <= i__3; ++j) {
		zlarnv_(&c__2, iseed, &n, &xact[ix]);
		ix += lda;
/* L40: */
	    }

/*           Set the right hand side. */

	    zlaptm_("Lower", &n, nrhs, &c_b24, &d__[1], &e[1], &xact[1], &lda, 
		     &c_b25, &b[1], &lda);

	    for (ifact = 1; ifact <= 2; ++ifact) {
		if (ifact == 1) {
		    *(unsigned char *)fact = 'F';
		} else {
		    *(unsigned char *)fact = 'N';
		}

/*              Compute the condition number for comparison with */
/*              the value returned by ZPTSVX. */

		if (zerot) {
		    if (ifact == 1) {
			goto L100;
		    }
		    rcondc = 0.;

		} else if (ifact == 1) {

/*                 Compute the 1-norm of A. */

		    anorm = zlanht_("1", &n, &d__[1], &e[1]);

		    dcopy_(&n, &d__[1], &c__1, &d__[n + 1], &c__1);
		    if (n > 1) {
			i__3 = n - 1;
			zcopy_(&i__3, &e[1], &c__1, &e[n + 1], &c__1);
		    }

/*                 Factor the matrix A. */

		    zpttrf_(&n, &d__[n + 1], &e[n + 1], &info);

/*                 Use ZPTTRS to solve for one column at a time of */
/*                 inv(A), computing the maximum column sum as we go. */

		    ainvnm = 0.;
		    i__3 = n;
		    for (i__ = 1; i__ <= i__3; ++i__) {
			i__4 = n;
			for (j = 1; j <= i__4; ++j) {
			    i__5 = j;
			    x[i__5].r = 0., x[i__5].i = 0.;
/* L50: */
			}
			i__4 = i__;
			x[i__4].r = 1., x[i__4].i = 0.;
			zpttrs_("Lower", &n, &c__1, &d__[n + 1], &e[n + 1], &
				x[1], &lda, &info);
/* Computing MAX */
			d__1 = ainvnm, d__2 = dzasum_(&n, &x[1], &c__1);
			ainvnm = max(d__1,d__2);
/* L60: */
		    }

/*                 Compute the 1-norm condition number of A. */

		    if (anorm <= 0. || ainvnm <= 0.) {
			rcondc = 1.;
		    } else {
			rcondc = 1. / anorm / ainvnm;
		    }
		}

		if (ifact == 2) {

/*                 --- Test ZPTSV -- */

		    dcopy_(&n, &d__[1], &c__1, &d__[n + 1], &c__1);
		    if (n > 1) {
			i__3 = n - 1;
			zcopy_(&i__3, &e[1], &c__1, &e[n + 1], &c__1);
		    }
		    zlacpy_("Full", &n, nrhs, &b[1], &lda, &x[1], &lda);

/*                 Factor A as L*D*L' and solve the system A*X = B. */

		    s_copy(srnamc_1.srnamt, "ZPTSV ", (ftnlen)32, (ftnlen)6);
		    zptsv_(&n, nrhs, &d__[n + 1], &e[n + 1], &x[1], &lda, &
			    info);

/*                 Check error code from ZPTSV . */

		    if (info != izero) {
			alaerh_(path, "ZPTSV ", &info, &izero, " ", &n, &n, &
				c__1, &c__1, nrhs, &imat, &nfail, &nerrs, 
				nout);
		    }
		    nt = 0;
		    if (izero == 0) {

/*                    Check the factorization by computing the ratio */
/*                       norm(L*D*L' - A) / (n * norm(A) * EPS ) */

			zptt01_(&n, &d__[1], &e[1], &d__[n + 1], &e[n + 1], &
				work[1], result);

/*                    Compute the residual in the solution. */

			zlacpy_("Full", &n, nrhs, &b[1], &lda, &work[1], &lda);
			zptt02_("Lower", &n, nrhs, &d__[1], &e[1], &x[1], &
				lda, &work[1], &lda, &result[1]);

/*                    Check solution from generated exact solution. */

			zget04_(&n, nrhs, &x[1], &lda, &xact[1], &lda, &
				rcondc, &result[2]);
			nt = 3;
		    }

/*                 Print information about the tests that did not pass */
/*                 the threshold. */

		    i__3 = nt;
		    for (k = 1; k <= i__3; ++k) {
			if (result[k - 1] >= *thresh) {
			    if (nfail == 0 && nerrs == 0) {
				aladhd_(nout, path);
			    }
			    io___35.ciunit = *nout;
			    s_wsfe(&io___35);
			    do_fio(&c__1, "ZPTSV ", (ftnlen)6);
			    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer))
				    ;
			    do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(
				    integer));
			    do_fio(&c__1, (char *)&k, (ftnlen)sizeof(integer))
				    ;
			    do_fio(&c__1, (char *)&result[k - 1], (ftnlen)
				    sizeof(doublereal));
			    e_wsfe();
			    ++nfail;
			}
/* L70: */
		    }
		    nrun += nt;
		}

/*              --- Test ZPTSVX --- */

		if (ifact > 1) {

/*                 Initialize D( N+1:2*N ) and E( N+1:2*N ) to zero. */

		    i__3 = n - 1;
		    for (i__ = 1; i__ <= i__3; ++i__) {
			d__[n + i__] = 0.;
			i__4 = n + i__;
			e[i__4].r = 0., e[i__4].i = 0.;
/* L80: */
		    }
		    if (n > 0) {
			d__[n + n] = 0.;
		    }
		}

		zlaset_("Full", &n, nrhs, &c_b62, &c_b62, &x[1], &lda);

/*              Solve the system and compute the condition number and */
/*              error bounds using ZPTSVX. */

		s_copy(srnamc_1.srnamt, "ZPTSVX", (ftnlen)32, (ftnlen)6);
		zptsvx_(fact, &n, nrhs, &d__[1], &e[1], &d__[n + 1], &e[n + 1]
, &b[1], &lda, &x[1], &lda, &rcond, &rwork[1], &rwork[
			*nrhs + 1], &work[1], &rwork[(*nrhs << 1) + 1], &info);

/*              Check the error code from ZPTSVX. */

		if (info != izero) {
		    alaerh_(path, "ZPTSVX", &info, &izero, fact, &n, &n, &
			    c__1, &c__1, nrhs, &imat, &nfail, &nerrs, nout);
		}
		if (izero == 0) {
		    if (ifact == 2) {

/*                    Check the factorization by computing the ratio */
/*                       norm(L*D*L' - A) / (n * norm(A) * EPS ) */

			k1 = 1;
			zptt01_(&n, &d__[1], &e[1], &d__[n + 1], &e[n + 1], &
				work[1], result);
		    } else {
			k1 = 2;
		    }

/*                 Compute the residual in the solution. */

		    zlacpy_("Full", &n, nrhs, &b[1], &lda, &work[1], &lda);
		    zptt02_("Lower", &n, nrhs, &d__[1], &e[1], &x[1], &lda, &
			    work[1], &lda, &result[1]);

/*                 Check solution from generated exact solution. */

		    zget04_(&n, nrhs, &x[1], &lda, &xact[1], &lda, &rcondc, &
			    result[2]);

/*                 Check error bounds from iterative refinement. */

		    zptt05_(&n, nrhs, &d__[1], &e[1], &b[1], &lda, &x[1], &
			    lda, &xact[1], &lda, &rwork[1], &rwork[*nrhs + 1], 
			     &result[3]);
		} else {
		    k1 = 6;
		}

/*              Check the reciprocal of the condition number. */

		result[5] = dget06_(&rcond, &rcondc);

/*              Print information about the tests that did not pass */
/*              the threshold. */

		for (k = k1; k <= 6; ++k) {
		    if (result[k - 1] >= *thresh) {
			if (nfail == 0 && nerrs == 0) {
			    aladhd_(nout, path);
			}
			io___38.ciunit = *nout;
			s_wsfe(&io___38);
			do_fio(&c__1, "ZPTSVX", (ftnlen)6);
			do_fio(&c__1, fact, (ftnlen)1);
			do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
			do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(integer));
			do_fio(&c__1, (char *)&k, (ftnlen)sizeof(integer));
			do_fio(&c__1, (char *)&result[k - 1], (ftnlen)sizeof(
				doublereal));
			e_wsfe();
			++nfail;
		    }
/* L90: */
		}
		nrun = nrun + 7 - k1;
L100:
		;
	    }
L110:
	    ;
	}
/* L120: */
    }

/*     Print a summary of the results. */

    alasvm_(path, nout, &nfail, &nrun, &nerrs);

    return 0;

/*     End of ZDRVPT */

} /* zdrvpt_ */
コード例 #21
0
ファイル: dsytri.c プロジェクト: Ayato-Harashima/Bundler
/* Subroutine */ int dsytri_(char *uplo, integer *n, doublereal *a, integer *
	lda, integer *ipiv, doublereal *work, integer *info)
{
    /* System generated locals */
    integer a_dim1, a_offset, i__1;
    doublereal d__1;

    /* Local variables */
    doublereal d__;
    integer k;
    doublereal t, ak;
    integer kp;
    doublereal akp1;
    extern doublereal ddot_(integer *, doublereal *, integer *, doublereal *, 
	    integer *);
    doublereal temp, akkp1;
    extern logical lsame_(char *, char *);
    extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *, 
	    doublereal *, integer *), dswap_(integer *, doublereal *, integer 
	    *, doublereal *, integer *);
    integer kstep;
    logical upper;
    extern /* Subroutine */ int dsymv_(char *, integer *, doublereal *, 
	    doublereal *, integer *, doublereal *, integer *, doublereal *, 
	    doublereal *, integer *), xerbla_(char *, integer *);


/*  -- LAPACK routine (version 3.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  DSYTRI computes the inverse of a real symmetric indefinite matrix */
/*  A using the factorization A = U*D*U**T or A = L*D*L**T computed by */
/*  DSYTRF. */

/*  Arguments */
/*  ========= */

/*  UPLO    (input) CHARACTER*1 */
/*          Specifies whether the details of the factorization are stored */
/*          as an upper or lower triangular matrix. */
/*          = 'U':  Upper triangular, form is A = U*D*U**T; */
/*          = 'L':  Lower triangular, form is A = L*D*L**T. */

/*  N       (input) INTEGER */
/*          The order of the matrix A.  N >= 0. */

/*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N) */
/*          On entry, the block diagonal matrix D and the multipliers */
/*          used to obtain the factor U or L as computed by DSYTRF. */

/*          On exit, if INFO = 0, the (symmetric) inverse of the original */
/*          matrix.  If UPLO = 'U', the upper triangular part of the */
/*          inverse is formed and the part of A below the diagonal is not */
/*          referenced; if UPLO = 'L' the lower triangular part of the */
/*          inverse is formed and the part of A above the diagonal is */
/*          not referenced. */

/*  LDA     (input) INTEGER */
/*          The leading dimension of the array A.  LDA >= max(1,N). */

/*  IPIV    (input) INTEGER array, dimension (N) */
/*          Details of the interchanges and the block structure of D */
/*          as determined by DSYTRF. */

/*  WORK    (workspace) DOUBLE PRECISION array, dimension (N) */

/*  INFO    (output) INTEGER */
/*          = 0: successful exit */
/*          < 0: if INFO = -i, the i-th argument had an illegal value */
/*          > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its */
/*               inverse could not be computed. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input parameters. */

    /* Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    --ipiv;
    --work;

    /* Function Body */
    *info = 0;
    upper = lsame_(uplo, "U");
    if (! upper && ! lsame_(uplo, "L")) {
	*info = -1;
    } else if (*n < 0) {
	*info = -2;
    } else if (*lda < max(1,*n)) {
	*info = -4;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("DSYTRI", &i__1);
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0) {
	return 0;
    }

/*     Check that the diagonal matrix D is nonsingular. */

    if (upper) {

/*        Upper triangular storage: examine D from bottom to top */

	for (*info = *n; *info >= 1; --(*info)) {
	    if (ipiv[*info] > 0 && a[*info + *info * a_dim1] == 0.) {
		return 0;
	    }
/* L10: */
	}
    } else {

/*        Lower triangular storage: examine D from top to bottom. */

	i__1 = *n;
	for (*info = 1; *info <= i__1; ++(*info)) {
	    if (ipiv[*info] > 0 && a[*info + *info * a_dim1] == 0.) {
		return 0;
	    }
/* L20: */
	}
    }
    *info = 0;

    if (upper) {

/*        Compute inv(A) from the factorization A = U*D*U'. */

/*        K is the main loop index, increasing from 1 to N in steps of */
/*        1 or 2, depending on the size of the diagonal blocks. */

	k = 1;
L30:

/*        If K > N, exit from loop. */

	if (k > *n) {
	    goto L40;
	}

	if (ipiv[k] > 0) {

/*           1 x 1 diagonal block */

/*           Invert the diagonal block. */

	    a[k + k * a_dim1] = 1. / a[k + k * a_dim1];

/*           Compute column K of the inverse. */

	    if (k > 1) {
		i__1 = k - 1;
		dcopy_(&i__1, &a[k * a_dim1 + 1], &c__1, &work[1], &c__1);
		i__1 = k - 1;
		dsymv_(uplo, &i__1, &c_b11, &a[a_offset], lda, &work[1], &
			c__1, &c_b13, &a[k * a_dim1 + 1], &c__1);
		i__1 = k - 1;
		a[k + k * a_dim1] -= ddot_(&i__1, &work[1], &c__1, &a[k * 
			a_dim1 + 1], &c__1);
	    }
	    kstep = 1;
	} else {

/*           2 x 2 diagonal block */

/*           Invert the diagonal block. */

	    t = (d__1 = a[k + (k + 1) * a_dim1], abs(d__1));
	    ak = a[k + k * a_dim1] / t;
	    akp1 = a[k + 1 + (k + 1) * a_dim1] / t;
	    akkp1 = a[k + (k + 1) * a_dim1] / t;
	    d__ = t * (ak * akp1 - 1.);
	    a[k + k * a_dim1] = akp1 / d__;
	    a[k + 1 + (k + 1) * a_dim1] = ak / d__;
	    a[k + (k + 1) * a_dim1] = -akkp1 / d__;

/*           Compute columns K and K+1 of the inverse. */

	    if (k > 1) {
		i__1 = k - 1;
		dcopy_(&i__1, &a[k * a_dim1 + 1], &c__1, &work[1], &c__1);
		i__1 = k - 1;
		dsymv_(uplo, &i__1, &c_b11, &a[a_offset], lda, &work[1], &
			c__1, &c_b13, &a[k * a_dim1 + 1], &c__1);
		i__1 = k - 1;
		a[k + k * a_dim1] -= ddot_(&i__1, &work[1], &c__1, &a[k * 
			a_dim1 + 1], &c__1);
		i__1 = k - 1;
		a[k + (k + 1) * a_dim1] -= ddot_(&i__1, &a[k * a_dim1 + 1], &
			c__1, &a[(k + 1) * a_dim1 + 1], &c__1);
		i__1 = k - 1;
		dcopy_(&i__1, &a[(k + 1) * a_dim1 + 1], &c__1, &work[1], &
			c__1);
		i__1 = k - 1;
		dsymv_(uplo, &i__1, &c_b11, &a[a_offset], lda, &work[1], &
			c__1, &c_b13, &a[(k + 1) * a_dim1 + 1], &c__1);
		i__1 = k - 1;
		a[k + 1 + (k + 1) * a_dim1] -= ddot_(&i__1, &work[1], &c__1, &
			a[(k + 1) * a_dim1 + 1], &c__1);
	    }
	    kstep = 2;
	}

	kp = (i__1 = ipiv[k], abs(i__1));
	if (kp != k) {

/*           Interchange rows and columns K and KP in the leading */
/*           submatrix A(1:k+1,1:k+1) */

	    i__1 = kp - 1;
	    dswap_(&i__1, &a[k * a_dim1 + 1], &c__1, &a[kp * a_dim1 + 1], &
		    c__1);
	    i__1 = k - kp - 1;
	    dswap_(&i__1, &a[kp + 1 + k * a_dim1], &c__1, &a[kp + (kp + 1) * 
		    a_dim1], lda);
	    temp = a[k + k * a_dim1];
	    a[k + k * a_dim1] = a[kp + kp * a_dim1];
	    a[kp + kp * a_dim1] = temp;
	    if (kstep == 2) {
		temp = a[k + (k + 1) * a_dim1];
		a[k + (k + 1) * a_dim1] = a[kp + (k + 1) * a_dim1];
		a[kp + (k + 1) * a_dim1] = temp;
	    }
	}

	k += kstep;
	goto L30;
L40:

	;
    } else {

/*        Compute inv(A) from the factorization A = L*D*L'. */

/*        K is the main loop index, increasing from 1 to N in steps of */
/*        1 or 2, depending on the size of the diagonal blocks. */

	k = *n;
L50:

/*        If K < 1, exit from loop. */

	if (k < 1) {
	    goto L60;
	}

	if (ipiv[k] > 0) {

/*           1 x 1 diagonal block */

/*           Invert the diagonal block. */

	    a[k + k * a_dim1] = 1. / a[k + k * a_dim1];

/*           Compute column K of the inverse. */

	    if (k < *n) {
		i__1 = *n - k;
		dcopy_(&i__1, &a[k + 1 + k * a_dim1], &c__1, &work[1], &c__1);
		i__1 = *n - k;
		dsymv_(uplo, &i__1, &c_b11, &a[k + 1 + (k + 1) * a_dim1], lda, 
			 &work[1], &c__1, &c_b13, &a[k + 1 + k * a_dim1], &
			c__1);
		i__1 = *n - k;
		a[k + k * a_dim1] -= ddot_(&i__1, &work[1], &c__1, &a[k + 1 + 
			k * a_dim1], &c__1);
	    }
	    kstep = 1;
	} else {

/*           2 x 2 diagonal block */

/*           Invert the diagonal block. */

	    t = (d__1 = a[k + (k - 1) * a_dim1], abs(d__1));
	    ak = a[k - 1 + (k - 1) * a_dim1] / t;
	    akp1 = a[k + k * a_dim1] / t;
	    akkp1 = a[k + (k - 1) * a_dim1] / t;
	    d__ = t * (ak * akp1 - 1.);
	    a[k - 1 + (k - 1) * a_dim1] = akp1 / d__;
	    a[k + k * a_dim1] = ak / d__;
	    a[k + (k - 1) * a_dim1] = -akkp1 / d__;

/*           Compute columns K-1 and K of the inverse. */

	    if (k < *n) {
		i__1 = *n - k;
		dcopy_(&i__1, &a[k + 1 + k * a_dim1], &c__1, &work[1], &c__1);
		i__1 = *n - k;
		dsymv_(uplo, &i__1, &c_b11, &a[k + 1 + (k + 1) * a_dim1], lda, 
			 &work[1], &c__1, &c_b13, &a[k + 1 + k * a_dim1], &
			c__1);
		i__1 = *n - k;
		a[k + k * a_dim1] -= ddot_(&i__1, &work[1], &c__1, &a[k + 1 + 
			k * a_dim1], &c__1);
		i__1 = *n - k;
		a[k + (k - 1) * a_dim1] -= ddot_(&i__1, &a[k + 1 + k * a_dim1]
, &c__1, &a[k + 1 + (k - 1) * a_dim1], &c__1);
		i__1 = *n - k;
		dcopy_(&i__1, &a[k + 1 + (k - 1) * a_dim1], &c__1, &work[1], &
			c__1);
		i__1 = *n - k;
		dsymv_(uplo, &i__1, &c_b11, &a[k + 1 + (k + 1) * a_dim1], lda, 
			 &work[1], &c__1, &c_b13, &a[k + 1 + (k - 1) * a_dim1]
, &c__1);
		i__1 = *n - k;
		a[k - 1 + (k - 1) * a_dim1] -= ddot_(&i__1, &work[1], &c__1, &
			a[k + 1 + (k - 1) * a_dim1], &c__1);
	    }
	    kstep = 2;
	}

	kp = (i__1 = ipiv[k], abs(i__1));
	if (kp != k) {

/*           Interchange rows and columns K and KP in the trailing */
/*           submatrix A(k-1:n,k-1:n) */

	    if (kp < *n) {
		i__1 = *n - kp;
		dswap_(&i__1, &a[kp + 1 + k * a_dim1], &c__1, &a[kp + 1 + kp *
			 a_dim1], &c__1);
	    }
	    i__1 = kp - k - 1;
	    dswap_(&i__1, &a[k + 1 + k * a_dim1], &c__1, &a[kp + (k + 1) * 
		    a_dim1], lda);
	    temp = a[k + k * a_dim1];
	    a[k + k * a_dim1] = a[kp + kp * a_dim1];
	    a[kp + kp * a_dim1] = temp;
	    if (kstep == 2) {
		temp = a[k + (k - 1) * a_dim1];
		a[k + (k - 1) * a_dim1] = a[kp + (k - 1) * a_dim1];
		a[kp + (k - 1) * a_dim1] = temp;
	    }
	}

	k -= kstep;
	goto L50;
L60:
	;
    }

    return 0;

/*     End of DSYTRI */

} /* dsytri_ */
コード例 #22
0
/* Subroutine */ int dgelsy_(integer *m, integer *n, integer *nrhs, 
	doublereal *a, integer *lda, doublereal *b, integer *ldb, integer *
	jpvt, doublereal *rcond, integer *rank, doublereal *work, integer *
	lwork, integer *info)
{
/*  -- LAPACK driver routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       June 30, 1999   


    Purpose   
    =======   

    DGELSY computes the minimum-norm solution to a real linear least   
    squares problem:   
        minimize || A * X - B ||   
    using a complete orthogonal factorization of A.  A is an M-by-N   
    matrix which may be rank-deficient.   

