コード例 #1
0
ファイル: redcheck.c プロジェクト: mcmtroffaes/cddlib
int main(int argc, char *argv[])
{
  dd_MatrixPtr M=NULL;
  dd_rowrange i,m;
  dd_ErrorType err=dd_NoError;
  dd_rowindex newpos;
  dd_rowset impl_linset,redset;
  time_t starttime, endtime;
  dd_DataFileType inputfile;
  FILE *reading=NULL;

  dd_set_global_constants();  /* First, this must be called. */

  if (argc>1) strcpy(inputfile,argv[1]);
  if (argc<=1 || !SetInputFile(&reading,argv[1])){
    dd_WriteProgramDescription(stdout);
    fprintf(stdout,"\ncddlib test program to check redundancy of an H/V-representation.\n");
    dd_SetInputFile(&reading,inputfile, &err);
  }
  if (err==dd_NoError) {
    M=dd_PolyFile2Matrix(reading, &err);
  }
  else {
    fprintf(stderr,"Input file not found\n");
    goto _L99;
  }

  if (err!=dd_NoError) goto _L99;

  m=M->rowsize;
  fprintf(stdout, "Canonicalize the matrix.\n");
    
  time(&starttime);
  dd_MatrixCanonicalize(&M, &impl_linset, &redset, &newpos, &err);
  time(&endtime);
  
  if (err!=dd_NoError) goto _L99;

  fprintf(stdout, "Implicit linearity rows are:"); set_fwrite(stdout, impl_linset);

  fprintf(stdout, "\nRedundant rows are:"); set_fwrite(stdout, redset);
  fprintf(stdout, "\n");
  
  fprintf(stdout, "Nonredundant representation:\n");
  fprintf(stdout, "The new row positions are as follows (orig:new).\nEach redundant row has the new number 0.\nEach deleted duplicated row has a number nagative of the row that\nrepresents its equivalence class.\n");
  
  for (i=1; i<=m; i++){
   fprintf(stdout, " %ld:%ld",i, newpos[i]); 
  }
  fprintf(stdout, "\n");
  dd_WriteMatrix(stdout, M);
  
  dd_WriteTimes(stdout,starttime,endtime);

  set_free(redset);
  set_free(impl_linset);
  dd_FreeMatrix(M);
  free(newpos);

_L99:;
  if (err!=dd_NoError) dd_WriteErrorMessages(stderr,err);
  return 0;
}
コード例 #2
0
int main(int argc, char *argv[])
{
  dd_PolyhedraPtr poly;
  dd_LPPtr lp;
  dd_MatrixPtr M,A;
  dd_ErrorType err=dd_NoError;
  dd_DataFileType inputfile,outputfile;
  FILE *reading=NULL, *writing;

  dd_set_global_constants();  /* First, this must be called. */

  if (argc>1) strcpy(inputfile,argv[1]);
  if (argc<=1 || !SetInputFile(&reading,argv[1])){
    dd_WriteProgramDescription(stdout);
    dd_SetInputFile(&reading,inputfile, &err);
  }
  if (err==dd_NoError) {
    M=dd_PolyFile2Matrix(reading, &err);
  }
  else {
    printf("Input file not found\n");
    goto _L99;
  }

  if (err!=dd_NoError) goto _L99;

  if (M->objective==dd_LPnone){ /* do representation conversion */
    poly=dd_DDMatrix2Poly2(M, dd_LexMin, &err);
    /* equivalent to poly=dd_DDMatrix2Poly2(M, &err) when the second argument is set to dd_LexMin. */
    if (err!=dd_NoError) goto _L99;

    dd_SetWriteFileName(inputfile, outputfile, 'o', poly->representation);
    SetWriteFile(&writing, outputfile);
    dd_WriteProgramDescription(writing);
    dd_WriteRunningMode(writing, poly);
    switch (poly->representation) {
    case dd_Inequality:
      fprintf(writing, "ext_file: Generators\n");
      A=dd_CopyGenerators(poly);
      dd_WriteMatrix(writing,A);
      dd_FreeMatrix(A);
      break;

