pulsesequence() { settable(t1,4,phasecycle); dec3power(dpwr3); diplexer_override(0); delay(d1); dec3rgpulse(pw, t1, rof1, rof2); setreceiver(t1); }
pulsesequence() { /* DECLARE AND LOAD VARIABLES */ char CA90_in_str[MAXSTR], CA180_in_str[MAXSTR], CA180n_in_str[MAXSTR], CO180offCA_in_str[MAXSTR], RFpars[MAXSTR], exp_mode[MAXSTR], /* flag to run 3D, or 2D time-shared 15N TROSY /13C HSQC-SE*/ f1180[MAXSTR], /* Flag to start t1 @ halfdwell */ f2180[MAXSTR], f3180[MAXSTR]; /* do TROSY on N15 and H1 */ int icosel=1.0; /* used to get n and p type */ double x,y,z, t2max, t1max, tpwrs, tpwrsf_d = getval("tpwrsf_d"), /* fine power adustment for first soft pulse(down)*/ tpwrsf_u = getval("tpwrsf_u"), /* fine power adustment for second soft pulse(up) */ pwHs = getval("pwHs"), /* H1 90 degree pulse length at tpwrs */ compH =getval("compH"), tau1, tau2, /*evolution times in indirect dimensions */ ni2=getval("ni2"), tauNH=getval("tauNH"), /* 1/(4Jhn), INEPTs, 2.4ms*/ tauNH1=getval("tauNH1"), /* 1/(4Jhn), TROSY in CN CT, 2.7ms*/ timeTN1=getval("timeTN1"), /* CT time for (first) N->CA*N transfer */ timeTN=getval("timeTN"), /* CT time for last SE TROSY */ timeCN=getval("timeCN"), /* CT time for CA -> N transfer, middle */ pwClvl = getval("pwClvl"), /* coarse power for C13 pulse */ pwC = getval("pwC"), /* C13 90 degree pulse length at pwClvl */ compC = getval("compC"), dfrq = getval("dfrq"), pwNlvl = getval("pwNlvl"), /* power for N15 pulses */ pwN = getval("pwN"), /* N15 90 degree pulse length at pwNlvl */ gstab = getval("gstab"), g6bal= getval("g6bal"), /* balance of the decoding gradient around last 180 pulse on 1H g6bal=1.0 : full g6 is on the right side of the last pw180 on 1H g6bal=0.0: full g6 is on the left side*/ gt0 = getval("gt0"), gt1 = getval("gt1"), gt2 = getval("gt2"), gt3 = getval("gt3"), gt4 = getval("gt4"), gt5 = getval("gt5"), gt6 = getval("gt6"), gt7 = getval("gt7"), gzlvl0 = getval("gzlvl0"), gzlvl1 = getval("gzlvl1"), gzlvl2 = getval("gzlvl2"), gzlvl3 = getval("gzlvl3"), gzlvl4 = getval("gzlvl4"), gzlvl5 = getval("gzlvl5"), gzlvl6 = getval("gzlvl6"), gzlvl7 = getval("gzlvl7"), gzlvl11 = getval("gzlvl11"); getstr("f1180",f1180); getstr("f2180",f2180); getstr("exp_mode",exp_mode); tpwrs = tpwr - 20.0*log10(pwHs/(compH*pw*1.69)); /*needs 1.69 times more*/ tpwrs = (int) (tpwrs); /*power than a square pulse */ if (tpwrsf_d<4095.0) tpwrs=tpwrs+6.0; /* add 6dB to let tpwrsf_d control fine power ~2048*/ /* LOAD PHASE TABLE */ settable(t1,1,phi1); settable(t2,4,phi2); /* default double trosy */ if (exp_mode[A] == 'h') {settable(t2,4,phi2h);}; /*option for regular hNcaNH */ settable(t3,4,phi3); settable(t4,8,phi4); settable(t5,2,phi5); settable(t6,4,phi6); settable(t7,4,phi7); settable(t8,4,phi8); settable(t21,1,psi1); /*trosy and SE hsqc in reverse INPET */ settable(t22,1,psi2); settable(t23,1,psi2c); settable(t31,8,rec); /* some checks */ if((dm2[A] == 'y') || (dm2[B] == 'y') || (dm2[C] == 'y') || (dm2[D] == 'y')) { text_error("incorrect dec2 decoupler flags! Should be 'nnnn' "); psg_abort(1); } if ( dm3[A] == 'y' || dm3[C] == 'y' ) { printf("incorrect dec3 decoupler flags! Should be 'nyn' or 'nnn' "); psg_abort(1);} if ( dpwr3 > 56 ) { printf("dpwr3 too large! recheck value "); psg_abort(1);} if ( (dm3[B] == 'y' ) && (timeCN*2.0 > 60.0e-3) ) { printf("too lond time for 2H decoupling, SOL ");psg_abort(1);} /* INITIALIZE VARIABLES */ if(FIRST_FID) /* call Pbox */ { getstr("CA180_in_str",CA180_in_str); getstr("CA180n_in_str",CA180n_in_str); getstr("CA90_in_str",CA90_in_str); getstr("CO180offCA_in_str",CO180offCA_in_str); strcpy(RFpars, "-stepsize 0.5 -attn i"); CA180 = pbox("et_CA180_auto", CA180_in_str, RFpars, dfrq, compC*pwC, pwClvl); CA180n = pbox("et_CA180n_auto", CA180n_in_str, RFpars, dfrq, compC*pwC, pwClvl); CA90 = pbox("et_CA90_auto", CA90_in_str, RFpars, dfrq, compC*pwC, pwClvl); CO180offCA = pbox("et_CO180offCA_auto", CO180offCA_in_str, RFpars, dfrq, compC*pwC, pwClvl); }; /* Phase incrementation for hypercomplex 2D data, States-Haberkorn element */ /* t1 , N15 */ if (phase1 == 2) {tsadd(t2 ,1,4);} if(d2_index % 2) {tsadd(t2,2,4); tsadd(t31,2,4); } /* setting up semi-CT on t1 (ni) dimension */ tau1 = d2; t1max=(ni-1.0)/sw1; if((f1180[A] == 'y') && (ni > 0.0)) {tau1 += 0.5/sw1 ; t1max+= 0.5/sw1; } if( t1max < timeTN1*2.0) {t1max=2.0*timeTN1;}; /* if not enough ni increments, then just regular CT in t1/ni CN */ /* t2, CA */ if (phase2 == 2) { tsadd(t3,1,4); } if (d3_index % 2) { tsadd(t3,2,4); tsadd(t31,2,4); } /* setup constant time in t2 (ni2) */ tau2 = d3; t2max=2.0*(timeCN - CO180offCA.pw); if((f2180[A] == 'y') && (ni2 > 0.0)) {tau2 += 0.5/sw2 ; t2max += 0.5/sw2 ;} if(tau2 < 0.2e-6) {tau2 = 0.0;} if ( (ni2-1.0)/sw2 > t2max) { text_error("too many ni2 increments in t2 ! "); psg_abort(1); } if(FIRST_FID) { printf("t1max is %f\n",t1max); printf("t2max is %f\n",t2max); }; /* BEGIN PULSE SEQUENCE */ status(A); obspower(tpwr); decpower(pwClvl); dec2power(pwNlvl); txphase(zero); decphase(zero); dec2phase(zero); delay(d1); zgradpulse(gzlvl2, gt2); delay(gstab*3.0); if (exp_mode[B]=='n') dec2rgpulse(2.0*pwN, zero, 0.0, 0.0); /* test for steady-state 15N */ /* Hz -> HzXz INEPT */ rgpulse(pw,zero,rof1,rof1); /* 1H pulse excitation */ zgradpulse(gzlvl0, gt0); delay(tauNH -gt0); sim3pulse(2.0*pw, 0.0, 2.0*pwN, zero, zero, zero, 0.0, 0.0); delay(tauNH - gt0 -gstab); zgradpulse(gzlvl0, gt0); delay(gstab); rgpulse(pw, t6, rof1, rof1); /* on HzNz now */ /* water flipback*/ obspower(tpwrs); obspwrf(tpwrsf_u); shaped_pulse("H2Osinc",pwHs,zero,rof1,rof1); obspower(tpwr); obspwrf(4095.0); /* purge */ zgradpulse(gzlvl3, gt3); dec2phase(t2); delay(gstab*2.0); /* HzNz -> NzCAz +t1 evolution*/ dec2rgpulse(pwN, t2, 0.0, 0.0); /* double-trosy hNcaNH */ delay(tauNH1 -pwHs-4.0*rof1 -pw -2.0*POWER_DELAY -WFG_STOP_DELAY-WFG_START_DELAY); obspower(tpwrs); obspwrf(tpwrsf_d); shaped_pulse("H2Osinc",pwHs,two,rof1,rof1); obspower(tpwr); obspwrf(4095.0); rgpulse(pw, zero, rof1, rof1); rgpulse(pw, t7, rof1, rof1); obspower(tpwrs); obspwrf(tpwrsf_u); shaped_pulse("H2Osinc",pwHs,t8,rof1,rof1); obspower(tpwr); obspwrf(4095.0); dec_c13_shpulse(CO180offCA,zero); delay(tau1*0.5); dec_c13_shpulse(CO180offCA,zero); dec2phase(zero); delay( timeTN1 -tauNH1 -pwHs -4.0*rof1 -pw -2.0*POWER_DELAY -WFG_STOP_DELAY -WFG_START_DELAY -CA180.pw -2.0*CO180offCA.pw -3.0*(2.0*POWER_DELAY +WFG_STOP_DELAY +WFG_START_DELAY)); dec_c13_shpulse(CA180,zero); delay(tau1*0.5 -timeTN1*tau1/t1max); dec2rgpulse(2.0*pwN, zero, 0.0, 0.0); delay( timeTN1 -tau1*timeTN1/t1max); dec2rgpulse(pwN, zero, 0.0, 0.0); /* on CAzNz now */ /* purge */ zgradpulse(gzlvl7, gt7); delay(gstab); if(dm3[B] == 'y') { dec3unblank(); if(1.0/dmf3>900.0e-6) { dec3power(dpwr3+6.0); dec3rgpulse(0.5/dmf3, one, 1.0e-6, 0.0e-6); dec3power(dpwr3); } else dec3rgpulse(1.0/dmf3, one, 1.0e-6,0.0e-6); dec3phase(zero); setstatus(DEC3ch, TRUE, 'w', FALSE, dmf3); } /* dec_c13_shpulse(CA90,t3);*/ /* t2 time, CA evolution */ decrgpulse(pwC,t3,0.0,0.0); decphase(zero); delay(0.5*(timeCN+tau2*0.5-CO180offCA.pw) ); dec_c13_shpulse(CO180offCA,zero); delay(0.5*(timeCN+tau2*0.5-CO180offCA.pw) -pwN*2.0 + WFG_STOP_DELAY); if (exp_mode[A]=='R') /* test CA.N relaxation rate */ { delay(2.0*pwN); } else dec2rgpulse(2.0*pwN, zero, 0.0, 0.0); dec_c13_shpulse(CA180n,zero); delay(0.5*(timeCN-tau2*0.5-CO180offCA.pw) ); dec_c13_shpulse(CO180offCA,zero); delay(0.5*(timeCN-tau2*0.5-CO180offCA.pw) + WFG_START_DELAY); /*dec_c13_shpulse(CA90,zero);*/ decrgpulse(pwC,zero,0.0,0.0); if(dm3[B] == 'y') { setstatus(DEC3ch, FALSE, 'w', FALSE, dmf3); if(1.0/dmf3>900.0e-6) { dec3power(dpwr3+6.0); dec3rgpulse(0.5/dmf3, three, 1.0e-6, 0.0e-6); dec3power(dpwr3); } else dec3rgpulse(1.0/dmf3, three, 1.0e-6, 0.0e-6); dec3blank(); delay(PRG_START_DELAY); } zgradpulse(gzlvl5, gt5); dec2phase(t4); delay(gstab); /* CaN->N + back to NH */ dec2rgpulse(pwN, t4, 0.0, 0.0); dec2phase(zero); delay(timeTN); dec2rgpulse(2.0*pwN, zero, 0.0, 0.0); dec_c13_shpulse(CA180,zero); delay(timeTN - CA180.pw -gt4-gstab -pwHs-3.0*rof1 -4.0*POWER_DELAY -2.0*WFG_STOP_DELAY-2.0*WFG_START_DELAY -2.0*GRADIENT_DELAY +4.0*pwN/3.1415-pw); zgradpulse(gzlvl4, gt4); delay(gstab); /*Water flipback (flipdown actually ) */ obspower(tpwrs); obspwrf(tpwrsf_d); shaped_pulse("H2Osinc",pwHs,three,rof1,rof1); obspower(tpwr); obspwrf(4095.0); /* reverse double INEPT */ /* 90 */ rgpulse(pw, t21, rof1, rof1); zgradpulse(gzlvl11, gt1); delay(tauNH -gt1 -rof1 -CA180.pw -2.0*POWER_DELAY - WFG_STOP_DELAY- WFG_START_DELAY ); dec_c13_shpulse(CA180,zero); sim3pulse(2.0*pw, 0.0, 2.0*pwN, zero, zero, zero, 0.0, 0.0); delay(tauNH - gt1 -gstab); zgradpulse(gzlvl11, gt1); delay(gstab); /* 90 */ sim3pulse(pw, 0.0, pwN, one, zero, zero, 0.0, 0.0); zgradpulse(gzlvl1, gt1); delay(tauNH -gt1); sim3pulse(2.0*pw, 0.0, 2.0*pwN, zero, zero, zero, 0.0, 0.0); delay(tauNH -POWER_DELAY -gt1- gstab); zgradpulse(gzlvl1, gt1); dec2phase(t22); delay(gstab); sim3pulse(0.0,0.0, pwN, one, zero, t22, 0.0, 0.0); zgradpulse(-(1.0-g6bal)*gzlvl6*icosel, gt6); /* 2.0*GRADIENT_DELAY */ delay( gstab -pwN*0.5 +pw*(2.0/3.1415-0.5) ); rgpulse(2.0*pw, zero, rof1, rof1); dec2power(dpwr2); decpower(dpwr); zgradpulse(g6bal*gzlvl6*icosel, gt6); /* 2.0*GRADIENT_DELAY */ delay(gstab +2.0*POWER_DELAY ); status(C); setreceiver(t31); }
pulsesequence() { /* DECLARE VARIABLES */ char autocal[MAXSTR], /* auto-calibration flag */ fsat[MAXSTR], fscuba[MAXSTR], f1180[MAXSTR], /* Flag to start t1 @ halfdwell */ f2180[MAXSTR], /* Flag to start t2 @ halfdwell */ f3180[MAXSTR], /* Flag to start t3 @ halfdwell */ fco180[MAXSTR], /* Flag for checking sequence */ fca180[MAXSTR], /* Flag for checking sequence */ spca180[MAXSTR], /* string for the waveform Ca 180 */ spco180[MAXSTR], /* string for the waveform Co 180 */ spchirp[MAXSTR], /* string for the waveform reburp 180 */ ddseq[MAXSTR], /* 2H decoupling seqfile */ shp_sl[MAXSTR], /* string for seduce shape */ sel_flg[MAXSTR]; int phase, phase2, phase3, ni2, ni3, icosel, t1_counter, /* used for states tppi in t1 */ t2_counter, /* used for states tppi in t2 */ t3_counter; /* used for states tppi in t3 */ double tau1, /* t1 delay */ tau2, /* t2 delay */ tau3, /* t2 delay */ taua, /* ~ 1/4JNH = 2.25 ms */ taub, /* ~ 1/4JNH = 2.25 ms */ zeta, /* time for C'-N to refocuss set to 0.5*24.0 ms */ bigTN, /* nitrogen T period */ pwc90, /* PW90 for c nucleus @ d_c90 */ pwc180on, /* PW180 at @ d_c180 */ pwchirp, /* PW180 for ca nucleus @ d_creb */ pwc180off, /* PW180 at d_c180 + pad */ tsatpwr, /* low level 1H trans.power for presat */ d_c90, /* power level for 13C pulses(pwc90 = sqrt(15)/4delta) delta is the separation between Ca and Co */ d_c180, /* power level for 180 13C pulses (pwc180on=sqrt(3)/2delta */ d_chirp, sw1, /* sweep width in f1 */ sw2, /* sweep width in f2 */ sw3, /* sweep width in f3 */ pw_sl, /* pw90 for H selective pulse on water ~ 2ms */ phase_sl, /* phase for pw_sl */ tpwrsl, /* power level for square pw_sl */ pwDlvl, /* Power for D decoupling */ pwD, /* pw90 at pwDlvl */ pwC, pwClvl, /* C-13 calibration */ compC, pwN, /* PW90 for 15N pulse */ pwNlvl, /* high dec2 pwr for 15N hard pulses */ gstab, /* delay to compensate for gradient gt5 */ gt1, gt2, gt3, gt4, gt5, gt6, gt7, gt8, gt9, gzlvl1, gzlvl2, gzlvl3, gzlvl4, gzlvl5, gzlvl6, gzlvl7, gzlvl8, gzlvl9; /* LOAD VARIABLES */ getstr("autocal",autocal); getstr("fsat",fsat); getstr("fco180",fco180); getstr("fca180",fca180); getstr("f1180",f1180); getstr("f2180",f2180); getstr("f3180",f3180); getstr("fscuba",fscuba); getstr("ddseq",ddseq); getstr("shp_sl",shp_sl); getstr("sel_flg",sel_flg); taua = getval("taua"); taub = getval("taub"); zeta = getval("zeta"); bigTN = getval("bigTN"); tpwr = getval("tpwr"); tsatpwr = getval("tsatpwr"); dpwr = getval("dpwr"); pwN = getval("pwN"); pwNlvl = getval("pwNlvl"); pwD = getval("pwD"); pwDlvl = getval("pwDlvl"); phase = (int) ( getval("phase") + 0.5); phase2 = (int) ( getval("phase2") + 0.5); phase3 = (int) ( getval("phase3") + 0.5); sw1 = getval("sw1"); sw2 = getval("sw2"); sw3 = getval("sw3"); ni2 = getval("ni2"); ni3 = getval("ni3"); pw_sl = getval("pw_sl"); phase_sl = getval("phase_sl"); tpwrsl = getval("tpwrsl"); gstab = getval("gstab"); gt1 = getval("gt1"); if (getval("gt2") > 0) gt2=getval("gt2"); else gt2=gt1*0.1; gt3 = getval("gt3"); gt4 = getval("gt4"); gt5 = getval("gt5"); gt6 = getval("gt6"); gt7 = getval("gt7"); gt8 = getval("gt8"); gt9 = getval("gt9"); gzlvl1 = getval("gzlvl1"); gzlvl2 = getval("gzlvl2"); gzlvl3 = getval("gzlvl3"); gzlvl4 = getval("gzlvl4"); gzlvl5 = getval("gzlvl5"); gzlvl6 = getval("gzlvl6"); gzlvl7 = getval("gzlvl7"); gzlvl8 = getval("gzlvl8"); gzlvl9 = getval("gzlvl9"); if(autocal[0]=='n') { getstr("spca180",spca180); getstr("spco180",spco180); getstr("spchirp",spchirp); pwc90 = getval("pwc90"); pwc180on = getval("pwc180on"); pwc180off = getval("pwc180off"); d_c90 = getval("d_c90"); d_c180 = getval("d_c180"); pwchirp = getval("pwchirp"); d_chirp = getval("d_chirp"); } else { strcpy(spca180,"Phard180ca"); strcpy(spco180,"Phard180co"); strcpy(spchirp,"Pchirp180"); if (FIRST_FID) { pwC = getval("pwC"); compC = getval("compC"); pwClvl = getval("pwClvl"); co90 = pbox("cal", CO90, CO180ps, dfrq, pwC*compC, pwClvl); co180 = pbox("cal", CO180, CO180ps, dfrq, pwC*compC, pwClvl); ca180 = pbox(spca180, CA180, CA180ps, dfrq, pwC*compC, pwClvl); co180a = pbox(spco180, CO180a, CA180ps, dfrq, pwC*compC, pwClvl); chirp = pbox(spchirp, CHIRP, CHIRPps, dfrq, pwC*compC, pwClvl); } pwc90 = co90.pw; d_c90 = co90.pwr; pwc180on = co180.pw; d_c180 = co180.pwr; pwc180off = ca180.pw; pwchirp = chirp.pw; d_chirp = chirp.pwr; } /* LOAD PHASE TABLE */ settable(t1,2,phi1); settable(t2,2,phi2); settable(t3,4,phi3); settable(t4,1,phi4); settable(t5,4,phi5); settable(t6,4,rec); /* CHECK VALIDITY OF PARAMETER RANGES */ if( bigTN - (ni3-1)*0.5/sw3 - WFG3_START_DELAY < 0.2e-6 ) { text_error(" ni3 is too big\n"); text_error(" please set ni3 smaller or equal to %d\n", (int) ((bigTN -WFG3_START_DELAY)*sw3*2.0) +1 ); psg_abort(1); } if((dm[A] == 'y' || dm[B] == 'y' || dm[C] == 'y' || dm[D] == 'y' )) { text_error("incorrect dec1 decoupler flags! "); psg_abort(1); } if((dm2[A] == 'y' || dm2[B] == 'y' || dm2[C] == 'y' || dm2[D] == 'y')) { text_error("incorrect dec2 decoupler flags! Should be 'nnnn' "); psg_abort(1); } if( tsatpwr > 6 ) { text_error("TSATPWR too large !!! "); psg_abort(1); } if( dpwr > 46 ) { text_error("don't fry the probe, DPWR too large! "); psg_abort(1); } if( dpwr2 > 46 ) { text_error("don't fry the probe, DPWR2 too large! "); psg_abort(1); } if( dpwr3 > 50 ) { text_error("don't fry the probe, dpwr3 too large! "); psg_abort(1); } if( d_c90 > 62 ) { text_error("don't fry the probe, DHPWR too large! "); psg_abort(1); } if( pw > 200.0e-6 ) { text_error("dont fry the probe, pw too high ! "); psg_abort(1); } if( pwN > 200.0e-6 ) { text_error("dont fry the probe, pwN too high ! "); psg_abort(1); } if( pwc90 > 200.0e-6 ) { text_error("dont fry the probe, pwc90 too high ! "); psg_abort(1); } if( pwc180off > 200.0e-6 ) { text_error("dont fry the probe, pwc180 too high ! "); psg_abort(1); } if( gt3 > 2.5e-3 ) { text_error("gt3 is too long\n"); psg_abort(1); } if( gt1 > 10.0e-3 || gt2 > 10.0e-3 || gt4 > 10.0e-3 || gt5 > 10.0e-3 || gt6 > 10.0e-3 || gt7 > 10.0e-3 || gt8 > 10.0e-3 || gt9 > 10.0e-3) { text_error("gt values are too long. Must be < 10.0e-3 or gt11=50us\n"); psg_abort(1); } if((fca180[A] == 'y') && (ni2 > 1)) { text_error("must set fca180='n' to allow Calfa evolution (ni2>1)\n"); psg_abort(1); } if((fco180[A] == 'y') && (ni > 1)) { text_error("must set fco180='n' to allow CO evolution (ni>1)\n"); psg_abort(1); } /* Phase incrementation for hypercomplex 2D data */ if (phase == 2) tsadd(t1,1,4); if (phase2 == 2) tsadd(t5,1,4); if (phase3 == 2) { tsadd(t4, 2, 4); icosel = 