    Several right hand side vectors b and solution vectors x can be   
    handled in a single call; they are stored as the columns of the   
    M-by-NRHS right hand side matrix B and the N-by-NRHS solution   
    matrix X.   

    The routine first computes a QR factorization with column pivoting:   
        A * P = Q * [ R11 R12 ]   
                    [  0  R22 ]   
    with R11 defined as the largest leading submatrix whose estimated   
    condition number is less than 1/RCOND.  The order of R11, RANK,   
    is the effective rank of A.   

    Then, R22 is considered to be negligible, and R12 is annihilated   
    by orthogonal transformations from the right, arriving at the   
    complete orthogonal factorization:   
       A * P = Q * [ T11 0 ] * Z   
                   [  0  0 ]   
    The minimum-norm solution is then   
       X = P * Z' [ inv(T11)*Q1'*B ]   
                  [        0       ]   
    where Q1 consists of the first RANK columns of Q.   

    This routine is basically identical to the original xGELSX except   
    three differences:   
      o The call to the subroutine xGEQPF has been substituted by the   
        the call to the subroutine xGEQP3. This subroutine is a Blas-3   
        version of the QR factorization with column pivoting.   
      o Matrix B (the right hand side) is updated with Blas-3.   
      o The permutation of matrix B (the right hand side) is faster and   
        more simple.   

    Arguments   
    =========   

    M       (input) INTEGER   
            The number of rows of the matrix A.  M >= 0.   

    N       (input) INTEGER   
            The number of columns of the matrix A.  N >= 0.   

    NRHS    (input) INTEGER   
            The number of right hand sides, i.e., the number of   
            columns of matrices B and X. NRHS >= 0.   

    A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)   
            On entry, the M-by-N matrix A.   
            On exit, A has been overwritten by details of its   
            complete orthogonal factorization.   

    LDA     (input) INTEGER   
            The leading dimension of the array A.  LDA >= max(1,M).   

    B       (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)   
            On entry, the M-by-NRHS right hand side matrix B.   
            On exit, the N-by-NRHS solution matrix X.   

    LDB     (input) INTEGER   
            The leading dimension of the array B. LDB >= max(1,M,N).   

    JPVT    (input/output) INTEGER array, dimension (N)   
            On entry, if JPVT(i) .ne. 0, the i-th column of A is permuted   
            to the front of AP, otherwise column i is a free column.   
            On exit, if JPVT(i) = k, then the i-th column of AP   
            was the k-th column of A.   

    RCOND   (input) DOUBLE PRECISION   
            RCOND is used to determine the effective rank of A, which   
            is defined as the order of the largest leading triangular   
            submatrix R11 in the QR factorization with pivoting of A,   
            whose estimated condition number < 1/RCOND.   

    RANK    (output) INTEGER   
            The effective rank of A, i.e., the order of the submatrix   
            R11.  This is the same as the order of the submatrix T11   
            in the complete orthogonal factorization of A.   

    WORK    (workspace/output) DOUBLE PRECISION array, dimension (LWORK)   
            On exit, if INFO = 0, WORK(1) returns the optimal LWORK.   

    LWORK   (input) INTEGER   
            The dimension of the array WORK.   
            The unblocked strategy requires that:   
               LWORK >= MAX( MN+3*N+1, 2*MN+NRHS ),   
            where MN = min( M, N ).   
            The block algorithm requires that:   
               LWORK >= MAX( MN+2*N+NB*(N+1), 2*MN+NB*NRHS ),   
            where NB is an upper bound on the blocksize returned   
            by ILAENV for the routines DGEQP3, DTZRZF, STZRQF, DORMQR,   
            and DORMRZ.   

            If LWORK = -1, then a workspace query is assumed; the routine   
            only calculates the optimal size of the WORK array, returns   
            this value as the first entry of the WORK array, and no error   
            message related to LWORK is issued by XERBLA.   

    INFO    (output) INTEGER   
            = 0: successful exit   
            < 0: If INFO = -i, the i-th argument had an illegal value.   

    Further Details   
    ===============   

    Based on contributions by   
      A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA   
      E. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain   
      G. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain   

    =====================================================================   


       Parameter adjustments */
    /* Table of constant values */
    static integer c__1 = 1;
    static integer c_n1 = -1;
    static integer c__0 = 0;
    static doublereal c_b31 = 0.;
    static integer c__2 = 2;
    static doublereal c_b54 = 1.;
    
    /* System generated locals */
    integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2;
    doublereal d__1, d__2;
    /* Local variables */
    static doublereal anrm, bnrm, smin, smax;
    static integer i__, j, iascl, ibscl;
    extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *, 
	    doublereal *, integer *);
    static integer ismin, ismax;
    static doublereal c1, c2;
    extern /* Subroutine */ int dtrsm_(char *, char *, char *, char *, 
	    integer *, integer *, doublereal *, doublereal *, integer *, 
	    doublereal *, integer *), dlaic1_(
	    integer *, integer *, doublereal *, doublereal *, doublereal *, 
	    doublereal *, doublereal *, doublereal *, doublereal *);
    static doublereal wsize, s1, s2;
    extern /* Subroutine */ int dgeqp3_(integer *, integer *, doublereal *, 
	    integer *, integer *, doublereal *, doublereal *, integer *, 
	    integer *), dlabad_(doublereal *, doublereal *);
    static integer nb;
    extern doublereal dlamch_(char *), dlange_(char *, integer *, 
	    integer *, doublereal *, integer *, doublereal *);
    static integer mn;
    extern /* Subroutine */ int dlascl_(char *, integer *, integer *, 
	    doublereal *, doublereal *, integer *, integer *, doublereal *, 
	    integer *, integer *), dlaset_(char *, integer *, integer 
	    *, doublereal *, doublereal *, doublereal *, integer *), 
	    xerbla_(char *, integer *);
    extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
	    integer *, integer *, ftnlen, ftnlen);
    static doublereal bignum;
    static integer nb1, nb2, nb3, nb4;
    extern /* Subroutine */ int dormqr_(char *, char *, integer *, integer *, 
	    integer *, doublereal *, integer *, doublereal *, doublereal *, 
	    integer *, doublereal *, integer *, integer *);
    static doublereal sminpr, smaxpr, smlnum;
    extern /* Subroutine */ int dormrz_(char *, char *, integer *, integer *, 
	    integer *, integer *, doublereal *, integer *, doublereal *, 
	    doublereal *, integer *, doublereal *, integer *, integer *);
    static integer lwkopt;
    static logical lquery;
    extern /* Subroutine */ int dtzrzf_(integer *, integer *, doublereal *, 
	    integer *, doublereal *, doublereal *, integer *, integer *);
#define a_ref(a_1,a_2) a[(a_2)*a_dim1 + a_1]
#define b_ref(a_1,a_2) b[(a_2)*b_dim1 + a_1]


    a_dim1 = *lda;
    a_offset = 1 + a_dim1 * 1;
    a -= a_offset;
    b_dim1 = *ldb;
    b_offset = 1 + b_dim1 * 1;
    b -= b_offset;
    --jpvt;
    --work;

    /* Function Body */
    mn = min(*m,*n);
    ismin = mn + 1;
    ismax = (mn << 1) + 1;

/*     Test the input arguments. */

    *info = 0;
    nb1 = ilaenv_(&c__1, "DGEQRF", " ", m, n, &c_n1, &c_n1, (ftnlen)6, (
	    ftnlen)1);
    nb2 = ilaenv_(&c__1, "DGERQF", " ", m, n, &c_n1, &c_n1, (ftnlen)6, (
	    ftnlen)1);
    nb3 = ilaenv_(&c__1, "DORMQR", " ", m, n, nrhs, &c_n1, (ftnlen)6, (ftnlen)
	    1);
    nb4 = ilaenv_(&c__1, "DORMRQ", " ", m, n, nrhs, &c_n1, (ftnlen)6, (ftnlen)
	    1);
/* Computing MAX */
    i__1 = max(nb1,nb2), i__1 = max(i__1,nb3);
    nb = max(i__1,nb4);
/* Computing MAX */
    i__1 = 1, i__2 = mn + (*n << 1) + nb * (*n + 1), i__1 = max(i__1,i__2), 
	    i__2 = (mn << 1) + nb * *nrhs;
    lwkopt = max(i__1,i__2);
    work[1] = (doublereal) lwkopt;
    lquery = *lwork == -1;
    if (*m < 0) {
	*info = -1;
    } else if (*n < 0) {
	*info = -2;
    } else if (*nrhs < 0) {
	*info = -3;
    } else if (*lda < max(1,*m)) {
	*info = -5;
    } else /* if(complicated condition) */ {
/* Computing MAX */
	i__1 = max(1,*m);
	if (*ldb < max(i__1,*n)) {
	    *info = -7;
	} else /* if(complicated condition) */ {
/* Computing MAX */
	    i__1 = 1, i__2 = mn + *n * 3 + 1, i__1 = max(i__1,i__2), i__2 = (
		    mn << 1) + *nrhs;
	    if (*lwork < max(i__1,i__2) && ! lquery) {
		*info = -12;
	    }
	}
    }

    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("DGELSY", &i__1);
	return 0;
    } else if (lquery) {
	return 0;
    }

/*     Quick return if possible   

   Computing MIN */
    i__1 = min(*m,*n);
    if (min(i__1,*nrhs) == 0) {
	*rank = 0;
	return 0;
    }

/*     Get machine parameters */

    smlnum = dlamch_("S") / dlamch_("P");
    bignum = 1. / smlnum;
    dlabad_(&smlnum, &bignum);

/*     Scale A, B if max entries outside range [SMLNUM,BIGNUM] */

    anrm = dlange_("M", m, n, &a[a_offset], lda, &work[1]);
    iascl = 0;
    if (anrm > 0. && anrm < smlnum) {

/*        Scale matrix norm up to SMLNUM */

	dlascl_("G", &c__0, &c__0, &anrm, &smlnum, m, n, &a[a_offset], lda, 
		info);
	iascl = 1;
    } else if (anrm > bignum) {

/*        Scale matrix norm down to BIGNUM */

	dlascl_("G", &c__0, &c__0, &anrm, &bignum, m, n, &a[a_offset], lda, 
		info);
	iascl = 2;
    } else if (anrm == 0.) {

/*        Matrix all zero. Return zero solution. */

	i__1 = max(*m,*n);
	dlaset_("F", &i__1, nrhs, &c_b31, &c_b31, &b[b_offset], ldb);
	*rank = 0;
	goto L70;
    }

    bnrm = dlange_("M", m, nrhs, &b[b_offset], ldb, &work[1]);
    ibscl = 0;
    if (bnrm > 0. && bnrm < smlnum) {

/*        Scale matrix norm up to SMLNUM */

	dlascl_("G", &c__0, &c__0, &bnrm, &smlnum, m, nrhs, &b[b_offset], ldb,
		 info);
	ibscl = 1;
    } else if (bnrm > bignum) {

/*        Scale matrix norm down to BIGNUM */

	dlascl_("G", &c__0, &c__0, &bnrm, &bignum, m, nrhs, &b[b_offset], ldb,
		 info);
	ibscl = 2;
    }

/*     Compute QR factorization with column pivoting of A:   
          A * P = Q * R */

    i__1 = *lwork - mn;
    dgeqp3_(m, n, &a[a_offset], lda, &jpvt[1], &work[1], &work[mn + 1], &i__1,
	     info);
    wsize = mn + work[mn + 1];

/*     workspace: MN+2*N+NB*(N+1).   
       Details of Householder rotations stored in WORK(1:MN).   

       Determine RANK using incremental condition estimation */

    work[ismin] = 1.;
    work[ismax] = 1.;
    smax = (d__1 = a_ref(1, 1), abs(d__1));
    smin = smax;
    if ((d__1 = a_ref(1, 1), abs(d__1)) == 0.) {
	*rank = 0;
	i__1 = max(*m,*n);
	dlaset_("F", &i__1, nrhs, &c_b31, &c_b31, &b[b_offset], ldb);
	goto L70;
    } else {
	*rank = 1;
    }

L10:
    if (*rank < mn) {
	i__ = *rank + 1;
	dlaic1_(&c__2, rank, &work[ismin], &smin, &a_ref(1, i__), &a_ref(i__, 
		i__), &sminpr, &s1, &c1);
	dlaic1_(&c__1, rank, &work[ismax], &smax, &a_ref(1, i__), &a_ref(i__, 
		i__), &smaxpr, &s2, &c2);

	if (smaxpr * *rcond <= sminpr) {
	    i__1 = *rank;
	    for (i__ = 1; i__ <= i__1; ++i__) {
		work[ismin + i__ - 1] = s1 * work[ismin + i__ - 1];
		work[ismax + i__ - 1] = s2 * work[ismax + i__ - 1];
/* L20: */
	    }
	    work[ismin + *rank] = c1;
	    work[ismax + *rank] = c2;
	    smin = sminpr;
	    smax = smaxpr;
	    ++(*rank);
	    goto L10;
	}
    }

/*     workspace: 3*MN.   

       Logically partition R = [ R11 R12 ]   
                               [  0  R22 ]   
       where R11 = R(1:RANK,1:RANK)   

       [R11,R12] = [ T11, 0 ] * Y */

    if (*rank < *n) {
	i__1 = *lwork - (mn << 1);
	dtzrzf_(rank, n, &a[a_offset], lda, &work[mn + 1], &work[(mn << 1) + 
		1], &i__1, info);
    }

/*     workspace: 2*MN.   
       Details of Householder rotations stored in WORK(MN+1:2*MN)   

       B(1:M,1:NRHS) := Q' * B(1:M,1:NRHS) */

    i__1 = *lwork - (mn << 1);
    dormqr_("Left", "Transpose", m, nrhs, &mn, &a[a_offset], lda, &work[1], &
	    b[b_offset], ldb, &work[(mn << 1) + 1], &i__1, info);
/* Computing MAX */
    d__1 = wsize, d__2 = (mn << 1) + work[(mn << 1) + 1];
    wsize = max(d__1,d__2);

/*     workspace: 2*MN+NB*NRHS.   

       B(1:RANK,1:NRHS) := inv(T11) * B(1:RANK,1:NRHS) */

    dtrsm_("Left", "Upper", "No transpose", "Non-unit", rank, nrhs, &c_b54, &
	    a[a_offset], lda, &b[b_offset], ldb);

    i__1 = *nrhs;
    for (j = 1; j <= i__1; ++j) {
	i__2 = *n;
	for (i__ = *rank + 1; i__ <= i__2; ++i__) {
	    b_ref(i__, j) = 0.;
/* L30: */
	}
/* L40: */
    }

/*     B(1:N,1:NRHS) := Y' * B(1:N,1:NRHS) */

    if (*rank < *n) {
	i__1 = *n - *rank;
	i__2 = *lwork - (mn << 1);
	dormrz_("Left", "Transpose", n, nrhs, rank, &i__1, &a[a_offset], lda, 
		&work[mn + 1], &b[b_offset], ldb, &work[(mn << 1) + 1], &i__2,
		 info);
    }

/*     workspace: 2*MN+NRHS.   

       B(1:N,1:NRHS) := P * B(1:N,1:NRHS) */

    i__1 = *nrhs;
    for (j = 1; j <= i__1; ++j) {
	i__2 = *n;
	for (i__ = 1; i__ <= i__2; ++i__) {
	    work[jpvt[i__]] = b_ref(i__, j);
/* L50: */
	}
	dcopy_(n, &work[1], &c__1, &b_ref(1, j), &c__1);
/* L60: */
    }

/*     workspace: N.   