    case dd_Generator:
      fprintf(writing, "ine_file: Inequalities\n");
      A=dd_CopyInequalities(poly);
      dd_WriteMatrix(writing,A);
      dd_FreeMatrix(A);
      break;

    default:
      break;
    }
    dd_WriteDDTimes(writing,poly);
    fclose(writing);

    dd_SetWriteFileName(inputfile, outputfile, 'a', poly->representation);
    SetWriteFile(&writing, outputfile);
    dd_WriteAdjacency(writing,poly);
    fclose(writing);

    dd_SetWriteFileName(inputfile, outputfile, 'j', poly->representation);
    SetWriteFile(&writing, outputfile);
    dd_WriteInputAdjacency(writing,poly);
    fclose(writing);

    dd_SetWriteFileName(inputfile, outputfile, 'i', poly->representation);
    SetWriteFile(&writing, outputfile);
    dd_WriteIncidence(writing,poly);
    fclose(writing);

    dd_SetWriteFileName(inputfile, outputfile, 'n', poly->representation);
    SetWriteFile(&writing, outputfile);
    dd_WriteInputIncidence(writing,poly);
    fclose(writing);

    dd_FreeMatrix(M);
    dd_FreePolyhedra(poly);

  } else { /* solve the LP */
    lp=dd_Matrix2LP(M, &err);  if (err!=dd_NoError) goto _L99;
    dd_LPSolve(lp,dd_DualSimplex,&err);  if (err!=dd_NoError) goto _L99;

    dd_SetWriteFileName(inputfile, outputfile, 's', M->representation);
    SetWriteFile(&writing, outputfile);
    dd_WriteLPResult(writing, lp, err);
    fclose(writing);

    dd_FreeMatrix(M);
    dd_FreeLPData(lp);
  }
_L99:
  if (err!=dd_NoError) dd_WriteErrorMessages(stdout,err);
  return 0;
}
コード例 #3
0
ファイル: cddproj.c プロジェクト: adsnaider/Robotics-Project
dd_MatrixPtr dd_BlockElimination(dd_MatrixPtr M, dd_colset delset, dd_ErrorType *error)
/* Eliminate the variables (columns) delset by
   the Block Elimination with dd_DoubleDescription algorithm.

   Given (where y is to be eliminated):
   c1 + A1 x + B1 y >= 0
   c2 + A2 x + B2 y =  0

   1. First construct the dual system:  z1^T B1 + z2^T B2 = 0, z1 >= 0.
   2. Compute the generators of the dual.
   3. Then take the linear combination of the original system with each generator.
   4. Remove redundant inequalies.

*/
{
  dd_MatrixPtr Mdual=NULL, Mproj=NULL, Gdual=NULL;
  dd_rowrange i,h,m,mproj,mdual,linsize;
  dd_colrange j,k,d,dproj,ddual,delsize;
  dd_colindex delindex;
  mytype temp,prod;
  dd_PolyhedraPtr dualpoly;
  dd_ErrorType err=dd_NoError;
  dd_boolean localdebug=dd_FALSE;

  *error=dd_NoError;
  m= M->rowsize;
  d= M->colsize;
  delindex=(long*)calloc(d+1,sizeof(long));
  dd_init(temp);
  dd_init(prod);

  k=0; delsize=0;
  for (j=1; j<=d; j++){
    if (set_member(j, delset)){
      k++;  delsize++;
      delindex[k]=j;  /* stores the kth deletion column index */
    }
  }
  if (localdebug) dd_WriteMatrix(stdout, M);

  linsize=set_card(M->linset);
  ddual=m+1;
  mdual=delsize + m - linsize;  /* #equalitions + dimension of z1 */