1; } else icosel = -1; /* Set up f1180 tau1 = t1 */ tau1 = d2; if((f1180[A] == 'y') && (ni > 1)) { if (pwc180off > 2.0*pwN) tau1 += (1.0/(2.0*sw1) - 4.0*pwc90/PI - pwc180off - WFG3_START_DELAY - WFG3_STOP_DELAY - 4.0e-6 - 2.0*POWER_DELAY - 4.0e-6); else tau1 += (1.0/(2.0*sw1) - 4.0*pwc90/PI - 2.0*pwN - WFG3_START_DELAY - WFG3_STOP_DELAY - 4.0e-6 - 2.0*POWER_DELAY - 4.0e-6); if(tau1 < 0.2e-6) { tau1 = 0.4e-6; text_error("tau1 could be negative"); } } else { if (pwc180off > 2.0*pwN) tau1 = tau1 - 4.0*pwc90/PI - pwc180off - WFG3_START_DELAY - WFG3_STOP_DELAY - 4.0e-6 - 2.0*POWER_DELAY - 4.0e-6; else tau1 = tau1 - 4.0*pwc90/PI - 2.0*pwN - WFG3_START_DELAY - WFG3_STOP_DELAY - 4.0e-6 - 2.0*POWER_DELAY - 4.0e-6; if(tau1 < 0.2e-6) tau1 = 0.4e-6; } tau1 = tau1/2.0; /* Set up f2180 tau2 = t2 */ tau2 = d3; if((f2180[A] == 'y') && (ni2 > 1)) { if (pwc180off > 2.0*pwN) tau2 += ( 1.0 / (2.0*sw2) - 4.0*pwc90/PI - 4.0e-6 - 2.0*POWER_DELAY - WFG3_START_DELAY - pwc180off - WFG3_STOP_DELAY - 4.0e-6); else tau2 += ( 1.0 / (2.0*sw2) - 4.0*pwc90/PI - 4.0e-6 - 2.0*POWER_DELAY - WFG3_START_DELAY - 2.0*pwN - WFG3_STOP_DELAY - 4.0e-6); if(tau2 < 0.2e-6) { tau2 = 0.4e-6; text_error("tau2 could be negative"); } } else { if (pwc180off > 2.0*pwN) tau2 = tau2 - 4.0*pwc90/PI - 4.0e-6 - 2.0*POWER_DELAY - WFG3_START_DELAY - pwc180off - WFG3_STOP_DELAY - 4.0e-6; else tau2 = tau2 - 4.0*pwc90/PI - 4.0e-6 - 2.0*POWER_DELAY - WFG3_START_DELAY - 2.0*pwN - WFG3_STOP_DELAY - 4.0e-6; if(tau2 < 0.2e-6) tau2 = 0.4e-6; } tau2 = tau2/2.0; /* Set up f3180 tau3 = t3 */ tau3 = d4; if ((f3180[A] == 'y') && (ni3 > 1)) { tau3 += ( 1.0 / (2.0*sw3) ); if(tau3 < 0.2e-6) tau3 = 0.4e-6; } tau3 = tau3/2.0; /* Calculate modifications to phases for States-TPPI acquisition */ if( ix == 1) d2_init = d2 ; t1_counter = (int) ( (d2-d2_init)*sw1 + 0.5 ); if(t1_counter % 2) { tsadd(t1,2,4); tsadd(t6,2,4); } if( ix == 1) d3_init = d3 ; t2_counter = (int) ( (d3-d3_init)*sw2 + 0.5 ); if(t2_counter % 2) { tsadd(t5,2,4); tsadd(t6,2,4); } if( ix == 1) d4_init = d4 ; t3_counter = (int) ( (d4-d4_init)*sw3 + 0.5 ); if(t3_counter % 2) { tsadd(t2,2,4); tsadd(t6,2,4); } /* BEGIN ACTUAL PULSE SEQUENCE */ status(A); obsoffset(tof); decoffset(dof); /* set Dec1 carrier at Co */ obspower(tsatpwr); /* Set transmitter power for 1H presaturation */ decpower(d_chirp); /* Set Dec1 power for hard 13C pulses */ dec2power(pwNlvl); /* Set Dec2 power for 15N hard pulses */ /* Presaturation Period */ if (fsat[0] == 'y') { delay(2.0e-5); rgpulse(d1,zero,2.0e-6,2.0e-6); /* presaturation */ obspower(tpwr); /* Set transmitter power for hard 1H pulses */ delay(2.0e-5); if (fscuba[0] == 'y') { delay(2.2e-2); rgpulse(pw,zero,2.0e-6,0.0); rgpulse(2*pw,one,2.0e-6,0.0); rgpulse(pw,zero,2.0e-6,0.0); delay(2.2e-2); } } else { delay(d1); } obspower(tpwr); /* Set transmitter power for hard 1H pulses */ txphase(zero); dec2phase(zero); delay(1.0e-5); /* Begin Pulses */ status(B); rcvroff(); lk_hold(); delay(20.0e-6); initval(1.0,v2); obsstepsize(phase_sl); xmtrphase(v2); /* shaped pulse */ obspower(tpwrsl); shaped_pulse(shp_sl,pw_sl,one,4.0e-6,0.0); xmtrphase(zero); obspower(tpwr); txphase(zero); delay(4.0e-6); /* shaped pulse */ rgpulse(pw,zero,0.0,0.0); /* 90 deg 1H pulse */ delay(0.2e-6); zgradpulse(gzlvl5,gt5); delay(2.0e-6); delay(taua - gt5 - 2.2e-6); /* taua <= 1/4JNH */ sim3pulse(2*pw,0.0e-6,2*pwN,zero,zero,zero,0.0,0.0); txphase(three); dec2phase(zero); decphase(zero); delay(0.2e-6); zgradpulse(gzlvl5,gt5); delay(200.0e-6); delay(taua - gt5 - 200.2e-6 - 2.0e-6); if (sel_flg[A] == 'n') { rgpulse(pw,three,2.0e-6,0.0); delay(0.2e-6); zgradpulse(gzlvl3,gt3); delay(200.0e-6); dec2rgpulse(pwN,zero,0.0,0.0); delay( zeta ); dec2rgpulse(2.0*pwN,zero,0.0,0.0); decshaped_pulse(spchirp,pwchirp,zero,0.0,0.0); delay(zeta -WFG_START_DELAY -pwchirp -WFG_STOP_DELAY -2.0e-6); dec2rgpulse(pwN,zero,2.0e-6,0.0); } else { rgpulse(pw,one,2.0e-6,0.0); initval(1.0,v3); dec2stepsize(45.0); dcplr2phase(v3); delay(0.2e-6); zgradpulse(gzlvl3,gt3); delay(200.0e-6); dec2rgpulse(pwN,zero,0.0,0.0); dcplr2phase(zero); delay(1.34e-3 - SAPS_DELAY - 2.0*pw); rgpulse(pw,one,0.0,0.0); rgpulse(2.0*pw,zero,0.0,0.0); rgpulse(pw,one,0.0,0.0); delay( zeta - 1.34e-3 - 2.0*pw); dec2rgpulse(2.0*pwN,zero,0.0,0.0); decshaped_pulse(spchirp,pwchirp,zero,0.0,0.0); delay(zeta -WFG_START_DELAY -pwchirp -WFG_STOP_DELAY -2.0e-6); dec2rgpulse(pwN,zero,2.0e-6,0.0); } dec2phase(zero); decphase(t1); decpower(d_c90); delay(0.2e-6); zgradpulse(gzlvl8,gt8); delay(200.0e-6); decrgpulse(pwc90,t1,2.0e-6,0.0); /* t1 period for Co evolution begins */ if (fco180[A]=='n') { decpower(d_c180); delay(tau1); sim3shaped_pulse("",spca180,"",0.0,pwc180off,2.0*pwN,zero,zero,zero,4.0e-6,0.0); decpower(d_c90); delay(tau1); } else /* for checking sequence */ { decpower(d_c180); decrgpulse(pwc180on,zero,4.0e-6,0.0); decpower(d_c90); } /* t1 period for Co evolution ends */ decrgpulse(pwc90,zero,4.0e-6,0.0); decoffset(dof-(174-56)*dfrq); /* change Dec1 carrier to Ca (55 ppm) */ delay(0.2e-6); zgradpulse(gzlvl4,gt4); delay(150.0e-6); /* Turn on D decoupling using the third decoupler */ dec3phase(one); dec3power(pwDlvl); dec3rgpulse(pwD,one,4.0e-6,0.0); dec3phase(zero); dec3power(dpwr3); dec3unblank(); setstatus(DEC3ch, TRUE, 'w', FALSE, dmf3); /* Turn on D decoupling */ decrgpulse(pwc90,t5,2.0e-6,0.0); /* t2 period for Ca evolution begins */ if (fca180[A]=='n') { decphase(zero); dec2phase(zero); decpower(d_c180); delay(tau2); sim3shaped_pulse("",spco180,"",0.0,pwc180off,2.0*pwN,zero,zero,zero,4.0e-6,0.0); decpower(d_c90); delay(tau2); } else /* for checking sequence */ { decpower(d_c180); decrgpulse(pwc180on,zero,4.0e-6,0.0); decpower(d_c90); } /* t2 period for Ca evolution ends */ decrgpulse(pwc90,zero,4.0e-6,0.0); /* Turn off D decoupling */ setstatus(DEC3ch, FALSE, 'c', FALSE, dmf3); dec3blank(); dec3phase(three); dec3power(pwDlvl); dec3rgpulse(pwD,three,4.0e-6,0.0); /* Turn off D decoupling */ decoffset(dof); /* set carrier back to Co */ decpower(d_chirp); delay(0.2e-6); zgradpulse(gzlvl9,gt9); delay(150.0e-6); /* t3 period begins */ dec2rgpulse(pwN,t2,2.0e-6,0.0); dec2phase(t3); delay(bigTN - tau3); dec2rgpulse(2.0*pwN,t3,0.0,0.0); decshaped_pulse(spchirp,pwchirp,zero,0.0,0.0); txphase(zero); dec2phase(t4); delay(0.2e-6); zgradpulse(gzlvl1,gt1); delay(500.0e-6); delay(bigTN - WFG_START_DELAY - pwchirp - WFG_STOP_DELAY -gt1 -500.2e-6 -2.0*GRADIENT_DELAY); delay(tau3); sim3pulse(pw,0.0e-6,pwN,zero,zero,t4,0.0,0.0); /* t3 period ends */ decpower(d_c90); decrgpulse(pwc90,zero,4.0e-6,0.0); decoffset(dof-(174-56)*dfrq); decrgpulse(pwc90,zero,20.0e-6,0.0); delay(0.2e-6); zgradpulse(gzlvl6,gt6); delay(2.0e-6); dec2phase(zero); delay(taub - POWER_DELAY - 4.0e-6 - pwc90 - 20.0e-6 - pwc90 - gt6 - 2.2e-6); sim3pulse(2*pw,0.0e-6,2*pwN,zero,zero,zero,0.0,0.0); decoffset(dof); delay(0.2e-6); zgradpulse(gzlvl6,gt6); delay(200.0e-6); txphase(one); dec2phase(one); delay(taub - gt6 - 200.2e-6); sim3pulse(pw,0.0e-6,pwN,one,zero,one,0.0,0.0); delay(0.2e-6); zgradpulse(gzlvl7,gt7); delay(2.0e-6); txphase(zero); dec2phase(zero); delay(taub - gt7 - 2.2e-6); sim3pulse(2*pw,0.0e-6,2*pwN,zero,zero,zero,0.0,0.0); delay(0.2e-6); zgradpulse(gzlvl7,gt7); delay(200.0e-6); delay(taub - gt7 - 200.2e-6); sim3pulse(pw,0.0e-6,pwN,zero,zero,zero,0.0,0.0); delay(gt2 +gstab -0.5*(pwN -pw) -2.0*pw/PI); rgpulse(2*pw,zero,0.0,0.0); delay(2.0e-6); zgradpulse(icosel*gzlvl2,gt2); decpower(dpwr); dec2power(dpwr2); delay(gstab -2.0e-6 -2.0*GRADIENT_DELAY -2.0*POWER_DELAY); lk_sample(); /* BEGIN ACQUISITION */ status(C); setreceiver(t6); }
pulsesequence() { /* DECLARE VARIABLES */ char fsat[MAXSTR], fscuba[MAXSTR], f1180[MAXSTR], /* Flag to start t1 @ halfdwell */ f2180[MAXSTR], /* Flag to start t2 @ halfdwell */ C_flg[MAXSTR], dtt_flg[MAXSTR]; int phase, phase2, ni, ni2, t1_counter, /* used for states tppi in t1 */ t2_counter; /* used for states tppi in t2 */ double tau1, /* t1 delay */ tau2, /* t2 delay */ taua, /* ~ 1/4JHC = 1.6 ms */ taub, /* 1/6JCH = 1.1 ms */ BigTC, /* Carbon constant time period = 1/4Jcc = 7.0 ms */ BigTC1, /* Carbon constant time period2 < 1/4Jcc to account for relaxation */ pwN, /* PW90 for 15N pulse @ pwNlvl */ pwC, /* PW90 for c nucleus @ pwClvl */ pwcrb180, /* PW180 for C 180 reburp @ rfrb */ pwClvl, /* power level for 13C pulses on dec1 */ compC, compH, /* compression factors for H1 and C13 amps */ rfrb, /* power level for 13C reburp pulse */ pwNlvl, /* high dec2 pwr for 15N hard pulses */ sw1, /* sweep width in f1 */ sw2, /* sweep width in f2 */ tofps, /* tof for presat */ gt0, gt1, gt2, gt3, gt4, gstab, gzlvl0, gzlvl1, gzlvl2, gzlvl3, gzlvl4, decstep1, bw, ofs, ppm, pwd1, dpwr3_D, pwd, tpwrs, pwHs, dof_me, tof_dtt, tpwrs1, pwHs1, dpwrsed, pwsed, dressed, rfrb_cg, pwrb_cg; /* LOAD VARIABLES */ getstr("fsat",fsat); getstr("f1180",f1180); getstr("f2180",f2180); getstr("fscuba",fscuba); getstr("C_flg",C_flg); getstr("dtt_flg",dtt_flg); tofps = getval("tofps"); taua = getval("taua"); taub = getval("taub"); BigTC = getval("BigTC"); BigTC1 = getval("BigTC1"); pwC = getval("pwC"); pwcrb180 = getval("pwcrb180"); pwN = getval("pwN"); tpwr = getval("tpwr"); pwClvl = getval("pwClvl"); compC = getval("compC"); compH = getval("compH"); dpwr = getval("dpwr"); pwNlvl = getval("pwNlvl"); phase = (int) ( getval("phase") + 0.5); phase2 = (int) ( getval("phase2") + 0.5); sw1 = getval("sw1"); sw2 = getval("sw2"); ni = getval("ni"); ni2 = getval("ni2"); gt0 = getval("gt0"); gt1 = getval("gt1"); gt2 = getval("gt2"); gt3 = getval("gt3"); gt4 = getval("gt4"); gstab = getval("gstab"); gzlvl0 = getval("gzlvl0"); gzlvl1 = getval("gzlvl1"); gzlvl2 = getval("gzlvl2"); gzlvl3 = getval("gzlvl3"); gzlvl4 = getval("gzlvl4"); decstep1 = getval("decstep1"); pwd1 = getval("pwd1"); dpwr3_D = getval("dpwr3_D"); pwd = getval("pwd"); pwHs = getval("pwHs"); dof_me = getval("dof_me"); pwHs1 = pwHs; tpwrs=-16.0; tpwrs1=tpwrs; tof_dtt = getval("tof_dtt"); dpwrsed = -16; pwsed = 1000.0; dressed = 90.0; pwrb_cg = 0.0; setautocal(); /* activate auto-calibration */ if(FIRST_FID) /* make shapes */ { ppm = getval("dfrq"); bw = 80.0*ppm; rb180 = pbox_make("rb180P", "reburp", bw, 0.0, compC*pwC, pwClvl); bw = 8.125*ppm; ofs = -24.0*ppm; rb180_cg = pbox_make("rb180_cgP", "reburp", bw, ofs, compC*pwC, pwClvl); bw = 20.0*ppm; ofs = 136.0*ppm; cosed = pbox("COsedP", CODEC, CODECps, dfrq, compC*pwC, pwClvl); if(taua < (gt4+106e-6+pwHs)) printf("gt4 or pwHs may be too long! "); if(taub < rb180_cg.pw) printf("rb180_cgP pulse may be too long! "); } pwcrb180 = rb180.pw; rfrb = rb180.pwrf; /* set up parameters */ pwrb_cg = rb180_cg.pw; rfrb_cg = rb180_cg.pwrf; /* set up parameters */ tpwrs = tpwr - 20.0*log10(pwHs/((compH*pw)*1.69)); /* sinc=1.69xrect */ tpwrs = (int) (tpwrs); tpwrs1=tpwrs; dpwrsed = cosed.pwr; pwsed = 1.0/cosed.dmf; dressed = cosed.dres; /* LOAD PHASE TABLE */ settable(t1,2,phi1); settable(t2,4,phi2); settable(t3,4,phi3); settable(t4,4,phi4); settable(t5,8,phi5); settable(t6,8,phi6); settable(t7,8,phi7); settable(t8,1,phi8); settable(t9,2,rec); /* CHECK VALIDITY OF PARAMETER RANGES */ if( BigTC - 0.5*(ni2-1)*1/(sw2) - WFG_STOP_DELAY - POWER_DELAY - 4.0e-6 < 0.2e-6 ) { printf(" ni2 is too big\n"); psg_abort(1); } if((dm[A] == 'y' || dm[B] == 'y' || dm[C] == 'y' )) { printf("incorrect dec1 decoupler flags! "); psg_abort(1); } if((dm2[A] == 'y' || dm2[B] == 'y' || dm2[C] == 'y' || dm2[D] == 'y')) { printf("incorrect dec2 decoupler flags! Should be 'nnnn' "); psg_abort(1); } if( satpwr > 6 ) { printf("SATPWR too large !!! "); psg_abort(1); } if( dpwr > 48 ) { printf("don't fry the probe, DPWR too large! "); psg_abort(1); } if( dpwr2 > -16 ) { printf("don't fry the probe, DPWR2 too large! "); psg_abort(1); } if( pw > 200.0e-6 ) { printf("dont fry the probe, pw too high ! "); psg_abort(1); } if( pwN > 200.0e-6 ) { printf("dont fry the probe, pwN too high ! "); psg_abort(1); } if( pwC > 200.0e-6 ) { printf("dont fry the probe, pwC too high ! "); psg_abort(1); } if( pwcrb180 > 500.0e-6 ) { printf("dont fry the probe, pwcrb180 too high ! "); psg_abort(1); } if(dpwr3 > 51) { printf("dpwr3 is too high; < 52\n"); psg_abort(1); } if(dpwr3_D > 49) { printf("dpwr3_D is too high; < 50\n"); psg_abort(1); } if(d1 < 1) { printf("d1 must be > 1\n"); psg_abort(1); } if(dpwrsed > 48) { printf("dpwrsed must be less than 49\n"); psg_abort(1); } if( gt0 > 5.0e-3 || gt1 > 5.0e-3 || gt2 > 5.0e-3 || gt3 > 5.0e-3 || gt4 > 5.0e-3 ) { printf(" all values of gti must be < 5.0e-3\n"); psg_abort(1); } if(ix==1) { printf("make sure that BigTC1 is set properly for your application\n"); printf("7 ms, neglecting relaxation \n"); } /* Phase incrementation for hypercomplex 2D data */ if (phase == 2) { tsadd(t1,1,4); tsadd(t2,1,4); tsadd(t3,1,4); tsadd(t4,1,4); } if (phase2 == 2) tsadd(t8,1,4); /* Set up f1180 tau1 = t1 */ tau1 = d2; tau1 = tau1 - 2.0*pw - 4.0/PI*pwC - POWER_DELAY - 2.0e-6 - PRG_START_DELAY - PRG_STOP_DELAY - POWER_DELAY - 2.0e-6; if(f1180[A] == 'y') { tau1 += ( 1.0 / (2.0*sw1) ); if(tau1 < 0.4e-6) tau1 = 4.0e-7; } tau1 = tau1/2.0; /* Set up f2180 tau2 = t2 */ tau2 = d3; if(f2180[A] == 'y') { tau2 += ( 1.0 / (2.0*sw2) ); if(tau2 < 0.4e-6) tau2 = 4.0e-7; } tau2 = tau2/2.0; /* Calculate modifications to phases for States-TPPI acquisition */ if( ix == 1) d2_init = d2 ; t1_counter = (int) ( (d2-d2_init)*sw1 + 0.5 ); if(t1_counter % 2) { tsadd(t1,2,4); tsadd(t9,2,4); } if( ix == 1) d3_init = d3 ; t2_counter = (int) ( (d3-d3_init)*sw2 + 0.5 ); if(t2_counter % 2) { tsadd(t8,2,4); tsadd(t9,2,4); } /* BEGIN ACTUAL PULSE SEQUENCE */ status(A); obspower(satpwr); /* Set transmitter power for 1H presaturation */ decpower(pwClvl); /* Set Dec1 power for hard 13C pulses */ dec2power(pwNlvl); /* Set Dec2 to low power */ /* Presaturation Period */ status(B); if (fsat[0] == 'y') { obsoffset(tofps); delay(2.0e-5); rgpulse(d1,zero,2.0e-6,2.0e-6); /* presat with transmitter */ obspower(tpwr); /* Set transmitter power for hard 1H pulses */ delay(2.0e-5); if(fscuba[0] == 'y') { delay(2.2e-2); rgpulse(pw,zero,2.0e-6,0.0); rgpulse(2.0*pw,one,2.0e-6,0.0); rgpulse(pw,zero,2.0e-6,0.0); delay(2.2e-2); } } else { delay(d1); } obspower(tpwr); /* Set transmitter power for hard 1H pulses */ obsoffset(tof); txphase(t1); decphase(zero); dec2phase(zero); delay(1.0e-5); /* Begin Pulses */ status(C); decoffset(dof_me); lk_hold(); rcvroff(); delay(20.0e-6); /* ensure that magnetization originates on 1H and not 13C */ if(dtt_flg[A] == 'y') { obsoffset(tof_dtt); obspower(tpwrs1); shaped_pulse("H2Osinc",pwHs1,zero,10.0e-6,0.0); obspower(tpwr); obsoffset(tof); } decrgpulse(pwC,zero,0.0,0.0); zgradpulse(gzlvl0,gt0); delay(gstab); rgpulse(pw,zero,0.0,0.0); /* 90 deg 1H pulse */ zgradpulse(gzlvl1,gt1); delay(gstab); delay(taua - gt1 -gstab); simpulse(2.0*pw,2.0*pwC,zero,zero,0.0,0.0); txphase(one); delay(taua - gt1 - gstab); zgradpulse(gzlvl1,gt1); delay(gstab); rgpulse(pw,one,0.0,0.0); /* shaped_pulse */ obspower(tpwrs); shaped_pulse("H2Osinc",pwHs,zero,2.0e-6,0.0); obspower(tpwr); /* shaped_pulse */ decoffset(dof); /* jump 13C to 40 ppm */ zgradpulse(gzlvl2,gt2); delay(gstab); decrgpulse(pwC,t1,4.0e-6,0.0); decphase(zero); initval(1.0,v3); decstepsize(decstep1); dcplrphase(v3); decpwrf(rfrb); delay(BigTC - POWER_DELAY - WFG_START_DELAY); decshaped_pulse(rb180.name,pwcrb180,zero,0.0,0.0); dcplrphase(zero); decphase(t2); decpwrf(4095.0); delay(BigTC - WFG_STOP_DELAY - POWER_DELAY); decrgpulse(pwC,t2,0.0,0.0); decphase(zero); /* turn on 2H decoupling */ dec3phase(one); dec3power(dpwr3); dec3rgpulse(pwd1,one,4.0e-6,0.0); dec3phase(zero); dec3unblank(); dec3power(dpwr3_D); dec3prgon(dseq3,pwd,dres3); dec3on(); /* turn on 2H decoupling */ initval(1.0,v3); decstepsize(decstep1); dcplrphase(v3); decpwrf(rfrb); delay(BigTC1 - POWER_DELAY - 4.0e-6 - pwd1 - POWER_DELAY - PRG_START_DELAY - POWER_DELAY - WFG_START_DELAY); decshaped_pulse(rb180.name,pwcrb180,zero,0.0,0.0); dcplrphase(zero); decphase(t3); decpwrf(4095.0); delay(BigTC1 - WFG_STOP_DELAY - POWER_DELAY); decrgpulse(pwC,t3,0.0,0.0); decpwrf(rfrb_cg); decphase(zero); if(taub > pwrb_cg) delay(taub/2.0 - pwrb_cg/2.0 - POWER_DELAY - WFG_START_DELAY); decshaped_pulse(rb180_cg.name,pwrb_cg,zero,0.0,0.0); decpwrf(rfrb); if(taub > pwrb_cg) delay(taub/2.0 - pwrb_cg/2.0 - WFG_STOP_DELAY - POWER_DELAY - SAPS_DELAY - 2.0e-6 - WFG_START_DELAY); initval(1.0,v3); decstepsize(decstep1); dcplrphase(v3); decshaped_pulse(rb180.name,pwcrb180,zero,2.0e-6,0.0); dcplrphase(zero); decpwrf(rfrb_cg); decphase(zero); if(taub > pwrb_cg) delay(taub/2.0 - pwrb_cg/2.0 - WFG_STOP_DELAY - SAPS_DELAY - POWER_DELAY - WFG_START_DELAY); decshaped_pulse(rb180_cg.name,pwrb_cg,zero,0.0,0.0); decpwrf(4095.0); decphase(t4); if(taub > pwrb_cg) delay(taub/2.0 - pwrb_cg/2.0 - WFG_STOP_DELAY - POWER_DELAY); decrgpulse(pwC,t4,0.0,0.0); if(C_flg[A] == 'n') { decpower(dpwrsed); decunblank(); decphase(zero); delay(2.0e-6); decprgon(cosed.name,pwsed,dressed); decon(); delay(tau1); rgpulse(2.0*pw,zero,0.0,0.0); delay(tau1); decoff(); decprgoff(); decblank(); decpower(pwClvl); } else simpulse(2.0*pw,2.0*pwC,zero,zero,4.0e-6,4.0e-6); decrgpulse(pwC,t5,2.0e-6,0.0); decpwrf(rfrb_cg); decphase(zero); if(taub > pwrb_cg) delay(taub/2.0 - pwrb_cg/2.0 - POWER_DELAY - WFG_START_DELAY); decshaped_pulse(rb180_cg.name,pwrb_cg,zero,0.0,0.0); decpwrf(rfrb); if(taub > pwrb_cg) delay(taub/2.0 - pwrb_cg/2.0 - WFG_STOP_DELAY - POWER_DELAY - SAPS_DELAY - 2.0e-6 - WFG_START_DELAY); initval(1.0,v3); decstepsize(decstep1); dcplrphase(v3); decshaped_pulse(rb180.name,pwcrb180,zero,2.0e-6,0.0); dcplrphase(zero); decpwrf(rfrb_cg); decphase(zero); if(taub > pwrb_cg) delay(taub/2.0 - pwrb_cg/2.0 - WFG_STOP_DELAY - SAPS_DELAY - POWER_DELAY - WFG_START_DELAY); decshaped_pulse(rb180_cg.name,pwrb_cg,zero,0.0,0.0); decpwrf(4095.0); decphase(t6); if(taub > pwrb_cg) delay(taub/2.0 - pwrb_cg/2.0 - WFG_STOP_DELAY - POWER_DELAY); decrgpulse(pwC,t6,0.0,0.0); decphase(zero); initval(1.0,v3); decstepsize(decstep1); dcplrphase(v3); decpwrf(rfrb); delay(BigTC1 - POWER_DELAY - WFG_START_DELAY); decshaped_pulse(rb180.name,pwcrb180,zero,0.0,0.0); dcplrphase(zero); decphase(t7); decpwrf(4095.0); delay(BigTC1 - WFG_STOP_DELAY - POWER_DELAY - PRG_STOP_DELAY - POWER_DELAY - 4.0e-6 - pwd1); /* 2H decoupling off */ dec3off(); dec3prgoff(); dec3blank(); dec3power(dpwr3); dec3rgpulse(pwd1,three,4.0e-6,0.0); /* 2H decoupling off */ decrgpulse(pwC,t7,0.0,0.0); decphase(zero); delay(tau2); rgpulse(2.0*pw,zero,0.0,0.0); initval(1.0,v3); decstepsize(decstep1); dcplrphase(v3); decpwrf(rfrb); delay(BigTC - 2.0*pw - POWER_DELAY - WFG_START_DELAY); decshaped_pulse(rb180.name,pwcrb180,zero,0.0,0.0); dcplrphase(zero); decphase(t8); decpwrf(4095.0); delay(BigTC - tau2 - WFG_STOP_DELAY - POWER_DELAY - 4.0e-6); decrgpulse(pwC,t8,4.0e-6,0.0); decoffset(dof_me); zgradpulse(gzlvl3,gt3); delay(gstab); lk_sample(); /* shaped_pulse */ obspower(tpwrs); shaped_pulse("H2Osinc",pwHs,two,2.0e-6,0.0); obspower(tpwr); /* shaped_pulse */ rgpulse(pw,zero,4.0e-6,0.0); zgradpulse(gzlvl4,gt4); delay(gstab); delay(taua - gt4 -gstab - POWER_DELAY - 2.0e-6 - WFG_START_DELAY - pwHs - WFG_STOP_DELAY - POWER_DELAY - 2.0e-6); /* shaped_pulse */ obspower(tpwrs); shaped_pulse("H2Osinc",pwHs,two,2.0e-6,0.0); obspower(tpwr); /* shaped_pulse */ simpulse(2.0*pw,2.0*pwC,zero,zero,2.0e-6,0.0); /* shaped_pulse */ obspower(tpwrs); shaped_pulse("H2Osinc",pwHs,two,2.0e-6,0.0); obspower(tpwr); /* shaped_pulse */ zgradpulse(gzlvl4,gt4); delay(gstab); delay(taua - POWER_DELAY - WFG_START_DELAY - pwHs - WFG_STOP_DELAY - POWER_DELAY - gt4 - gstab - 2.0*POWER_DELAY); decpower(dpwr); /* Set power for decoupling */ dec2power(dpwr2); /* rcvron(); */ /* Turn on receiver to warm up before acq */ /* BEGIN ACQUISITION */ status(D); setreceiver(t9); }
pulsesequence() { /* DECLARE VARIABLES */ char fsat[MAXSTR], fscuba[MAXSTR], f1180[MAXSTR], /* Flag to start t1 @ halfdwell */ sh_reb[MAXSTR], codec[MAXSTR], MQ_flg[MAXSTR], filter_flg[MAXSTR]; int phase, t1_counter; /* used for states tppi in t1 */ double tau1, /* t1 delay */ taua, /* set to exactly 1/4JCH */ tsatpwr, /* low level 1H trans.power for presat */ sw1, /* sweep width in f1 */ tpwr_cp, /* power level for 1H CPMG */ pw_cp, /* 1H pw for CPMG */ ncyc_cp, /* number of CPMG cycles */ time_T2, /* total time for CPMG trains */ tau_cpmg, dhpwr, pwc, dmf_co, dpwr_co, dresco, gt0, gt1, gt2, gt3, gt4, gt5, gt6, gzlvl0, gzlvl1, gzlvl2, gzlvl3, gzlvl4, gzlvl5, gzlvl6, tpwr, pw, d_reb, pwc_reb, dpwr3_D, pwd, pwd1, tau_eq, pwn, dhpwr2; /* LOAD VARIABLES */ getstr("fsat",fsat); getstr("f1180",f1180); getstr("fscuba",fscuba); getstr("sh_reb",sh_reb); getstr("codec",codec); getstr("MQ_flg",MQ_flg); getstr("filter_flg",filter_flg); taua = getval("taua"); tpwr = getval("tpwr"); tsatpwr = getval("tsatpwr"); dpwr = getval("dpwr"); phase = (int) ( getval("phase") + 0.5); sw1 = getval("sw1"); tpwr_cp = getval("tpwr_cp"); pw_cp = getval("pw_cp"); ncyc_cp = getval("ncyc_cp"); time_T2 = getval("time_T2"); dhpwr = getval("dhpwr"); pwc = getval("pwc"); pwn = getval("pwn"); dhpwr2 = getval("dhpwr2"); dmf_co = getval("dmf_co"); dpwr_co = getval("dpwr_co"); dresco = getval("dresco"); gt0 = getval("gt0"); gt1 = getval("gt1"); gt2 = getval("gt2"); gt3 = getval("gt3"); gt4 = getval("gt4"); gt5 = getval("gt5"); gt6 = getval("gt6"); gzlvl0 = getval("gzlvl0"); gzlvl1 = getval("gzlvl1"); gzlvl2 = getval("gzlvl2"); gzlvl3 = getval("gzlvl3"); gzlvl4 = getval("gzlvl4"); gzlvl5 = getval("gzlvl5"); gzlvl6 = getval("gzlvl6"); tpwr = getval("tpwr"); pw = getval("pw"); d_reb = getval("d_reb"); pwc_reb = getval("pwc_reb"); dpwr3_D = getval("dpwr3_D"); pwd = getval("pwd"); pwd1 = getval("pwd1"); tau_eq = getval("tau_eq"); /* LOAD PHASE TABLE */ settable(t1,4,phi1); settable(t2,2,phi2); settable(t4,8,phi4); settable(t5,4,rec); /* CHECK VALIDITY OF PARAMETER RANGES */ if((dm[A] == 'y' || dm[B] == 'y' || dm[C] == 'y' )) { printf("incorrect dec1 decoupler flags! "); abort(1); } if((dm2[A] == 'y' || dm2[B] == 'y' || dm2[C] == 'y' || dm2[D] == 'y')) { printf("incorrect dec2 decoupler flags! "); abort(1); } if( tsatpwr > 6 ) { printf("TSATPWR too large !!! "); abort(1); } if( dpwr > 48 ) { printf("don't fry the probe, DPWR too large! "); abort(1); } if(tpwr_cp > 62) { printf("don't fry the probe, tpwr_cp too large: < 62! "); abort(1); } if(pw_cp < 9.5e-6) { printf("pw_cp is too low; > 9.5us\n"); abort(1); } if( dpwr2 > -16 ) { printf("don't fry the probe, DPWR2 too large! "); abort(1); } if( pw > 20.0e-6 ) { printf("dont fry the probe, pw too high ! "); abort(1); } if(gt1 > 3e-3 || gt2 > 3e-3 || gt3 > 3e-3 || gt4 > 3e-3 || gt5 > 3e-3 || gt6 > 3e-3) { printf("gradients on for too long. Must be < 3e-3 \n"); abort(1); } if(ncyc_cp > 80) { printf("ncyc_cp is too large; must be less than 81\n"); abort(1); } if(time_T2 > .080) { printf("time_T2 is too large; must be less than 80 ms\n"); abort(1); } if(ncyc_cp > 0) { tau_cpmg = time_T2/(4.0*ncyc_cp) - pw_cp; if(ix==1) printf("nuCPMG for curent experiment is (Hz): %5.3f\n",1/(4.0*(tau_cpmg+pw_cp))); } else { tau_cpmg = time_T2/(4.0) - pw_cp; if(ix==1) printf("nuCPMG for curent experiment is (Hz): not applicable"); } if(tau_cpmg + pw_cp < 125e-6) { printf("tau_cpmg is too small; decrease ncyc_cp\n"); abort(1); } if(dpwr_co > 42) { printf("dpwr_co is too high; < 42\n"); abort(1); } if(dpwr3_D > 51) { printf("dpwr3_D is too high; < 52\n"); abort(1); } if(dpwr3 > 59) { printf("dpwr3 is too high; < 60\n"); abort(1); } if(ix==1) printf("If at 800 turn dpwr3=-16, pwd1=0\n"); /* Phase incrementation for hypercomplex 2D data */ if (phase == 2) tsadd(t1,1,4); /* Set up f1180 tau1 = t1 */ tau1 = d2; if(MQ_flg[A] == 'n') tau1 = tau1 - 4.0/PI*pwc - POWER_DELAY - PRG_START_DELAY - 2.0*pw - 2.0*pwn - PRG_STOP_DELAY - POWER_DELAY - 4.0e-6; else tau1 = tau1 - 4.0/PI*pwc - POWER_DELAY - PRG_START_DELAY - 2.0*pw - 2.0*pwn - PRG_STOP_DELAY - POWER_DELAY - 4.0e-6; if(f1180[A] == 'y') { tau1 += ( 1.0 / (2.0*sw1)); if(tau1 < 0.4e-6) tau1 = 0.4e-6; } if(tau1 < 0.4e-6) tau1 = 0.4e-6; tau1 = tau1/2.0; /* Calculate modifications to phases for States-TPPI acquisition */ if( ix == 1) d2_init = d2 ; t1_counter = (int) ( (d2-d2_init)*sw1 + 0.5 ); if(t1_counter % 2) { tsadd(t1,2,4); tsadd(t5,2,4); } /* BEGIN ACTUAL PULSE SEQUENCE */ status(A); rlpower(tsatpwr,TODEV); /* Set transmitter power for 1H presaturation */ rlpower(dhpwr,DODEV); /* Set Dec1 power for 13C pulses */ rlpower(dhpwr2,DO2DEV); /* Set Dec2 power for 15N pulses */ obsoffset(tof); /* Presaturation Period */ status(B); if (fsat[0] == 'y') { delay(2.0e-5); rgpulse(d1,zero,2.0e-6,2.0e-6); /* presaturation */ rlpower(tpwr,TODEV); /* Set transmitter power for hard 1H pulses */ delay(2.0e-5); if(fscuba[0] == 'y') { delay(2.2e-2); rgpulse(pw,zero,2.0e-6,0.0); rgpulse(2*pw,one,2.0e-6,0.0); rgpulse(pw,zero,2.0e-6,0.0); delay(2.2e-2); } } else { delay(d1); } rlpower(tpwr,TODEV); /* Set transmitter power for 1H CPMG pulses */ txphase(zero); dec2phase(zero); decphase(zero); delay(1.0e-5); /* Begin Pulses */ status(C); rcvroff(); delay(20.0e-6); decrgpulse(pwc,zero,4.0e-6,0.0); delay(2.0e-6); rgradient('z',gzlvl1); delay(gt1); rgradient('z',0.0); delay(250.0e-6); rgpulse(pw,zero,0.0,0.0); decpower(d_reb); delay(2.0e-6); rgradient('z',gzlvl2); delay(gt2); rgradient('z',0.0); delay(150.0e-6); if(filter_flg[A] == 'y') delay(taua - POWER_DELAY - gt2 - 152e-6 - WFG2_START_DELAY - 0.5*pwc_reb - 4.0/PI*pw); else delay(taua - POWER_DELAY - gt2 - 152e-6 - WFG2_START_DELAY - 0.5*pwc_reb); simshaped_pulse("hard",sh_reb,2.0*pw,pwc_reb,zero,zero,0.0,0.0); txphase(one); decpower(dhpwr); decphase(t4); delay(taua - 0.5*pwc_reb - WFG2_STOP_DELAY - POWER_DELAY - gt2 - 152e-6 ); delay(2.0e-6); rgradient('z',gzlvl2); delay(gt2); rgradient('z',0.0); delay(150.0e-6); if(filter_flg[A] == 'n') rgpulse(pw,one,0.0,0.0); if(filter_flg[A] == 'y') { decrgpulse(pwc,t4,0.,0.); decpower(d_reb); decphase(zero); delay(2.0e-6); rgradient('z',gzlvl0); delay(gt0); rgradient('z',0.0); delay(150.0e-6); delay(taua - POWER_DELAY - gt0 - 152e-6 - WFG2_START_DELAY - 0.5*pwc_reb); simshaped_pulse("hard",sh_reb,2.0*pw,pwc_reb,zero,zero,0.0,0.0); txphase(one); decpower(dhpwr); decphase(t4); delay(taua - 0.5*pwc_reb - WFG2_STOP_DELAY - POWER_DELAY - gt0 - 152e-6 ); delay(2.0e-6); rgradient('z',gzlvl0); delay(gt0); rgradient('z',0.0); delay(150.0e-6); decrgpulse(pwc,t4,0.0,0.0); rgpulse(pw,one,0.0,0.0); } decphase(t1); delay(2.0e-6); rgradient('z',gzlvl3); delay(gt3); rgradient('z',0.0); delay(250.0e-6); /* turn on 2H decoupling */ dec3phase(one); dec3power(dpwr3); dec3rgpulse(pwd1,one,4.0e-6,0.0); dec3phase(zero); dec3unblank(); dec3power(dpwr3_D); dec3prgon(dseq3,pwd,dres3); dec3on(); /* turn on 2H decoupling */ if(MQ_flg[A] == 'y') { rgpulse(pw,zero,2.0e-6,0.0); delay(2.0*pwn - PRG_START_DELAY - PRG_STOP_DELAY); } decrgpulse(pwc,t1,4.0e-6,0.0); decphase(zero); /* 13CO decoupling on */ decpower(dpwr_co); decprgon(codec,1.0/dmf_co,dresco); decon(); /* 13CO decoupling on */ delay(tau1); rgpulse(2.0*pw,zero,0.0,0.0); dec2rgpulse(2.0*pwn,zero,0.0,0.0); delay(tau1); /* 13CO decoupling off */ decoff(); decprgoff(); /* 13CO decoupling off */ decpower(dhpwr); decrgpulse(pwc,zero,4.0e-6,0.0); if(MQ_flg[A] == 'y') rgpulse(pw,zero,0.0,0.0); /* turn off decoupling */ dec3off(); dec3prgoff(); dec3blank(); dec3phase(three); dec3power(dpwr3); dec3rgpulse(pwd1,three,4.0e-6,0.0); /* turn off decoupling */ obspower(tpwr_cp); if(MQ_flg[A] == 'n') { delay(2.0e-6); rgradient('z',gzlvl4); delay(gt4); rgradient('z',0.0); delay(250.0e-6); } else { delay(2.0e-6); rgradient('z',-1.0*gzlvl4); delay(gt4); rgradient('z',0.0); delay(250.0e-6); } /* now include a delay to allow the spin system to equilibrate */ delay(tau_eq); rgpulse(pw_cp,t2,4.0e-6,0.0); txphase(one); /* start of the CPMG period 1 */ if(ncyc_cp == 1) { delay(tau_cpmg - (2.0/PI)*pw_cp); rgpulse(2.0*pw_cp,one,0.0,0.0); delay(tau_cpmg); } if(ncyc_cp == 2) { delay(tau_cpmg - (2.0/PI)*pw_cp); rgpulse(2.0*pw_cp,one,0.0,0.0); delay(tau_cpmg); delay(tau_cpmg); rgpulse(2.0*pw_cp,one,0.0,0.0); delay(tau_cpmg); } if(ncyc_cp > 2) { delay(tau_cpmg - (2.0/PI)*pw_cp); rgpulse(2.0*pw_cp,one,0.0,0.0); delay(tau_cpmg); initval(ncyc_cp-2,v4); loop(v4,v5); delay(tau_cpmg); rgpulse(2.0*pw_cp,one,0.0,0.0); delay(tau_cpmg); endloop(v5); delay(tau_cpmg); rgpulse(2.0*pw_cp,one,0.0,0.0); delay(tau_cpmg); } txphase(t4); decphase(zero); rgpulse(2.0*pw_cp,t4,2.0e-6,2.0e-6); txphase(one); if(ncyc_cp == 1) { delay(tau_cpmg); rgpulse(2.0*pw_cp,one,0.0,0.0); txphase(one); delay(tau_cpmg - 2.0/PI*pw_cp); } if(ncyc_cp == 2) { delay(tau_cpmg); rgpulse(2.0*pw_cp,one,0.0,0.0); delay(tau_cpmg); delay(tau_cpmg); rgpulse(2.0*pw_cp,one,0.0,0.0); txphase(one); delay(tau_cpmg - 2.0/PI*pw_cp); } if(ncyc_cp > 2) { delay(tau_cpmg); rgpulse(2.0*pw_cp,one,0.0,0.0); delay(tau_cpmg); initval(ncyc_cp-2,v4); loop(v4,v5); delay(tau_cpmg); rgpulse(2.0*pw_cp,one,0.0,0.0); delay(tau_cpmg); endloop(v5); delay(tau_cpmg); rgpulse(2.0*pw_cp,one,0.0,0.0); txphase(one); delay(tau_cpmg - 2.0/PI*pw_cp); } rgpulse(pw_cp,zero,0.0,0.0); delay(2.0e-6); rgradient('z',gzlvl5); delay(gt5); rgradient('z',0.0); delay(250.0e-6); obspower(tpwr); rgpulse(pw,zero,4.0e-6,0.0); decpower(d_reb); delay(2.0e-6); rgradient('z',gzlvl6); delay(gt6); rgradient('z',0.0); delay(150.0e-6); delay(taua - POWER_DELAY - gt6 - 152e-6 - WFG2_START_DELAY - 0.5*pwc_reb); simshaped_pulse("hard",sh_reb,2.0*pw,pwc_reb,zero,zero,0.0,0.0); delay(taua - 0.5*pwc_reb - WFG2_STOP_DELAY - 2.0*POWER_DELAY - gt6 - 152e-6); rlpower(dpwr,DODEV); /* Set power for decoupling */ rlpower(dpwr2,DO2DEV); /* Set power for decoupling */ delay(2.0e-6); rgradient('z',gzlvl6); delay(gt6); rgradient('z',0.0); delay(150.0e-6); rgpulse(pw,zero,0.0,0.0); /* rcvron(); */ /* Turn on receiver to warm up before acq */ /* BEGIN ACQUISITION */ status(D); setreceiver(t5); }