       Undo scaling */

    if (iascl == 1) {
	dlascl_("G", &c__0, &c__0, &anrm, &smlnum, n, nrhs, &b[b_offset], ldb,
		 info);
	dlascl_("U", &c__0, &c__0, &smlnum, &anrm, rank, rank, &a[a_offset], 
		lda, info);
    } else if (iascl == 2) {
	dlascl_("G", &c__0, &c__0, &anrm, &bignum, n, nrhs, &b[b_offset], ldb,
		 info);
	dlascl_("U", &c__0, &c__0, &bignum, &anrm, rank, rank, &a[a_offset], 
		lda, info);
    }
    if (ibscl == 1) {
	dlascl_("G", &c__0, &c__0, &smlnum, &bnrm, n, nrhs, &b[b_offset], ldb,
		 info);
    } else if (ibscl == 2) {
	dlascl_("G", &c__0, &c__0, &bignum, &bnrm, n, nrhs, &b[b_offset], ldb,
		 info);
    }

L70:
    work[1] = (doublereal) lwkopt;

    return 0;

/*     End of DGELSY */

} /* dgelsy_ */
コード例 #23
0
ファイル: gmath.cpp プロジェクト: elen4/GURLS
void GURLS_EXPORT copy(double* dst, const double* src, const int size, const int dstIncr, const int srcIncr)
{
    dcopy_(const_cast<int*>(&size), const_cast<double*>(src), const_cast<int*>(&srcIncr), dst, const_cast<int*>(&dstIncr));
}
コード例 #24
0
ファイル: dlarzb.c プロジェクト: Ayato-Harashima/Bundler
/* Subroutine */ int dlarzb_(char *side, char *trans, char *direct, char *
	storev, integer *m, integer *n, integer *k, integer *l, doublereal *v, 
	 integer *ldv, doublereal *t, integer *ldt, doublereal *c__, integer *
	ldc, doublereal *work, integer *ldwork)
{
    /* System generated locals */
    integer c_dim1, c_offset, t_dim1, t_offset, v_dim1, v_offset, work_dim1, 
	    work_offset, i__1, i__2;

    /* Local variables */
    integer i__, j, info;
    extern /* Subroutine */ int dgemm_(char *, char *, integer *, integer *, 
	    integer *, doublereal *, doublereal *, integer *, doublereal *, 
	    integer *, doublereal *, doublereal *, integer *);
    extern logical lsame_(char *, char *);
    extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *, 
	    doublereal *, integer *), dtrmm_(char *, char *, char *, char *, 
	    integer *, integer *, doublereal *, doublereal *, integer *, 
	    doublereal *, integer *), xerbla_(
	    char *, integer *);
    char transt[1];


/*  -- LAPACK routine (version 3.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  DLARZB applies a real block reflector H or its transpose H**T to */
/*  a real distributed M-by-N  C from the left or the right. */

/*  Currently, only STOREV = 'R' and DIRECT = 'B' are supported. */

/*  Arguments */
/*  ========= */

/*  SIDE    (input) CHARACTER*1 */
/*          = 'L': apply H or H' from the Left */
/*          = 'R': apply H or H' from the Right */

/*  TRANS   (input) CHARACTER*1 */
/*          = 'N': apply H (No transpose) */
/*          = 'C': apply H' (Transpose) */

/*  DIRECT  (input) CHARACTER*1 */
/*          Indicates how H is formed from a product of elementary */
/*          reflectors */
/*          = 'F': H = H(1) H(2) . . . H(k) (Forward, not supported yet) */
/*          = 'B': H = H(k) . . . H(2) H(1) (Backward) */

/*  STOREV  (input) CHARACTER*1 */
/*          Indicates how the vectors which define the elementary */
/*          reflectors are stored: */
/*          = 'C': Columnwise                        (not supported yet) */
/*          = 'R': Rowwise */

/*  M       (input) INTEGER */
/*          The number of rows of the matrix C. */

/*  N       (input) INTEGER */
/*          The number of columns of the matrix C. */

/*  K       (input) INTEGER */
/*          The order of the matrix T (= the number of elementary */
/*          reflectors whose product defines the block reflector). */

/*  L       (input) INTEGER */
/*          The number of columns of the matrix V containing the */
/*          meaningful part of the Householder reflectors. */
/*          If SIDE = 'L', M >= L >= 0, if SIDE = 'R', N >= L >= 0. */

/*  V       (input) DOUBLE PRECISION array, dimension (LDV,NV). */
/*          If STOREV = 'C', NV = K; if STOREV = 'R', NV = L. */

/*  LDV     (input) INTEGER */
/*          The leading dimension of the array V. */
/*          If STOREV = 'C', LDV >= L; if STOREV = 'R', LDV >= K. */

/*  T       (input) DOUBLE PRECISION array, dimension (LDT,K) */
/*          The triangular K-by-K matrix T in the representation of the */
/*          block reflector. */

/*  LDT     (input) INTEGER */
/*          The leading dimension of the array T. LDT >= K. */

/*  C       (input/output) DOUBLE PRECISION array, dimension (LDC,N) */
/*          On entry, the M-by-N matrix C. */
/*          On exit, C is overwritten by H*C or H'*C or C*H or C*H'. */

/*  LDC     (input) INTEGER */
/*          The leading dimension of the array C. LDC >= max(1,M). */

/*  WORK    (workspace) DOUBLE PRECISION array, dimension (LDWORK,K) */

/*  LDWORK  (input) INTEGER */
/*          The leading dimension of the array WORK. */
/*          If SIDE = 'L', LDWORK >= max(1,N); */
/*          if SIDE = 'R', LDWORK >= max(1,M). */

/*  Further Details */
/*  =============== */

/*  Based on contributions by */
/*    A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Quick return if possible */

    /* Parameter adjustments */
    v_dim1 = *ldv;
    v_offset = 1 + v_dim1;
    v -= v_offset;
    t_dim1 = *ldt;
    t_offset = 1 + t_dim1;
    t -= t_offset;
    c_dim1 = *ldc;
    c_offset = 1 + c_dim1;
    c__ -= c_offset;
    work_dim1 = *ldwork;
    work_offset = 1 + work_dim1;
    work -= work_offset;

    /* Function Body */
    if (*m <= 0 || *n <= 0) {
	return 0;
    }

/*     Check for currently supported options */

    info = 0;
    if (! lsame_(direct, "B")) {
	info = -3;
    } else if (! lsame_(storev, "R")) {
	info = -4;
    }
    if (info != 0) {
	i__1 = -info;
	xerbla_("DLARZB", &i__1);
	return 0;
    }

    if (lsame_(trans, "N")) {
	*(unsigned char *)transt = 'T';
    } else {
	*(unsigned char *)transt = 'N';
    }

    if (lsame_(side, "L")) {

/*        Form  H * C  or  H' * C */

/*        W( 1:n, 1:k ) = C( 1:k, 1:n )' */

	i__1 = *k;
	for (j = 1; j <= i__1; ++j) {
	    dcopy_(n, &c__[j + c_dim1], ldc, &work[j * work_dim1 + 1], &c__1);
/* L10: */
	}

/*        W( 1:n, 1:k ) = W( 1:n, 1:k ) + ... */
/*                        C( m-l+1:m, 1:n )' * V( 1:k, 1:l )' */

	if (*l > 0) {
	    dgemm_("Transpose", "Transpose", n, k, l, &c_b13, &c__[*m - *l + 
		    1 + c_dim1], ldc, &v[v_offset], ldv, &c_b13, &work[
		    work_offset], ldwork);
	}

/*        W( 1:n, 1:k ) = W( 1:n, 1:k ) * T'  or  W( 1:m, 1:k ) * T */

	dtrmm_("Right", "Lower", transt, "Non-unit", n, k, &c_b13, &t[
		t_offset], ldt, &work[work_offset], ldwork);

/*        C( 1:k, 1:n ) = C( 1:k, 1:n ) - W( 1:n, 1:k )' */

	i__1 = *n;
	for (j = 1; j <= i__1; ++j) {
	    i__2 = *k;
	    for (i__ = 1; i__ <= i__2; ++i__) {
		c__[i__ + j * c_dim1] -= work[j + i__ * work_dim1];
/* L20: */
	    }
/* L30: */
	}

/*        C( m-l+1:m, 1:n ) = C( m-l+1:m, 1:n ) - ... */
/*                            V( 1:k, 1:l )' * W( 1:n, 1:k )' */

	if (*l > 0) {
	    dgemm_("Transpose", "Transpose", l, n, k, &c_b23, &v[v_offset], 
		    ldv, &work[work_offset], ldwork, &c_b13, &c__[*m - *l + 1 
		    + c_dim1], ldc);
	}

    } else if (lsame_(side, "R")) {

/*        Form  C * H  or  C * H' */

/*        W( 1:m, 1:k ) = C( 1:m, 1:k ) */

	i__1 = *k;
	for (j = 1; j <= i__1; ++j) {
	    dcopy_(m, &c__[j * c_dim1 + 1], &c__1, &work[j * work_dim1 + 1], &
		    c__1);
/* L40: */
	}

/*        W( 1:m, 1:k ) = W( 1:m, 1:k ) + ... */
/*                        C( 1:m, n-l+1:n ) * V( 1:k, 1:l )' */

	if (*l > 0) {
	    dgemm_("No transpose", "Transpose", m, k, l, &c_b13, &c__[(*n - *
		    l + 1) * c_dim1 + 1], ldc, &v[v_offset], ldv, &c_b13, &
		    work[work_offset], ldwork);
	}

/*        W( 1:m, 1:k ) = W( 1:m, 1:k ) * T  or  W( 1:m, 1:k ) * T' */

	dtrmm_("Right", "Lower", trans, "Non-unit", m, k, &c_b13, &t[t_offset]
, ldt, &work[work_offset], ldwork);

/*        C( 1:m, 1:k ) = C( 1:m, 1:k ) - W( 1:m, 1:k ) */

	i__1 = *k;
	for (j = 1; j <= i__1; ++j) {
	    i__2 = *m;
	    for (i__ = 1; i__ <= i__2; ++i__) {
		c__[i__ + j * c_dim1] -= work[i__ + j * work_dim1];
/* L50: */
	    }
/* L60: */
	}

/*        C( 1:m, n-l+1:n ) = C( 1:m, n-l+1:n ) - ... */
/*                            W( 1:m, 1:k ) * V( 1:k, 1:l ) */

	if (*l > 0) {
	    dgemm_("No transpose", "No transpose", m, l, k, &c_b23, &work[
		    work_offset], ldwork, &v[v_offset], ldv, &c_b13, &c__[(*n 
		    - *l + 1) * c_dim1 + 1], ldc);
	}

    }

    return 0;

/*     End of DLARZB */

} /* dlarzb_ */
コード例 #25
0
/* Subroutine */ int dlalsd_(char *uplo, integer *smlsiz, integer *n, integer 
	*nrhs, doublereal *d__, doublereal *e, doublereal *b, integer *ldb, 
	doublereal *rcond, integer *rank, doublereal *work, integer *iwork, 
	integer *info)
{
    /* System generated locals */
    integer b_dim1, b_offset, i__1, i__2;
    doublereal d__1;

    /* Builtin functions */
    double log(doublereal), d_sign(doublereal *, doublereal *);

    /* Local variables */
    integer c__, i__, j, k;
    doublereal r__;
    integer s, u, z__;
    doublereal cs;
    integer bx;
    doublereal sn;
    integer st, vt, nm1, st1;
    doublereal eps;
    integer iwk;
    doublereal tol;
    integer difl, difr;
    doublereal rcnd;
    integer perm, nsub;
    extern /* Subroutine */ int drot_(integer *, doublereal *, integer *, 
	    doublereal *, integer *, doublereal *, doublereal *);
    integer nlvl, sqre, bxst;
    extern /* Subroutine */ int dgemm_(char *, char *, integer *, integer *, 
	    integer *, doublereal *, doublereal *, integer *, doublereal *, 
	    integer *, doublereal *, doublereal *, integer *),
	     dcopy_(integer *, doublereal *, integer *, doublereal *, integer 
	    *);
    integer poles, sizei, nsize, nwork, icmpq1, icmpq2;
    extern doublereal dlamch_(char *);
    extern /* Subroutine */ int dlasda_(integer *, integer *, integer *, 
	    integer *, doublereal *, doublereal *, doublereal *, integer *, 
	    doublereal *, integer *, doublereal *, doublereal *, doublereal *, 
	     doublereal *, integer *, integer *, integer *, integer *, 
	    doublereal *, doublereal *, doublereal *, doublereal *, integer *, 
	     integer *), dlalsa_(integer *, integer *, integer *, integer *, 
	    doublereal *, integer *, doublereal *, integer *, doublereal *, 
	    integer *, doublereal *, integer *, doublereal *, doublereal *, 
	    doublereal *, doublereal *, integer *, integer *, integer *, 
	    integer *, doublereal *, doublereal *, doublereal *, doublereal *, 
	     integer *, integer *), dlascl_(char *, integer *, integer *, 
	    doublereal *, doublereal *, integer *, integer *, doublereal *, 
	    integer *, integer *);
    extern integer idamax_(integer *, doublereal *, integer *);
    extern /* Subroutine */ int dlasdq_(char *, integer *, integer *, integer 
	    *, integer *, integer *, doublereal *, doublereal *, doublereal *, 
	     integer *, doublereal *, integer *, doublereal *, integer *, 
	    doublereal *, integer *), dlacpy_(char *, integer *, 
	    integer *, doublereal *, integer *, doublereal *, integer *), dlartg_(doublereal *, doublereal *, doublereal *, 
	    doublereal *, doublereal *), dlaset_(char *, integer *, integer *, 
	     doublereal *, doublereal *, doublereal *, integer *), 
	    xerbla_(char *, integer *);
    integer givcol;
    extern doublereal dlanst_(char *, integer *, doublereal *, doublereal *);
    extern /* Subroutine */ int dlasrt_(char *, integer *, doublereal *, 
	    integer *);
    doublereal orgnrm;
    integer givnum, givptr, smlszp;


/*  -- LAPACK routine (version 3.2) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  DLALSD uses the singular value decomposition of A to solve the least */
/*  squares problem of finding X to minimize the Euclidean norm of each */
/*  column of A*X-B, where A is N-by-N upper bidiagonal, and X and B */
/*  are N-by-NRHS. The solution X overwrites B. */

/*  The singular values of A smaller than RCOND times the largest */
/*  singular value are treated as zero in solving the least squares */
/*  problem; in this case a minimum norm solution is returned. */
/*  The actual singular values are returned in D in ascending order. */

/*  This code makes very mild assumptions about floating point */
/*  arithmetic. It will work on machines with a guard digit in */
/*  add/subtract, or on those binary machines without guard digits */
/*  which subtract like the Cray XMP, Cray YMP, Cray C 90, or Cray 2. */
/*  It could conceivably fail on hexadecimal or decimal machines */
/*  without guard digits, but we know of none. */

/*  Arguments */
/*  ========= */

/*  UPLO   (input) CHARACTER*1 */
/*         = 'U': D and E define an upper bidiagonal matrix. */
/*         = 'L': D and E define a  lower bidiagonal matrix. */

/*  SMLSIZ (input) INTEGER */
/*         The maximum size of the subproblems at the bottom of the */
/*         computation tree. */

/*  N      (input) INTEGER */
/*         The dimension of the  bidiagonal matrix.  N >= 0. */

/*  NRHS   (input) INTEGER */
/*         The number of columns of B. NRHS must be at least 1. */

/*  D      (input/output) DOUBLE PRECISION array, dimension (N) */
/*         On entry D contains the main diagonal of the bidiagonal */
/*         matrix. On exit, if INFO = 0, D contains its singular values. */

/*  E      (input/output) DOUBLE PRECISION array, dimension (N-1) */
/*         Contains the super-diagonal entries of the bidiagonal matrix. */
/*         On exit, E has been destroyed. */

/*  B      (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS) */
/*         On input, B contains the right hand sides of the least */
/*         squares problem. On output, B contains the solution X. */

/*  LDB    (input) INTEGER */
/*         The leading dimension of B in the calling subprogram. */
/*         LDB must be at least max(1,N). */

/*  RCOND  (input) DOUBLE PRECISION */
/*         The singular values of A less than or equal to RCOND times */
/*         the largest singular value are treated as zero in solving */
/*         the least squares problem. If RCOND is negative, */
/*         machine precision is used instead. */
/*         For example, if diag(S)*X=B were the least squares problem, */
/*         where diag(S) is a diagonal matrix of singular values, the */
/*         solution would be X(i) = B(i) / S(i) if S(i) is greater than */
/*         RCOND*max(S), and X(i) = 0 if S(i) is less than or equal to */
/*         RCOND*max(S). */

/*  RANK   (output) INTEGER */
/*         The number of singular values of A greater than RCOND times */
/*         the largest singular value. */

/*  WORK   (workspace) DOUBLE PRECISION array, dimension at least */
/*         (9*N + 2*N*SMLSIZ + 8*N*NLVL + N*NRHS + (SMLSIZ+1)**2), */
/*         where NLVL = max(0, INT(log_2 (N/(SMLSIZ+1))) + 1). */

/*  IWORK  (workspace) INTEGER array, dimension at least */
/*         (3*N*NLVL + 11*N) */

/*  INFO   (output) INTEGER */
/*         = 0:  successful exit. */
/*         < 0:  if INFO = -i, the i-th argument had an illegal value. */
/*         > 0:  The algorithm failed to compute an singular value while */
/*               working on the submatrix lying in rows and columns */
/*               INFO/(N+1) through MOD(INFO,N+1). */

/*  Further Details */
/*  =============== */

/*  Based on contributions by */
/*     Ming Gu and Ren-Cang Li, Computer Science Division, University of */
/*       California at Berkeley, USA */
/*     Osni Marques, LBNL/NERSC, USA */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input parameters. */

    /* Parameter adjustments */
    --d__;
    --e;
    b_dim1 = *ldb;
    b_offset = 1 + b_dim1;
    b -= b_offset;
    --work;
    --iwork;

    /* Function Body */
    *info = 0;

    if (*n < 0) {
	*info = -3;
    } else if (*nrhs < 1) {
	*info = -4;
    } else if (*ldb < 1 || *ldb < *n) {
	*info = -8;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("DLALSD", &i__1);
	return 0;
    }

    eps = dlamch_("Epsilon");

/*     Set up the tolerance. */

    if (*rcond <= 0. || *rcond >= 1.) {
	rcnd = eps;
    } else {
	rcnd = *rcond;
    }

    *rank = 0;

/*     Quick return if possible. */

    if (*n == 0) {
	return 0;
    } else if (*n == 1) {
	if (d__[1] == 0.) {
	    dlaset_("A", &c__1, nrhs, &c_b6, &c_b6, &b[b_offset], ldb);
	} else {
	    *rank = 1;
	    dlascl_("G", &c__0, &c__0, &d__[1], &c_b11, &c__1, nrhs, &b[
		    b_offset], ldb, info);
	    d__[1] = abs(d__[1]);
	}
	return 0;
    }

/*     Rotate the matrix if it is lower bidiagonal. */

    if (*(unsigned char *)uplo == 'L') {
	i__1 = *n - 1;
	for (i__ = 1; i__ <= i__1; ++i__) {
	    dlartg_(&d__[i__], &e[i__], &cs, &sn, &r__);
	    d__[i__] = r__;
	    e[i__] = sn * d__[i__ + 1];
	    d__[i__ + 1] = cs * d__[i__ + 1];
	    if (*nrhs == 1) {
		drot_(&c__1, &b[i__ + b_dim1], &c__1, &b[i__ + 1 + b_dim1], &
			c__1, &cs, &sn);
	    } else {
		work[(i__ << 1) - 1] = cs;
		work[i__ * 2] = sn;
	    }
/* L10: */
	}
	if (*nrhs > 1) {
	    i__1 = *nrhs;
	    for (i__ = 1; i__ <= i__1; ++i__) {
		i__2 = *n - 1;
		for (j = 1; j <= i__2; ++j) {
		    cs = work[(j << 1) - 1];
		    sn = work[j * 2];
		    drot_(&c__1, &b[j + i__ * b_dim1], &c__1, &b[j + 1 + i__ *
			     b_dim1], &c__1, &cs, &sn);
/* L20: */
		}
/* L30: */
	    }
	}
    }

/*     Scale. */

    nm1 = *n - 1;
    orgnrm = dlanst_("M", n, &d__[1], &e[1]);
    if (orgnrm == 0.) {
	dlaset_("A", n, nrhs, &c_b6, &c_b6, &b[b_offset], ldb);
	return 0;
    }

    dlascl_("G", &c__0, &c__0, &orgnrm, &c_b11, n, &c__1, &d__[1], n, info);
    dlascl_("G", &c__0, &c__0, &orgnrm, &c_b11, &nm1, &c__1, &e[1], &nm1, 
	    info);

/*     If N is smaller than the minimum divide size SMLSIZ, then solve */
/*     the problem with another solver. */

    if (*n <= *smlsiz) {
	nwork = *n * *n + 1;
	dlaset_("A", n, n, &c_b6, &c_b11, &work[1], n);
	dlasdq_("U", &c__0, n, n, &c__0, nrhs, &d__[1], &e[1], &work[1], n, &
		work[1], n, &b[b_offset], ldb, &work[nwork], info);
	if (*info != 0) {
	    return 0;
	}
	tol = rcnd * (d__1 = d__[idamax_(n, &d__[1], &c__1)], abs(d__1));
	i__1 = *n;
	for (i__ = 1; i__ <= i__1; ++i__) {
	    if (d__[i__] <= tol) {
		dlaset_("A", &c__1, nrhs, &c_b6, &c_b6, &b[i__ + b_dim1], ldb);
	    } else {
		dlascl_("G", &c__0, &c__0, &d__[i__], &c_b11, &c__1, nrhs, &b[
			i__ + b_dim1], ldb, info);
		++(*rank);
	    }
/* L40: */
	}
	dgemm_("T", "N", n, nrhs, n, &c_b11, &work[1], n, &b[b_offset], ldb, &
		c_b6, &work[nwork], n);
	dlacpy_("A", n, nrhs, &work[nwork], n, &b[b_offset], ldb);