  /* setup the dual matrix */
  Mdual=dd_CreateMatrix(mdual, ddual);
  Mdual->representation=dd_Inequality;
  for (i = 1; i <= delsize; i++){
    set_addelem(Mdual->linset,i);  /* equality */
    for (j = 1; j <= m; j++) {
      dd_set(Mdual->matrix[i-1][j], M->matrix[j-1][delindex[i]-1]);
    }
  } 

  k=0;
  for (i = 1; i <= m; i++){
    if (!set_member(i, M->linset)){
      /* set nonnegativity for the dual variable associated with
         each non-linearity inequality. */
      k++;
      dd_set(Mdual->matrix[delsize+k-1][i], dd_one);  
    }
  } 
  
  /* 2. Compute the generators of the dual system. */
  dualpoly=dd_DDMatrix2Poly(Mdual, &err);
  Gdual=dd_CopyGenerators(dualpoly);

  /* 3. Take the linear combination of the original system with each generator.  */
  dproj=d-delsize;
  mproj=Gdual->rowsize;
  Mproj=dd_CreateMatrix(mproj, dproj);
  Mproj->representation=dd_Inequality;
  set_copy(Mproj->linset, Gdual->linset);

  for (i=1; i<=mproj; i++){
    k=0;
    for (j=1; j<=d; j++){
      if (!set_member(j, delset)){
        k++;  /* new index of the variable x_j  */
        dd_set(prod, dd_purezero);
        for (h = 1; h <= m; h++){
          dd_mul(temp,M->matrix[h-1][j-1],Gdual->matrix[i-1][h]); 
          dd_add(prod,prod,temp);
        }
        dd_set(Mproj->matrix[i-1][k-1],prod);
      }
    }
  }
  if (localdebug) printf("Size of the projection system: %ld x %ld\n", mproj, dproj);
  
  dd_FreePolyhedra(dualpoly);
  free(delindex);
  dd_clear(temp);
  dd_clear(prod);
  dd_FreeMatrix(Mdual);
  dd_FreeMatrix(Gdual);
  return Mproj;
}
コード例 #4
0
ファイル: cddproj.c プロジェクト: adsnaider/Robotics-Project
dd_MatrixPtr dd_FourierElimination(dd_MatrixPtr M,dd_ErrorType *error)
/* Eliminate the last variable (column) from the given H-matrix using 
   the standard Fourier Elimination.
 */
{
  dd_MatrixPtr Mnew=NULL;
  dd_rowrange i,inew,ip,in,iz,m,mpos=0,mneg=0,mzero=0,mnew;
  dd_colrange j,d,dnew;
  dd_rowindex posrowindex, negrowindex,zerorowindex;
  mytype temp1,temp2;
  dd_boolean localdebug=dd_FALSE;

  *error=dd_NoError;
  m= M->rowsize;
  d= M->colsize;
  if (d<=1){
    *error=dd_ColIndexOutOfRange;
    if (localdebug) {
      printf("The number of column is too small: %ld for Fourier's Elimination.\n",d);
    }
    goto _L99;
  }

  if (M->representation==dd_Generator){
    *error=dd_NotAvailForV;
    if (localdebug) {
      printf("Fourier's Elimination cannot be applied to a V-polyhedron.\n");
    }
    goto _L99;
  }

  if (set_card(M->linset)>0){
    *error=dd_CannotHandleLinearity;
    if (localdebug) {
      printf("The Fourier Elimination function does not handle equality in this version.\n");
    }
    goto _L99;
  }

  /* Create temporary spaces to be removed at the end of this function */
  posrowindex=(long*)calloc(m+1,sizeof(long));
  negrowindex=(long*)calloc(m+1,sizeof(long));
  zerorowindex=(long*)calloc(m+1,sizeof(long));
  dd_init(temp1);
  dd_init(temp2);

  for (i = 1; i <= m; i++) {
    if (dd_Positive(M->matrix[i-1][d-1])){
      mpos++;
      posrowindex[mpos]=i;
    } else if (dd_Negative(M->matrix[i-1][d-1])) {
      mneg++;
      negrowindex[mneg]=i;
    } else {
      mzero++;
      zerorowindex[mzero]=i;
    }
  }  /*of i*/

  if (localdebug) {
    dd_WriteMatrix(stdout, M);
    printf("No of  (+  -  0) rows = (%ld, %ld, %ld)\n", mpos,mneg, mzero);
  }