pulsesequence() { /* DECLARE VARIABLES */ char fsat[MAXSTR], fscuba[MAXSTR], f1180[MAXSTR], /* Flag to start t1 @ halfdwell */ codecseq[MAXSTR], ddseq[MAXSTR], shca180[MAXSTR], shca90[MAXSTR]; int phase, ni, t1_counter, /* used for states tppi in t1 */ tau2; double tau1, /* t1 delay */ taua, /* ~ 1/4JCH = 1.7 ms */ taub, /* ~ 1/2JCH for AX spin systems */ taud, /* ~ 1/4JCD 12.5 ms for AX spin system */ TC, /* carbon constant time period 1/2JCC */ pwc, /* 90 c pulse at dhpwr */ tsatpwr, /* low level 1H trans.power for presat */ dhpwr, /* power level for high power 13C pulses on dec1 */ sw1, /* sweep width in f1 */ time_T2, /* total relaxation time for T2 measurement */ pwcodec, /* pw90 for C' decoupling */ dressed, /* = 2 for seduce-1 decoupling */ dpwrsed, pwd, /* pulse width for D decoupling at dpwr3_D */ dresD, dpwr3_D, lk_wait, /* delay for lk receiver recovery */ pwd1, /* pulse width for D +/- pulses at dpwr3 */ d_ca180, pwca180, pwca90, /* ca selective pulse at 57.5 ppm */ d_ca90, /* power level for pwca90 */ dpwr3_sl, /* D power level for spin locking */ pwd_sl, /* pw for D at dpwr3_sl */ gt1, gt2, gt3, gt4, gt5, gt6, gt7, gt8, gstab=getval("gstab"), gzlvl1, gzlvl2, gzlvl3, gzlvl4, gzlvl5, gzlvl6, gzlvl7, gzlvl8; /* variables commented out are already defined by the system */ /* LOAD VARIABLES */ getstr("fsat",fsat); getstr("f1180",f1180); getstr("fscuba",fscuba); getstr("codecseq",codecseq); getstr("ddseq",ddseq); getstr("shca180",shca180); getstr("shca90",shca90); taua = getval("taua"); taub = getval("taub"); taud = getval("taud"); TC = getval("TC"); pwc = getval("pwc"); tpwr = getval("tpwr"); tsatpwr = getval("tsatpwr"); dhpwr = getval("dhpwr"); dpwr = getval("dpwr"); phase = (int) ( getval("phase") + 0.5); sw1 = getval("sw1"); ni = getval("ni"); pwcodec = getval("pwcodec"); dressed = getval("dressed"); dpwrsed = getval("dpwrsed"); pwd = getval("pwd"); dresD = getval("dresD"); dpwr3_D = getval("dpwr3_D"); lk_wait = getval("lk_wait"); pwd1 = getval("pwd1"); d_ca180 = getval("d_ca180"); pwca180 = getval("pwca180"); pwca90 = getval("pwca90"); d_ca90 = getval("d_ca90"); dpwr3_sl = getval("dpwr3_sl"); pwd_sl = getval("pwd_sl"); gt1 = getval("gt1"); gt2 = getval("gt2"); gt3 = getval("gt3"); gt4 = getval("gt4"); gt5 = getval("gt5"); gt6 = getval("gt6"); gt7 = getval("gt7"); gt8 = getval("gt8"); gzlvl1 = getval("gzlvl1"); gzlvl2 = getval("gzlvl2"); gzlvl3 = getval("gzlvl3"); gzlvl4 = getval("gzlvl4"); gzlvl5 = getval("gzlvl5"); gzlvl6 = getval("gzlvl6"); gzlvl7 = getval("gzlvl7"); gzlvl8 = getval("gzlvl8"); /* LOAD PHASE TABLE */ settable(t1,16,phi1); settable(t2,2,phi2); settable(t3,16,phi3); settable(t4,4,phi4); settable(t6,4,phi6); settable(t7,8,phi7); settable(t5,16,rec_d); /* CHECK VALIDITY OF PARAMETER RANGES */ if( TC - 0.50*(ni-1)*1/(sw1) - WFG_STOP_DELAY - gt6 - 102e-6 - POWER_DELAY - PRG_START_DELAY - POWER_DELAY - 4.0e-6 - pwd1 - POWER_DELAY - PRG_START_DELAY - PRG_STOP_DELAY - 2.0e-6 - POWER_DELAY - 2.0e-6 < 0.2e-6 ) { printf(" ni is too big\n"); psg_abort(1); } if((dm[A] == 'y' || dm[B] == 'y' || dm[C] == 'y' )) { printf("incorrect dec1 decoupler flags! "); psg_abort(1); } if((dm2[A] == 'y' || dm2[B] == 'y' || dm2[C] == 'y' || dm2[D] == 'y')) { printf("incorrect dec2 decoupler flags! "); psg_abort(1); } if( tsatpwr > 6 ) { printf("TSATPWR too large !!! "); psg_abort(1); } if( dpwr > 48 ) { printf("don't fry the probe, DPWR too large! "); psg_abort(1); } if( dpwr2 > 49 ) { printf("don't fry the probe, DPWR2 too large! "); psg_abort(1); } if( dhpwr > 63 ) { printf("don't fry the probe, DHPWR too large! "); psg_abort(1); } if( pw > 200.0e-6 ) { printf("dont fry the probe, pw too high ! "); psg_abort(1); } if(gt1 > 15e-3 || gt2 > 15e-3 || gt3 > 15e-3 || gt4 > 15e-3 || gt5 > 15e-3 || gt6 > 15e-3 || gt7 > 15e-3 || gt8 > 15e-3) { printf("gradients on for too long. Must be < 15e-3 \n"); psg_abort(1); } if(dpwr3_D > 54) { printf("D decoupling power is too high\n"); psg_abort(1); } if(lk_wait > .015 ) { printf("lk_wait delay may be too long\n"); psg_abort(1); } /* change back to 48 */ if(dpwr3_sl > 53) { printf("dpwr3_sl is too large; must be less than 53\n"); psg_abort(1); } /* change back to 250 */ if(pwd_sl < 170.0e-6) { printf("pwd_sl is too large; Must be larger than 170 us\n"); psg_abort(1); } /* Calculation of IzCzDz relaxation delay */ tau2 = (int) (d3+0.1); time_T2 = z_array[tau2]; if(time_T2 > 0.030) { printf("time_T2 is too long; Must be less than 30 ms\n"); psg_abort(1); } /* Phase incrementation for hypercomplex 2D data */ if (phase == 2) { tsadd(t7,1,4); } /* Set up f1180 tau1 = t1 */ tau1 = d2; if(f1180[A] == 'y') { tau1 += ( 1.0 / (2.0*sw1) ); if(tau1 < 0.4e-6) tau1 = 0.4e-6; } tau1 = tau1/2.0; /* Calculate modifications to phases for States-TPPI acquisition */ if( ix == 1) d2_init = d2 ; t1_counter = (int) ( (d2-d2_init)*sw1 + 0.5 ); if(t1_counter % 2) { tsadd(t7,2,4); tsadd(t5,2,4); } /* BEGIN ACTUAL PULSE SEQUENCE */ status(A); decoffset(dof); obspower(tsatpwr); /* Set transmitter power for 1H presaturation */ decpower(dhpwr); /* Set Dec1 power for hard 13C pulses */ dec2power(dpwr2); /* Set Dec2 power for 15N decoupling */ /* Presaturation Period */ status(B); if (fsat[0] == 'y') { rgpulse(d1,zero,2.0e-6,2.0e-6); /* presat */ obspower(tpwr); /* Set transmitter power for hard 1H pulses */ delay(2.0e-5); if(fscuba[0] == 'y') { delay(2.2e-2); rgpulse(pw,zero,2.0e-6,0.0); rgpulse(2*pw,one,2.0e-6,0.0); rgpulse(pw,zero,2.0e-6,0.0); delay(2.2e-2); } } else { delay(d1); } obspower(tpwr); /* Set transmitter power for hard 1H pulses */ txphase(zero); dec2phase(zero); decphase(zero); delay(1.0e-5); /* Begin Pulses */ status(C); /* Prepare for signs of gradients 0 1 0 1 0 1 */ mod2(ct,v1); rcvroff(); lk_hold(); delay(20.0e-6); /* first ensure that magnetization does infact start on H and not C */ decrgpulse(pwc,zero,2.0e-6,2.0e-6); delay(2.0e-6); zgradpulse(gzlvl1,gt1); delay(gstab); /* this is the real start */ rgpulse(pw,zero,0.0,0.0); /* 90 deg 1H pulse */ delay(2.0e-6); zgradpulse(gzlvl2,gt2); delay(2.0e-6); delay(taua - gt2 - 4.0e-6); /* taua <= 1/4JCH */ simpulse(2*pw,2*pwc,zero,zero,0.0,0.0); txphase(one); decphase(t1); delay(2.0e-6); zgradpulse(gzlvl2,gt2); delay(2.0e-6); delay(taua - gt2 - 4.0e-6); rgpulse(pw,one,0.0,0.0); txphase(zero); delay(2.0e-6); zgradpulse(gzlvl3,gt3); delay(gstab); /* 2D decoupling on */ dec3phase(one); dec3power(dpwr3); dec3rgpulse(pwd1,one,4.0e-6,0.0); dec3phase(zero); dec3unblank(); dec3power(dpwr3_D); /* keep power down */ dec3prgon(ddseq,pwd,dresD); dec3on(); /* 2D decoupling on */ decrgpulse(pwc,t1,2.0e-6,0.0); decphase(zero); delay(taub - 2.0*pw - 2.0e-6); rgpulse(pw,zero,0.0,0.0); rgpulse(pw,t2,2.0e-6,0.0); delay(TC - taub - gt4 - 102e-6 - PRG_STOP_DELAY - POWER_DELAY - pwd1 - 4.0e-6 - POWER_DELAY - 4.0e-6 - WFG_START_DELAY); /* 2D decoupling off */ dec3off(); dec3prgoff(); dec3blank(); dec3phase(three); dec3power(dpwr3); dec3rgpulse(pwd1,three,4.0e-6,0.0); /* 2D decoupling off */ ifzero(v1); delay(2.0e-6); zgradpulse(gzlvl4,gt4); delay(gstab); elsenz(v1); delay(2.0e-6); zgradpulse(-1.0*gzlvl4,gt4); delay(gstab); endif(v1); initval(1.0,v3); decstepsize(353.0); dcplrphase(v3); decpower(d_ca180); decshaped_pulse(shca180,pwca180,zero,4.0e-6,0.0); dcplrphase(zero); ifzero(v1); delay(2.0e-6); zgradpulse(gzlvl4,gt4); delay(gstab); elsenz(v1); delay(2.0e-6); zgradpulse(-1.0*gzlvl4,gt4); delay(gstab); endif(v1); /* 2D decoupling on */ dec3phase(one); dec3power(dpwr3); dec3rgpulse(pwd1,one,4.0e-6,0.0); dec3phase(zero); dec3unblank(); dec3power(dpwr3_D); /* keep power down */ dec3prgon(ddseq,pwd,dresD); dec3on(); /* 2D decoupling on */ delay(TC - taud - WFG_STOP_DELAY - gt4 - 102e-6 - POWER_DELAY - 4.0e-6 - pwd1 - POWER_DELAY - PRG_START_DELAY); /* 2D decoupling off */ dec3off(); dec3prgoff(); dec3blank(); decphase(three); dec3power(dpwr3); dec3rgpulse(pwd1,three,4.0e-6,0.0); /* 2D decoupling off */ delay(taud - PRG_STOP_DELAY -POWER_DELAY - pwd1 - 4.0e-6 - POWER_DELAY - WFG_START_DELAY - pwca90 - 4.0e-6 - WFG_STOP_DELAY - POWER_DELAY - 4.0e-6); decpower(d_ca90); decshaped_pulse(shca90,pwca90,t3,4.0e-6,0.0); decpower(dhpwr); decrgpulse(pwc,one,4.0e-6,0.0); /* T2 period */ dec3power(dpwr3); dec3rgpulse(pwd1,t4,2.0e-6,0.0); dec3phase(one); dec3power(dpwr3_sl); dec3rgpulse(time_T2,one,2.0e-6,2.0e-7); dec3phase(zero); dec3power(dpwr3); dec3rgpulse(pwd1,zero,2.0e-6,0.0); ifzero(v1); delay(2.0e-6); zgradpulse(gzlvl5,gt5); delay(gstab); elsenz(v1); delay(2.0e-6); zgradpulse(-1.0*gzlvl5,gt5); delay(gstab); endif(v1); decphase(zero); decrgpulse(pwc,t7,4.0e-6,0.0); /* C' decoupling on */ decpower(dpwrsed); decprgon(codecseq,pwcodec,dressed); decon(); /* C' decoupling on */ if(taud + 3.0*POWER_DELAY + 2.0*PRG_START_DELAY + pwd1 + 4.0e-6 >= tau1) { delay(tau1); rgpulse(2.0*pw,zero,0.0,0.0); delay(taud + 3.0*POWER_DELAY + 2.0*PRG_START_DELAY + pwd1 + 4.0e-6 - tau1); /* 2D decoupling on */ dec3phase(t6); dec3power(dpwr3); dec3rgpulse(pwd1,t6,4.0e-6,0.0); dec3phase(zero); dec3unblank(); dec3power(dpwr3_D); /* keep power down */ dec3prgon(ddseq,pwd,dresD); dec3on(); /* 2D decoupling on */ delay(TC - taud + tau1 - POWER_DELAY - PRG_START_DELAY - 2.0*pw - POWER_DELAY - pwd1 - 4.0e-6 - POWER_DELAY - PRG_START_DELAY - 3.0*POWER_DELAY - 2.0*PRG_START_DELAY - pwd1 - 4.0e-6 - PRG_STOP_DELAY - POWER_DELAY - pwd1 - 4.0e-6 - PRG_STOP_DELAY - POWER_DELAY - gt6 - 102e-6 - WFG_START_DELAY); /* 2D decoupling off */ dec3off(); dec3prgoff(); dec3blank(); dec3power(dpwr3); dec3rgpulse(pwd1,three,4.0e-6,0.0); /* 2D decoupler off */ /* C' decoupling off */ decoff(); decprgoff(); decpower(d_ca180); /* set power for reburp */ /* C' decoupling off */ } else { delay(taud); /* 2D decoupling on */ dec3phase(t6); dec3power(dpwr3); dec3rgpulse(pwd1,t6,4.0e-6,0.0); dec3phase(zero); dec3unblank(); dec3power(dpwr3_D); /* keep power down */ dec3prgon(ddseq,pwd,dresD); dec3on(); /* 2D decoupling on */ delay(tau1 - taud - POWER_DELAY - PRG_START_DELAY - POWER_DELAY - pwd1 - 4.0e-6 - POWER_DELAY - PRG_START_DELAY); rgpulse(2.0*pw,zero,0.0,0.0); delay(TC - 2.0*pw - PRG_STOP_DELAY - POWER_DELAY - pwd1 - 4.0e-6 - POWER_DELAY - PRG_STOP_DELAY - gt6 - 102e-6 - WFG_START_DELAY); /* 2D decoupling off */ dec3off(); dec3prgoff(); dec3blank(); dec3phase(three); dec3power(dpwr3); dec3rgpulse(pwd1,three,4.0e-6,0.0); /* 2D decoupler off */ /* C' decoupling off */ decoff(); decprgoff(); decpower(d_ca180); /* set power for reburp */ /* C' decoupling off */ } initval(1.0,v4); decstepsize(353.0); dcplrphase(v4); ifzero(v1); delay(2.0e-6); zgradpulse(gzlvl6,gt6); delay(gstab); elsenz(v1); delay(2.0e-6); zgradpulse(-1.0*gzlvl6,gt6); delay(gstab); endif(v1); decshaped_pulse(shca180,pwca180,zero,0.0,0.0); dcplrphase(zero); ifzero(v1); delay(2.0e-6); zgradpulse(gzlvl6,gt6); delay(gstab); elsenz(v1); delay(2.0e-6); zgradpulse(-1.0*gzlvl6,gt6); delay(gstab); endif(v1); /* C' decoupling on */ decpower(dpwrsed); decprgon(codecseq,pwcodec,dressed); decon(); /* C' decoupling on */ /* 2D decoupling on */ dec3phase(one); dec3power(dpwr3); dec3rgpulse(pwd1,one,4.0e-6,0.0); dec3phase(zero); dec3unblank(); dec3power(dpwr3_D); /* keep power down */ dec3prgon(ddseq,pwd,dresD); dec3on(); /* 2D decoupling on */ delay(TC - tau1 - WFG_STOP_DELAY - gt6 - 102e-6 - POWER_DELAY - PRG_START_DELAY - POWER_DELAY - pwd1 - 4.0e-6 - POWER_DELAY - PRG_START_DELAY - PRG_STOP_DELAY - POWER_DELAY - 4.0e-6); /* C' decoupling off */ decoff(); decprgoff(); decpower(dhpwr); /* C' decoupling off */ decrgpulse(pwc,one,4.0e-6,0.0); /* 2D decoupling off */ dec3off(); dec3prgoff(); dec3blank(); dec3phase(three); dec3power(dpwr3); dec3rgpulse(pwd1,three,4.0e-6,0.0); /* 2D decoupler off */ ifzero(v1); delay(2.0e-6); zgradpulse(gzlvl7,gt7); delay(gstab); elsenz(v1); delay(2.0e-6); zgradpulse(-1.0*gzlvl7,gt7); delay(gstab); endif(v1); delay(lk_wait); /* delay for lk receiver recovery */ rgpulse(pw,zero,0.0,0.0); delay(2.0e-6); zgradpulse(gzlvl8,gt8); decphase(zero); delay(taua - gt8 - 4.0e-6); simpulse(2*pw,2*pwc,zero,zero,0.0,0.0); delay(2.0e-6); zgradpulse(gzlvl8,gt8); delay(2.0e-6); delay(taua - 2*POWER_DELAY - gt8 - 4.0e-6); decpower(dpwr); /* Set power for decoupling */ dec2power(dpwr2); /* Set power for decoupling */ rgpulse(pw,zero,0.0,rof2); lk_sample(); /* rcvron(); */ /* Turn on receiver to warm up before acq */ /* BEGIN ACQUISITION */ status(D); setreceiver(t5); }
pulsesequence() { /* DECLARE AND LOAD VARIABLES */ int t1_counter; /* used for states tppi in t1 */ double tau1, /* t1 delay */ TC = getval("TC"), /* Constant delay 1/(JCC) ~ 13.5 ms */ mix = getval("mix"), /* TOCSY mixing time */ pwClvl = getval("pwClvl"), /* coarse power for C13 pulse */ pwC = getval("pwC"), /* C13 90 degree pulse length at pwClvl */ rf0, /* maximum fine power when using pwC pulses */ /* 90 degree pulse at Cab (46ppm), first off-resonance null at CO (174ppm) */ pwC1, /* 90 degree pulse length on C13 at rf1 */ rf1, /* fine power for 5.1 kHz rf for 600MHz magnet */ /* 180 degree pulse at Ca (46ppm), first off-resonance null at CO(174ppm) */ pwC2, /* 180 degree pulse length at rf2 */ rf2, /* fine power for 11.4 kHz rf for 600MHz magnet */ compC = getval("compC"), /* adjustment for C13 amplifier compression */ sw1 = getval("sw1"), gt1 = getval("gt1"), gzlvl1 = getval("gzlvl1"), gt2 = getval("gt2"), gzlvl2 = getval("gzlvl2"), gstab = getval("gstab"), ppm, co_ofs = getval("co_ofs"), /* offset for C' */ co_bw = getval("co_bw"), /* bandwidth for C' */ copwr = getval("copwr"), /* power for C' decoupling. Get from CO_dec.DEC*/ codmf = getval("codmf"), /* dmf for C' decoupling. Get from CO_dec.DEC */ codres = getval("codres"), /* dres for C' decoupling. Get from CO_dec.DEC */ mixbw, /* band width for mixing shape */ mixpwr = getval("mixpwr"), /* power for CC mixing. Get from ccmix.DEC*/ mixdmf= getval("mixdmf"), /* dmf for CC decoupling. Get from ccmix.DEC */ mixdres = getval("mixdres"); /* dres for CC decoupling. Get from ccmix.DEC */ /* LOAD PHASE TABLE */ settable(t1,2,phi1); settable(t2,1,phi2); settable(t3,1,phi3); settable(t12,2,rec); setautocal(); /* activate auto-calibration */ /* INITIALIZE VARIABLES */ /* maximum fine power for pwC pulses */ rf0 = 4095.0; /* 90 degree pulse on Cab, null at CO 128ppm away */ pwC1 = sqrt(15.0)/(4.0*128.0*sfrq); rf1 = (compC*4095.0*pwC)/pwC1; rf1 = (int) (rf1 + 0.5); /* 180 degree pulse on Cab, null at CO 128ppm away */ pwC2 = sqrt(3.0)/(2.0*128.0*sfrq); rf2 = (4095.0*compC*pwC*2.0)/pwC2; rf2 = (int) (rf2 + 0.5); if( rf2 > 4295 ) { printf("increase pwClvl"); psg_abort(1);} if(( rf2 > 4095 ) && (rf2 <4296)) rf2=4095; /* CHECK VALIDITY OF PARAMETER RANGES */ if ( 0.5*ni*1/(sw1) > TC) { printf(" ni is too big. Make ni equal to %d or less.\n", ((int)((TC)*2.0*sw1))); psg_abort(1);} /* PHASES AND INCREMENTED TIMES */ /* Phase incrementation for hypercomplex 2D data, States-Haberkorn element */ if (phase1 == 2) tsadd(t1,1,4); tau1 = d2; tau1 = tau1/2.0; /* Calculate modifications to phases for States-TPPI acquisition */ if( ix == 1) d2_init = d2; t1_counter = (int) ( (d2-d2_init)*sw1 + 0.5 ); if(t1_counter % 2) { tsadd(t1,2,4); tsadd(t12,2,4); } if (autocal[0] == 'y') { if(FIRST_FID) { ppm = getval("sfrq"); ofs_check(C13ofs); co_ofs = (C13ofs+118.0)*ppm; co_bw = 20*ppm; CO_dec = pbox_Dsh("CO_dec", "SEDUCE1", co_bw, co_ofs, pwC*compC, pwClvl); copwr = CO_dec.pwr; codmf = CO_dec.dmf; codres = CO_dec.dres; mixbw = sw1; mix_seq = pbox_Dsh("mix_seq", "FLOPSY8", mixbw, 0.0, pwC*compC, pwClvl); mixpwr = mix_seq.pwr; mixdmf = mix_seq.dmf; mixdres = mix_seq.dres; } } /* BEGIN PULSE SEQUENCE */ status(A); delay(d1); if ( dm3[B] == 'y' ) { lk_hold(); lk_sampling_off();} /*freezes z0 correction, stops lock pulsing*/ rcvroff(); obspower(pwClvl); decpower(tpwr); dec2power(dpwr2); dec3power(dpwr3); obspwrf(rf1); /*fine power for Cab 90 degree pulse */ obsoffset(tof); /*13C carrier at 46 ppm */ txphase(zero); delay(1.0e-5); status(B); rgpulse(pwC1, t1, 0.0,0.0); /* xxxxxxxxxxxxxxxxxxxxxx 13Cab Constant Time Evolution xxxxxxxxxxxxxxxxxx */ obspower(copwr); obspwrf(rf0); txphase(zero); obsunblank(); xmtron(); obsprgon("CO_dec",1.0/codmf,codres); if ( dm3[B] == 'y' ) /* turns on 2H decoupling */ { dec3rgpulse(1/dmf3,one,10.0e-6,2.0e-6); dec3unblank(); dec3phase(zero); delay(2.0e-6); setstatus(DEC3ch, TRUE, 'w', FALSE, dmf3); delay(TC - tau1 - pwC2/2 - 1/dmf3); } else delay(TC - tau1 - pwC2/2); obsprgoff(); xmtroff(); obsblank(); obspower(pwClvl); obspwrf(rf2); rgpulse(pwC2, zero, 0.0, 0.0); obspower(copwr); obspwrf(rf0); txphase(zero); obsunblank(); xmtron(); obsprgon("CO_dec",1.0/codmf,codres); if ( dm3[B] == 'y' ) /* turns off 2H decoupling */ { delay(TC + tau1 - pwC2/2 - 1/dmf3); setstatus(DEC3ch, FALSE, 'c', FALSE, dmf3); dec3rgpulse(1/dmf3,three,2.0e-6,2.0e-6); dec3blank(); lk_autotrig(); /* resumes lock pulsing */ } else delay(TC + tau1 - pwC2/2); obsprgoff(); xmtroff(); obsblank(); obspower(pwClvl); obspwrf(rf1); rgpulse(pwC1,t2,0.0,0.0); status(C); zgradpulse(gzlvl1, gt1); delay(gstab); /* xxxxxxxxxxxxxxxxxxxxxxxxxxxx FLOPSY 8 Spin lock for mixing xxxxxxxxxxxxxxxxxxxx */ obspower(mixpwr); obspwrf(rf0); txphase(zero); obsunblank(); xmtron(); obsprgon("mix_seq",1.0/mixdmf,mixdres); delay(mix-gt1-gt2); obsprgoff(); xmtroff(); obsblank(); obspower(pwClvl); obspwrf(rf1); zgradpulse(gzlvl2,gt2); delay(gstab); rgpulse(pwC1,t3,0.0,rof2); getelem(t3,ct,v3); add(v3,one,v3); obspower(pwClvl); obspwrf(rf0); delay(350e-6-rof2); rgpulse(pwC*2.0,v3,0.0,0.0); delay(350e-6); status(D); setreceiver(t12); }