/*        Unscale. */

	dlascl_("G", &c__0, &c__0, &c_b11, &orgnrm, n, &c__1, &d__[1], n, 
		info);
	dlasrt_("D", n, &d__[1], info);
	dlascl_("G", &c__0, &c__0, &orgnrm, &c_b11, n, nrhs, &b[b_offset], 
		ldb, info);

	return 0;
    }

/*     Book-keeping and setting up some constants. */

    nlvl = (integer) (log((doublereal) (*n) / (doublereal) (*smlsiz + 1)) / 
	    log(2.)) + 1;

    smlszp = *smlsiz + 1;

    u = 1;
    vt = *smlsiz * *n + 1;
    difl = vt + smlszp * *n;
    difr = difl + nlvl * *n;
    z__ = difr + (nlvl * *n << 1);
    c__ = z__ + nlvl * *n;
    s = c__ + *n;
    poles = s + *n;
    givnum = poles + (nlvl << 1) * *n;
    bx = givnum + (nlvl << 1) * *n;
    nwork = bx + *n * *nrhs;

    sizei = *n + 1;
    k = sizei + *n;
    givptr = k + *n;
    perm = givptr + *n;
    givcol = perm + nlvl * *n;
    iwk = givcol + (nlvl * *n << 1);

    st = 1;
    sqre = 0;
    icmpq1 = 1;
    icmpq2 = 0;
    nsub = 0;

    i__1 = *n;
    for (i__ = 1; i__ <= i__1; ++i__) {
	if ((d__1 = d__[i__], abs(d__1)) < eps) {
	    d__[i__] = d_sign(&eps, &d__[i__]);
	}
/* L50: */
    }

    i__1 = nm1;
    for (i__ = 1; i__ <= i__1; ++i__) {
	if ((d__1 = e[i__], abs(d__1)) < eps || i__ == nm1) {
	    ++nsub;
	    iwork[nsub] = st;

/*           Subproblem found. First determine its size and then */
/*           apply divide and conquer on it. */

	    if (i__ < nm1) {

/*              A subproblem with E(I) small for I < NM1. */

		nsize = i__ - st + 1;
		iwork[sizei + nsub - 1] = nsize;
	    } else if ((d__1 = e[i__], abs(d__1)) >= eps) {

/*              A subproblem with E(NM1) not too small but I = NM1. */

		nsize = *n - st + 1;
		iwork[sizei + nsub - 1] = nsize;
	    } else {

/*              A subproblem with E(NM1) small. This implies an */
/*              1-by-1 subproblem at D(N), which is not solved */
/*              explicitly. */

		nsize = i__ - st + 1;
		iwork[sizei + nsub - 1] = nsize;
		++nsub;
		iwork[nsub] = *n;
		iwork[sizei + nsub - 1] = 1;
		dcopy_(nrhs, &b[*n + b_dim1], ldb, &work[bx + nm1], n);
	    }
	    st1 = st - 1;
	    if (nsize == 1) {

/*              This is a 1-by-1 subproblem and is not solved */
/*              explicitly. */

		dcopy_(nrhs, &b[st + b_dim1], ldb, &work[bx + st1], n);
	    } else if (nsize <= *smlsiz) {

/*              This is a small subproblem and is solved by DLASDQ. */

		dlaset_("A", &nsize, &nsize, &c_b6, &c_b11, &work[vt + st1], 
			n);
		dlasdq_("U", &c__0, &nsize, &nsize, &c__0, nrhs, &d__[st], &e[
			st], &work[vt + st1], n, &work[nwork], n, &b[st + 
			b_dim1], ldb, &work[nwork], info);
		if (*info != 0) {
		    return 0;
		}
		dlacpy_("A", &nsize, nrhs, &b[st + b_dim1], ldb, &work[bx + 
			st1], n);
	    } else {

/*              A large problem. Solve it using divide and conquer. */

		dlasda_(&icmpq1, smlsiz, &nsize, &sqre, &d__[st], &e[st], &
			work[u + st1], n, &work[vt + st1], &iwork[k + st1], &
			work[difl + st1], &work[difr + st1], &work[z__ + st1], 
			 &work[poles + st1], &iwork[givptr + st1], &iwork[
			givcol + st1], n, &iwork[perm + st1], &work[givnum + 
			st1], &work[c__ + st1], &work[s + st1], &work[nwork], 
			&iwork[iwk], info);
		if (*info != 0) {
		    return 0;
		}
		bxst = bx + st1;
		dlalsa_(&icmpq2, smlsiz, &nsize, nrhs, &b[st + b_dim1], ldb, &
			work[bxst], n, &work[u + st1], n, &work[vt + st1], &
			iwork[k + st1], &work[difl + st1], &work[difr + st1], 
			&work[z__ + st1], &work[poles + st1], &iwork[givptr + 
			st1], &iwork[givcol + st1], n, &iwork[perm + st1], &
			work[givnum + st1], &work[c__ + st1], &work[s + st1], 
			&work[nwork], &iwork[iwk], info);
		if (*info != 0) {
		    return 0;
		}
	    }
	    st = i__ + 1;
	}
/* L60: */
    }

/*     Apply the singular values and treat the tiny ones as zero. */

    tol = rcnd * (d__1 = d__[idamax_(n, &d__[1], &c__1)], abs(d__1));

    i__1 = *n;
    for (i__ = 1; i__ <= i__1; ++i__) {

/*        Some of the elements in D can be negative because 1-by-1 */
/*        subproblems were not solved explicitly. */

	if ((d__1 = d__[i__], abs(d__1)) <= tol) {
	    dlaset_("A", &c__1, nrhs, &c_b6, &c_b6, &work[bx + i__ - 1], n);
	} else {
	    ++(*rank);
	    dlascl_("G", &c__0, &c__0, &d__[i__], &c_b11, &c__1, nrhs, &work[
		    bx + i__ - 1], n, info);
	}
	d__[i__] = (d__1 = d__[i__], abs(d__1));
/* L70: */
    }

/*     Now apply back the right singular vectors. */

    icmpq2 = 1;
    i__1 = nsub;
    for (i__ = 1; i__ <= i__1; ++i__) {
	st = iwork[i__];
	st1 = st - 1;
	nsize = iwork[sizei + i__ - 1];
	bxst = bx + st1;
	if (nsize == 1) {
	    dcopy_(nrhs, &work[bxst], n, &b[st + b_dim1], ldb);
	} else if (nsize <= *smlsiz) {
	    dgemm_("T", "N", &nsize, nrhs, &nsize, &c_b11, &work[vt + st1], n, 
		     &work[bxst], n, &c_b6, &b[st + b_dim1], ldb);
	} else {
	    dlalsa_(&icmpq2, smlsiz, &nsize, nrhs, &work[bxst], n, &b[st + 
		    b_dim1], ldb, &work[u + st1], n, &work[vt + st1], &iwork[
		    k + st1], &work[difl + st1], &work[difr + st1], &work[z__ 
		    + st1], &work[poles + st1], &iwork[givptr + st1], &iwork[
		    givcol + st1], n, &iwork[perm + st1], &work[givnum + st1], 
		     &work[c__ + st1], &work[s + st1], &work[nwork], &iwork[
		    iwk], info);
	    if (*info != 0) {
		return 0;
	    }
	}
/* L80: */
    }

/*     Unscale and sort the singular values. */

    dlascl_("G", &c__0, &c__0, &c_b11, &orgnrm, n, &c__1, &d__[1], n, info);
    dlasrt_("D", n, &d__[1], info);
    dlascl_("G", &c__0, &c__0, &orgnrm, &c_b11, n, nrhs, &b[b_offset], ldb, 
	    info);

    return 0;

/*     End of DLALSD */

} /* dlalsd_ */
コード例 #26
0
ファイル: zstein.c プロジェクト: 3deggi/levmar-ndk
/* Subroutine */ int zstein_(integer *n, doublereal *d__, doublereal *e, 
	integer *m, doublereal *w, integer *iblock, integer *isplit, 
	doublecomplex *z__, integer *ldz, doublereal *work, integer *iwork, 
	integer *ifail, integer *info)
{
    /* System generated locals */
    integer z_dim1, z_offset, i__1, i__2, i__3, i__4, i__5;
    doublereal d__1, d__2, d__3, d__4, d__5;
    doublecomplex z__1;

    /* Builtin functions */
    double sqrt(doublereal);

    /* Local variables */
    integer i__, j, b1, j1, bn, jr;
    doublereal xj, scl, eps, sep, nrm, tol;
    integer its;
    doublereal xjm, ztr, eps1;
    integer jblk, nblk, jmax;
    extern doublereal dnrm2_(integer *, doublereal *, integer *);
    extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *, 
	    integer *);
    integer iseed[4], gpind, iinfo;
    extern doublereal dasum_(integer *, doublereal *, integer *);
    extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *, 
	    doublereal *, integer *);
    doublereal ortol;
    integer indrv1, indrv2, indrv3, indrv4, indrv5;
    extern doublereal dlamch_(char *);
    extern /* Subroutine */ int dlagtf_(integer *, doublereal *, doublereal *, 
	     doublereal *, doublereal *, doublereal *, doublereal *, integer *
, integer *);
    extern integer idamax_(integer *, doublereal *, integer *);
    extern /* Subroutine */ int xerbla_(char *, integer *), dlagts_(
	    integer *, integer *, doublereal *, doublereal *, doublereal *, 
	    doublereal *, integer *, doublereal *, doublereal *, integer *);
    integer nrmchk;
    extern /* Subroutine */ int dlarnv_(integer *, integer *, integer *, 
	    doublereal *);
    integer blksiz;
    doublereal onenrm, dtpcrt, pertol;


/*  -- LAPACK routine (version 3.2) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  ZSTEIN computes the eigenvectors of a real symmetric tridiagonal */
/*  matrix T corresponding to specified eigenvalues, using inverse */
/*  iteration. */

/*  The maximum number of iterations allowed for each eigenvector is */
/*  specified by an internal parameter MAXITS (currently set to 5). */

/*  Although the eigenvectors are real, they are stored in a complex */
/*  array, which may be passed to ZUNMTR or ZUPMTR for back */
/*  transformation to the eigenvectors of a complex Hermitian matrix */
/*  which was reduced to tridiagonal form. */


/*  Arguments */
/*  ========= */

/*  N       (input) INTEGER */
/*          The order of the matrix.  N >= 0. */

/*  D       (input) DOUBLE PRECISION array, dimension (N) */
/*          The n diagonal elements of the tridiagonal matrix T. */

/*  E       (input) DOUBLE PRECISION array, dimension (N-1) */
/*          The (n-1) subdiagonal elements of the tridiagonal matrix */
/*          T, stored in elements 1 to N-1. */

/*  M       (input) INTEGER */
/*          The number of eigenvectors to be found.  0 <= M <= N. */

/*  W       (input) DOUBLE PRECISION array, dimension (N) */
/*          The first M elements of W contain the eigenvalues for */
/*          which eigenvectors are to be computed.  The eigenvalues */
/*          should be grouped by split-off block and ordered from */
/*          smallest to largest within the block.  ( The output array */
/*          W from DSTEBZ with ORDER = 'B' is expected here. ) */

/*  IBLOCK  (input) INTEGER array, dimension (N) */
/*          The submatrix indices associated with the corresponding */
/*          eigenvalues in W; IBLOCK(i)=1 if eigenvalue W(i) belongs to */
/*          the first submatrix from the top, =2 if W(i) belongs to */
/*          the second submatrix, etc.  ( The output array IBLOCK */
/*          from DSTEBZ is expected here. ) */

/*  ISPLIT  (input) INTEGER array, dimension (N) */
/*          The splitting points, at which T breaks up into submatrices. */
/*          The first submatrix consists of rows/columns 1 to */
/*          ISPLIT( 1 ), the second of rows/columns ISPLIT( 1 )+1 */
/*          through ISPLIT( 2 ), etc. */
/*          ( The output array ISPLIT from DSTEBZ is expected here. ) */

/*  Z       (output) COMPLEX*16 array, dimension (LDZ, M) */
/*          The computed eigenvectors.  The eigenvector associated */
/*          with the eigenvalue W(i) is stored in the i-th column of */
/*          Z.  Any vector which fails to converge is set to its current */
/*          iterate after MAXITS iterations. */
/*          The imaginary parts of the eigenvectors are set to zero. */

/*  LDZ     (input) INTEGER */
/*          The leading dimension of the array Z.  LDZ >= max(1,N). */

/*  WORK    (workspace) DOUBLE PRECISION array, dimension (5*N) */

/*  IWORK   (workspace) INTEGER array, dimension (N) */

/*  IFAIL   (output) INTEGER array, dimension (M) */
/*          On normal exit, all elements of IFAIL are zero. */
/*          If one or more eigenvectors fail to converge after */
/*          MAXITS iterations, then their indices are stored in */
/*          array IFAIL. */

/*  INFO    (output) INTEGER */
/*          = 0: successful exit */
/*          < 0: if INFO = -i, the i-th argument had an illegal value */
/*          > 0: if INFO = i, then i eigenvectors failed to converge */
/*               in MAXITS iterations.  Their indices are stored in */
/*               array IFAIL. */

/*  Internal Parameters */
/*  =================== */

/*  MAXITS  INTEGER, default = 5 */
/*          The maximum number of iterations performed. */

/*  EXTRA   INTEGER, default = 2 */
/*          The number of iterations performed after norm growth */
/*          criterion is satisfied, should be at least 1. */

/* ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. Local Arrays .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input parameters. */

    /* Parameter adjustments */
    --d__;
    --e;
    --w;
    --iblock;
    --isplit;
    z_dim1 = *ldz;
    z_offset = 1 + z_dim1;
    z__ -= z_offset;
    --work;
    --iwork;
    --ifail;

    /* Function Body */
    *info = 0;
    i__1 = *m;
    for (i__ = 1; i__ <= i__1; ++i__) {
	ifail[i__] = 0;
/* L10: */
    }

    if (*n < 0) {
	*info = -1;
    } else if (*m < 0 || *m > *n) {
	*info = -4;
    } else if (*ldz < max(1,*n)) {
	*info = -9;
    } else {
	i__1 = *m;
	for (j = 2; j <= i__1; ++j) {
	    if (iblock[j] < iblock[j - 1]) {
		*info = -6;
		goto L30;
	    }
	    if (iblock[j] == iblock[j - 1] && w[j] < w[j - 1]) {
		*info = -5;
		goto L30;
	    }
/* L20: */
	}
L30:
	;
    }

    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("ZSTEIN", &i__1);
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0 || *m == 0) {
	return 0;
    } else if (*n == 1) {
	i__1 = z_dim1 + 1;
	z__[i__1].r = 1., z__[i__1].i = 0.;
	return 0;
    }

/*     Get machine constants. */

    eps = dlamch_("Precision");

/*     Initialize seed for random number generator DLARNV. */

    for (i__ = 1; i__ <= 4; ++i__) {
	iseed[i__ - 1] = 1;
/* L40: */
    }

/*     Initialize pointers. */

    indrv1 = 0;
    indrv2 = indrv1 + *n;
    indrv3 = indrv2 + *n;
    indrv4 = indrv3 + *n;
    indrv5 = indrv4 + *n;

/*     Compute eigenvectors of matrix blocks. */

    j1 = 1;
    i__1 = iblock[*m];
    for (nblk = 1; nblk <= i__1; ++nblk) {

/*        Find starting and ending indices of block nblk. */

	if (nblk == 1) {
	    b1 = 1;
	} else {
	    b1 = isplit[nblk - 1] + 1;
	}
	bn = isplit[nblk];
	blksiz = bn - b1 + 1;
	if (blksiz == 1) {
	    goto L60;
	}
	gpind = b1;

/*        Compute reorthogonalization criterion and stopping criterion. */

	onenrm = (d__1 = d__[b1], abs(d__1)) + (d__2 = e[b1], abs(d__2));
/* Computing MAX */
	d__3 = onenrm, d__4 = (d__1 = d__[bn], abs(d__1)) + (d__2 = e[bn - 1],
		 abs(d__2));
	onenrm = max(d__3,d__4);
	i__2 = bn - 1;
	for (i__ = b1 + 1; i__ <= i__2; ++i__) {
/* Computing MAX */
	    d__4 = onenrm, d__5 = (d__1 = d__[i__], abs(d__1)) + (d__2 = e[
		    i__ - 1], abs(d__2)) + (d__3 = e[i__], abs(d__3));
	    onenrm = max(d__4,d__5);
/* L50: */
	}
	ortol = onenrm * .001;

	dtpcrt = sqrt(.1 / blksiz);

/*        Loop through eigenvalues of block nblk. */

L60:
	jblk = 0;
	i__2 = *m;
	for (j = j1; j <= i__2; ++j) {
	    if (iblock[j] != nblk) {
		j1 = j;
		goto L180;
	    }
	    ++jblk;
	    xj = w[j];

/*           Skip all the work if the block size is one. */

	    if (blksiz == 1) {
		work[indrv1 + 1] = 1.;
		goto L140;
	    }

/*           If eigenvalues j and j-1 are too close, add a relatively */
/*           small perturbation. */

	    if (jblk > 1) {
		eps1 = (d__1 = eps * xj, abs(d__1));
		pertol = eps1 * 10.;
		sep = xj - xjm;
		if (sep < pertol) {
		    xj = xjm + pertol;
		}
	    }

	    its = 0;
	    nrmchk = 0;

/*           Get random starting vector. */

	    dlarnv_(&c__2, iseed, &blksiz, &work[indrv1 + 1]);

/*           Copy the matrix T so it won't be destroyed in factorization. */

	    dcopy_(&blksiz, &d__[b1], &c__1, &work[indrv4 + 1], &c__1);
	    i__3 = blksiz - 1;
	    dcopy_(&i__3, &e[b1], &c__1, &work[indrv2 + 2], &c__1);
	    i__3 = blksiz - 1;
	    dcopy_(&i__3, &e[b1], &c__1, &work[indrv3 + 1], &c__1);

/*           Compute LU factors with partial pivoting  ( PT = LU ) */

	    tol = 0.;
	    dlagtf_(&blksiz, &work[indrv4 + 1], &xj, &work[indrv2 + 2], &work[
		    indrv3 + 1], &tol, &work[indrv5 + 1], &iwork[1], &iinfo);

/*           Update iteration count. */

L70:
	    ++its;
	    if (its > 5) {
		goto L120;
	    }

/*           Normalize and scale the righthand side vector Pb. */

/* Computing MAX */
	    d__2 = eps, d__3 = (d__1 = work[indrv4 + blksiz], abs(d__1));
	    scl = blksiz * onenrm * max(d__2,d__3) / dasum_(&blksiz, &work[
		    indrv1 + 1], &c__1);
	    dscal_(&blksiz, &scl, &work[indrv1 + 1], &c__1);

/*           Solve the system LU = Pb. */

	    dlagts_(&c_n1, &blksiz, &work[indrv4 + 1], &work[indrv2 + 2], &
		    work[indrv3 + 1], &work[indrv5 + 1], &iwork[1], &work[
		    indrv1 + 1], &tol, &iinfo);