  /* The present code generates so many redundant inequalities and thus
     is quite useless, except for very small examples
  */
  mnew=mzero+mpos*mneg;  /* the total number of rows after elimination */
  dnew=d-1;

  Mnew=dd_CreateMatrix(mnew, dnew);
  dd_CopyArow(Mnew->rowvec, M->rowvec, dnew);
/*  set_copy(Mnew->linset,M->linset);  */
  Mnew->numbtype=M->numbtype;
  Mnew->representation=M->representation;
  Mnew->objective=M->objective;


  /* Copy the inequalities independent of x_d to the top of the new matrix. */
  for (iz = 1; iz <= mzero; iz++){
    for (j = 1; j <= dnew; j++) {
      dd_set(Mnew->matrix[iz-1][j-1], M->matrix[zerorowindex[iz]-1][j-1]);
    }
  } 

  /* Create the new inequalities by combining x_d positive and negative ones. */
  inew=mzero;  /* the index of the last x_d zero inequality */
  for (ip = 1; ip <= mpos; ip++){
    for (in = 1; in <= mneg; in++){
      inew++;
      dd_neg(temp1, M->matrix[negrowindex[in]-1][d-1]);
      for (j = 1; j <= dnew; j++) {
        dd_LinearComb(temp2,M->matrix[posrowindex[ip]-1][j-1],temp1,\
          M->matrix[negrowindex[in]-1][j-1],\
          M->matrix[posrowindex[ip]-1][d-1]);
        dd_set(Mnew->matrix[inew-1][j-1],temp2);
      }
      dd_Normalize(dnew,Mnew->matrix[inew-1]);
    }
  } 


  free(posrowindex);
  free(negrowindex);
  free(zerorowindex);
  dd_clear(temp1);
  dd_clear(temp2);

 _L99:
  return Mnew;
}
コード例 #5
0
ファイル: redexter.c プロジェクト: mcmtroffaes/cddlib
int main(int argc, char *argv[])
{
  dd_MatrixPtr M1=NULL,M2=NULL,M2row=NULL,M1plus=NULL;
  dd_colrange d1;
  dd_rowrange i,m1,m2,m1plus;
  dd_ErrorType err=dd_NoError,err1=dd_NoError,err2=dd_NoError;
  dd_rowset delset,rowset2;
  dd_Arow cvec; /* certificate */  

  time_t starttime, endtime;
  dd_DataFileType inputfile1,inputfile2;
  FILE *reading1=NULL,*reading2=NULL;

  dd_set_global_constants();  /* First, this must be called. */

  dd_WriteProgramDescription(stdout);
  fprintf(stdout,"\ncddlib test program to check redundancy of additional data.\n");
  if (argc>2){
    strcpy(inputfile1,argv[1]);
    strcpy(inputfile2,argv[2]);
  }
  /* 
  if (argc<=2){
    fprintf(stdout,"\nUsage:\n   redexter file1 file2\n");
	goto _L99;
  }
  */
  if (!SetInputFile(&reading1,argv[1])){
    fprintf(stdout,"\nSpecify file1.\n");
    dd_SetInputFile(&reading1,inputfile1, &err1);
  }
  if (!SetInputFile(&reading2,argv[2])){
    fprintf(stdout,"\nSpecify the secondary file.\n");
    dd_SetInputFile(&reading2,inputfile2, &err2);
  }
  if ((err1==dd_NoError) && (err2==dd_NoError)) {
    M1=dd_PolyFile2Matrix(reading1, &err1);
    M2=dd_PolyFile2Matrix(reading2, &err2);
  }
  else {
    fprintf(stderr,"Input file(s) not found\n");
    goto _L99;
  }

  if ((err1!=dd_NoError) || (err2!=dd_NoError)) goto _L99;