pulsesequence() { /* DECLARE VARIABLES */ char fscuba[MAXSTR], f1180[MAXSTR], /* Flag to start t1 @ fulldwell */ f2180[MAXSTR], /* Flag to start t2 @ halfdwell */ C_flg[MAXSTR], dtt_flg[MAXSTR]; int phase, phase2, ni, ni2, t1_counter, /* used for states tppi in t1 */ t2_counter; /* used for states tppi in t2 */ double tau1, /* t1 delay */ tau2, /* t2 delay */ taua, /* ~ 1/4JHC = 1.6 ms */ taub, /* 1/6JCH = 1.1 ms */ BigTC, /* Carbon constant time period = 1/4Jcc = 7.0 ms */ pwN, /* PW90 for 15N pulse @ pwNlvl */ pwC, /* PW90 for c nucleus @ pwClvl */ pwcrb180, /* PW180 for C 180 reburp @ rfrb */ pwClvl, /* power level for 13C pulses on dec1 */ compC, compH, /* compression factors for H1 and C13 amps */ rfrb, /* power level for 13C reburp pulse */ pwNlvl, /* high dec2 pwr for 15N hard pulses */ sw1, /* sweep width in f1 */ sw2, /* sweep width in f2 */ bw, ofs, ppm, gt0, gt1, gt2, gt3, gt4, gt5, gt6, gstab, gzlvl0, gzlvl1, gzlvl2, gzlvl3, gzlvl4, gzlvl5, gzlvl6, decstep1, decstep2, decstep3, tpwrs, pwHs, dof_me, rfrb_cg, rfrb_co, pwrb_co, pwrb_cg, tof_dtt, rfca90, pwca90, rfca180, pwca180, pwco90, dofCO; /* LOAD VARIABLES */ getstr("f1180",f1180); getstr("f2180",f2180); getstr("fscuba",fscuba); getstr("C_flg",C_flg); getstr("dtt_flg",dtt_flg); taua = getval("taua"); taub = getval("taub"); BigTC = getval("BigTC"); pwC = getval("pwC"); pwcrb180 = getval("pwcrb180"); pwN = getval("pwN"); tpwr = getval("tpwr"); pwClvl = getval("pwClvl"); compC = getval("compC"); compH = getval("compH"); dpwr = getval("dpwr"); pwNlvl = getval("pwNlvl"); phase = (int) ( getval("phase") + 0.5); phase2 = (int) ( getval("phase2") + 0.5); sw1 = getval("sw1"); sw2 = getval("sw2"); ni = getval("ni"); ni2 = getval("ni2"); gstab = getval("gstab"); gt0 = getval("gt0"); gt1 = getval("gt1"); gt2 = getval("gt2"); gt3 = getval("gt3"); gt4 = getval("gt4"); gt5 = getval("gt5"); gt6 = getval("gt6"); gzlvl0 = getval("gzlvl0"); gzlvl1 = getval("gzlvl1"); gzlvl2 = getval("gzlvl2"); gzlvl3 = getval("gzlvl3"); gzlvl4 = getval("gzlvl4"); gzlvl5 = getval("gzlvl5"); gzlvl6 = getval("gzlvl6"); decstep1 = getval("decstep1"); decstep2 = getval("decstep2"); decstep3 = getval("decstep3"); pwHs = getval("pwHs"); dof_me = getval("dof_me"); tof_dtt = getval("tof_dtt"); dofCO = getval("dofCO"); tpwrs = 0.0; setautocal(); /* activate auto-calibration */ if(FIRST_FID) /* make shapes */ { ppm = getval("dfrq"); bw = 80.0*ppm; rb180 = pbox_make("rb180P", "reburp", bw, 0.0, compC*pwC, pwClvl); bw = 8.125*ppm; ofs = -24.0*ppm; rb180_cg = pbox_make("rb180_cgP", "reburp", bw, ofs, compC*pwC, pwClvl); bw = 60*ppm; ofs = 136.0*ppm; rb180_co = pbox_make("rb180_coP", "reburp", bw, ofs, compC*pwC, pwClvl); bw = 118.0*ppm; ofs = -118.0*ppm; ca180 = pbox_make("ca180P", "square180n", bw, ofs, compC*pwC, pwClvl); bw = 118.0*ppm; ofs = 18.0*ppm; ca90 = pbox_make("ca90P", "square90n", bw, ofs, compC*pwC, pwClvl); } pwcrb180 = rb180.pw; rfrb = rb180.pwrf; /* set up parameters */ pwrb_cg = rb180_cg.pw; rfrb_cg = rb180_cg.pwrf; /* set up parameters */ pwrb_co = rb180_co.pw; rfrb_co = rb180_co.pwrf; /* set up parameters */ pwca90 = ca90.pw; rfca90 = ca90.pwrf; /* set up parameters */ pwca180 = ca180.pw; rfca180 = ca180.pwrf; /* set up parameters */ pwco90 = pwca90; tpwrs = tpwr - 20.0*log10(pwHs/((compH*pw)*1.69)); /* sinc=1.69xrect */ tpwrs = (int) (tpwrs); /* LOAD PHASE TABLE */ settable(t1,2,phi1); settable(t2,4,phi2); settable(t3,4,phi3); settable(t4,4,phi4); settable(t5,1,phi5); settable(t6,16,phi6); settable(t7,8,phi7); settable(t8,8,phi8); settable(t9,8,phi9); settable(t10,1,phi10); settable(t11,8,phi11); settable(t12,16,rec); /* CHECK VALIDITY OF PARAMETER RANGES */ if( BigTC - 0.5*(ni2-1)*1/(sw2) - WFG_STOP_DELAY - POWER_DELAY - 4.0e-6 < 0.2e-6 ) { printf(" ni2 is too big\n"); psg_abort(1); } if((dm[A] == 'y' || dm[B] == 'y' )) { printf("incorrect dec1 decoupler flags! "); psg_abort(1); } if((dm2[A] == 'y' || dm2[B] == 'y' || dm2[C] == 'y')) { printf("incorrect dec2 decoupler flags! Should be 'nnn' "); psg_abort(1); } if( satpwr > 9 ) { printf("SATPWR too large !!! "); psg_abort(1); } if( dpwr > 48 ) { printf("don't fry the probe, DPWR too large! "); psg_abort(1); } if( dpwr2 > -16 ) { printf("don't fry the probe, DPWR2 too large! "); psg_abort(1); } if( pw > 200.0e-6 ) { printf("dont fry the probe, pw too high ! "); psg_abort(1); } if( pwN > 200.0e-6 ) { printf("dont fry the probe, pwN too high ! "); psg_abort(1); } if( pwC > 200.0e-6 ) { printf("dont fry the probe, pwC too high ! "); psg_abort(1); } if( pwcrb180 > 500.0e-6 ) { printf("dont fry the probe, pwcrb180 too high ! "); psg_abort(1); } if(dpwr3 > 51) { printf("dpwr3 is too high; < 52\n"); psg_abort(1); } if(d1 < 1) { printf("d1 must be > 1\n"); psg_abort(1); } if( gt0 > 5.0e-3 || gt1 > 5.0e-3 || gt2 > 5.0e-3 || gt3 > 5.0e-3 || gt4 > 5.0e-3 || gt5 > 5.0e-3 || gt6 > 5.0e-3 ) { printf(" all values of gti must be < 5.0e-3\n"); psg_abort(1); } /* Phase incrementation for hypercomplex 2D data */ if (phase == 2) { tsadd(t11,1,4); } if (phase2 == 2) tsadd(t10,1,4); /* Set up f1180 tau1 = t1 */ tau1 = d2; tau1 = tau1 - 4.0/PI*pwco90 - POWER_DELAY - WFG_START_DELAY - 4.0e-6 - pwca180 - WFG_STOP_DELAY - POWER_DELAY - 2.0*pwN; if(f1180[A] == 'y') { tau1 += ( 1.0 / (2.0*sw1) ); if(tau1 < 0.4e-6) tau1 = 4.0e-7; } tau1 = tau1/2.0; /* Set up f2180 tau2 = t2 */ tau2 = d3; if(f2180[A] == 'y') { tau2 += ( 1.0 / (2.0*sw2) ); if(tau2 < 0.4e-6) tau2 = 4.0e-7; } tau2 = tau2/2.0; /* Calculate modifications to phases for States-TPPI acquisition */ if( ix == 1) d2_init = d2 ; t1_counter = (int) ( (d2-d2_init)*sw1 + 0.5 ); if(t1_counter % 2) { tsadd(t11,2,4); tsadd(t12,2,4); } if( ix == 1) d3_init = d3 ; t2_counter = (int) ( (d3-d3_init)*sw2 + 0.5 ); if(t2_counter % 2) { tsadd(t10,2,4); tsadd(t12,2,4); } /* BEGIN ACTUAL PULSE SEQUENCE */ status(A); obspower(satpwr); /* Set transmitter power for 1H presaturation */ decpower(pwClvl); /* Set Dec1 power for hard 13C pulses */ dec2power(pwNlvl); /* Set Dec2 to high power */ /* Presaturation Period */ if (satmode[A] == 'y') { delay(2.0e-5); rgpulse(d1,zero,2.0e-6,2.0e-6); /* presat with transmitter */ obspower(tpwr); /* Set transmitter power for hard 1H pulses */ delay(2.0e-5); if(fscuba[0] == 'y') { delay(2.2e-2); rgpulse(pw,zero,2.0e-6,0.0); rgpulse(2.0*pw,one,2.0e-6,0.0); rgpulse(pw,zero,2.0e-6,0.0); delay(2.2e-2); } } else { delay(d1); } obspower(tpwr); /* Set transmitter power for hard 1H pulses */ txphase(t1); decphase(zero); dec2phase(zero); delay(1.0e-5); /* Begin Pulses */ status(B); decoffset(dof_me); lk_hold(); lk_sampling_off(); rcvroff(); delay(20.0e-6); /* ensure that magnetization originates on 1H and not 13C */ if(dtt_flg[A] == 'y') { obsoffset(tof_dtt); obspower(tpwrs); shaped_pulse("H2Osinc",pwHs,zero,10.0e-6,0.0); obspower(tpwr); obsoffset(tof); } decrgpulse(pwC,zero,0.0,0.0); delay(2.0e-6); zgradpulse(gzlvl0,gt0); delay(gstab); rgpulse(pw,zero,0.0,0.0); /* 90 deg 1H pulse */ delay(2.0e-6); zgradpulse(gzlvl1,gt1); delay(gstab); delay(taua - gt1 -gstab -2.0e-6 ); simpulse(2.0*pw,2.0*pwC,zero,zero,0.0,0.0); txphase(one); delay(taua - gt1 - gstab -2.0e-6); delay(2.0e-6); zgradpulse(gzlvl1,gt1); delay(gstab); rgpulse(pw,one,0.0,0.0); /* shaped_pulse */ obspower(tpwrs); shaped_pulse("H2Osinc",pwHs,zero,2.0e-6,0.0); obspower(tpwr); /* shaped_pulse */ decoffset(dof); /* jump 13C to 40 ppm */ delay(2.0e-6); zgradpulse(gzlvl2,gt2); delay(gstab); decrgpulse(pwC,t1,4.0e-6,0.0); decphase(zero); initval(1.0,v3); decstepsize(decstep1); dcplrphase(v3); decpwrf(rfrb); delay(BigTC - POWER_DELAY - WFG_START_DELAY); decshaped_pulse(rb180.name,pwcrb180,zero,0.0,0.0); dcplrphase(zero); decphase(t2); decpwrf(4095.0); delay(BigTC - WFG_STOP_DELAY - POWER_DELAY); decrgpulse(pwC,t2,0.0,0.0); decphase(zero); /* turn on 2H decoupling */ dec3phase(one); dec3power(dpwr3); dec3rgpulse(1/dmf3,one,4.0e-6,0.0); dec3phase(zero); dec3unblank(); dec3prgon(dseq3,1/dmf3,dres3); dec3on(); /* turn on 2H decoupling */ initval(1.0,v3); decstepsize(decstep1); dcplrphase(v3); decpwrf(rfrb); delay(BigTC - POWER_DELAY - 4.0e-6 - 1/dmf3 - POWER_DELAY - PRG_START_DELAY - POWER_DELAY - WFG_START_DELAY); decshaped_pulse(rb180.name,pwcrb180,zero,0.0,0.0); dcplrphase(zero); decphase(t3); decpwrf(4095.0); delay(BigTC - WFG_STOP_DELAY - POWER_DELAY); decrgpulse(pwC,t3,0.0,0.0); decpwrf(rfrb_cg); decphase(zero); delay(BigTC/2.0 - POWER_DELAY - WFG_START_DELAY - 0.5*pwrb_cg); decshaped_pulse(rb180_cg.name,pwrb_cg,zero,0.0,0.0); decpwrf(rfrb); delay(BigTC/2.0 - 0.5*pwrb_cg - WFG_STOP_DELAY - POWER_DELAY - SAPS_DELAY - 2.0e-6 - WFG_START_DELAY); initval(1.0,v3); decstepsize(decstep1); dcplrphase(v3); decshaped_pulse(rb180.name,pwcrb180,zero,2.0e-6,0.0); dcplrphase(zero); decpwrf(rfrb_cg); decphase(zero); delay(BigTC/2.0 - WFG_STOP_DELAY - SAPS_DELAY - POWER_DELAY - WFG_START_DELAY - 0.5*pwrb_cg); decshaped_pulse(rb180_cg.name,pwrb_cg,zero,0.0,0.0); decpwrf(4095.0); decphase(t4); delay(BigTC/2.0 - 0.5*pwrb_cg - WFG_STOP_DELAY - POWER_DELAY); decrgpulse(pwC,t4,0.0,0.0); decpwrf(rfrb_co); decphase(zero); decshaped_pulse(rb180_co.name,pwrb_co,zero,4.0e-6,0.0); /* BS */ decpwrf(rfrb); delay(taub - (2.0/PI)*pwC - POWER_DELAY - 4.0e-6 - WFG_START_DELAY - pwrb_co - WFG_STOP_DELAY - 2.0e-6 - WFG_START_DELAY); initval(1.0,v3); decstepsize(decstep2); dcplrphase(v3); decshaped_pulse(rb180.name,pwcrb180,zero,2.0e-6,0.0); dcplrphase(zero); decpwrf(rfrb_co); decshaped_pulse(rb180_co.name,pwrb_co,zero,4.0e-6,0.0); decphase(t5); decpwrf(rfca90); delay(taub - WFG_STOP_DELAY - 4.0e-6 - WFG_START_DELAY - pwcrb180 - WFG_STOP_DELAY - POWER_DELAY - WFG_START_DELAY - (2.0/PI)*pwca90); decshaped_pulse(ca90.name,pwca90,t5,0.0,0.0); decoffset(dofCO); /* 2H decoupling off */ dec3off(); dec3prgoff(); dec3blank(); dec3rgpulse(1/dmf3,three,4.0e-6,0.0); /* 2H decoupling off */ delay(2.0e-6); zgradpulse(gzlvl5,gt5); delay(gstab); decrgpulse(pwco90,t11,4.0e-6,0.0); if(C_flg[A] == 'n') { decpwrf(rfca180); delay(tau1); decshaped_pulse(ca180.name,pwca180,zero,4.0e-6,0.0); decpwrf(rfca90); decphase(zero); dec2rgpulse(2.0*pwN,zero,0.0,0.0); delay(tau1); } else decrgpulse(2.0*pwco90,zero,4.0e-6,4.0e-6); decrgpulse(pwco90,zero,0.0,0.0); delay(2.0e-6); zgradpulse(gzlvl6,gt6); delay(gstab); /* turn on 2H decoupling */ dec3phase(one); dec3rgpulse(1/dmf3,one,4.0e-6,0.0); dec3phase(zero); dec3unblank(); dec3prgon(dseq3,1/dmf3,dres3); dec3on(); /* turn on 2H decoupling */ decoffset(dof); decpwrf(rfca90); decshaped_pulse(ca90.name,pwca90,t6,4.0e-6,0.0); decpwrf(rfrb_co); decphase(zero); delay(taub - WFG_STOP_DELAY - (2.0/PI)*pwca90 - POWER_DELAY - WFG_START_DELAY - pwrb_co - WFG_STOP_DELAY - 2.0e-6 - WFG_START_DELAY); decshaped_pulse(rb180_co.name,pwrb_co,zero,0.0,0.0); decpwrf(rfrb); initval(1.0,v3); decstepsize(decstep3); dcplrphase(v3); decshaped_pulse(rb180.name,pwcrb180,zero,2.0e-6,0.0); dcplrphase(zero); decpwrf(rfrb_co); delay(taub - WFG_STOP_DELAY - 4.0e-6 - WFG_START_DELAY - pwcrb180 - WFG_STOP_DELAY - POWER_DELAY - 4.0e-6 - (2.0/PI)*pwC); decshaped_pulse(rb180_co.name,pwrb_co,zero,4.0e-6,0.0); /* BS */ decpwrf(4095.0); decrgpulse(pwC,t7,4.0e-6,0.0); decpwrf(rfrb_cg); decphase(zero); delay(BigTC/2.0 - POWER_DELAY - WFG_START_DELAY - 0.5*pwrb_cg); decshaped_pulse(rb180_cg.name,pwrb_cg,zero,0.0,0.0); decpwrf(rfrb); delay(BigTC/2.0 - 0.5*pwrb_cg - WFG_STOP_DELAY - POWER_DELAY - SAPS_DELAY - 2.0e-6 - WFG_START_DELAY); initval(1.0,v3); decstepsize(decstep1); dcplrphase(v3); decshaped_pulse(rb180.name,pwcrb180,zero,2.0e-6,0.0); dcplrphase(zero); decpwrf(rfrb_cg); decphase(zero); delay(BigTC/2.0 - WFG_STOP_DELAY - SAPS_DELAY - POWER_DELAY - WFG_START_DELAY - 0.5*pwrb_cg); decshaped_pulse(rb180_cg.name,pwrb_cg,zero,0.0,0.0); decpwrf(4095.0); decphase(t8); delay(BigTC/2.0 - 0.5*pwrb_cg - WFG_STOP_DELAY - POWER_DELAY); decrgpulse(pwC,t8,0.0,0.0); decphase(zero); initval(1.0,v3); decstepsize(decstep1); dcplrphase(v3); decpwrf(rfrb); delay(BigTC - POWER_DELAY - WFG_START_DELAY); decshaped_pulse(rb180.name,pwcrb180,zero,0.0,0.0); dcplrphase(zero); decphase(t9); decpwrf(4095.0); delay(BigTC - WFG_STOP_DELAY - POWER_DELAY - PRG_STOP_DELAY - POWER_DELAY - 4.0e-6 - 1/dmf3); /* 2H decoupling off */ dec3off(); dec3prgoff(); dec3blank(); dec3rgpulse(1/dmf3,three,4.0e-6,0.0); lk_autotrig(); /* 2H decoupling off */ decrgpulse(pwC,t9,0.0,0.0); decphase(zero); delay(tau2); rgpulse(2.0*pw,zero,0.0,0.0); initval(1.0,v3); decstepsize(decstep1); dcplrphase(v3); decpwrf(rfrb); delay(BigTC - 2.0*pw - POWER_DELAY - WFG_START_DELAY); decshaped_pulse(rb180.name,pwcrb180,zero,0.0,0.0); dcplrphase(zero); decphase(t10); decpwrf(4095.0); delay(BigTC - tau2 - WFG_STOP_DELAY - POWER_DELAY - 4.0e-6); decrgpulse(pwC,t10,4.0e-6,0.0); decoffset(dof_me); delay(2.0e-6); zgradpulse(gzlvl3,gt3); delay(gstab); lk_sample(); /* shaped_pulse */ obspower(tpwrs); shaped_pulse("H2Osinc",pwHs,zero,2.0e-6,0.0); obspower(tpwr); /* shaped_pulse */ rgpulse(pw,zero,4.0e-6,0.0); delay(2.0e-6); zgradpulse(gzlvl4,gt4); delay(gstab); delay(taua - gt4 - gstab -2.0e-6 - POWER_DELAY - 2.0e-6 - WFG_START_DELAY - pwHs - WFG_STOP_DELAY - POWER_DELAY - 2.0e-6); /* shaped_pulse */ obspower(tpwrs); shaped_pulse("H2Osinc",pwHs,two,2.0e-6,0.0); obspower(tpwr); /* shaped_pulse */ simpulse(2.0*pw,2.0*pwC,zero,zero,2.0e-6,0.0); /* shaped_pulse */ obspower(tpwrs); shaped_pulse("H2Osinc",pwHs,two,2.0e-6,0.0); obspower(tpwr); /* shaped_pulse */ delay(2.0e-6); zgradpulse(gzlvl4,gt4); delay(gstab); delay(taua - POWER_DELAY - 2.0e-6 - WFG_START_DELAY - pwHs - WFG_STOP_DELAY - POWER_DELAY - gt4 - gstab -2.0e-6 - 2.0*POWER_DELAY); decpower(dpwr); /* Set power for decoupling */ dec2power(dpwr2); /* BEGIN ACQUISITION */ lk_sample(); status(C); setreceiver(t12); }