/*           Reorthogonalize by modified Gram-Schmidt if eigenvalues are */
/*           close enough. */

	    if (jblk == 1) {
		goto L110;
	    }
	    if ((d__1 = xj - xjm, abs(d__1)) > ortol) {
		gpind = j;
	    }
	    if (gpind != j) {
		i__3 = j - 1;
		for (i__ = gpind; i__ <= i__3; ++i__) {
		    ztr = 0.;
		    i__4 = blksiz;
		    for (jr = 1; jr <= i__4; ++jr) {
			i__5 = b1 - 1 + jr + i__ * z_dim1;
			ztr += work[indrv1 + jr] * z__[i__5].r;
/* L80: */
		    }
		    i__4 = blksiz;
		    for (jr = 1; jr <= i__4; ++jr) {
			i__5 = b1 - 1 + jr + i__ * z_dim1;
			work[indrv1 + jr] -= ztr * z__[i__5].r;
/* L90: */
		    }
/* L100: */
		}
	    }

/*           Check the infinity norm of the iterate. */

L110:
	    jmax = idamax_(&blksiz, &work[indrv1 + 1], &c__1);
	    nrm = (d__1 = work[indrv1 + jmax], abs(d__1));

/*           Continue for additional iterations after norm reaches */
/*           stopping criterion. */

	    if (nrm < dtpcrt) {
		goto L70;
	    }
	    ++nrmchk;
	    if (nrmchk < 3) {
		goto L70;
	    }

	    goto L130;

/*           If stopping criterion was not satisfied, update info and */
/*           store eigenvector number in array ifail. */

L120:
	    ++(*info);
	    ifail[*info] = j;

/*           Accept iterate as jth eigenvector. */

L130:
	    scl = 1. / dnrm2_(&blksiz, &work[indrv1 + 1], &c__1);
	    jmax = idamax_(&blksiz, &work[indrv1 + 1], &c__1);
	    if (work[indrv1 + jmax] < 0.) {
		scl = -scl;
	    }
	    dscal_(&blksiz, &scl, &work[indrv1 + 1], &c__1);
L140:
	    i__3 = *n;
	    for (i__ = 1; i__ <= i__3; ++i__) {
		i__4 = i__ + j * z_dim1;
		z__[i__4].r = 0., z__[i__4].i = 0.;
/* L150: */
	    }
	    i__3 = blksiz;
	    for (i__ = 1; i__ <= i__3; ++i__) {
		i__4 = b1 + i__ - 1 + j * z_dim1;
		i__5 = indrv1 + i__;
		z__1.r = work[i__5], z__1.i = 0.;
		z__[i__4].r = z__1.r, z__[i__4].i = z__1.i;
/* L160: */
	    }

/*           Save the shift to check eigenvalue spacing at next */
/*           iteration. */

	    xjm = xj;

/* L170: */
	}
L180:
	;
    }

    return 0;

/*     End of ZSTEIN */

} /* zstein_ */
コード例 #27
0
ファイル: scsl_blas.c プロジェクト: jackd/FVMPor
void dcopy(int n, double* x, int incx, double* y, int incy) {
    dcopy_(&n, x, &incx, y, &incy);
}
コード例 #28
0
ファイル: dtrrfs.c プロジェクト: flame/libflame
/* Subroutine */
int dtrrfs_(char *uplo, char *trans, char *diag, integer *n, integer *nrhs, doublereal *a, integer *lda, doublereal *b, integer * ldb, doublereal *x, integer *ldx, doublereal *ferr, doublereal *berr, doublereal *work, integer *iwork, integer *info)
{
    /* System generated locals */
    integer a_dim1, a_offset, b_dim1, b_offset, x_dim1, x_offset, i__1, i__2, i__3;
    doublereal d__1, d__2, d__3;
    /* Local variables */
    integer i__, j, k;
    doublereal s, xk;
    integer nz;
    doublereal eps;
    integer kase;
    doublereal safe1, safe2;
    extern logical lsame_(char *, char *);
    integer isave[3];
    extern /* Subroutine */
    int dcopy_(integer *, doublereal *, integer *, doublereal *, integer *), daxpy_(integer *, doublereal *, doublereal *, integer *, doublereal *, integer *);
    logical upper;
    extern /* Subroutine */
    int dtrmv_(char *, char *, char *, integer *, doublereal *, integer *, doublereal *, integer *), dtrsv_(char *, char *, char *, integer *, doublereal *, integer *, doublereal *, integer *), dlacn2_(integer *, doublereal *, doublereal *, integer *, doublereal *, integer *, integer *);
    extern doublereal dlamch_(char *);
    doublereal safmin;
    extern /* Subroutine */
    int xerbla_(char *, integer *);
    logical notran;
    char transt[1];
    logical nounit;
    doublereal lstres;
    /* -- LAPACK computational routine (version 3.4.0) -- */
    /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
    /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
    /* November 2011 */
    /* .. Scalar Arguments .. */
    /* .. */
    /* .. Array Arguments .. */
    /* .. */
    /* ===================================================================== */
    /* .. Parameters .. */
    /* .. */
    /* .. Local Scalars .. */
    /* .. */
    /* .. Local Arrays .. */
    /* .. */
    /* .. External Subroutines .. */
    /* .. */
    /* .. Intrinsic Functions .. */
    /* .. */
    /* .. External Functions .. */
    /* .. */
    /* .. Executable Statements .. */
    /* Test the input parameters. */
    /* Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    b_dim1 = *ldb;
    b_offset = 1 + b_dim1;
    b -= b_offset;
    x_dim1 = *ldx;
    x_offset = 1 + x_dim1;
    x -= x_offset;
    --ferr;
    --berr;
    --work;
    --iwork;
    /* Function Body */
    *info = 0;
    upper = lsame_(uplo, "U");
    notran = lsame_(trans, "N");
    nounit = lsame_(diag, "N");
    if (! upper && ! lsame_(uplo, "L"))
    {
        *info = -1;
    }
    else if (! notran && ! lsame_(trans, "T") && ! lsame_(trans, "C"))
    {
        *info = -2;
    }
    else if (! nounit && ! lsame_(diag, "U"))
    {
        *info = -3;
    }
    else if (*n < 0)
    {
        *info = -4;
    }
    else if (*nrhs < 0)
    {
        *info = -5;
    }
    else if (*lda < max(1,*n))
    {
        *info = -7;
    }
    else if (*ldb < max(1,*n))
    {
        *info = -9;
    }
    else if (*ldx < max(1,*n))
    {
        *info = -11;
    }
    if (*info != 0)
    {
        i__1 = -(*info);
        xerbla_("DTRRFS", &i__1);
        return 0;
    }
    /* Quick return if possible */
    if (*n == 0 || *nrhs == 0)
    {
        i__1 = *nrhs;
        for (j = 1;
                j <= i__1;
                ++j)
        {
            ferr[j] = 0.;
            berr[j] = 0.;
            /* L10: */
        }
        return 0;
    }
    if (notran)
    {
        *(unsigned char *)transt = 'T';
    }
    else
    {
        *(unsigned char *)transt = 'N';
    }
    /* NZ = maximum number of nonzero elements in each row of A, plus 1 */
    nz = *n + 1;
    eps = dlamch_("Epsilon");
    safmin = dlamch_("Safe minimum");
    safe1 = nz * safmin;
    safe2 = safe1 / eps;
    /* Do for each right hand side */
    i__1 = *nrhs;
    for (j = 1;
            j <= i__1;
            ++j)
    {
        /* Compute residual R = B - op(A) * X, */
        /* where op(A) = A or A**T, depending on TRANS. */
        dcopy_(n, &x[j * x_dim1 + 1], &c__1, &work[*n + 1], &c__1);
        dtrmv_(uplo, trans, diag, n, &a[a_offset], lda, &work[*n + 1], &c__1);
        daxpy_(n, &c_b19, &b[j * b_dim1 + 1], &c__1, &work[*n + 1], &c__1);
        /* Compute componentwise relative backward error from formula */
        /* max(i) ( f2c_abs(R(i)) / ( f2c_abs(op(A))*f2c_abs(X) + f2c_abs(B) )(i) ) */
        /* where f2c_abs(Z) is the componentwise absolute value of the matrix */
        /* or vector Z. If the i-th component of the denominator is less */
        /* than SAFE2, then SAFE1 is added to the i-th components of the */
        /* numerator and denominator before dividing. */
        i__2 = *n;
        for (i__ = 1;
                i__ <= i__2;
                ++i__)
        {
            work[i__] = (d__1 = b[i__ + j * b_dim1], f2c_abs(d__1));
            /* L20: */
        }
        if (notran)
        {
            /* Compute f2c_abs(A)*f2c_abs(X) + f2c_abs(B). */
            if (upper)
            {
                if (nounit)
                {
                    i__2 = *n;
                    for (k = 1;
                            k <= i__2;
                            ++k)
                    {
                        xk = (d__1 = x[k + j * x_dim1], f2c_abs(d__1));
                        i__3 = k;
                        for (i__ = 1;
                                i__ <= i__3;
                                ++i__)
                        {
                            work[i__] += (d__1 = a[i__ + k * a_dim1], f2c_abs( d__1)) * xk;
                            /* L30: */
                        }
                        /* L40: */
                    }
                }
                else
                {
                    i__2 = *n;
                    for (k = 1;
                            k <= i__2;
                            ++k)
                    {
                        xk = (d__1 = x[k + j * x_dim1], f2c_abs(d__1));
                        i__3 = k - 1;
                        for (i__ = 1;
                                i__ <= i__3;
                                ++i__)
                        {
                            work[i__] += (d__1 = a[i__ + k * a_dim1], f2c_abs( d__1)) * xk;
                            /* L50: */
                        }
                        work[k] += xk;
                        /* L60: */
                    }
                }
            }
            else
            {
                if (nounit)
                {
                    i__2 = *n;
                    for (k = 1;
                            k <= i__2;
                            ++k)
                    {
                        xk = (d__1 = x[k + j * x_dim1], f2c_abs(d__1));
                        i__3 = *n;
                        for (i__ = k;
                                i__ <= i__3;
                                ++i__)
                        {
                            work[i__] += (d__1 = a[i__ + k * a_dim1], f2c_abs( d__1)) * xk;
                            /* L70: */
                        }
                        /* L80: */
                    }
                }
                else
                {
                    i__2 = *n;
                    for (k = 1;
                            k <= i__2;
                            ++k)
                    {
                        xk = (d__1 = x[k + j * x_dim1], f2c_abs(d__1));
                        i__3 = *n;
                        for (i__ = k + 1;
                                i__ <= i__3;
                                ++i__)
                        {
                            work[i__] += (d__1 = a[i__ + k * a_dim1], f2c_abs( d__1)) * xk;
                            /* L90: */
                        }
                        work[k] += xk;
                        /* L100: */
                    }
                }
            }
        }
        else
        {
            /* Compute f2c_abs(A**T)*f2c_abs(X) + f2c_abs(B). */
            if (upper)
            {
                if (nounit)
                {
                    i__2 = *n;
                    for (k = 1;
                            k <= i__2;
                            ++k)
                    {
                        s = 0.;
                        i__3 = k;
                        for (i__ = 1;
                                i__ <= i__3;
                                ++i__)
                        {
                            s += (d__1 = a[i__ + k * a_dim1], f2c_abs(d__1)) * ( d__2 = x[i__ + j * x_dim1], f2c_abs(d__2));
                            /* L110: */
                        }
                        work[k] += s;
                        /* L120: */
                    }
                }
                else
                {
                    i__2 = *n;
                    for (k = 1;
                            k <= i__2;
                            ++k)
                    {
                        s = (d__1 = x[k + j * x_dim1], f2c_abs(d__1));
                        i__3 = k - 1;
                        for (i__ = 1;
                                i__ <= i__3;
                                ++i__)
                        {
                            s += (d__1 = a[i__ + k * a_dim1], f2c_abs(d__1)) * ( d__2 = x[i__ + j * x_dim1], f2c_abs(d__2));
                            /* L130: */
                        }
                        work[k] += s;
                        /* L140: */
                    }
                }
            }
            else
            {
                if (nounit)
                {
                    i__2 = *n;
                    for (k = 1;
                            k <= i__2;
                            ++k)
                    {
                        s = 0.;
                        i__3 = *n;
                        for (i__ = k;
                                i__ <= i__3;
                                ++i__)
                        {
                            s += (d__1 = a[i__ + k * a_dim1], f2c_abs(d__1)) * ( d__2 = x[i__ + j * x_dim1], f2c_abs(d__2));
                            /* L150: */
                        }
                        work[k] += s;
                        /* L160: */
                    }
                }
                else
                {
                    i__2 = *n;
                    for (k = 1;
                            k <= i__2;
                            ++k)
                    {
                        s = (d__1 = x[k + j * x_dim1], f2c_abs(d__1));
                        i__3 = *n;
                        for (i__ = k + 1;
                                i__ <= i__3;
                                ++i__)
                        {
                            s += (d__1 = a[i__ + k * a_dim1], f2c_abs(d__1)) * ( d__2 = x[i__ + j * x_dim1], f2c_abs(d__2));
                            /* L170: */
                        }
                        work[k] += s;
                        /* L180: */
                    }
                }
            }
        }
        s = 0.;
        i__2 = *n;
        for (i__ = 1;
                i__ <= i__2;
                ++i__)
        {
            if (work[i__] > safe2)
            {
                /* Computing MAX */
                d__2 = s;
                d__3 = (d__1 = work[*n + i__], f2c_abs(d__1)) / work[ i__]; // , expr subst
                s = max(d__2,d__3);
            }
            else
            {
                /* Computing MAX */
                d__2 = s;
                d__3 = ((d__1 = work[*n + i__], f2c_abs(d__1)) + safe1) / (work[i__] + safe1); // , expr subst
                s = max(d__2,d__3);
            }
            /* L190: */
        }
        berr[j] = s;
        /* Bound error from formula */
        /* norm(X - XTRUE) / norm(X) .le. FERR = */
        /* norm( f2c_abs(inv(op(A)))* */
        /* ( f2c_abs(R) + NZ*EPS*( f2c_abs(op(A))*f2c_abs(X)+f2c_abs(B) ))) / norm(X) */
        /* where */
        /* norm(Z) is the magnitude of the largest component of Z */
        /* inv(op(A)) is the inverse of op(A) */
        /* f2c_abs(Z) is the componentwise absolute value of the matrix or */
        /* vector Z */
        /* NZ is the maximum number of nonzeros in any row of A, plus 1 */
        /* EPS is machine epsilon */
        /* The i-th component of f2c_abs(R)+NZ*EPS*(f2c_abs(op(A))*f2c_abs(X)+f2c_abs(B)) */
        /* is incremented by SAFE1 if the i-th component of */
        /* f2c_abs(op(A))*f2c_abs(X) + f2c_abs(B) is less than SAFE2. */
        /* Use DLACN2 to estimate the infinity-norm of the matrix */
        /* inv(op(A)) * diag(W), */
        /* where W = f2c_abs(R) + NZ*EPS*( f2c_abs(op(A))*f2c_abs(X)+f2c_abs(B) ))) */
        i__2 = *n;
        for (i__ = 1;
                i__ <= i__2;
                ++i__)
        {
            if (work[i__] > safe2)
            {
                work[i__] = (d__1 = work[*n + i__], f2c_abs(d__1)) + nz * eps * work[i__];
            }
            else
            {
                work[i__] = (d__1 = work[*n + i__], f2c_abs(d__1)) + nz * eps * work[i__] + safe1;
            }
            /* L200: */
        }
        kase = 0;
L210:
        dlacn2_(n, &work[(*n << 1) + 1], &work[*n + 1], &iwork[1], &ferr[j], & kase, isave);
        if (kase != 0)
        {
            if (kase == 1)
            {
                /* Multiply by diag(W)*inv(op(A)**T). */
                dtrsv_(uplo, transt, diag, n, &a[a_offset], lda, &work[*n + 1] , &c__1);
                i__2 = *n;
                for (i__ = 1;
                        i__ <= i__2;
                        ++i__)
                {
                    work[*n + i__] = work[i__] * work[*n + i__];
                    /* L220: */
                }
            }
            else
            {
                /* Multiply by inv(op(A))*diag(W). */
                i__2 = *n;
                for (i__ = 1;
                        i__ <= i__2;
                        ++i__)
                {
                    work[*n + i__] = work[i__] * work[*n + i__];
                    /* L230: */
                }
                dtrsv_(uplo, trans, diag, n, &a[a_offset], lda, &work[*n + 1], &c__1);
            }
            goto L210;
        }
        /* Normalize error. */
        lstres = 0.;
        i__2 = *n;
        for (i__ = 1;
                i__ <= i__2;
                ++i__)
        {
            /* Computing MAX */
            d__2 = lstres;
            d__3 = (d__1 = x[i__ + j * x_dim1], f2c_abs(d__1)); // , expr subst
            lstres = max(d__2,d__3);
            /* L240: */
        }
        if (lstres != 0.)
        {
            ferr[j] /= lstres;
        }
        /* L250: */
    }
    return 0;
    /* End of DTRRFS */
}
コード例 #29
0
ファイル: vcs_dbols.c プロジェクト: anujg1991/cantera
/* Subroutine */
int dbols_(doublereal* w, integer* mdw, integer* mrows,
           integer* ncols, doublereal* bl, doublereal* bu, integer* ind, integer
           *iopt, doublereal* x, doublereal* rnorm, integer* mode, doublereal *
           rw, integer* iw)
{
    /* Initialized data */

    static integer igo = 0;

    /* System generated locals */
    integer w_dim1, w_offset, i__1, i__2, i__3;
    doublereal d__1;

    /* Local variables */
    static integer i__, j;
    static doublereal sc;
    static integer ip, jp, lp;
    static doublereal ss;
    static integer llb;
    static doublereal one;
    static integer lds, llx, ibig, idum, lmdw, lndw, nerr;
    static real rdum;
    static integer lenx, lliw, mnew;
    extern /* Subroutine */ int drot_(integer*, doublereal*, integer*,
                                      doublereal*, integer*, doublereal*, doublereal*);
    static integer lopt;
    static doublereal zero;
    static integer llrw;
    extern doublereal dnrm2_(integer*, doublereal*, integer*);
    static real rdum2;
    static integer nchar, level;
    extern /* Subroutine */ int dcopy_(integer*, doublereal*, integer*,
                                       doublereal*, integer*), drotg_(doublereal*, doublereal*,
                                               doublereal*, doublereal*);
    static integer liopt, locacc;
    static logical checkl;
    static integer iscale;
    extern integer idamax_(integer*, doublereal*, integer*);
    static integer locdim;
    extern /* Subroutine */ int dbolsm_(doublereal*, integer*, integer*,
                                        integer*, doublereal*, doublereal*, integer*, integer*,
                                        doublereal*, doublereal*, integer*, doublereal*, doublereal*,
                                        doublereal*, integer*, integer*);
    static integer inrows;
    extern /* Subroutine */ int xerrwv_(char*, integer*, integer*, integer
                                        *, integer*, integer*, integer*, integer*, real*, real*,
                                        ftnlen);

    /* ***BEGIN PROLOGUE  DBOLS */
    /* ***DATE WRITTEN   821220   (YYMMDD) */
    /* ***REVISION DATE  861211   (YYMMDD) */
    /* ***CATEGORY NO.  K1A2A,G2E,G2H1,G2H2 */
    /* ***KEYWORDS  LIBRARY=SLATEC,TYPE=DOUBLE PRECISION(SBOLS-S DBOLS-D), */
    /*             BOUNDS,CONSTRAINTS,INEQUALITY,LEAST SQUARES,LINEAR */
    /* ***AUTHOR  HANSON, R. J., SNLA */
    /* ***PURPOSE  Solve the problem */
    /*                 E*X = F (in the least  squares  sense) */
    /*            with bounds on selected X values. */
    /* ***DESCRIPTION */

    /*            **** Double Precision Version of SBOLS **** */
    /*   **** All INPUT and OUTPUT real variables are DOUBLE PRECISION **** */