  m1=M1->rowsize;
  m2=M2->rowsize;
  set_initialize(&delset,m2);
  m1plus=m1+1;
  if (M1->representation==dd_Generator){
    d1=(M1->colsize)+1;
  } else {
    d1=M1->colsize;
  }
  dd_InitializeArow(d1,&cvec);

  fprintf(stdout, "\nThe first matrix\n");
  dd_WriteMatrix(stdout, M1);
  fprintf(stdout, "\nThe second matrix\n");
  dd_WriteMatrix(stdout, M2);
  
  printf("\nChecking whether each row of the second matrix is redundant w.r.t. the first.\n");

  time(&starttime);

  for (i=1; i<=m2; i++){
    set_initialize(&rowset2,m2);
	set_addelem(rowset2, i);
    set_compl(delset, rowset2);
    M2row=dd_MatrixSubmatrix(M2, delset);
	M1plus=dd_MatrixAppend(M1,M2row); 
	
    if (dd_Redundant(M1plus, m1plus, cvec, &err)) {
	  printf("%ld-th row: redundant\n", i);
	} else {
	  printf("%ld-th row: non-redundant\n A certificate:", i);
	  dd_WriteArow(stdout, cvec, d1);
	}

    dd_FreeMatrix(M1plus);
	dd_FreeMatrix(M2row);
    set_free(rowset2);
  }

  time(&endtime);

  dd_WriteTimes(stdout,starttime,endtime);

  set_free(delset);
  dd_FreeMatrix(M1);
  dd_FreeMatrix(M2);

_L99:;
  if (err1!=dd_NoError) dd_WriteErrorMessages(stderr,err1);
  if (err2!=dd_NoError) dd_WriteErrorMessages(stderr,err2);
  return 0;
}
コード例 #6
0
ファイル: fourier.c プロジェクト: adsnaider/Robotics-Project
int main(int argc, char *argv[])
{
  dd_MatrixPtr M=NULL,M1=NULL,M2=NULL;
  dd_colrange j,s,d;
  dd_ErrorType err=dd_NoError;
  dd_rowset redset,impl_linset;
  dd_rowindex newpos;
  mytype val;
  dd_DataFileType inputfile;
  FILE *reading=NULL;

  dd_set_global_constants();  /* First, this must be called. */

  dd_init(val);
  if (argc>1) strcpy(inputfile,argv[1]);
  if (argc<=1 || !SetInputFile(&reading,argv[1])){
    dd_WriteProgramDescription(stdout);
    fprintf(stdout,"\ncddlib test program to apply Fourier's Elimination to an H-polyhedron.\n");
    dd_SetInputFile(&reading,inputfile, &err);
  }
  if (err==dd_NoError) {
    M=dd_PolyFile2Matrix(reading, &err);
  }
  else {
    fprintf(stderr,"Input file not found\n");
    goto _L99;
  }

  if (err!=dd_NoError) goto _L99;

  d=M->colsize;
  M2=dd_CopyMatrix(M);

  printf("How many variables to elminate? (max %ld): ",d-1);
  scanf("%ld",&s);
  
  if (s>0 && s < d){
    for (j=1; j<=s; j++){
      M1=dd_FourierElimination(M2, &err);
      printf("\nRemove the variable %ld.  The resulting redundant system.\n",d-j);
      dd_WriteMatrix(stdout, M1);

      dd_MatrixCanonicalize(&M1, &impl_linset, &redset, &newpos, &err);
      if (err!=dd_NoError) goto _L99;

      fprintf(stdout, "\nRedundant rows: ");
      set_fwrite(stdout, redset);

      dd_FreeMatrix(M2);
      M2=M1;
      set_free(redset);
      set_free(impl_linset);
      free(newpos);
    }

    printf("\nNonredundant representation:\n");
    dd_WriteMatrix(stdout, M1);
  } else {
    printf("Value out of range\n");
  }

  dd_FreeMatrix(M);
  dd_FreeMatrix(M1);
  dd_clear(val);

_L99:;
  /* if (err!=dd_NoError) dd_WriteErrorMessages(stderr,err); */
  dd_free_global_constants();  /* At the end, this should be called. */
  return 0;
}