    /*     The user must have dimension statements of the form: */

    /*       DIMENSION W(MDW,NCOLS+1), BL(NCOLS), BU(NCOLS), */
    /*      * X(NCOLS+NX), RW(5*NCOLS) */
    /*       INTEGER IND(NCOLS), IOPT(1+NI), IW(2*NCOLS) */

    /*     (here NX=number of extra locations required for option 4; NX=0 */
    /*     for no options; NX=NCOLS if this option is in use. Here NI=number */
    /*     of extra locations required for options 1-6; NI=0 for no */
    /*     options.) */

    /*   INPUT */
    /*   ----- */

    /*    -------------------- */
    /*    W(MDW,*),MROWS,NCOLS */
    /*    -------------------- */
    /*     The array W(*,*) contains the matrix [E:F] on entry. The matrix */
    /*     [E:F] has MROWS rows and NCOLS+1 columns. This data is placed in */
    /*     the array W(*,*) with E occupying the first NCOLS columns and the */
    /*     right side vector F in column NCOLS+1. The row dimension, MDW, of */
    /*     the array W(*,*) must satisfy the inequality MDW .ge. MROWS. */
    /*     Other values of MDW are errrors. The values of MROWS and NCOLS */
    /*     must be positive. Other values are errors. There is an exception */
    /*     to this when using option 1 for accumulation of blocks of */
    /*     equations. In that case MROWS is an OUTPUT variable ONLY, and the */
    /*     matrix data for [E:F] is placed in W(*,*), one block of rows at a */
    /*     time.  MROWS contains the number of rows in the matrix after */
    /*     triangularizing several blocks of equations. This is an OUTPUT */
    /*     parameter ONLY when option 1 is used. See IOPT(*) CONTENTS */
    /*     for details about option 1. */

    /*    ------------------ */
    /*    BL(*),BU(*),IND(*) */
    /*    ------------------ */
    /*     These arrays contain the information about the bounds that the */
    /*     solution values are to satisfy. The value of IND(J) tells the */
    /*     type of bound and BL(J) and BU(J) give the explicit values for */
    /*     the respective upper and lower bounds. */

    /*    1.    For IND(J)=1, require X(J) .ge. BL(J). */
    /*          (the value of BU(J) is not used.) */
    /*    2.    For IND(J)=2, require X(J) .le. BU(J). */
    /*          (the value of BL(J) is not used.) */
    /*    3.    For IND(J)=3, require X(J) .ge. BL(J) and */
    /*                                X(J) .le. BU(J). */
    /*    4.    For IND(J)=4, no bounds on X(J) are required. */
    /*          (the values of BL(J) and BU(J) are not used.) */

    /*     Values other than 1,2,3 or 4 for IND(J) are errors. In the case */
    /*     IND(J)=3 (upper and lower bounds) the condition BL(J) .gt. BU(J) */
    /*     is an error. */

    /*    ------- */
    /*    IOPT(*) */
    /*    ------- */
    /*     This is the array where the user can specify nonstandard options */
    /*     for DBOLSM( ). Most of the time this feature can be ignored by */
    /*     setting the input value IOPT(1)=99. Occasionally users may have */
    /*     needs that require use of the following subprogram options. For */
    /*     details about how to use the options see below: IOPT(*) CONTENTS. */

    /*     Option Number   Brief Statement of Purpose */
    /*     ------ ------   ----- --------- -- ------- */
    /*           1         Return to user for accumulation of blocks */
    /*                     of least squares equations. */
    /*           2         Check lengths of all arrays used in the */
    /*                     subprogram. */
    /*           3         Standard scaling of the data matrix, E. */
    /*           4         User provides column scaling for matrix E. */
    /*           5         Provide option array to the low-level */
    /*                     subprogram DBOLSM( ). */
    /*           6         Move the IOPT(*) processing pointer. */
    /*          99         No more options to change. */

    /*    ---- */
    /*    X(*) */
    /*    ---- */
    /*     This array is used to pass data associated with option 4. Ignore */
    /*     this parameter if this option is not used. Otherwise see below: */
    /*     IOPT(*) CONTENTS. */

    /*    OUTPUT */
    /*    ------ */

    /*    ---------- */
    /*    X(*),RNORM */
    /*    ---------- */
    /*     The array X(*) contains a solution (if MODE .ge.0 or .eq.-22) for */
    /*     the constrained least squares problem. The value RNORM is the */
    /*     minimum residual vector length. */

    /*    ---- */
    /*    MODE */
    /*    ---- */
    /*     The sign of MODE determines whether the subprogram has completed */
    /*     normally, or encountered an error condition or abnormal status. A */
    /*     value of MODE .ge. 0 signifies that the subprogram has completed */
    /*     normally. The value of MODE (.GE. 0) is the number of variables */
    /*     in an active status: not at a bound nor at the value ZERO, for */
    /*     the case of free variables. A negative value of MODE will be one */
    /*     of the cases -37,-36,...,-22, or -17,...,-2. Values .lt. -1 */
    /*     correspond to an abnormal completion of the subprogram. To */
    /*     understand the abnormal completion codes see below: ERROR */
    /*     MESSAGES for DBOLS( ). AN approximate solution will be returned */
    /*     to the user only when max. iterations is reached, MODE=-22. */
    /*     Values for MODE=-37,...,-22 come from the low-level subprogram */
    /*     DBOLSM(). See the section ERROR MESSAGES for DBOLSM() in the */
    /*     documentation for DBOLSM(). */

    /*    ----------- */
    /*    RW(*),IW(*) */
    /*    ----------- */
    /*     These are working arrays with 5*NCOLS and 2*NCOLS entries. */
    /*     (normally the user can ignore the contents of these arrays, */
    /*     but they must be dimensioned properly.) */

    /*    IOPT(*) CONTENTS */
    /*    ------- -------- */
    /*     The option array allows a user to modify internal variables in */
    /*     the subprogram without recompiling the source code. A central */
    /*     goal of the initial software design was to do a good job for most */
    /*     people. Thus the use of options will be restricted to a select */
    /*     group of users. The processing of the option array proceeds as */
    /*     follows: a pointer, here called LP, is initially set to the value */
    /*     1. This value is updated as each option is processed. At the */
    /*     pointer position the option number is extracted and used for */
    /*     locating other information that allows for options to be changed. */
    /*     The portion of the array IOPT(*) that is used for each option is */
    /*     fixed; the user and the subprogram both know how many locations */
    /*     are needed for each option. A great deal of error checking is */
    /*     done by the subprogram on the contents of the option array. */
    /*     Nevertheless it is still possible to give the subprogram optional */
    /*     input that is meaningless. For example option 4 uses the */
    /*     locations X(NCOLS+IOFF),...,X(NCOLS+IOFF+NCOLS-1) for passing */
    /*     scaling data. The user must manage the allocation of these */
    /*     locations. */

    /*   1 */
    /*   - */
    /*     This option allows the user to solve problems with a large number */
    /*     of rows compared to the number of variables. The idea is that the */
    /*     subprogram returns to the user (perhaps many times) and receives */
    /*     new least squares equations from the calling program unit. */
    /*     Eventually the user signals "that's all" and then computes the */
    /*     solution with one final call to subprogram DBOLS( ). The value of */
    /*     MROWS is an OUTPUT variable when this option is used. Its value */
    /*     is always in the range 0 .le. MROWS .le. NCOLS+1. It is equal to */
    /*     the number of rows after the triangularization of the entire set */
    /*     of equations. If LP is the processing pointer for IOPT(*), the */
    /*     usage for the sequential processing of blocks of equations is */

    /*        IOPT(LP)=1 */
    /*        Move block of equations to W(*,*) starting at */
    /*        the first row of W(*,*). */
    /*        IOPT(LP+3)=# of rows in the block; user defined */

    /*     The user now calls DBOLS( ) in a loop. The value of IOPT(LP+1) */
    /*     directs the user's action. The value of IOPT(LP+2) points to */
    /*     where the subsequent rows are to be placed in W(*,*). */

    /*      .<LOOP */
    /*      . CALL DBOLS() */
    /*      . IF(IOPT(LP+1) .EQ. 1) THEN */
    /*      .    IOPT(LP+3)=# OF ROWS IN THE NEW BLOCK; USER DEFINED */
    /*      .    PLACE NEW BLOCK OF IOPT(LP+3) ROWS IN */
    /*      .    W(*,*) STARTING AT ROW IOPT(LP+2). */
    /*      . */
    /*      .    IF( THIS IS THE LAST BLOCK OF EQUATIONS ) THEN */
    /*      .       IOPT(LP+1)=2 */
    /*      .<------CYCLE LOOP */
    /*      .    ELSE IF (IOPT(LP+1) .EQ. 2) THEN */
    /*      <-------EXIT LOOP SOLUTION COMPUTED IF MODE .GE. 0 */
    /*      . ELSE */
    /*      . ERROR CONDITION; SHOULD NOT HAPPEN. */
    /*      .<END LOOP */

    /*     Use of this option adds 4 to the required length of IOPT(*). */


    /*   2 */
    /*   - */
    /*     This option is useful for checking the lengths of all arrays used */
    /*     by DBOLS() against their actual requirements for this problem. */
    /*     The idea is simple: the user's program unit passes the declared */
    /*     dimension information of the arrays. These values are compared */
    /*     against the problem-dependent needs within the subprogram. If any */
    /*     of the dimensions are too small an error message is printed and a */
    /*     negative value of MODE is returned, -11 to -17. The printed error */
    /*     message tells how long the dimension should be. If LP is the */
    /*     processing pointer for IOPT(*), */

    /*        IOPT(LP)=2 */
    /*        IOPT(LP+1)=Row dimension of W(*,*) */
    /*        IOPT(LP+2)=Col. dimension of W(*,*) */
    /*        IOPT(LP+3)=Dimensions of BL(*),BU(*),IND(*) */
    /*        IOPT(LP+4)=Dimension of X(*) */
    /*        IOPT(LP+5)=Dimension of RW(*) */
    /*        IOPT(LP+6)=Dimension of IW(*) */
    /*        IOPT(LP+7)=Dimension of IOPT(*) */
    /*         . */
    /*        CALL DBOLS() */

    /*     Use of this option adds 8 to the required length of IOPT(*). */

    /*   3 */
    /*   - */
    /*     This option changes the type of scaling for the data matrix E. */
    /*     Nominally each nonzero column of E is scaled so that the */
    /*     magnitude of its largest entry is equal to the value ONE. If LP */
    /*     is the processing pointer for IOPT(*), */

    /*        IOPT(LP)=3 */
    /*        IOPT(LP+1)=1,2 or 3 */
    /*            1= Nominal scaling as noted; */
    /*            2= Each nonzero column scaled to have length ONE; */
    /*            3= Identity scaling; scaling effectively suppressed. */
    /*         . */
    /*        CALL DBOLS() */

    /*     Use of this option adds 2 to the required length of IOPT(*). */

    /*   4 */
    /*   - */
    /*     This option allows the user to provide arbitrary (positive) */
    /*     column scaling for the matrix E. If LP is the processing pointer */
    /*     for IOPT(*), */

    /*        IOPT(LP)=4 */
    /*        IOPT(LP+1)=IOFF */
    /*        X(NCOLS+IOFF),...,X(NCOLS+IOFF+NCOLS-1) */
    /*        = Positive scale factors for cols. of E. */
    /*         . */
    /*        CALL DBOLS() */

    /*     Use of this option adds 2 to the required length of IOPT(*) and */
    /*     NCOLS to the required length of X(*). */

    /*   5 */
    /*   - */
    /*     This option allows the user to provide an option array to the */
    /*     low-level subprogram DBOLSM(). If LP is the processing pointer */
    /*     for IOPT(*), */

    /*        IOPT(LP)=5 */
    /*        IOPT(LP+1)= Position in IOPT(*) where option array */
    /*                    data for DBOLSM() begins. */
    /*         . */
    /*        CALL DBOLS() */

    /*     Use of this option adds 2 to the required length of IOPT(*). */

    /*   6 */
    /*   - */
    /*     Move the processing pointer (either forward or backward) to the */
    /*     location IOPT(LP+1). The processing point is moved to entry */
    /*     LP+2 of IOPT(*) if the option is left with -6 in IOPT(LP).  For */
    /*     example to skip over locations 3,...,NCOLS+2 of IOPT(*), */

    /*       IOPT(1)=6 */
    /*       IOPT(2)=NCOLS+3 */
    /*       (IOPT(I), I=3,...,NCOLS+2 are not defined here.) */
    /*       IOPT(NCOLS+3)=99 */
    /*       CALL DBOLS() */

    /*     CAUTION: Misuse of this option can yield some very hard */
    /*     -to-find bugs.  Use it with care. */

    /*   99 */
    /*   -- */
    /*     There are no more options to change. */

    /*     Only option numbers -99, -6,-5,...,-1, 1,2,...,6, and 99 are */
    /*     permitted. Other values are errors. Options -99,-1,...,-6 mean */
    /*     that the repective options 99,1,...,6 are left at their default */
    /*     values. An example is the option to modify the (rank) tolerance: */

    /*       IOPT(1)=-3 Option is recognized but not changed */
    /*       IOPT(2)=2  Scale nonzero cols. to have length ONE */
    /*       IOPT(3)=99 */

    /*    ERROR MESSAGES for DBOLS() */
    /*    ----- -------- --- ------- */

    /* WARNING IN... */
    /* DBOLS(). MDW=(I1) MUST BE POSITIVE. */
    /*           IN ABOVE MESSAGE, I1=         0 */
    /* ERROR NUMBER =         2 */
    /* (NORMALLY A RETURN TO THE USER TAKES PLACE FOLLOWING THIS MESSAGE.) */

    /* WARNING IN... */
    /* DBOLS(). NCOLS=(I1) THE NO. OF VARIABLES MUST BE POSITIVE. */
    /*           IN ABOVE MESSAGE, I1=         0 */
    /* ERROR NUMBER =         3 */
    /* (NORMALLY A RETURN TO THE USER TAKES PLACE FOLLOWING THIS MESSAGE.) */

    /* WARNING IN... */
    /* DBOLS(). FOR J=(I1), IND(J)=(I2) MUST BE 1-4. */
    /*           IN ABOVE MESSAGE, I1=         1 */
    /*           IN ABOVE MESSAGE, I2=         0 */
    /* ERROR NUMBER =         4 */
    /* (NORMALLY A RETURN TO THE USER TAKES PLACE FOLLOWING THIS MESSAGE.) */

    /* WARNING IN... */
    /* DBOLS(). FOR J=(I1), BOUND BL(J)=(R1) IS .GT. BU(J)=(R2). */
    /*           IN ABOVE MESSAGE, I1=         1 */
    /*           IN ABOVE MESSAGE, R1=    0. */
    /*           IN ABOVE MESSAGE, R2=    ABOVE MESSAGE, I1=         0 */
    /* ERROR NUMBER =         6 */
    /* (NORMALLY A RETURN TO THE USER TAKES PLACE FOLLOWING THIS MESSAGE.) */

    /* WARNING IN... */
    /* DBOLS(). ISCALE OPTION=(I1) MUST BE 1-3. */
    /*           IN ABOVE MESSAGE, I1=         0 */
    /* ERROR NUMBER =         7 */
    /* (NORMALLY A RETURN TO THE USER TAKES PLACE FOLLOWING THIS MESSAGE.) */

    /* WARNING IN... */
    /* DBOLS(). OFFSET PAST X(NCOLS) (I1) FOR USER-PROVIDED  COLUMN SCALING */
    /* MUST BE POSITIVE. */
    /*           IN ABOVE MESSAGE, I1=         0 */
    /* ERROR NUMBER =         8 */
    /* (NORMALLY A RETURN TO THE USER TAKES PLACE FOLLOWING THIS MESSAGE.) */

    /* WARNING IN... */
    /* DBOLS(). EACH PROVIDED COL. SCALE FACTOR MUST BE POSITIVE. */
    /* COMPONENT (I1) NOW = (R1). */
    /*           IN ABOVE MESSAGE, I1=        ND. .LE. MDW=(I2). */
    /*           IN ABOVE MESSAGE, I1=         1 */
    /*           IN ABOVE MESSAGE, I2=         0 */
    /* ERROR NUMBER =        10 */
    /* (NORMALLY A RETURN TO THE USER TAKES PLACE FOLLOWING THIS MESSAGE.) */

    /* WARNING IN... */
    /* DBOLS().THE ROW DIMENSION OF W(,)=(I1) MUST BE .GE.THE NUMBER OF ROWS= */
    /* (I2). */
    /*           IN ABOVE MESSAGE, I1=         0 */
    /*           IN ABOVE MESSAGE, I2=         1 */
    /* ERROR NUMBER =        11 */
    /* (NORMALLY A RETURN TO THE USER TAKES PLACE FOLLOWING THIS MESSAGE.) */

    /* WARNING IN... */
    /* DBOLS(). THE COLUMN DIMENSION OF W(,)=(I1) MUST BE .GE. NCOLS+1=(I2). */
    /*           IN ABOVE MESSAGE, I1=         0 */
    /*           IN ABOVE MESSAGE, I2=         2 */
    /* ERROR NUMBER =        12 */
    /* (NORMALLY A RETURN TO THE USER TAKES PLACE FOLLOWING THIS MESSAGE.) */

    /* WARNING IN... */
    /* DBOLS().THE DIMENSIONS OF THE ARRAYS BL(),BU(), AND IND()=(I1) MUST BE */
    /* .GE. NCOLS=(I2). */
    /*           IN ABOVE MESSAGE, I1=         0 */
    /*           IN ABOVE MESSAGE, I2=         1 */
    /* ERROR NUMBER =        13 */
    /* (NORMALLY A RETURN TO THE USER TAKES PLACE FOLLOWING THIS MESSAGE.) */

    /* WARNING IN... */
    /* DBOLS(). THE DIMENSION OF X()=(I1) MUST BE .GE. THE REQD. LENGTH=(I2). */
    /*           IN ABOVE MESSAGE, I1=         0 */
    /*           IN ABOVE MESSAGE, I2=         2 */
    /* ERROR NUMBER =        14 */
    /* (NORMALLY A RETURN TO THE USER TAKES PLACE FOLLOWING THIS MESSAGE.) */

    /* WARNING IN... */
    /* DBOLS(). THE DIMENSION OF RW()=(I1) MUST BE .GE. 5*NCOLS=(I2). */
    /*           IN ABOVE MESSAGE, I1=         0 */
    /*           IN ABOVE MESSAGE, I2=         3 */
    /* ERROR NUMBER =        15 */
    /* (NORMALLY A RETURN TO THE USER TAKES PLACE FOLLOWING THIS MESSAGE.) */

    /* WARNING IN... */
    /* DBOLS() THE DIMENSION OF IW()=(I1) MUST BE .GE. 2*NCOLS=(I2). */
    /*           IN ABOVE MESSAGE, I1=         0 */
    /*           IN ABOVE MESSAGE, I2=         2 */
    /* ERROR NUMBER =        16 */
    /* (NORMALLY A RETURN TO THE USER TAKES PLACE FOLLOWING THIS MESSAGE.) */

    /* WARNING IN... */
    /* DBOLS() THE DIMENSION OF IOPT()=(I1) MUST BE .GE. THE REQD. LEN.=(I2). */
    /*           IN ABOVE MESSAGE, I1=         0 */
    /*           IN ABOVE MESSAGE, I2=         1 */
    /* ERROR NUMBER =        17 */
    /* (NORMALLY A RETURN TO THE USER TAKES PLACE FOLLOWING THIS MESSAGE.) */
    /* ***REFERENCES  HANSON, R. J. LINEAR LEAST SQUARES WITH BOUNDS AND */
    /*                 LINEAR CONSTRAINTS, SNLA REPT. SAND82-1517, AUG.,1982 */
    /* ***ROUTINES CALLED  DBOLSM,DCOPY,DNRM2,DROT,DROTG,IDAMAX,XERRWV */
    /* ***END PROLOGUE  DBOLS */

    /*     SOLVE LINEAR LEAST SQUARES SYSTEM WITH BOUNDS ON */
    /*     SELECTED VARIABLES. */
    /*     REVISED 850329-1400 */
    /*     REVISED YYMMDD-HHMM */
    /*     TO CHANGE THIS SUBPROGRAM FROM SINGLE TO DOUBLE PRECISION BEGIN */
    /*     EDITING AT THE CARD 'C++'. */
    /*     CHANGE THIS SUBPROGRAM NAME TO DBOLS AND THE STRINGS */
    /*     /SCOPY/ TO /DCOPY/, /SBOL/ TO /DBOL/, */
    /*     /SNRM2/ TO /DNRM2/, /ISAMAX/ TO /IDAMAX/, */
    /*     /SROTG/ TO /DROTG/, /SROT/ TO /DROT/, /E0/ TO /D0/, */
    /*     /REAL            / TO /DOUBLE PRECISION/. */
    /* ++ */

    /*     THIS VARIABLE SHOULD REMAIN TYPE REAL. */
    /* Parameter adjustments */
    w_dim1 = *mdw;
    w_offset = 1 + w_dim1;
    w -= w_offset;
    --bl;
    --bu;
    --ind;
    --iopt;
    --x;
    --rw;
    --iw;

    /* Function Body */
    /* ***FIRST EXECUTABLE STATEMENT  DBOLS */
    level = 1;
    nerr = 0;
    *mode = 0;
    if (igo == 0) {
        /*     DO(CHECK VALIDITY OF INPUT DATA) */
        /*     PROCEDURE(CHECK VALIDITY OF INPUT DATA) */

        /*     SEE THAT MDW IS .GT.0. GROSS CHECK ONLY. */
        if (*mdw <= 0) {
            nerr = 2;
            nchar = 35;
            xerrwv_("DBOLS(). MDW=(I1) MUST BE POSITIVE.", &nchar, &nerr, &
                    level, &c__1, mdw, &idum, &c__0, &rdum, &rdum, (ftnlen)35)
            ;
            /*     DO(RETURN TO USER PROGRAM UNIT) */
            goto L190;
        }

        /*     SEE THAT NUMBER OF UNKNOWNS IS POSITIVE. */
        if (*ncols <= 0) {
            nerr = 3;
            nchar = 58;
            xerrwv_("DBOLS(). NCOLS=(I1) THE NO. OF VARIABLES MUST BE POSITI"
                    "VE.", &nchar, &nerr, &level, &c__1, ncols, &idum, &c__0, &
                    rdum, &rdum, (ftnlen)58);
            /*     DO(RETURN TO USER PROGRAM UNIT) */
            goto L190;
        }

        /*     SEE THAT CONSTRAINT INDICATORS ARE ALL WELL-DEFINED. */
        i__1 = *ncols;
        for (j = 1; j <= i__1; ++j) {
            if (ind[j] < 1 || ind[j] > 4) {
                nerr = 4;
                nchar = 45;
                xerrwv_("DBOLS(). FOR J=(I1), IND(J)=(I2) MUST BE 1-4.", &
                        nchar, &nerr, &level, &c__2, &j, &ind[j], &c__0, &
                        rdum, &rdum, (ftnlen)45);
                /*     DO(RETURN TO USER PROGRAM UNIT) */
                goto L190;
            }
            /* L10: */
        }

        /*     SEE THAT BOUNDS ARE CONSISTENT. */
        i__1 = *ncols;
        for (j = 1; j <= i__1; ++j) {
            if (ind[j] == 3) {
                if (bl[j] > bu[j]) {
                    nerr = 5;
                    nchar = 57;
                    rdum2 = (real) bl[j];
                    rdum = (real) bu[j];
                    xerrwv_("DBOLS(). FOR J=(I1), BOUND BL(J)=(R1) IS .GT. B"
                            "U(J)=(R2).", &nchar, &nerr, &level, &c__1, &j, &
                            idum, &c__2, &rdum2, &rdum, (ftnlen)57);
                    /*     DO(RETURN TO USER PROGRAM UNIT) */
                    goto L190;
                }
            }
            /* L20: */
        }
        /*     END PROCEDURE */
        /*     DO(PROCESS OPTION ARRAY) */
        /*     PROCEDURE(PROCESS OPTION ARRAY) */
        zero = 0.;
        one = 1.;
        checkl = FALSE_;
        lenx = *ncols;
        iscale = 1;
        igo = 2;
        lopt = 0;
        lp = 0;
        lds = 0;
L30:
        lp += lds;
        ip = iopt[lp + 1];
        jp = abs(ip);

        /*     TEST FOR NO MORE OPTIONS. */
        if (ip == 99) {
            if (lopt == 0) {
                lopt = lp + 1;
            }
            goto L50;
        } else if (jp == 99) {
            lds = 1;
            goto L30;
        } else if (jp == 1) {
            if (ip > 0) {

                /*     SET UP DIRECTION FLAG, ROW STACKING POINTER */
                /*     LOCATION, AND LOCATION FOR NUMBER OF NEW ROWS. */
                locacc = lp + 2;

                /*                  IOPT(LOCACC-1)=OPTION NUMBER FOR SEQ. ACCUMULATION. */
                /*     CONTENTS..   IOPT(LOCACC  )=USER DIRECTION FLAG, 1 OR 2. */
                /*                  IOPT(LOCACC+1)=ROW STACKING POINTER. */
                /*                  IOPT(LOCACC+2)=NUMBER OF NEW ROWS TO PROCESS. */
                /*     USER ACTION WITH THIS OPTION.. */
                /*      (SET UP OPTION DATA FOR SEQ. ACCUMULATION IN IOPT(*). */
                /*      MUST ALSO START PROCESS WITH IOPT(LOCACC)=1.) */
                /*      (MOVE BLOCK OF EQUATIONS INTO W(*,*)  STARTING AT FIRST */
                /*       ROW OF W(*,*).  SET IOPT(LOCACC+2)=NO. OF ROWS IN BLOCK.) */
                /*              LOOP */
                /*              CALL DBOLS() */

                /*                  IF(IOPT(LOCACC) .EQ. 1) THEN */
                /*                      STACK EQUAS., STARTING AT ROW IOPT(LOCACC+1), */
                /*                       INTO W(*,*). */
                /*                       SET IOPT(LOCACC+2)=NO. OF EQUAS. */
                /*                      IF LAST BLOCK OF EQUAS., SET IOPT(LOCACC)=2. */
                /*                  ELSE IF IOPT(LOCACC) .EQ. 2) THEN */
                /*                      (PROCESS IS OVER. EXIT LOOP.) */
                /*                  ELSE */
                /*                      (ERROR CONDITION. SHOULD NOT HAPPEN.) */
                /*                  END IF */
                /*              END LOOP */
                /*              SET IOPT(LOCACC-1)=-OPTION NUMBER FOR SEQ. ACCUMULATION. */
                /*              CALL DBOLS( ) */
                iopt[locacc + 1] = 1;
                igo = 1;
            }
            lds = 4;
            goto L30;
        } else if (jp == 2) {
            if (ip > 0) {

                /*     GET ACTUAL LENGTHS OF ARRAYS FOR CHECKING AGAINST NEEDS. */
                locdim = lp + 2;

                /*     LMDW.GE.MROWS */
                /*     LNDW.GE.NCOLS+1 */
                /*     LLB .GE.NCOLS */
                /*     LLX .GE.NCOLS+EXTRA REQD. IN OPTIONS. */
                /*     LLRW.GE.5*NCOLS */
                /*     LLIW.GE.2*NCOLS */
                /*     LIOP.GE. AMOUNT REQD. FOR IOPTION ARRAY. */
                lmdw = iopt[locdim];
                lndw = iopt[locdim + 1];
                llb = iopt[locdim + 2];
                llx = iopt[locdim + 3];
                llrw = iopt[locdim + 4];
                lliw = iopt[locdim + 5];
                liopt = iopt[locdim + 6];
                checkl = TRUE_;
            }
            lds = 8;
            goto L30;

            /*     OPTION TO MODIFY THE COLUMN SCALING. */
        } else if (jp == 3) {
            if (ip > 0) {
                iscale = iopt[lp + 2];

                /*     SEE THAT ISCALE IS 1 THRU 3. */
                if (iscale < 1 || iscale > 3) {
                    nerr = 7;
                    nchar = 40;
                    xerrwv_("DBOLS(). ISCALE OPTION=(I1) MUST BE 1-3.", &
                            nchar, &nerr, &level, &c__1, &iscale, &idum, &
                            c__0, &rdum, &rdum, (ftnlen)40);
                    /*     DO(RETURN TO USER PROGRAM UNIT) */
                    goto L190;
                }
            }
            lds = 2;
            /*     CYCLE FOREVER */
            goto L30;

            /*     IN THIS OPTION THE USER HAS PROVIDED SCALING.  THE */
            /*     SCALE FACTORS FOR THE COLUMNS BEGIN IN X(NCOLS+IOPT(LP+2)). */
        } else if (jp == 4) {
            if (ip > 0) {
                iscale = 4;
                if (iopt[lp + 2] <= 0) {
                    nerr = 8;
                    nchar = 85;
                    xerrwv_("DBOLS(). OFFSET PAST X(NCOLS) (I1) FOR USER-PRO"
                            "VIDED COLUMN SCALING MUST BE POSITIVE.", &nchar, &
                            nerr, &level, &c__1, &iopt[lp + 2], &idum, &c__0,
                            &rdum, &rdum, (ftnlen)85);
                    /*     DO(RETURN TO USER PROGRAM UNIT) */
                    goto L190;
                }
                dcopy_(ncols, &x[*ncols + iopt[lp + 2]], &c__1, &rw[1], &c__1)
                ;
                lenx += *ncols;
                i__1 = *ncols;
                for (j = 1; j <= i__1; ++j) {
                    if (rw[j] <= zero) {
                        nerr = 9;
                        nchar = 85;
                        rdum2 = (real) rw[j];
                        xerrwv_("DBOLS(). EACH PROVIDED COL. SCALE FACTOR MU"
                                "ST BE POSITIVE. COMPONENT (I1) NOW = (R1).", &
                                nchar, &nerr, &level, &c__1, &j, &idum, &c__1,
                                &rdum2, &rdum, (ftnlen)85);
                        /*     DO(RETURN TO USER PROGRAM UNIT) */
                        goto L190;
                    }
                    /* L40: */
                }
            }
            lds = 2;
            /*     CYCLE FOREVER */
            goto L30;

            /*     IN THIS OPTION AN OPTION ARRAY IS PROVIDED TO DBOLSM(). */
        } else if (jp == 5) {
            if (ip > 0) {
                lopt = iopt[lp + 2];
            }
            lds = 2;
            /*     CYCLE FOREVER */
            goto L30;

            /*     THIS OPTION USES THE NEXT LOC OF IOPT(*) AS AN */
            /*     INCREMENT TO SKIP. */
        } else if (jp == 6) {
            if (ip > 0) {
                lp = iopt[lp + 2] - 1;
                lds = 0;
            } else {
                lds = 2;
            }
            /*     CYCLE FOREVER */
            goto L30;

            /*     NO VALID OPTION NUMBER WAS NOTED. THIS IS AN ERROR CONDITION. */
        } else {
            nerr = 6;
            nchar = 47;
            rdum2 = (real) idum;
            xerrwv_("DBOLS(). THE OPTION NUMBER=(I1) IS NOT DEFINED.", &nchar,
                    &nerr, &level, &c__1, &jp, &idum, &c__0, &rdum2, &rdum2,
                    (ftnlen)47);
            /*     DO(RETURN TO USER PROGRAM UNIT) */
            goto L190;
        }
L50:
        /*     END PROCEDURE */
        if (checkl) {
            /*     DO(CHECK LENGTHS OF ARRAYS) */
            /*     PROCEDURE(CHECK LENGTHS OF ARRAYS) */

            /*     THIS FEATURE ALLOWS THE USER TO MAKE SURE THAT THE */
            /*     ARRAYS ARE LONG ENOUGH FOR THE INTENDED PROBLEM SIZE AND USE. */
            if (lmdw < *mrows) {
                nerr = 11;
                nchar = 76;
                xerrwv_("DBOLS(). THE ROW DIMENSION OF W(,)=(I1) MUST BE .GE"
                        ".THE NUMBER OF ROWS=(I2).", &nchar, &nerr, &level, &
                        c__2, &lmdw, mrows, &c__0, &rdum, &rdum, (ftnlen)76);
                /*     DO(RETURN TO USER PROGRAM UNIT) */
                goto L190;
            }
            if (lndw < *ncols + 1) {
                nerr = 12;
                nchar = 69;
                i__1 = *ncols + 1;
                xerrwv_("DBOLS(). THE COLUMN DIMENSION OF W(,)=(I1) MUST BE "
                        ".GE. NCOLS+1=(I2).", &nchar, &nerr, &level, &c__2, &
                        lndw, &i__1, &c__0, &rdum, &rdum, (ftnlen)69);
                /*     DO(RETURN TO USER PROGRAM UNIT) */
                goto L190;
            }
            if (llb < *ncols) {
                nerr = 13;
                nchar = 88;
                xerrwv_("DBOLS(). THE DIMENSIONS OF THE ARRAYS BL(),BU(), AN"
                        "D IND()=(I1) MUST BE .GE. NCOLS=(I2).", &nchar, &nerr,
                        &level, &c__2, &llb, ncols, &c__0, &rdum, &rdum, (
                            ftnlen)88);
                /*     DO(RETURN TO USER PROGRAM UNIT) */
                goto L190;
            }
            if (llx < lenx) {
                nerr = 14;
                nchar = 70;
                xerrwv_("DBOLS(). THE DIMENSION OF X()=(I1) MUST BE .GE. THE"
                        " REQD. LENGTH=(I2).", &nchar, &nerr, &level, &c__2, &
                        llx, &lenx, &c__0, &rdum, &rdum, (ftnlen)70);
                /*     DO(RETURN TO USER PROGRAM UNIT) */
                goto L190;
            }
            if (llrw < *ncols * 5) {
                nerr = 15;
                nchar = 62;
                i__1 = *ncols * 5;
                xerrwv_("DBOLS(). THE DIMENSION OF RW()=(I1) MUST BE .GE. 5*"
                        "NCOLS=(I2).", &nchar, &nerr, &level, &c__2, &llrw, &
                        i__1, &c__0, &rdum, &rdum, (ftnlen)62);
                /*     DO(RETURN TO USER PROGRAM UNIT) */
                goto L190;
            }
            if (lliw < *ncols << 1) {
                nerr = 16;
                nchar = 61;
                i__1 = *ncols << 1;
                xerrwv_("DBOLS() THE DIMENSION OF IW()=(I1) MUST BE .GE. 2*N"
                        "COLS=(I2).", &nchar, &nerr, &level, &c__2, &lliw, &
                        i__1, &c__0, &rdum, &rdum, (ftnlen)61);
                /*     DO(RETURN TO USER PROGRAM UNIT) */
                goto L190;
            }
            if (liopt < lp + 1) {
                nerr = 17;
                nchar = 71;
                i__1 = lp + 1;
                xerrwv_("DBOLS(). THE DIMENSION OF IOPT()=(I1) MUST BE .GE. "
                        "THE REQD. LEN.=(I2).", &nchar, &nerr, &level, &c__2, &
                        liopt, &i__1, &c__0, &rdum, &rdum, (ftnlen)71);
                /*     DO(RETURN TO USER PROGRAM UNIT) */
                goto L190;
            }
            /*     END PROCEDURE */
        }
    }
    switch (igo) {
    case 1:
        goto L60;
    case 2:
        goto L90;
    }
    goto L180;

    /*     GO BACK TO THE USER FOR ACCUMULATION OF LEAST SQUARES */
    /*     EQUATIONS AND DIRECTIONS TO QUIT PROCESSING. */
    /*     CASE 1 */
L60:
    /*     DO(ACCUMULATE LEAST SQUARES EQUATIONS) */
    /*     PROCEDURE(ACCUMULATE LEAST SQUARES EQUATIONS) */
    *mrows = iopt[locacc + 1] - 1;
    inrows = iopt[locacc + 2];
    mnew = *mrows + inrows;
    if (mnew < 0 || mnew > *mdw) {
        nerr = 10;
        nchar = 61;
        xerrwv_("DBOLS(). NO. OF ROWS=(I1) MUST BE .GE. 0 .AND. .LE. MDW=(I2"
                ").", &nchar, &nerr, &level, &c__2, &mnew, mdw, &c__0, &rdum, &
                rdum, (ftnlen)61);
        /*     DO(RETURN TO USER PROGRAM UNIT) */
        goto L190;
    }
    /* Computing MIN */
    i__2 = *ncols + 1;
    i__1 = min(i__2,mnew);
    for (j = 1; j <= i__1; ++j) {
        i__2 = max(*mrows,j) + 1;
        for (i__ = mnew; i__ >= i__2; --i__) {
            i__3 = i__ - j;
            ibig = idamax_(&i__3, &w[j + j * w_dim1], &c__1) + j - 1;

            /*     PIVOT FOR INCREASED STABILITY. */
            drotg_(&w[ibig + j * w_dim1], &w[i__ + j * w_dim1], &sc, &ss);
            i__3 = *ncols + 1 - j;
            drot_(&i__3, &w[ibig + (j + 1) * w_dim1], mdw, &w[i__ + (j + 1) *
                    w_dim1], mdw, &sc, &ss);
            w[i__ + j * w_dim1] = zero;
            /* L70: */
        }
        /* L80: */
    }
    /* Computing MIN */
    i__1 = *ncols + 1;
    *mrows = min(i__1,mnew);
    iopt[locacc + 1] = *mrows + 1;
    igo = iopt[locacc];
    /*     END PROCEDURE */
    if (igo == 2) {
        igo = 0;
    }
    goto L180;
    /*     CASE 2 */
L90:
    /*     DO(INITIALIZE VARIABLES AND DATA VALUES) */
    /*     PROCEDURE(INITIALIZE VARIABLES AND DATA VALUES) */
    i__1 = *ncols;
    for (j = 1; j <= i__1; ++j) {
        switch (iscale) {
        case 1:
            goto L100;
        case 2:
            goto L110;
        case 3:
            goto L120;
        case 4:
            goto L130;
        }
        goto L140;
L100:
        /*     CASE 1 */

        /*     THIS IS THE NOMINAL SCALING. EACH NONZERO */
        /*     COL. HAS MAX. NORM EQUAL TO ONE. */
        ibig = idamax_(mrows, &w[j * w_dim1 + 1], &c__1);
        rw[j] = (d__1 = w[ibig + j * w_dim1], abs(d__1));
        if (rw[j] == zero) {
            rw[j] = one;
        } else {
            rw[j] = one / rw[j];
        }
        goto L140;
L110:
        /*     CASE 2 */

        /*     THIS CHOICE OF SCALING MAKES EACH NONZERO COLUMN */
        /*     HAVE EUCLIDEAN LENGTH EQUAL TO ONE. */
        rw[j] = dnrm2_(mrows, &w[j * w_dim1 + 1], &c__1);
        if (rw[j] == zero) {
            rw[j] = one;
        } else {
            rw[j] = one / rw[j];
        }
        goto L140;
L120:
        /*     CASE 3 */

        /*     THIS CASE EFFECTIVELY SUPPRESSES SCALING BY SETTING */
        /*     THE SCALING MATRIX TO THE IDENTITY MATRIX. */
        rw[1] = one;
        dcopy_(ncols, &rw[1], &c__0, &rw[1], &c__1);
        goto L160;
L130:
        /*     CASE 4 */
        goto L160;
L140:
        /* L150: */
        ;
    }
L160:
    /*     END PROCEDURE */
    /*     DO(SOLVE BOUNDED LEAST SQUARES PROBLEM) */
    /*     PROCEDURE(SOLVE BOUNDED LEAST SQUARES PROBLEM) */

    /*     INITIALIZE IBASIS(*), J=1,NCOLS, AND IBB(*), J=1,NCOLS, */
    /*     TO =J,AND =1, FOR USE IN DBOLSM( ). */
    i__1 = *ncols;
    for (j = 1; j <= i__1; ++j) {
        iw[j] = j;
        iw[j + *ncols] = 1;
        rw[*ncols * 3 + j] = bl[j];
        rw[(*ncols << 2) + j] = bu[j];
        /* L170: */
    }
    dbolsm_(&w[w_offset], mdw, mrows, ncols, &rw[*ncols * 3 + 1], &rw[(*ncols
            << 2) + 1], &ind[1], &iopt[lopt], &x[1], rnorm, mode, &rw[*ncols
                    + 1], &rw[(*ncols << 1) + 1], &rw[1], &iw[1], &iw[*ncols + 1]);
    /*     END PROCEDURE */
    igo = 0;
L180:
    return 0;
    /*     PROCEDURE(RETURN TO USER PROGRAM UNIT) */
L190:
    if (*mode >= 0) {
        *mode = -nerr;
    }
    igo = 0;
    return 0;
    /*     END PROCEDURE */
} /* dbols_ */
コード例 #30
0
ファイル: dgbtrf.c プロジェクト: deepakantony/vispack
/* Subroutine */ int dgbtrf_(integer *m, integer *n, integer *kl, integer *ku,
	 doublereal *ab, integer *ldab, integer *ipiv, integer *info)
{
/*  -- LAPACK routine (version 2.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       February 29, 1992   


    Purpose   
    =======   

    DGBTRF computes an LU factorization of a real m-by-n band matrix A   
    using partial pivoting with row interchanges.   

    This is the blocked version of the algorithm, calling Level 3 BLAS.   

    Arguments   
    =========   

    M       (input) INTEGER   
            The number of rows of the matrix A.  M >= 0.   

    N       (input) INTEGER   
            The number of columns of the matrix A.  N >= 0.   

    KL      (input) INTEGER   
            The number of subdiagonals within the band of A.  KL >= 0.   

    KU      (input) INTEGER   
            The number of superdiagonals within the band of A.  KU >= 0. 
  

    AB      (input/output) DOUBLE PRECISION array, dimension (LDAB,N)   
            On entry, the matrix A in band storage, in rows KL+1 to   
            2*KL+KU+1; rows 1 to KL of the array need not be set.   
            The j-th column of A is stored in the j-th column of the   
            array AB as follows:   
            AB(kl+ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(m,j+kl)   

            On exit, details of the factorization: U is stored as an   
            upper triangular band matrix with KL+KU superdiagonals in   
            rows 1 to KL+KU+1, and the multipliers used during the   
            factorization are stored in rows KL+KU+2 to 2*KL+KU+1.   
            See below for further details.   

    LDAB    (input) INTEGER   
            The leading dimension of the array AB.  LDAB >= 2*KL+KU+1.   

    IPIV    (output) INTEGER array, dimension (min(M,N))   
            The pivot indices; for 1 <= i <= min(M,N), row i of the   
            matrix was interchanged with row IPIV(i).   

    INFO    (output) INTEGER   
            = 0: successful exit   
            < 0: if INFO = -i, the i-th argument had an illegal value   
            > 0: if INFO = +i, U(i,i) is exactly zero. The factorization 
  
                 has been completed, but the factor U is exactly   
                 singular, and division by zero will occur if it is used 
  
                 to solve a system of equations.   

    Further Details   
    ===============   

    The band storage scheme is illustrated by the following example, when 
  
    M = N = 6, KL = 2, KU = 1:   

    On entry:                       On exit:   

        *    *    *    +    +    +       *    *    *   u14  u25  u36   
        *    *    +    +    +    +       *    *   u13  u24  u35  u46   
        *   a12  a23  a34  a45  a56      *   u12  u23  u34  u45  u56   
       a11  a22  a33  a44  a55  a66     u11  u22  u33  u44  u55  u66   
       a21  a32  a43  a54  a65   *      m21  m32  m43  m54  m65   *   
       a31  a42  a53  a64   *    *      m31  m42  m53  m64   *    *   

    VISArray elements marked * are not used by the routine; elements marked 
  
    + need not be set on entry, but are required by the routine to store 
  
    elements of U because of fill-in resulting from the row interchanges. 
  

    ===================================================================== 
  


       KV is the number of superdiagonals in the factor U, allowing for   
       fill-in   

    
   Parameter adjustments   
       Function Body */
    /* Table of constant values */
    static integer c__1 = 1;
    static integer c__65 = 65;
    static doublereal c_b18 = -1.;
    static doublereal c_b31 = 1.;
    
    /* System generated locals */
    integer ab_dim1, ab_offset, i__1, i__2, i__3, i__4, i__5, i__6;
    doublereal d__1;
    /* Local variables */
    extern /* Subroutine */ int dger_(integer *, integer *, doublereal *, 
	    doublereal *, integer *, doublereal *, integer *, doublereal *, 
	    integer *);
    static doublereal temp;
    static integer i, j;
    extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *, 
	    integer *), dgemm_(char *, char *, integer *, integer *, integer *
	    , doublereal *, doublereal *, integer *, doublereal *, integer *, 
	    doublereal *, doublereal *, integer *), dcopy_(
	    integer *, doublereal *, integer *, doublereal *, integer *), 
	    dswap_(integer *, doublereal *, integer *, doublereal *, integer *
	    );
    static doublereal work13[4160]	/* was [65][64] */, work31[4160]	
	    /* was [65][64] */;
    extern /* Subroutine */ int dtrsm_(char *, char *, char *, char *, 
	    integer *, integer *, doublereal *, doublereal *, integer *, 
	    doublereal *, integer *);
    static integer i2, i3, j2, j3, k2;
    extern /* Subroutine */ int dgbtf2_(integer *, integer *, integer *, 
	    integer *, doublereal *, integer *, integer *, integer *);
    static integer jb, nb, ii, jj, jm, ip, jp, km, ju, kv;
    extern integer idamax_(integer *, doublereal *, integer *);
    static integer nw;
    extern /* Subroutine */ int xerbla_(char *, integer *);
    extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
	    integer *, integer *, ftnlen, ftnlen);
    extern /* Subroutine */ int dlaswp_(integer *, doublereal *, integer *, 
	    integer *, integer *, integer *, integer *);



#define WORK13(I) work13[(I)]
#define WAS(I) was[(I)]
#define IPIV(I) ipiv[(I)-1]

#define AB(I,J) ab[(I)-1 + ((J)-1)* ( *ldab)]

    kv = *ku + *kl;

/*     Test the input parameters. */

    *info = 0;
    if (*m < 0) {
	*info = -1;
    } else if (*n < 0) {
	*info = -2;
    } else if (*kl < 0) {
	*info = -3;
    } else if (*ku < 0) {
	*info = -4;
    } else if (*ldab < *kl + kv + 1) {
	*info = -6;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("DGBTRF", &i__1);
	return 0;
    }

/*     Quick return if possible */

    if (*m == 0 || *n == 0) {
	return 0;
    }

/*     Determine the block size for this environment */

    nb = ilaenv_(&c__1, "DGBTRF", " ", m, n, kl, ku, 6L, 1L);

/*     The block size must not exceed the limit set by the size of the   
       local arrays WORK13 and WORK31. */

    nb = min(nb,64);

    if (nb <= 1 || nb > *kl) {

/*        Use unblocked code */

	dgbtf2_(m, n, kl, ku, &AB(1,1), ldab, &IPIV(1), info);
    } else {

/*        Use blocked code   

          Zero the superdiagonal elements of the work array WORK13 */

	i__1 = nb;
	for (j = 1; j <= nb; ++j) {
	    i__2 = j - 1;
	    for (i = 1; i <= j-1; ++i) {
		WORK13(i + j * 65 - 66) = 0.;
/* L10: */
	    }
/* L20: */
	}

/*        Zero the subdiagonal elements of the work array WORK31 */

	i__1 = nb;
	for (j = 1; j <= nb; ++j) {
	    i__2 = nb;
	    for (i = j + 1; i <= nb; ++i) {
		work31[i + j * 65 - 66] = 0.;
/* L30: */
	    }
/* L40: */
	}

/*        Gaussian elimination with partial pivoting   

          Set fill-in elements in columns KU+2 to KV to zero */

	i__1 = min(kv,*n);
	for (j = *ku + 2; j <= min(kv,*n); ++j) {
	    i__2 = *kl;
	    for (i = kv - j + 2; i <= *kl; ++i) {
		AB(i,j) = 0.;
/* L50: */
	    }
/* L60: */
	}

/*        JU is the index of the last column affected by the current 
  
          stage of the factorization */

	ju = 1;

	i__1 = min(*m,*n);
	i__2 = nb;
	for (j = 1; nb < 0 ? j >= min(*m,*n) : j <= min(*m,*n); j += nb) {
/* Computing MIN */
	    i__3 = nb, i__4 = min(*m,*n) - j + 1;
	    jb = min(i__3,i__4);

/*           The active part of the matrix is partitioned   

                A11   A12   A13   
                A21   A22   A23   
                A31   A32   A33   

             Here A11, A21 and A31 denote the current block of JB 
columns   
             which is about to be factorized. The number of rows i
n the   
             partitioning are JB, I2, I3 respectively, and the num
bers   
             of columns are JB, J2, J3. The superdiagonal elements
 of A13   
             and the subdiagonal elements of A31 lie outside the b
and.   

   Computing MIN */
	    i__3 = *kl - jb, i__4 = *m - j - jb + 1;
	    i2 = min(i__3,i__4);
/* Computing MIN */
	    i__3 = jb, i__4 = *m - j - *kl + 1;
	    i3 = min(i__3,i__4);

/*           J2 and J3 are computed after JU has been updated.   

             Factorize the current block of JB columns */

	    i__3 = j + jb - 1;
	    for (jj = j; jj <= j+jb-1; ++jj) {

/*              Set fill-in elements in column JJ+KV to zero 
*/

		if (jj + kv <= *n) {
		    i__4 = *kl;
		    for (i = 1; i <= *kl; ++i) {
			AB(i,jj+kv) = 0.;
/* L70: */
		    }
		}

/*              Find pivot and test for singularity. KM is the
 number of   
                subdiagonal elements in the current column.   

   Computing MIN */
		i__4 = *kl, i__5 = *m - jj;
		km = min(i__4,i__5);
		i__4 = km + 1;
		jp = idamax_(&i__4, &AB(kv+1,jj), &c__1);
		IPIV(jj) = jp + jj - j;
		if (AB(kv+jp,jj) != 0.) {
/* Computing MAX   
   Computing MIN */
		    i__6 = jj + *ku + jp - 1;
		    i__4 = ju, i__5 = min(i__6,*n);
		    ju = max(i__4,i__5);
		    if (jp != 1) {

/*                    Apply interchange to columns J t
o J+JB-1 */

			if (jp + jj - 1 < j + *kl) {

			    i__4 = *ldab - 1;
			    i__5 = *ldab - 1;
			    dswap_(&jb, &AB(kv+1+jj-j,j), &
				    i__4, &AB(kv+jp+jj-j,j),
				     &i__5);
			} else {

/*                       The interchange affects c
olumns J to JJ-1 of A31   
                         which are stored in the w
ork array WORK31 */

			    i__4 = jj - j;
			    i__5 = *ldab - 1;
			    dswap_(&i__4, &AB(kv+1+jj-j,j), 
				    &i__5, &work31[jp + jj - j - *kl - 1], &
				    c__65);
			    i__4 = j + jb - jj;
			    i__5 = *ldab - 1;
			    i__6 = *ldab - 1;
			    dswap_(&i__4, &AB(kv+1,jj), &i__5, &
				    AB(kv+jp,jj), &i__6);
			}
		    }

/*                 Compute multipliers */

		    d__1 = 1. / AB(kv+1,jj);
		    dscal_(&km, &d__1, &AB(kv+2,jj), &c__1);

/*                 Update trailing submatrix within the ba
nd and within   
                   the current block. JM is the index of t
he last column   
                   which needs to be updated.   

   Computing MIN */
		    i__4 = ju, i__5 = j + jb - 1;
		    jm = min(i__4,i__5);
		    if (jm > jj) {
			i__4 = jm - jj;
			i__5 = *ldab - 1;
			i__6 = *ldab - 1;
			dger_(&km, &i__4, &c_b18, &AB(kv+2,jj), 
				&c__1, &AB(kv,jj+1), &i__5, &
				AB(kv+1,jj+1), &i__6);
		    }
		} else {

/*                 If pivot is zero, set INFO to the index
 of the pivot   
                   unless a zero pivot has already been fo
und. */

		    if (*info == 0) {
			*info = jj;
		    }
		}

/*              Copy current column of A31 into the work array
 WORK31   

   Computing MIN */
		i__4 = jj - j + 1;
		nw = min(i__4,i3);
		if (nw > 0) {
		    dcopy_(&nw, &AB(kv+*kl+1-jj+j,jj), &
			    c__1, &work31[(jj - j + 1) * 65 - 65], &c__1);
		}
/* L80: */
	    }
	    if (j + jb <= *n) {

/*              Apply the row interchanges to the other blocks
.   

   Computing MIN */
		i__3 = ju - j + 1;
		j2 = min(i__3,kv) - jb;
/* Computing MAX */
		i__3 = 0, i__4 = ju - j - kv + 1;
		j3 = max(i__3,i__4);

/*              Use DLASWP to apply the row interchanges to A1
2, A22, and   
                A32. */

		i__3 = *ldab - 1;
		dlaswp_(&j2, &AB(kv+1-jb,j+jb), &i__3, &
			c__1, &jb, &IPIV(j), &c__1);

/*              Adjust the pivot indices. */

		i__3 = j + jb - 1;
		for (i = j; i <= j+jb-1; ++i) {
		    IPIV(i) = IPIV(i) + j - 1;
/* L90: */
		}

/*              Apply the row interchanges to A13, A23, and A3
3   
                columnwise. */

		k2 = j - 1 + jb + j2;
		i__3 = j3;
		for (i = 1; i <= j3; ++i) {
		    jj = k2 + i;
		    i__4 = j + jb - 1;
		    for (ii = j + i - 1; ii <= j+jb-1; ++ii) {
			ip = IPIV(ii);
			if (ip != ii) {
			    temp = AB(kv+1+ii-jj,jj);
			    AB(kv+1+ii-jj,jj) = AB(kv+1+ip-jj,jj);
			    AB(kv+1+ip-jj,jj) = temp;
			}
/* L100: */
		    }
/* L110: */
		}

/*              Update the relevant part of the trailing subma
trix */

		if (j2 > 0) {

/*                 Update A12 */

		    i__3 = *ldab - 1;
		    i__4 = *ldab - 1;
		    dtrsm_("Left", "Lower", "No transpose", "Unit", &jb, &j2, 
			    &c_b31, &AB(kv+1,j), &i__3, &AB(kv+1-jb,j+jb), &i__4);

		    if (i2 > 0) {

/*                    Update A22 */

			i__3 = *ldab - 1;
			i__4 = *ldab - 1;
			i__5 = *ldab - 1;
			dgemm_("No transpose", "No transpose", &i2, &j2, &jb, 
				&c_b18, &AB(kv+1+jb,j), &i__3,
				 &AB(kv+1-jb,j+jb), &i__4,
				 &c_b31, &AB(kv+1,j+jb), &
				i__5);
		    }

		    if (i3 > 0) {

/*                    Update A32 */

			i__3 = *ldab - 1;
			i__4 = *ldab - 1;
			dgemm_("No transpose", "No transpose", &i3, &j2, &jb, 
				&c_b18, work31, &c__65, &AB(kv+1-jb,j+jb), &i__3, &c_b31, &AB(kv+*kl+1-jb,j+jb), &i__4);
		    }
		}

		if (j3 > 0) {

/*                 Copy the lower triangle of A13 into the
 work array   
                   WORK13 */

		    i__3 = j3;
		    for (jj = 1; jj <= j3; ++jj) {
			i__4 = jb;
			for (ii = jj; ii <= jb; ++ii) {
			    WORK13(ii + jj * 65 - 66) = AB(ii-jj+1,jj+j+kv-1);
/* L120: */
			}
/* L130: */
		    }

/*                 Update A13 in the work array */

		    i__3 = *ldab - 1;
		    dtrsm_("Left", "Lower", "No transpose", "Unit", &jb, &j3, 
			    &c_b31, &AB(kv+1,j), &i__3, work13, 
			    &c__65);

		    if (i2 > 0) {

/*                    Update A23 */

			i__3 = *ldab - 1;
			i__4 = *ldab - 1;
			dgemm_("No transpose", "No transpose", &i2, &j3, &jb, 
				&c_b18, &AB(kv+1+jb,j), &i__3,
				 work13, &c__65, &c_b31, &AB(jb+1,j+kv), &i__4);
		    }

		    if (i3 > 0) {

/*                    Update A33 */

			i__3 = *ldab - 1;
			dgemm_("No transpose", "No transpose", &i3, &j3, &jb, 
				&c_b18, work31, &c__65, work13, &c__65, &
				c_b31, &AB(*kl+1,j+kv), &
				i__3);
		    }

/*                 Copy the lower triangle of A13 back int
o place */

		    i__3 = j3;
		    for (jj = 1; jj <= j3; ++jj) {
			i__4 = jb;
			for (ii = jj; ii <= jb; ++ii) {
			    AB(ii-jj+1,jj+j+kv-1) = 
				    WORK13(ii + jj * 65 - 66);
/* L140: */
			}
/* L150: */
		    }
		}
	    } else {

/*              Adjust the pivot indices. */

		i__3 = j + jb - 1;
		for (i = j; i <= j+jb-1; ++i) {
		    IPIV(i) = IPIV(i) + j - 1;
/* L160: */
		}
	    }

/*           Partially undo the interchanges in the current block 
to   
             restore the upper triangular form of A31 and copy the
 upper   
             triangle of A31 back into place */

	    i__3 = j;
	    for (jj = j + jb - 1; jj >= j; --jj) {
		jp = IPIV(jj) - jj + 1;
		if (jp != 1) {

/*                 Apply interchange to columns J to JJ-1 
*/

		    if (jp + jj - 1 < j + *kl) {

/*                    The interchange does not affect 
A31 */

			i__4 = jj - j;
			i__5 = *ldab - 1;
			i__6 = *ldab - 1;
			dswap_(&i__4, &AB(kv+1+jj-j,j), &
				i__5, &AB(kv+jp+jj-j,j), &
				i__6);
		    } else {

/*                    The interchange does affect A31 
*/

			i__4 = jj - j;
			i__5 = *ldab - 1;
			dswap_(&i__4, &AB(kv+1+jj-j,j), &
				i__5, &work31[jp + jj - j - *kl - 1], &c__65);
		    }
		}

/*              Copy the current column of A31 back into place
   

   Computing MIN */
		i__4 = i3, i__5 = jj - j + 1;
		nw = min(i__4,i__5);
		if (nw > 0) {
		    dcopy_(&nw, &work31[(jj - j + 1) * 65 - 65], &c__1, &AB(kv+*kl+1-jj+j,jj), &c__1);
		}
/* L170: */
	    }
/* L180: */
	}
    }

    return 0;

/*     End of DGBTRF */

} /* dgbtrf_ */