pulsesequence() { /* DECLARE AND LOAD VARIABLES */ int t1_counter, t2_counter; /* used for states tppi in t1 & t2*/ char IPAP[MAXSTR], Hstart[MAXSTR], f1180[MAXSTR],H2dec[MAXSTR], shCACB_90[MAXSTR],shCACB_90r[MAXSTR], shCACB_180[MAXSTR], shCB_180[MAXSTR], decCB[MAXSTR], shCACB_180off[MAXSTR], shCBIP[MAXSTR], shCO_90[MAXSTR], shCO_180[MAXSTR], shCO_180off[MAXSTR]; double tau1, /* t1 delay */ x, TCH = getval("TCH"), TC = getval("TC"), /* delay 1/(2JCACB) ~ 7.0ms in Ref. */ del = getval("del"), /* delay del = 1/(2JC'C) ~ 9.0ms in Ref. */ pwClvl = getval("pwClvl"), /* coarse power for C13 pulse */ pwC = getval("pwC"), /* C13 90 degree pulse length at pwClvl */ compC = getval("compC"), /* adjustment for C13 amplifier compression */ pwClvlF=getval("pwClvlF"), /* maximum fine power when using pwC pulses */ pwHlvl = getval("pwHlvl"), pwH = getval("pwH"), pwCBIP = getval("pwCBIP"), /* 90 degree pulse at CO (174ppm) */ pwCO_90 = getval("pwCO_90"), /* 90 degree pulse length on C13 */ pwCO_90phase_roll = getval("pwCO_90phase_roll") , /* fraction of CACB pulse to compensate for phase roll */ pwrCO_90 = getval("pwrCO_90"), /*power */ pwrfCO_90 = getval("pwrfCO_90"), /* 180 degree pulse at CO (174ppm) */ pwCO_180 = getval("pwCO_180"), /* 180 degree pulse length on C13 */ pwrCO_180 = getval("pwrCO_180"), /*power */ pwrfCO_180 = getval("pwrfCO_180"), /* 90 degree pulse at CAB (57.7ppm) */ tofCACB = getval("tofCACB"), pwCACB_90 = getval("pwCACB_90"), pwCACB_90phase_roll = getval("pwCACB_90phase_roll") , /* fraction of CACB pulse to compensate for phase roll */ /* 90 degree pulse length on C13 */ pwrCACB_90 = getval("pwrCACB_90"), /*power */ pwrfCACB_90 = getval("pwrfCACB_90"), /* 180 degree pulse at CA (57.7ppm) */ pwCACB_180 = getval("pwCACB_180"), /* 180 degree pulse length on C13 */ pwrCACB_180 = getval("pwrCACB_180"), /*power */ pwrfCACB_180 = getval("pwrfCACB_180"), pwCB_180 = getval("pwCB_180"), /* 180 degree pulse length on C13 */ pwrCB_180 = getval("pwrCB_180"), sw1 = getval("sw1"), sw2 = getval("sw2"), gt1 = getval("gt1"), gzlvl1 = getval("gzlvl1"), gt2 = getval("gt2"), gzlvl2 = getval("gzlvl2"), gt3 = getval("gt3"), gzlvl3 = getval("gzlvl3"), gstab = getval("gstab"); getstr("IPAP",IPAP); getstr("H2dec",H2dec); getstr("shCBIP",shCBIP); getstr("f1180",f1180); getstr("shCACB_90",shCACB_90); getstr("shCACB_90r",shCACB_90r); getstr("shCACB_180",shCACB_180); getstr("shCACB_180off",shCACB_180off); getstr("shCB_180",shCB_180); getstr("decCB",decCB); getstr("shCO_90",shCO_90); getstr("shCO_180",shCO_180); getstr("shCO_180off",shCO_180off); getstr("Hstart",Hstart); /* LOAD PHASE TABLE */ settable(t1,4,phi1); settable(t2,4,phi2); settable(t3,4,phi3); settable(t4,4,phi4); settable(t5,4,phi5); settable(t12,4,rec); /* INITIALIZE VARIABLES */ if( (IPAP[A] != 'i') && (IPAP[A] != 'a')&& (IPAP[A] != 't')) { text_error("IPAP flag either i or a, exiting "); psg_abort(1); } if( (Hstart[A]=='y') && ((dmm[A]!='c' || dm[A]=='y')) ) { text_error("Incorrect combination of dm, dmm and Hstart. "); psg_abort(1);}; x=0.0; if(decCB[A]=='y'){x=1.0;} if(ni/sw1 > TC-2.0*pwCB_180*x) { text_error("too many increments in CAB t1 evolution %d\n",(int)( (TC-2.0*pwCB_180*x)*sw1 +0.5)); psg_abort(1);}; /* PHASES AND INCREMENTED TIMES */ /* Phase incrementation for hypercomplex 2D data, States-Haberkorn element */ if (phase1 == 2) tsadd(t1,1,4); tau1 = d2; if(f1180[A]=='y') {tau1+=0.5/sw1;} tau1 = tau1/2.0; /* Calculate modifications to phases for States-TPPI acquisition */ if(IPAP[A]=='a'){tsadd(t4,1,4);}; if( ix == 1) d2_init = d2; t1_counter = (int) ( (d2-d2_init)*sw1 + 0.5 ); if(t1_counter % 2) { tsadd(t1,2,4); tsadd(t12,2,4); } /* BEGIN PULSE SEQUENCE */ status(A); delay(10.0e-6); obspower(pwClvl); obspwrf(4095.0); dec2power(dpwr2); dec2pwrf(4095.0); obsoffset(tofCACB); delay(d1); /* option to start from H magnetization */ if(Hstart[A]=='y') { decpower(pwHlvl); decpwrf(4095.0); decrgpulse(pwH, zero, 0.0, 0.0); delay(TCH); simpulse(2.0*pwC,2.0*pwH, zero,zero, 0.0, 0.0); delay(TCH); decrgpulse(pwH, one, 0.0, 0.0); zgradpulse(gzlvl2,gt2); delay(gstab); rgpulse(pwC, two, 0.0, 0.0); delay(TCH); simpulse(2.0*pwC,2.0*pwH, zero,zero, 0.0, 0.0); delay(TCH); rgpulse(pwC, one, 0.0, 0.0); zgradpulse(gzlvl3,gt3); delay(gstab*2.0); decpower(dpwr); decpwrf(4095.0); } if (H2dec[A] == 'y') lk_hold(); status(B); /* CACO experiment */ /************optional deuterium decoupling**************************/ if(H2dec[A] == 'y'){ dec3unblank(); if(1.0/dmf3>900.0e-6) { dec3power(dpwr3+6.0); dec3rgpulse(0.5/dmf3, one, 1.0e-6, 0.0e-6); dec3power(dpwr3); } else dec3rgpulse(1.0/dmf3, one, 1.0e-6,0.0e-6); dec3phase(zero); setstatus(DEC3ch, TRUE, 'w', FALSE, dmf3); } /**************************************/ /* begin CA evolution and transfer to CO */ obspwrf(pwrfCACB_90); obspower(pwrCACB_90); shapedpulse(shCACB_90,pwCACB_90,t1,0.0,0.0); obspwrf(4095.0); obspower(pwClvl); delay(10.0e-6); shapedpulse(shCBIP,pwCBIP,zero,0.0,0.0); delay(10.0e-6); if(decCB[A]=='y') { delay( (TC/2.0-tau1 + 2.0*pwCACB_90phase_roll*pwCACB_90)*0.5 -pwCB_180*0.5); obspower(pwrCB_180); shapedpulse(shCB_180,pwCB_180,zero,0.0,0.0); delay( (TC/2.0-tau1 + 2.0*pwCACB_90phase_roll*pwCACB_90)*0.5 -pwCB_180*0.5); } else delay(TC/2.0-tau1 + 2.0*pwCACB_90phase_roll*pwCACB_90); obspower(pwClvl); shapedpulse(shCBIP,pwCBIP,zero,0.0,0.0); if(decCB[A]=='y') { delay((TC/2.0+tau1)*0.5 -pwCB_180*0.5); obspower(pwrCB_180); shapedpulse(shCB_180,pwCB_180,zero,0.0,0.0); delay((TC/2.0+tau1)*0.5 -pwCB_180*0.5); } else delay(TC/2.0+tau1); obspower(pwrCACB_90); shapedpulse(shCACB_90r,pwCACB_90,one,0.0,0.0); /*************************************************************/ if(H2dec[A] == 'y') { setstatus(DEC3ch, FALSE, 'w', FALSE, dmf3); if(1.0/dmf3>900.0e-6) { dec3power(dpwr3+6.0); dec3rgpulse(0.5/dmf3, three, 1.0e-6, 0.0e-6); dec3power(dpwr3); } else dec3rgpulse(1.0/dmf3, three, 1.0e-6, 0.0e-6); dec3blank(); } /*************************************************************/ /* CAzCOz */ delay(10e-6); obsoffset(tof); delay(10e-6); zgradpulse(gzlvl1,gt1); delay(gstab); status(C); /* CAzCOz -> CO or CACO */ obspwrf(pwrfCO_90); obspower(pwrCO_90); shapedpulse(shCO_90,pwCO_90,t4,0.0,0.0); /* ghost 180 on CA*/ if(IPAP[A]=='i') { obspwrf(pwClvlF); obspower(pwClvl); delay(10.0e-6); shapedpulse(shCBIP,pwCBIP,zero,0.0,0.0); delay(10.0e-6); delay(del/2.0 + pwCO_90phase_roll*pwCO_90); obspwrf(pwrfCACB_180); obspower(pwrCACB_180); delay(10.0e-6); shapedpulse(shCACB_180off,pwCACB_180,zero,0.0,0.0); obspwrf(pwClvlF); obspower(pwClvl); delay(10.0e-6); shapedpulse(shCBIP,pwCBIP,zero,0.0,0.0); obspwrf(pwrfCACB_180); obspower(pwrCACB_180); delay(10.0e-6); shapedpulse(shCACB_180off,pwCACB_180,zero,0.0,0.0); delay(10.0e-6); delay(del/2.0 ); } /***>>>>>>>>>>>**TEST*********/ if(IPAP[A]=='t') { obspwrf(pwrfCACB_180); obspower(pwrCACB_180); delay(10.0e-6); shapedpulse(shCACB_180off,pwCACB_180,zero,0.0,0.0); delay(10.0e-6); obspwrf(pwrfCO_180); obspower(pwrCO_180); delay(del/2.0); shapedpulse(shCO_180,pwCO_180,zero,0.0,0.0); obspwrf(pwrfCACB_180); obspower(pwrCACB_180); delay(10.0e-6); shapedpulse(shCACB_180off,pwCACB_180,zero,0.0,0.0); delay(10.0e-6); obspwrf(pwrfCO_90); obspower(pwrCO_90); delay(del/2.0); } /********<<<<<<<<<<<<<**TEST*********/ if(IPAP[A]=='a') { obspwrf(pwClvlF); obspower(pwClvl); delay(10.0e-6); shapedpulse(shCBIP,pwCBIP,zero,0.0,0.0); delay(10.0e-6); delay(del/4.0 + pwCO_90phase_roll*pwCO_90); obspwrf(pwrfCACB_180); obspower(pwrCACB_180); delay(10.0e-6); shapedpulse(shCACB_180off,pwCACB_180,zero,0.0,0.0); obspwrf(pwClvlF); obspower(pwClvl); delay(10.0e-6); delay(del/4.0 ); shapedpulse(shCBIP,pwCBIP,zero,0.0,0.0); delay(del/4.0); obspwrf(pwrfCACB_180); obspower(pwrCACB_180); delay(10.0e-6); shapedpulse(shCACB_180off,pwCACB_180,zero,0.0,0.0); delay(10.0e-6); delay(del/4.0 ); } if (H2dec[A]=='y') lk_sample(); status(D); setreceiver(t12); }
pulsesequence() { /* DECLARE VARIABLES */ char autocal[MAXSTR], /* auto-calibration flag */ fsat[MAXSTR], fscuba[MAXSTR], f1180[MAXSTR], /* Flag to start t1 @ halfdwell */ f2180[MAXSTR], /* Flag to start t2 @ halfdwell */ ddseq[MAXSTR], /* deuterium decoupling sequence */ shp_sl[MAXSTR], shcreb[MAXSTR], /* reburp shape for center of t1 period */ shcgcob[MAXSTR], /* g3 inversion at 154 ppm (350 us) */ shcgcoib[MAXSTR], /* g3 time inversion at 154 ppm (350 us) */ shca180[MAXSTR], /* Ca 180 [D/sq(3)] during 15N CT */ shco180[MAXSTR], /* Co 180 [D/sq(15)] during 15N CT */ sel_flg[MAXSTR], /* active/passive purging of undesired component */ fCT[MAXSTR], /* Flag for constant time C13 evolution */ fc180[MAXSTR], cal_sphase[MAXSTR], shared_CT[MAXSTR], nietl_flg[MAXSTR]; int phase, phase2, ni2, icosel, t1_counter, /* used for states tppi in t1 */ t2_counter; /* used for states tppi in t2 */ double tau1, /* t1 delay */ tau2, /* t2 delay */ taua, /* ~ 1/4JNH = 2.25 ms */ del1, /* time for C'-N to refocus set to 0.5*24.0 ms */ bigTN, /* nitrogen T period */ bigTC, /* carbon T period */ zeta, /* delay for transfer from ca to cb = 3.5 ms */ tsatpwr, /* low level 1H trans.power for presat */ sw1, /* sweep width in f1 */ sw2, /* sweep width in f2 */ tauf, /* 1/2J NH value */ pw_sl, /* selective pulse on water */ phase_sl, /* phase on water */ tpwrsl, /* power for pw_sl */ at, d_cgcob, /* power level for g3 pulses at 154 ppm */ d_creb, /* power level for reburp 180 at center of t1 */ pwcgcob, /* g3 ~ 35o us 180 pulse */ pwcreb, /* reburp ~ 400us 180 pulse */ pwD, /* 2H 90 pulse, about 125 us */ pwDlvl, /* 2H 90 pulse, about 125 us */ pwca180, /* Ca 180 during N CT at d_ca180 */ pwco180, /* Co 180 during N CT at d_co180 */ d_ca180, d_co180, compC = getval("compC"), /* C-13 RF calibration parameters */ pwC = getval("pwC"), pwClvl = getval("pwClvl"), pwN, pwNlvl, sphase, pw_sl1, tpwrsl1, gstab, gt1, gt2, gt3, gt4, gt5, gt6, gt7, gt8, gt9, gt11, gt13, gt14, gzlvl1, gzlvl2, gzlvl3, gzlvl4, gzlvl5, gzlvl6, gzlvl7, gzlvl8, gzlvl9, gzlvl11, gzlvl13, gzlvl14; /* variables commented out are already defined by the system */ /* LOAD VARIABLES */ getstr("autocal",autocal); getstr("fsat",fsat); getstr("f1180",f1180); getstr("f2180",f2180); getstr("fscuba",fscuba); getstr("ddseq",ddseq); getstr("shp_sl",shp_sl); getstr("sel_flg",sel_flg); getstr("fCT",fCT); getstr("fc180",fc180); getstr("cal_sphase",cal_sphase); getstr("shared_CT",shared_CT); getstr("nietl_flg",nietl_flg); taua = getval("taua"); del1 = getval("del1"); bigTN = getval("bigTN"); bigTC = getval("bigTC"); zeta = getval("zeta"); pwN = getval("pwN"); tpwr = getval("tpwr"); tsatpwr = getval("tsatpwr"); dpwr = getval("dpwr"); pwNlvl = getval("pwNlvl"); pwD = getval("pwD"); pwDlvl = getval("pwDlvl"); phase = (int) ( getval("phase") + 0.5); phase2 = (int) ( getval("phase2") + 0.5); sw1 = getval("sw1"); sw2 = getval("sw2"); ni2 = getval("ni2"); tauf = getval("tauf"); pw_sl = getval("pw_sl"); phase_sl = getval("phase_sl"); tpwrsl = getval("tpwrsl"); at = getval("at"); sphase = getval("sphase"); pw_sl1 = getval("pw_sl1"); tpwrsl1 = getval("tpwrsl1"); gstab = getval("gstab"); gt1 = getval("gt1"); if (getval("gt2") > 0) gt2=getval("gt2"); else gt2=gt1*0.1; gt3 = getval("gt3"); gt4 = getval("gt4"); gt5 = getval("gt5"); gt6 = getval("gt6"); gt7 = getval("gt7"); gt8 = getval("gt8"); gt9 = getval("gt9"); gt11 = getval("gt11"); gt13 = getval("gt13"); gt14 = getval("gt14"); gzlvl1 = getval("gzlvl1"); gzlvl2 = getval("gzlvl2"); gzlvl3 = getval("gzlvl3"); gzlvl4 = getval("gzlvl4"); gzlvl5 = getval("gzlvl5"); gzlvl6 = getval("gzlvl6"); gzlvl7 = getval("gzlvl7"); gzlvl8 = getval("gzlvl8"); gzlvl9 = getval("gzlvl9"); gzlvl11 = getval("gzlvl11"); gzlvl13 = getval("gzlvl13"); gzlvl14 = getval("gzlvl14"); if(autocal[0]=='n') { getstr("shcgcob",shcgcob); getstr("shcgcoib",shcgcoib); getstr("shcreb",shcreb); getstr("shca180",shca180); getstr("shco180",shco180); d_ca180 = getval("d_ca180"); d_co180 = getval("d_co180"); d_cgcob = getval("d_cgcob"); d_creb = getval("d_creb"); pwca180 = getval("pwca180"); pwco180 = getval("pwco180"); pwcgcob = getval("pwcgcob"); pwcreb = getval("pwcreb"); } else { strcpy(shcgcob,"Pg3_107p"); strcpy(shcgcoib,"Pg3i_107p"); strcpy(shcreb,"Preb_on"); strcpy(shca180,"Phard_15p"); strcpy(shco180,"Phard_133p"); if (FIRST_FID) { cgcob = pbox(shcgcob, G3CGCOB, CAB180ps, dfrq, compC*pwC, pwClvl); cgcoib = pbox(shcgcoib, G3CGCOBi, CAB180ps, dfrq, compC*pwC, pwClvl); creb = pbox(shcreb, CREB180, CAB180ps, dfrq, compC*pwC, pwClvl); ca180 = pbox(shca180, CA180, CA180ps, dfrq, compC*pwC, pwClvl); co180 = pbox(shco180, CO180, CA180ps, dfrq, compC*pwC, pwClvl); } d_ca180 = ca180.pwr; d_co180 = co180.pwr; d_cgcob = cgcob.pwr; d_creb = creb.pwr; pwca180 = ca180.pw; pwco180 = co180.pw; pwcgcob = cgcob.pw; pwcreb = creb.pw; } /* LOAD PHASE TABLE */ settable(t1,2,phi1); settable(t2,4,phi2); settable(t3,8,phi3); settable(t4,1,phi4); settable(t5,16,phi5); settable(t6,8,phi6); settable(t7,1,phi7); settable(t8,16,rec); /* CHECK VALIDITY OF PARAMETER RANGES */ if(shared_CT[A] == 'n') if(bigTN - 0.5*(ni2 -1)/sw2 - POWER_DELAY < 0.2e-6) { text_error(" ni2 is too big\n"); text_error(" please set ni2 smaller or equal to %d\n", (int) ((bigTN -POWER_DELAY)*sw2*2.0) +1 ); psg_abort(1); } if(fCT[A] == 'y') if(bigTC - 0.5*(ni-1)/sw1 - WFG_STOP_DELAY - gt14 - 102.0e-6 - POWER_DELAY - 4.0e-6 - pwD - POWER_DELAY - PRG_START_DELAY - POWER_DELAY - WFG_START_DELAY - 4.0e-6 - pwcgcob - WFG_STOP_DELAY - POWER_DELAY - 4.0e-6 < 0.2e-6) { text_error("ni is too big\n"); text_error(" please set ni smaller or equal to %d\n", (int) ((bigTC - WFG_STOP_DELAY - gt14 - 102.0e-6 - POWER_DELAY - 4.0e-6 - pwD - POWER_DELAY - PRG_START_DELAY - POWER_DELAY - WFG_START_DELAY - 4.0e-6 - pwcgcob - WFG_STOP_DELAY - POWER_DELAY - 4.0e-6)*sw1*2.0) +1 ); psg_abort(1); } if((dm[A] == 'y' || dm[B] == 'y' || dm[C] == 'y')) { text_error("incorrect dec1 decoupler flags! "); psg_abort(1); } if((dm2[A] == 'y' || dm2[B] == 'y' || dm2[C] == 'y')) { text_error("incorrect dec2 decoupler flags! Should be 'nnn' "); psg_abort(1); } if( tsatpwr > 6 ) { text_error("TSATPWR too large !!! "); psg_abort(1); } if( dpwr > 46 ) { text_error("don't fry the probe, DPWR too large! "); psg_abort(1); } if( dpwr2 > 47 ) { text_error("don't fry the probe, DPWR2 too large! "); psg_abort(1); } if( pwClvl > 63 ) { text_error("don't fry the probe, pwClvl too large! "); psg_abort(1); } if( pwNlvl > 63 ) { text_error("don't fry the probe, pwNlvl too large! "); psg_abort(1); } if( pw > 200.0e-6 ) { text_error("dont fry the probe, pw too high ! "); psg_abort(1); } if( pwN > 200.0e-6 ) { text_error("dont fry the probe, pwN too high ! "); psg_abort(1); } if( pwC > 200.0e-6 ) { text_error("dont fry the probe, pwC too high ! "); psg_abort(1); } if( f1180[A] != 'n' && f2180[A] != 'n' ) { text_error("flags may be set wrong: set f1180=n and f2180=n for 3d\n"); psg_abort(1); } if(d_ca180 > 58) { text_error("dont fry the probe, d_ca180 too high ! "); psg_abort(1); } if(d_co180 > 58) { text_error("dont fry the probe, d_ca180 too high ! "); psg_abort(1); } if( gt1 > 15e-3 || gt2 > 15e-3 || gt3 > 15e-3 || gt4 > 15e-3 || gt5 > 15e-3 || gt6 > 15e-3 || gt7 > 15e-3 || gt8 > 15e-3 || gt9 > 15e-3 || gt11 > 15e-3 || gt13 > 15e-3 || gt14 > 15e-3) { text_error("gti values must be < 15e-3\n"); psg_abort(1); } if(tpwrsl > 25) { text_error("tpwrsl must be less than 25\n"); psg_abort(1); } if(tpwrsl1 > 25) { text_error("tpwrsl1 must be less than 25\n"); psg_abort(1); } if( dpwr3 > 50) { text_error("dpwr3 too high\n"); psg_abort(1); } if( del1 > 0.1 ) { text_error("too long del1\n"); psg_abort(1); } if( zeta > 0.1 ) { text_error("too long zeta\n"); psg_abort(1); } if( bigTN > 0.1) { text_error("too long bigTN\n"); psg_abort(1); } if( bigTC > 0.1) { text_error("too long bigTC\n"); psg_abort(1); } if( pw_sl > 10e-3) { text_error("too long pw_sl\n"); psg_abort(1); } if( pw_sl1 > 10e-3) { text_error("too long pw_sl1\n"); psg_abort(1); } if( at > 0.1 && dm2[D] == 'y') { text_error("too long at with dec2\n"); psg_abort(1); } if(pwDlvl > 59) { text_error("pwDlvl is too high; <= 59\n"); psg_abort(1); } if(d_creb > 62) { text_error("d_creb is too high; <= 62\n"); psg_abort(1); } if(d_cgcob > 60) { text_error("d_cgcob is too high; <=60\n"); psg_abort(1); } if(cal_sphase[A] == 'y') { text_error("Use only to calibrate sphase\n"); text_error("Set zeta to 600 us, gt11=gt13=0, fCT=y, fc180=n\n"); } if(nietl_flg[A] == 'y' && sel_flg[A] == 'y') { text_error("Both nietl_flg and sel_flg cannot by y\n"); psg_abort(1); } if (fCT[A] == 'n' && fc180[A] =='y' && ni > 1.0) { text_error("must set fc180='n' to allow Calfa/Cbeta evolution (ni>1)\n"); psg_abort(1); } /* Phase incrementation for hypercomplex 2D data */ /* changed from 1 to 3; spect. rev. not needed */ if (phase == 2) { tsadd(t2,3,4); tsadd(t3,3,4); } if (shared_CT[A] == 'n') { if (phase2 == 2) { tsadd(t7,2,4); icosel = 1; } else icosel = -1; } else { if (phase2 == 2) { tsadd(t7,2,4); icosel = -1; } else icosel = 1; } if (nietl_flg[A] == 'y') icosel = -1*icosel; /* Calculate modifications to phases for States-TPPI acquisition */ if( ix == 1) d2_init = d2 ; t1_counter = (int) ( (d2-d2_init)*sw1 + 0.5 ); if(t1_counter % 2) { tsadd(t2,2,4); tsadd(t8,2,4); } if( ix == 1) d3_init = d3 ; t2_counter = (int) ( (d3-d3_init)*sw2 + 0.5 ); if(t2_counter % 2) { tsadd(t5,2,4); tsadd(t8,2,4); } /* Set up f1180 tau1 = t1 */ tau1 = d2; if(f1180[A] == 'y' && fCT[A] == 'y') tau1 += ( 1.0 / (2.0*sw1) ); if(f1180[A] == 'y' && fCT[A] == 'n') tau1 += (1.0 / (2.0*sw1) - 4.0/PI*pwC - POWER_DELAY - 4.0e-6); if(f1180[A] == 'n' && fCT[A] == 'n') tau1 = (tau1 - 4.0/PI*pwC - POWER_DELAY - 4.0e-6); if(tau1 < 0.2e-6) tau1 = 4.0e-7; tau1 = tau1/2.0; /* Set up f2180 tau2 = t2 */ tau2 = d3; if(f2180[A] == 'y') { tau2 += ( 1.0 / (2.0*sw2) ); if(tau2 < 0.2e-6) tau2 = 0.2e-6; } tau2 = tau2/2.0; /* BEGIN ACTUAL PULSE SEQUENCE */ status(A); obspower(tsatpwr); /* Set transmitter power for 1H presaturation */ decpower(pwClvl); /* Set Dec1 power to high power */ dec2power(pwNlvl); /* Set Dec2 power for 15N hard pulses */ dec3power(pwDlvl); /* Set Dec3 for 2H hard pulses */ /* Presaturation Period */ if (fsat[0] == 'y') { delay(2.0e-5); rgpulse(d1,zero,0.0,2.0e-6); obspower(tpwr); /* Set transmitter power for hard 1H pulses */ delay(2.0e-5); if (fscuba[0] == 'y') { delay(2.2e-2); rgpulse(pw,zero,2.0e-6,0.0); rgpulse(2*pw,one,2.0e-6,0.0); rgpulse(pw,zero,2.0e-6,0.0); delay(2.2e-2); } } else { delay(d1); } obspower(tpwr); /* Set transmitter power for hard 1H pulses */ txphase(zero); dec2phase(zero); delay(1.0e-5); /* Begin Pulses */ status(B); rcvroff(); lk_hold(); delay(20.0e-6); rgpulse(pw,zero,0.0,0.0); /* 90 deg 1H pulse */ delay(0.2e-6); zgradpulse(gzlvl5,gt5); delay(2.0e-6); delay(taua - gt5 - 2.2e-6); /* taua <= 1/4JNH */ sim3pulse(2*pw,0.0,2*pwN,zero,zero,zero,0.0,0.0); dec2phase(t1); decphase(zero); delay(taua - gt5 - 200.2e-6); delay(0.2e-6); zgradpulse(gzlvl5,gt5); delay(200.0e-6); if (sel_flg[A] == 'y') { rgpulse(pw,one,4.0e-6,0.0); initval(1.0,v2); obsstepsize(phase_sl); xmtrphase(v2); /* shaped pulse */ obspower(tpwrsl); shaped_pulse(shp_sl,pw_sl,two,2.0e-6,0.0); xmtrphase(zero); delay(2.0e-6); obspower(tpwr); /* shaped pulse */ initval(1.0,v6); dec2stepsize(45.0); dcplr2phase(v6); delay(0.2e-6); zgradpulse(gzlvl3,gt3); delay(200.0e-6); dec2rgpulse(pwN,t1,0.0,0.0); dcplr2phase(zero); delay(1.34e-3 - SAPS_DELAY); rgpulse(pw,zero,0.0,0.0); rgpulse(2.0*pw,one,2.0e-6,0.0); rgpulse(pw,zero,2.0e-6,0.0); decpower(d_ca180); dec2phase(zero); delay(del1 - 1.34e-3 - 4.0*pw - 4.0e-6 - POWER_DELAY + WFG_START_DELAY + pwca180 + WFG_STOP_DELAY); } else { rgpulse(pw,three,4.0e-6,0.0); initval(1.0,v2); obsstepsize(phase_sl); xmtrphase(v2); /* shaped pulse */ obspower(tpwrsl); shaped_pulse(shp_sl,pw_sl,zero,2.0e-6,0.0); xmtrphase(zero); delay(2.0e-6); obspower(tpwr); /* shaped pulse */ delay(0.2e-6); zgradpulse(gzlvl3,gt3); delay(200.0e-6); dec2rgpulse(pwN,t1,0.0,0.0); dec2phase(zero); decpower(d_ca180); delay(del1 - POWER_DELAY + WFG_START_DELAY + pwca180 + WFG_STOP_DELAY); } decphase(zero); dec2rgpulse(2*pwN,zero,0.0,0.0); decshaped_pulse(shca180,pwca180,zero,0.0,0.0); dec2phase(one); delay(del1); dec2rgpulse(pwN,one,0.0,0.0); decpower(pwClvl); decphase(t2); delay(0.2e-6); zgradpulse(gzlvl4,gt4); delay(200.0e-6); dec2phase(t5); /* Turn on D decoupling using the third decoupler */ dec3phase(one); dec3power(pwDlvl); dec3rgpulse(pwD,one,4.0e-6,0.0); dec3phase(zero); dec3power(dpwr3); dec3unblank(); setstatus(DEC3ch, TRUE, 'w', FALSE, dmf3); /* Turn on D decoupling */ decrgpulse(pwC,t2,0.0,0.0); delay(zeta - PRG_STOP_DELAY - DELAY_BLANK - POWER_DELAY - 4.0e-6 - pwD - gt11 - 102.0e-6 - POWER_DELAY - WFG_START_DELAY); /* Turn off D decoupling */ setstatus(DEC3ch, FALSE, 'c', FALSE, dmf3); dec3blank(); dec3phase(three); dec3power(pwDlvl); dec3rgpulse(pwD,three,4.0e-6,0.0); /* Turn off D decoupling */ decphase(zero); delay(2.0e-6); zgradpulse(gzlvl11,gt11); delay(100.0e-6); if (cal_sphase[A] == 'y') { decpower(pwClvl); decshaped_pulse("hard",2.0*pwC,zero,4.0e-6,4.0e-6); } else { initval(1.0,v3); decstepsize(sphase); dcplrphase(v3); decpower(d_creb); decshaped_pulse(shcreb,pwcreb,zero,4.0e-6,4.0e-6); dcplrphase(zero); } delay(2.0e-6); zgradpulse(gzlvl11,gt11); delay(100.0e-6); /* Turn on D decoupling using the third decoupler */ dec3phase(one); dec3power(pwDlvl); dec3rgpulse(pwD,one,4.0e-6,0.0); dec3phase(zero); dec3power(dpwr3); dec3unblank(); setstatus(DEC3ch, TRUE, 'w', FALSE, dmf3); /* Turn on D decoupling */ delay(zeta - WFG_STOP_DELAY - gt11 - 102.0e-6 - POWER_DELAY - 4.0e-6 - pwD - POWER_DELAY - PRG_START_DELAY - DELAY_BLANK - POWER_DELAY - 4.0e-6); decpower(pwClvl); decrgpulse(pwC,t3,4.0e-6,0.0); if (fCT[A] == 'y') { delay(tau1); decpower(d_cgcob); decshaped_pulse(shcgcob,pwcgcob,zero,4.0e-6,0.0); delay(bigTC - POWER_DELAY - WFG_START_DELAY - 4.0e-6 - pwcgcob - WFG_STOP_DELAY - 102.0e-6 - gt14 - PRG_STOP_DELAY - DELAY_BLANK - POWER_DELAY - 4.0e-6 - pwD - POWER_DELAY - WFG_START_DELAY); /* Turn off D decoupling */ setstatus(DEC3ch, FALSE, 'c', FALSE, dmf3); dec3blank(); dec3phase(three); dec3power(pwDlvl); dec3rgpulse(pwD,three,4.0e-6,0.0); /* Turn off D decoupling */ delay(2.0e-6); zgradpulse(gzlvl14,gt14); delay(100.0e-6); initval(1.0,v4); decstepsize(sphase); dcplrphase(v4); decpower(d_creb); decshaped_pulse(shcreb,pwcreb,zero,4.0e-6,4.0e-6); dcplrphase(zero); delay(2.0e-6); zgradpulse(gzlvl14,gt14); delay(100.0e-6); /* Turn on D decoupling using the third decoupler */ dec3phase(one); dec3power(pwDlvl); dec3rgpulse(pwD,one,4.0e-6,0.0); dec3phase(zero); dec3power(dpwr3); dec3unblank(); setstatus(DEC3ch, TRUE, 'w', FALSE, dmf3); /* Turn on D decoupling */ delay(bigTC - tau1 - WFG_STOP_DELAY - gt14 - 102.0e-6 - POWER_DELAY - 4.0e-6 - pwD - POWER_DELAY - PRG_START_DELAY - POWER_DELAY - WFG_START_DELAY - 4.0e-6 - pwcgcob - WFG_STOP_DELAY - POWER_DELAY - 4.0e-6); decpower(d_cgcob); decshaped_pulse(shcgcoib,pwcgcob,zero,4.0e-6,0.0); decphase(t4); } else if(fCT[A] == 'n' && fc180[A] == 'n') { delay(tau1); delay(tau1); } else if(fCT[A] == 'n' && fc180[A] == 'y') { initval(1.0,v4); decstepsize(sphase); dcplrphase(v4); decpower(d_creb); decshaped_pulse(shcreb,pwcreb,zero,4.0e-6,0.0); dcplrphase(zero); } decpower(pwClvl); decrgpulse(pwC,t4,4.0e-6,0.0); delay(zeta - POWER_DELAY - 4.0e-6 - pwD - PRG_STOP_DELAY - DELAY_BLANK - gt13 - 102.0e-6 - POWER_DELAY - WFG_START_DELAY); /* Turn off D decoupling */ setstatus(DEC3ch, FALSE, 'c', FALSE, dmf3); dec3blank(); dec3power(pwDlvl); dec3rgpulse(pwD,three,4.0e-6,0.0); /* Turn off D decoupling */ delay(2.0e-6); zgradpulse(gzlvl13,gt13); delay(100.0e-6); if (cal_sphase[A] == 'y') { decpower(pwClvl); decshaped_pulse("hard",2.0*pwC,zero,4.0e-6,4.0e-6); } else { initval(1.0,v5); decstepsize(sphase); dcplrphase(v5); decpower(d_creb); decshaped_pulse(shcreb,pwcreb,zero,4.0e-6,4.0e-6); dcplrphase(zero); } delay(2.0e-6); zgradpulse(gzlvl13,gt13); delay(100.0e-6); /* Turn on D decoupling using the third decoupler */ dec3phase(one); dec3power(pwDlvl); dec3rgpulse(pwD,one,4.0e-6,0.0); dec3phase(zero); dec3power(dpwr3); dec3unblank(); setstatus(DEC3ch, TRUE, 'w', FALSE, dmf3); /* Turn on D decoupling */ delay(zeta - WFG_STOP_DELAY - gt13 - 102.0e-6 - POWER_DELAY - 4.0e-6 - pwD - POWER_DELAY - PRG_START_DELAY - DELAY_BLANK - POWER_DELAY - 4.0e-6); decpower(pwClvl); decrgpulse(pwC,zero,4.0e-6,0.0); /* Turn off D decoupling */ setstatus(DEC3ch, FALSE, 'c', FALSE, dmf3); dec3blank(); dec3phase(three); dec3power(pwDlvl); dec3rgpulse(pwD,three,4.0e-6,0.0); /* Turn off D decoupling */ delay(0.2e-6); zgradpulse(gzlvl9,gt9); delay(200.0e-6); if (shared_CT[A] == 'n') { dec2rgpulse(pwN,t5,2.0e-6,0.0); decpower(d_ca180); dec2phase(t6); delay(bigTN - tau2 - POWER_DELAY); dec2rgpulse(2*pwN,t6,0.0,0.0); decshaped_pulse(shca180,pwca180,zero,0.0,0.0); dec2phase(t7); delay(bigTN - WFG_START_DELAY - pwca180 - WFG_STOP_DELAY - gt1 - 2.0*GRADIENT_DELAY - 500.2e-6 - POWER_DELAY - 4.0e-6 - WFG_START_DELAY - pwco180 - WFG_STOP_DELAY); delay(0.2e-6); zgradpulse(gzlvl1,gt1); delay(500.0e-6); decpower(d_co180); decshaped_pulse(shco180,pwco180,zero,4.0e-6,0.0); delay(tau2); sim3pulse(pw,0.0,pwN,zero,zero,t7,0.0,0.0); } else if (shared_CT[A] == 'y') { dec2rgpulse(pwN,t5,2.0e-6,0.0); decpower(d_co180); dec2phase(t6); if (bigTN - tau2 >= 0.2e-6) { delay(tau2); decshaped_pulse(shco180,pwco180,zero,4.0e-6,0.0); decpower(d_ca180); delay(0.2e-6); zgradpulse(gzlvl1,gt1); delay(500.0e-6); delay(bigTN - 4.0e-6 - WFG_START_DELAY - pwco180 - WFG_STOP_DELAY - POWER_DELAY - gt1 - 500.2e-6 - 2.0*GRADIENT_DELAY - WFG_START_DELAY - pwca180 - WFG_STOP_DELAY); decshaped_pulse(shca180,pwca180,zero,0.0,0.0); dec2rgpulse(2*pwN,t6,0.0,0.0); delay(bigTN - tau2); } else { delay(tau2); decshaped_pulse(shco180,pwco180,zero,4.0e-6,0.0); delay(0.2e-6); zgradpulse(gzlvl1,gt1); delay(500.0e-6); decpower(d_ca180); delay(bigTN - 4.0e-6 - WFG_START_DELAY - pwco180 - WFG_STOP_DELAY - gt1 - 500.2e-6 - 2.0*GRADIENT_DELAY - POWER_DELAY - WFG_START_DELAY - pwca180 - WFG_STOP_DELAY); decshaped_pulse(shca180,pwca180,zero,0.0,0.0); delay(tau2 - bigTN); dec2rgpulse(2.0*pwN,t6,0.0,0.0); } sim3pulse(pw,0.0,pwN,zero,zero,t7,0.0,0.0); } /* end of shared_CT */ if (nietl_flg[A] == 'n') { decpower(pwClvl); decrgpulse(pwC,zero,4.0e-6,0.0); delay(0.2e-6); zgradpulse(gzlvl6,gt6); delay(2.0e-6); dec2phase(zero); delay(tauf - POWER_DELAY - 4.0e-6 - pwC - gt6 - 2.2e-6); sim3pulse(2*pw,0.0,2*pwN,zero,zero,zero,0.0,0.0); txphase(one); dec2phase(one); delay(tauf - gt6 - 200.2e-6); delay(0.2e-6); zgradpulse(gzlvl6,gt6); delay(200.0e-6); sim3pulse(pw,0.0,pwN,one,zero,one,0.0,0.0); delay(0.2e-6); zgradpulse(gzlvl7,gt7); delay(2.0e-6); txphase(zero); dec2phase(zero); delay(tauf - gt7 - 2.2e-6); sim3pulse(2*pw,0.0,2*pwN,zero,zero,zero,0.0,0.0); delay(tauf - gt7 - 200.2e-6); delay(0.2e-6); zgradpulse(gzlvl7,gt7); delay(200.0e-6); sim3pulse(pw,0.0e-6,pwN,zero,zero,zero,0.0,0.0); } else { /* nietl_flg == y */ /* shaped pulse */ obspower(tpwrsl1); shaped_pulse(shp_sl,pw_sl1,zero,2.0e-6,0.0); delay(2.0e-6); obspower(tpwr); /* shaped pulse */ decpower(pwClvl); decrgpulse(pwC,zero,4.0e-6,0.0); delay(0.2e-6); zgradpulse(gzlvl6,gt6); delay(2.0e-6); dec2phase(zero); delay(tauf - POWER_DELAY - 2.0e-6 - WFG_START_DELAY - pw_sl1 - WFG_STOP_DELAY - 2.0e-6 - POWER_DELAY - POWER_DELAY - 4.0e-6 - pwC - gt6 - 2.2e-6); sim3pulse(2*pw,0.0,2*pwN,zero,zero,zero,0.0,0.0); txphase(one); dec2phase(zero); delay(tauf - gt6 - 200.2e-6); delay(0.2e-6); zgradpulse(gzlvl6,gt6); delay(200.0e-6); sim3pulse(pw,0.0,pwN,one,zero,zero,0.0,0.0); delay(0.2e-6); zgradpulse(gzlvl7,gt7); delay(2.0e-6); txphase(zero); dec2phase(zero); delay(tauf - gt7 - 2.2e-6); sim3pulse(2*pw,0.0,2*pwN,zero,zero,zero,0.0,0.0); txphase(one); dec2phase(one); delay(tauf - gt7 - 200.2e-6); delay(0.2e-6); zgradpulse(gzlvl7,gt7); delay(200.0e-6); sim3pulse(pw,0.0e-6,pwN,one,zero,one,0.0,0.0); txphase(zero); } /* end of nietl_flg == y */ delay(gt2 +gstab -0.5*(pwN-pw) -2.0*pw/PI); rgpulse(2*pw,zero,0.0,0.0); delay(2.0e-6); zgradpulse(icosel*gzlvl2,gt2); decpower(dpwr); /* NO 13C decoupling */ dec2power(dpwr2); /* NO 15N decoupling */ delay(gstab -2.0e-6 -2.0*GRADIENT_DELAY -2.0*POWER_DELAY); lk_sample(); /* BEGIN ACQUISITION */ status(C); setreceiver(t8); }
void pulsesequence() { /* DECLARE VARIABLES */ char autocal[MAXSTR], /* auto-calibration flag */ fsat[MAXSTR], fscuba[MAXSTR], f1180[MAXSTR], /* Flag to start t1 @ halfdwell */ f2180[MAXSTR], /* Flag to start t2 @ halfdwell */ shib[MAXSTR], /* iburp for inversion during first inept */ Hshp[MAXSTR], /* proton inversion during chirp */ ddseq[MAXSTR], shreb[MAXSTR], /* reburb hard during t2 */ co_shp[MAXSTR], /* shape of co 180 at 176 ppm */ CT_flg[MAXSTR], codecseq[MAXSTR], c180_flg[MAXSTR], n_shift[MAXSTR], shibca[MAXSTR], shibcai[MAXSTR]; int phase, phase2, t2_counter, ni2, ni, t1_counter; /* used for states tppi in t2,t1 */ double tau1, /* t1 delay */ tau2, /* t2 delay */ taua, /* ~ 1/4JCH = 1.7 ms; first inept */ mix, /* noesy mixing time */ TC, /* Variable CT period during t1 1/2JCC */ TC2, /* Variable CT period during t3 1/2JCC */ pwc, /* 90 c pulse at dhpwr */ tsatpwr, /* low level 1H trans.power for presat */ dhpwr, /* power level for high power 13C pulses on dec1 */ sw1, /* sweep width in f1 */ sw2, /* sweep width in f2 */ pwC,pwClvl,compC,pwN,pwNlvl,ppm,ofs,bw, /*used by Pbox */ d_ib, pwib, pwhshp, pwd1, /* 2H flip back pulses */ d_reb, pwreb, ph_reb, ph_reb1, /* only used if CT_flg=='y' and n_shift=='y' */ pwco180, dhpwr2, pwn, d_co180, pwcodec, /* carbon pw90 for seduce decoupling */ dpwrsed, dressed, d_ibca, /* power level for selective 13Ca pulse during CT-t2 */ pwibca, /* selective 13Ca pulse width */ gt1, gt2, gt3, gt4, gt5, gt6, gt7, gt8, gt9, gt10, gt11, gt12, gstab, gzlvl1, gzlvl2, gzlvl3, gzlvl4, gzlvl5, gzlvl6, gzlvl7, gzlvl8, gzlvl9, gzlvl10, gzlvl11, gzlvl12; /* variables commented out are already defined by the system */ /* LOAD VARIABLES */ getstr("autocal",autocal); getstr("fsat",fsat); getstr("f1180",f1180); getstr("f2180",f2180); getstr("fscuba",fscuba); getstr("ddseq",ddseq); getstr("n_shift",n_shift); getstr("Hshp",Hshp); getstr("CT_flg",CT_flg); getstr("c180_flg",c180_flg); compC = getval("compC"); pwN=getval("pwN"); pwNlvl=getval("pwNlvl"); pwC = getval("pwC"); pwClvl=getval("pwClvl"); pwhshp = getval("pwhshp"); taua = getval("taua"); mix = getval("mix"); TC = getval("TC"); pwc = getval("pwc"); tpwr = getval("tpwr"); tsatpwr = getval("tsatpwr"); dhpwr = getval("dhpwr"); dpwr = getval("dpwr"); phase = (int) ( getval("phase") + 0.5); phase2 = (int) ( getval("phase2") + 0.5); sw1 = getval("sw1"); sw2 = getval("sw2"); ni2 = getval("ni2"); ni = getval("ni"); pwd1 = getval("pwd1"); ph_reb = getval("ph_reb"); ph_reb1 = getval("ph_reb1"); TC2 = getval("TC2"); dhpwr2 = getval("dhpwr2"); pwn = getval("pwn"); setautocal(); if(autocal[0]=='n') { getstr("shreb",shreb); getstr("shib",shib); getstr("shibca",shibca); getstr("shibcai",shibcai); getstr("co_shp",co_shp); getstr("codecseq",codecseq); d_reb = getval("d_reb"); pwreb = getval("pwreb"); d_ib = getval("d_ib"); pwib = getval("pwib"); d_ibca = getval("d_ibca"); pwibca = getval("pwibca"); d_co180 = getval("d_co180"); pwco180 = getval("pwco180"); pwcodec = getval("pwcodec"); dpwrsed = getval("dpwrsed"); dressed = getval("dressed"); } else { /*strcpy(Hshp,"hard"); former declarations using TNMR.h syntax strcpy(shreb,"Preb_5p"); strcpy(shib,"Pib_1p5"); strcpy(shibca,"Pib_35p"); strcpy(shibcai,"Pib_35pi"); strcpy(co_shp,"Psed_156p"); strcpy(codecseq,"Pdec_156p");*/ strcpy(Hshp,"hard"); strcpy(shreb,"Preb_5p"); strcpy(shib,"Pib_1p5"); strcpy(shibca,"Pib_35p"); strcpy(shibcai,"Pib_35pi"); strcpy(co_shp,"Psed_156p"); strcpy(codecseq,"Pdec_156p"); if (FIRST_FID) { ppm = getval("dfrq"); /* These are former declarations (at top) using TNMR.h syntax */ /*REB180 "reburp 110p 5p"*/ /* RE-BURP 180 on Cab at 24.6 ppm, 5 ppm away */ /*IB180 "iburp2 24.4p 1.5p"*/ /* I-BURP 180 on Me at 21.1 ppm, 1.5 ppm away */ /*IBCA "iburp2 24.4p 35p"*/ /* I-BURP 180 on Cab at 54.6 ppm, 35 ppm away */ /*IBCAI "iburp2 24.4p 35p"*/ /* I-BURP 180 on Cab at 54.6 ppm, 35 ppm away */ /*CO180 "seduce 30p 156p"*/ /* SEDUCE 180 on C' at 175.6 ppm 156 ppm away */ /*CODEC "WURST2 20p/4m 156p"*/ /* WURST2 decoupling on C' at 175.6 ppm 156 ppm away */ /*REB180ps "-stepsize 0.5 -attn i"*/ /* seduce 180 shape parameters */ /*CODECps "-dres 1.0 -maxincr 20.0 -attn i"*/ /*co180 = pbox(co_shp, CO180, REB180ps, dfrq, compC*pwc, dhpwr);*/ /*ibcai = pbox(shibcai, IBCAI, REB180ps, dfrq, compC*pwc, dhpwr);*/ /*ibca = pbox(shibca, IBCA, REB180ps, dfrq, compC*pwc, dhpwr);*/ /*ib180 = pbox(shib, IB180, REB180ps, dfrq, compC*pwc, dhpwr);*/ /*reb = pbox(shreb, REB180, REB180ps, dfrq, compC*pwc, dhpwr);*/ /*COdec = pbox(codecseq, CODEC, CODECps, dfrq, compC*pwc, dhpwr);*/ bw = 110.0*ppm; ofs = 5.0*ppm; Preb_5p = pbox_Rsh("Preb_5p", "reburp", bw , ofs, compC*pwC, pwClvl); bw = 24.4*ppm; ofs = 1.5*ppm; Pib_1p5 = pbox_Rsh("Pib_1p5", "iburp2", bw , ofs, compC*pwC, pwClvl); bw = 24.4*ppm; ofs = 35*ppm; Pib_35p = pbox_Rsh("Pib_35p", "iburp2", bw , ofs, compC*pwC, pwClvl); bw = 24.4*ppm; ofs = 35*ppm; Pib_35pi = pbox_Rsh("Pib_35pi", "iburp2", bw , ofs, compC*pwC, pwClvl); bw = 30.0*ppm; ofs = 156*ppm; Psed_156p = pbox_Rsh("Psed_156p", "seduce", bw , ofs, compC*pwC, pwClvl); bw = 20.0*ppm; ofs = 156*ppm; Pdec_156p = pbox_Dsh("Pdec_156p", "WURST2", bw , ofs, compC*pwC, pwClvl); ofs_check(H1ofs, C13ofs, N15ofs, H2ofs); } d_reb = Preb_5p.pwr; pwreb = Preb_5p.pw; d_ib = Pib_1p5.pwr; pwib = Pib_1p5.pw; d_ibca = Pib_35p.pwr; pwibca = Pib_35p.pw; d_co180 = Psed_156p.pwr; pwco180 = Psed_156p.pw; dpwrsed = Pdec_156p.pwr; pwcodec = 1.0/Pdec_156p.dmf; dressed = Pdec_156p.dres; pwc=pwC; dhpwr=pwClvl; pwn=pwN; dhpwr2=pwNlvl; pwhshp=2.0*pw; pwd1=1/dmf3; pwhshp=2.0*pw; } gt1 = getval("gt1"); gt2 = getval("gt2"); gt3 = getval("gt3"); gt4 = getval("gt4"); gt5 = getval("gt5"); gt6 = getval("gt6"); gt7 = getval("gt7"); gt8 = getval("gt8"); gt9 = getval("gt9"); gt10 = getval("gt10"); gt11 = getval("gt11"); gt12 = getval("gt12"); gstab = getval("gstab"); gzlvl1 = getval("gzlvl1"); gzlvl2 = getval("gzlvl2"); gzlvl3 = getval("gzlvl3"); gzlvl4 = getval("gzlvl4"); gzlvl5 = getval("gzlvl5"); gzlvl6 = getval("gzlvl6"); gzlvl7 = getval("gzlvl7"); gzlvl8 = getval("gzlvl8"); gzlvl9 = getval("gzlvl9"); gzlvl10 = getval("gzlvl10"); gzlvl11 = getval("gzlvl11"); gzlvl12 = getval("gzlvl12"); /* LOAD PHASE TABLE */ settable(t1,4,phi1); settable(t2,8,phi2); settable(t7,2,phi7); settable(t8,2,phi8); settable(t9,8,rec); /* CHECK VALIDITY OF PARAMETER RANGES */ if(TC/2.0 - 0.5*(ni-1)*1/(sw1) - POWER_DELAY - 4.0e-6 - WFG3_START_DELAY - pwco180 - WFG3_STOP_DELAY - pwd1 - gt4 - gstab -2.0e-6 - POWER_DELAY - 4.0e-6 - WFG_START_DELAY < 0.2e-6) { printf(" ni is too big\n"); psg_abort(1); } if(CT_flg[A] == 'y' && n_shift[A] == 'n') { if(TC2/2.0 - 0.5*(ni2-1)*1/(sw2) - POWER_DELAY - 4.0e-6 - WFG3_START_DELAY - pwco180 - WFG3_STOP_DELAY - pwd1 - gt10 - gstab -2.0e-6 - POWER_DELAY - 4.0e-6 - WFG_START_DELAY < 0.2e-6) { printf(" ni2 is too big\n"); psg_abort(1); } } if(CT_flg[A] == 'y' && n_shift[A] == 'y') { if(TC2/2.0 - 0.5*(ni2-1)/sw2 - POWER_DELAY - 4.0e-6 - WFG3_START_DELAY - pwco180 - WFG3_STOP_DELAY - 2.0e-6 - POWER_DELAY - WFG_START_DELAY - 4.0e-6 - pwibca - WFG_STOP_DELAY - pwd1 - gt10 - gstab -2.0e-6 - POWER_DELAY - 4.0e-6 - WFG3_START_DELAY < 0.2e-6) { printf(" ni2 is too big\n"); psg_abort(1); } } if((dm[A] == 'y' || dm[B] == 'y' )) { printf("incorrect dec1 decoupler flags! "); psg_abort(1); } if((dm2[A] == 'y' || dm2[B] == 'y')) { printf("incorrect dec2 decoupler flags! "); psg_abort(1); } if((dm3[A] == 'y' || dm3[B] == 'y' || dm3[C] == 'y')) { printf("incorrect dec3 decoupler flags! "); psg_abort(1); } if( tsatpwr > 6 ) { printf("TSATPWR too large !!! "); psg_abort(1); } if( dpwr > 48 ) { printf("don't fry the probe, DPWR too large! "); psg_abort(1); } if( d_ib > 54 ) { printf("don't fry the probe, d_ib too large! "); psg_abort(1); } if( dpwr2 > 49 ) { printf("don't fry the probe, DPWR2 too large! "); psg_abort(1); } if( dpwr3 > 51 ) { printf("don't fry the probe, DPWR3 too large! "); psg_abort(1); } if( dhpwr > 63 ) { printf("don't fry the probe, DHPWR too large! "); psg_abort(1); } if( pw > 200.0e-6 ) { printf("dont fry the probe, pw too high ! "); psg_abort(1); } if( pwd1 < 100.0e-6 && pwd1 != 0.0) { printf("dont fry the probe, pwd1 too short and dpwr3 too high! "); psg_abort(1); } if(d_co180 > 50) { printf("dont fry the probe, d_co180 is too high\n "); psg_abort(1); } if(((pwco180 > 250e-6) || (pwco180 < 200e-6)) && (autocal[A] == 'n')) { printf("pwco180 is misset < 250 us > 200 us\n"); psg_abort(1); } if(dpwrsed > 45) { printf("dpwrsed is misset < 46\n"); psg_abort(1); } if(gt1 > 15e-3 || gt2 > 15e-3 || gt3 > 15e-3 || gt4 > 15e-3 || gt5 > 15e-3 || gt6 > 15e-3 || gt7 > 15e-3 || gt8 > 15e-3 || gt9 > 15e-3 || gt10 > 15e-3 || gt11 > 15e-3 || gt12 > 15e-3) { printf("gradients on for too long. Must be < 15e-3 \n"); psg_abort(1); } /* Phase incrementation for hypercomplex 2D data */ if (phase2 == 2) { tsadd(t2,1,4); } if (phase == 2) tsadd(t1,1,4); /* Set up f2180 tau2 = t2 */ tau2 = d3; if(CT_flg[A] == 'y') { if(f2180[A] == 'y') { tau2 += ( 1.0 / (2.0*sw2) ); } } if(CT_flg[A] == 'n' && n_shift[A] == 'n') { if(f2180[A] == 'y') { tau2 += ( 1.0 / (2.0*sw2) - 4.0/PI*pwc - POWER_DELAY - PRG_START_DELAY - 4.0*pw - 4.0e-6 - 2.0*pwn - PRG_STOP_DELAY - POWER_DELAY - 4.0e-6); if(tau2 < 0.0 && ix == 1) printf("tau2 start2 negative; decrease sw2\n"); } if(f2180[A] == 'n') { tau2 = ( tau2 - 4.0/PI*pwc - POWER_DELAY - PRG_START_DELAY - 4.0*pw - 4.0e-6 - 2.0*pwn - PRG_STOP_DELAY - POWER_DELAY - 4.0e-6); } } if(CT_flg[A] == 'n' && n_shift[A] == 'y') { if(f2180[A] == 'y') { tau2 += ( 1.0 / (2.0*sw2) - 4.0/PI*pwn - POWER_DELAY - PRG_START_DELAY - 4.0*pw - 4.0e-6 - PRG_STOP_DELAY - POWER_DELAY - 4.0e-6); if(tau2 < 0.0 && ix == 1) printf("tau2 start2 negative; decrease sw2\n"); } if(f2180[A] == 'n') { tau2 = ( tau2 - 4.0/PI*pwn - POWER_DELAY - PRG_START_DELAY - 4.0*pw - 4.0e-6 - PRG_STOP_DELAY - POWER_DELAY - 4.0e-6); } } if(tau2 < 0.4e-6) tau2 = 0.4e-6; tau2 = tau2/2.0; /* Set up f1180 tau1 = t1 */ tau1 = d2; if(f1180[A] == 'y') { tau1 += ( 1.0 / (2.0*sw1) ); } if(tau1 < 0.4e-6) tau1 = 0.4e-6; tau1 = tau1/2.0; /* Calculate modifications to phases for States-TPPI acquisition */ if( ix == 1) d2_init = d2 ; t1_counter = (int) ( (d2-d2_init)*sw1 + 0.5 ); if(t1_counter % 2) { tsadd(t1,2,4); tsadd(t9,2,4); } if( ix == 1) d3_init = d3 ; t2_counter = (int) ( (d3-d3_init)*sw2 + 0.5 ); if(t2_counter % 2) { tsadd(t2,2,4); tsadd(t9,2,4); } /* BEGIN ACTUAL PULSE SEQUENCE */ status(A); obspower(tsatpwr); /* Set transmitter power for 1H presaturation */ decpower(dhpwr); /* Set Dec1 power for hard 13C pulses */ dec2power(dhpwr2); /* Set Dec2 power for hard 15N pulses */ dec3power(dpwr3); /* Set Dec3 power for 2H pulses */ /* Presaturation Period */ if (fsat[0] == 'y') { delay(2.0e-5); rgpulse(d1,zero,2.0e-6,2.0e-6); /* presat */ obspower(tpwr); /* Set transmitter power for hard 1H pulses */ delay(2.0e-5); if(fscuba[0] == 'y') { delay(2.2e-2); rgpulse(pw,zero,2.0e-6,0.0); rgpulse(2*pw,one,2.0e-6,0.0); rgpulse(pw,zero,2.0e-6,0.0); delay(2.2e-2); } } else { delay(d1); } obspower(tpwr); /* Set transmitter power for hard 1H pulses */ txphase(zero); dec2phase(zero); decphase(zero); delay(1.0e-5); /* Begin Pulses */ status(B); rcvroff(); lk_hold(); delay(20.0e-6); /* first ensure that magnetization does infact start on H and not C */ decrgpulse(pwc,zero,2.0e-6,2.0e-6); delay(2.0e-6); zgradpulse(gzlvl1,gt1); delay(gstab); decpower(d_ib); /* set power for chirp during inept */ delay(4e-6); /* this is the real start */ rgpulse(pw,zero,0.0,0.0); /* 90 deg 1H pulse */ delay(2.0e-6); zgradpulse(gzlvl2,gt2); delay(2.0e-6); delay(taua - gt2 - 4.0e-6 - WFG2_START_DELAY); /* taua <= 1/4JCH */ simshaped_pulse(Hshp,shib,pwhshp,pwib,zero,zero,0.0,0.0); decphase(zero); txphase(one); decphase(t1); decpower(dhpwr); delay(2.0e-6); zgradpulse(gzlvl2,gt2); delay(2.0e-6); delay(taua - gt2 - 4.0e-6 - WFG2_STOP_DELAY - POWER_DELAY); rgpulse(pw,one,0.0,0.0); txphase(zero); delay(2.0e-6); zgradpulse(gzlvl3,gt3); delay(gstab); decrgpulse(pwc,t1,0.0,0.0); decphase(zero); delay(tau1); decpower(d_co180); sim3shaped_pulse(Hshp,co_shp,"hard",pwhshp,pwco180,2.0*pwn,zero,zero,zero,4.0e-6,0.0); delay(TC/2.0 - tau1 - POWER_DELAY - 4.0e-6 - WFG3_START_DELAY - pwco180 - WFG3_STOP_DELAY - pwd1 - gt4 - gstab -2.0e-6 - POWER_DELAY - 4.0e-6 - WFG_START_DELAY); dec3rgpulse(pwd1,zero,0.0,0.0); delay(tau1); delay(2.0e-6); zgradpulse(gzlvl4,gt4); delay(gstab); initval(1.0,v3); decstepsize(ph_reb); dcplrphase(v3); decpower(d_reb); decshaped_pulse(shreb,pwreb,zero,4.0e-6,0.0); dcplrphase(zero); decphase(zero); decpower(dhpwr); delay(2.0e-6); zgradpulse(gzlvl4,gt4); delay(gstab); delay(TC/2.0 - tau1 - WFG_STOP_DELAY - POWER_DELAY - gt4 - gstab -2.0e-6); decrgpulse(pwc,zero,0.0,0.0); dec3rgpulse(pwd1,two,4.0e-6,0.0); delay(2.0e-6); zgradpulse(gzlvl5,gt5); delay(gstab); rgpulse(pw,zero,0.0,0.0); delay(2.0e-6); zgradpulse(gzlvl6,gt6); delay(gstab); decpower(d_ib); delay(taua - gt6 - 4.0e-6 - WFG2_START_DELAY - POWER_DELAY); simshaped_pulse(Hshp,shib,pwhshp,pwib,zero,zero,0.0,0.0); decphase(zero); delay(2.0e-6); zgradpulse(gzlvl6,gt6); delay(gstab); decpower(dhpwr); txphase(one); delay(taua - gt6 - gstab -2.0e-6 - POWER_DELAY - WFG2_STOP_DELAY); rgpulse(pw,one,0.0,0.0); txphase(zero); delay(mix - gt7 - 352.0e-6); decrgpulse(pwc,zero,0.0,0.0); delay(2.0e-6); zgradpulse(gzlvl7,gt7); delay(gstab); decpower(d_ib); /* set power level for iburp */ rgpulse(pw,zero,0.0,0.0); /* 90 deg 1H pulse */ delay(2.0e-6); zgradpulse(gzlvl8,gt8); delay(2.0e-6); if(n_shift[A] == 'n') { delay(taua - gt8 - 4.0e-6 - WFG2_START_DELAY); /* taua <= 1/4JCH */ simshaped_pulse(Hshp,shib,pwhshp,pwib,zero,zero,0.0,0.0); decphase(zero); } else { delay(taua - gt8 - 4.0e-6 - WFG3_START_DELAY); sim3shaped_pulse(Hshp,shib,"hard",pwhshp,pwib,2.0*pwn,zero,zero,zero,0.0,0.0); } txphase(one); decphase(t2); decpower(dhpwr); delay(2.0e-6); zgradpulse(gzlvl8,gt8); delay(2.0e-6); if(n_shift[A] == 'n') delay(taua - gt8 - 4.0e-6 - WFG2_STOP_DELAY - POWER_DELAY); else delay(taua - gt8 - 4.0e-6 - WFG3_STOP_DELAY - POWER_DELAY); rgpulse(pw,one,0.0,0.0); txphase(zero); delay(2.0e-6); zgradpulse(gzlvl9,gt9); delay(gstab); if(CT_flg[A] == 'y' && n_shift[A] == 'n') { decrgpulse(pwc,t2,0.0,0.0); decphase(zero); delay(tau2); decpower(d_co180); sim3shaped_pulse(Hshp,co_shp,"hard",pwhshp,pwco180,2.0*pwn,zero,zero,zero,4.0e-6,0.0); delay(TC2/2.0 - tau2 - POWER_DELAY - 4.0e-6 - WFG3_START_DELAY - pwco180 - WFG3_STOP_DELAY - pwd1 - gt10 - gstab -2.0e-6 - POWER_DELAY - 4.0e-6 - WFG_START_DELAY); dec3rgpulse(pwd1,zero,0.0,0.0); delay(tau2); delay(2.0e-6); zgradpulse(gzlvl10,gt10); delay(gstab); initval(1.0,v4); decstepsize(ph_reb); dcplrphase(v4); decpower(d_reb); decshaped_pulse(shreb,pwreb,zero,4.0e-6,0.0); dcplrphase(zero); decphase(zero); decpower(dhpwr); delay(2.0e-6); zgradpulse(gzlvl10,gt10); delay(gstab); delay(TC2/2.0 - tau2 - WFG_STOP_DELAY - POWER_DELAY - gt10 - gstab -2.0e-6); decrgpulse(pwc,zero,0.0,0.0); dec3rgpulse(pwd1,two,4.0e-6,0.0); } if(CT_flg[A] == 'y' && n_shift[A] == 'y') { dec2phase(t2); delay(2.0e-6); dec2rgpulse((pwn-pwc)/2.0,t2,0.0,0.0); sim3pulse(0.0e-6,pwc,pwc,zero,t2,t2,0.0,0.0); dec2rgpulse((pwn-pwc)/2.0,t2,0.0,0.0); decphase(zero); delay(tau2); decphase(zero); decpower(d_co180); sim3shaped_pulse(Hshp,co_shp,"hard",pwhshp,pwco180,0.0e-6,zero,zero,zero,4.0e-6,2.0e-6); decpower(d_ibca); decshaped_pulse(shibca,pwibca,zero,4.0e-6,0.0); decphase(zero); delay(TC2/2.0 - tau2 - POWER_DELAY - 4.0e-6 - WFG3_START_DELAY - pwco180 - WFG3_STOP_DELAY - 2.0e-6 - POWER_DELAY - WFG_START_DELAY - 4.0e-6 - pwibca - WFG_STOP_DELAY - pwd1 - gt10 - gstab -2.0e-6 - POWER_DELAY - 4.0e-6 - WFG3_START_DELAY); dec3rgpulse(pwd1,zero,0.0,0.0); delay(tau2); delay(2.0e-6); zgradpulse(gzlvl10,gt10); delay(gstab); initval(1.0,v4); decstepsize(ph_reb1); dcplrphase(v4); decpower(d_reb); sim3shaped_pulse("hard",shreb,"hard",0.0e-6,pwreb,2.0*pwn,zero,zero,zero,4.0e-6,0.0); dcplrphase(zero); decphase(t7); decpower(d_ibca); decshaped_pulse(shibcai,pwibca,t7,4.0e-6,0.0); decpower(dhpwr); decphase(zero); delay(2.0e-6); zgradpulse(gzlvl10,gt10); delay(gstab); delay(TC2/2.0 - tau2 - WFG3_STOP_DELAY - POWER_DELAY - 4.0e-6 - WFG_START_DELAY - pwibca - WFG_STOP_DELAY - POWER_DELAY - gt10 - gstab -2.0e-6); dec2rgpulse((pwn-pwc)/2.0,zero,0.0,0.0); sim3pulse(0.0e-6,pwc,pwc,zero,zero,zero,0.0,0.0); dec2rgpulse((pwn-pwc)/2.0,zero,0.0,0.0); dec3rgpulse(pwd1,two,4.0e-6,0.0); } if(CT_flg[A] == 'n' && n_shift[A] == 'n') { txphase(one); decrgpulse(pwc,t2,0.0,0.0); if(c180_flg[A] == 'n') { decphase(zero); /* seduce on */ decpower(dpwrsed); decprgon(codecseq,pwcodec,dressed); decon(); /* seduce on */ delay(tau2); rgpulse(pw,one,0.0,0.0); rgpulse(2.0*pw,zero,2.0e-6,0.0); rgpulse(pw,one,2.0e-6,0.0); dec2rgpulse(2.0*pwn,zero,0.0,0.0); delay(tau2); /* seduce off */ decoff(); decprgoff(); decpower(dhpwr); /* seduce off */ } else decrgpulse(2.0*pwc,zero,4.0e-6,0.0); decrgpulse(pwc,zero,4.0e-6,0.0); } if(CT_flg[A] == 'n' && n_shift[A] == 'y') { txphase(one); dec2phase(t2); dec2rgpulse((PI-2.0)/PI*(pwn-pwc),t2,2.0e-6,0.0); sim3pulse(0.0e-6,pwc,pwc,zero,t2,t2,0.0,0.0); dec2rgpulse((2.0/PI)*(pwn-pwc),t2,0.0,0.0); if(c180_flg[A] == 'n') { decphase(zero); /* seduce on */ decpower(dpwrsed); decprgon(codecseq,pwcodec,dressed); decon(); /* seduce on */ delay(tau2); rgpulse(pw,one,0.0,0.0); rgpulse(2.0*pw,zero,2.0e-6,0.0); rgpulse(pw,one,2.0e-6,0.0); delay(tau2); /* seduce off */ decoff(); decprgoff(); /* note that ca-n evolves ; keep t2,max <= 9.5ms */ decpower(dhpwr); /* seduce off */ } else sim3pulse(0.0,2.0*pwc,2.0*pwn,zero,zero,zero,4.0e-6,0.0); dec2rgpulse((2.0/PI)*(pwn-pwc),zero,4.0e-6,0.0); sim3pulse(0.0e-6,pwc,pwc,zero,zero,zero,0.0,0.0); dec2rgpulse((PI-2.0)/PI*(pwn-pwc),zero,0.0,0.0); } delay(2.0e-6); zgradpulse(gzlvl11,gt11); delay(gstab); lk_sample(); rgpulse(pw,t8,4.0e-6,0.0); /* 90 deg 1H pulse */ delay(2.0e-6); zgradpulse(gzlvl12,gt12); delay(2.0e-6); decpower(d_ib); if(n_shift[A] == 'n') { delay(taua - gt12 - 4.0e-6 - WFG2_START_DELAY - POWER_DELAY); simshaped_pulse(Hshp,shib,pwhshp,pwib,t8,zero,0.0,0.0); decphase(zero); } else { delay(taua - gt12 - 4.0e-6 - WFG3_START_DELAY - POWER_DELAY); sim3shaped_pulse(Hshp,shib,"hard",pwhshp,pwib,2.0*pwn,t8,zero,zero,0.0,0.0); } delay(2.0e-6); zgradpulse(gzlvl12,gt12); delay(2.0e-6); if(n_shift[A] == 'n') delay(taua - gt12 - 4.0e-6 - WFG2_STOP_DELAY - 2.0*POWER_DELAY); else delay(taua - gt12 - 4.0e-6 - WFG3_STOP_DELAY - 2.0*POWER_DELAY); decpower(dpwr); /* Set power for decoupling */ dec2power(dpwr2); /* Set power for decoupling */ rgpulse(pw,t8,0.0,rof2); /* BEGIN ACQUISITION */ status(C); setreceiver(t9); }
pulsesequence() { /* DECLARE VARIABLES */ char autocal[MAXSTR], /* auto-calibration flag */ fsat[MAXSTR], fscuba[MAXSTR], f1180[MAXSTR], /* Flag to start t1 @ halfdwell */ f2180[MAXSTR], /* Flag to start t2 @ halfdwell */ fc180[MAXSTR], /* Flag for checking sequence */ ddseq[MAXSTR], /* deuterium decoupling sequence */ spcosed[MAXSTR], /* waveform Co seduce 180 */ spcareb[MAXSTR], /* waveform Ca reburp 180 */ spca180[MAXSTR], /* waveform Ca hard 180 */ sel_flg[MAXSTR], shp_sl[MAXSTR], cacb_dec[MAXSTR], cacbdecseq[MAXSTR], nietl_flg[MAXSTR]; int phase, phase2, ni, icosel, t1_counter, /* used for states tppi in t1 */ t2_counter; /* used for states tppi in t2 */ double tau1, /* t1 delay */ tau2, /* t2 delay */ taua, /* ~ 1/4JNH = 2.25 ms */ taub, /* ~ 1/4JNH = 2.25 ms */ tauc, /* ~ 1/4JNCa = ~13 ms */ taud, /* ~ 1/4JCaC' = 3~4.5 ms ms */ bigTN, /* nitrogen T period */ pwc90, /* PW90 for ca nucleus @ d_c90 */ pwca180, /* PW180 for ca nucleus @ d_c180 */ pwca180dec, /* pwca180+pad */ pwcareb, /* pw180 at d_creb ~ 1.6 ms at 600 MHz */ pwcosed, /* PW180 at d_csed ~ 200us at 600 MHz */ tsatpwr, /* low level 1H trans.power for presat */ d_c90, /* power level for 13C pulses(pwc90=sqrt(15)/4delta delta is the separation between Ca and Co */ d_c180, /* power level for pwca180(sqrt(3)/2delta) */ d_creb, /* power level for pwcareb */ d_csed, /* power level for pwcosed */ sw1, /* sweep width in f1 */ sw2, /* sweep width in f2 */ pw_sl, /* selective pulse on water */ tpwrsl, /* power for pw_sl */ at, sphase, /* small angle phase shift */ sphase1, phase_sl, d_cacbdec, pwcacbdec, dres_dec, pwD, /* PW90 for higher power (pwDlvl) deut 90 */ pwDlvl, /* high power for deut 90 hard pulse */ compC, /* C-13 RF calibration parameters */ pwC, pwClvl, pwN, /* PW90 for 15N pulse */ pwNlvl, /* high dec2 pwr for 15N hard pulses */ gstab, gt1, gt2, gt3, gt4, gt5, gt6, gt7, gt8, gt9, gt10, gzlvl1, gzlvl2, gzlvl3, gzlvl4, gzlvl5, gzlvl6, gzlvl7, gzlvl8, gzlvl9, gzlvl10; /* LOAD VARIABLES */ getstr("autocal",autocal); getstr("fsat",fsat); getstr("f1180",f1180); getstr("f2180",f2180); getstr("fc180",fc180); getstr("fscuba",fscuba); getstr("ddseq",ddseq); getstr("shp_sl",shp_sl); getstr("sel_flg",sel_flg); getstr("cacb_dec",cacb_dec); getstr("nietl_flg",nietl_flg); taua = getval("taua"); taub = getval("taub"); tauc = getval("tauc"); taud = getval("taud"); bigTN = getval("bigTN"); pwN = getval("pwN"); tpwr = getval("tpwr"); tsatpwr = getval("tsatpwr"); dpwr = getval("dpwr"); pwNlvl = getval("pwNlvl"); pwD = getval("pwD"); pwDlvl = getval("pwDlvl"); phase = (int) ( getval("phase") + 0.5); phase2 = (int) ( getval("phase2") + 0.5); sw1 = getval("sw1"); sw2 = getval("sw2"); ni = getval("ni"); pw_sl = getval("pw_sl"); tpwrsl = getval("tpwrsl"); at = getval("at"); sphase = getval("sphase"); sphase1 = getval("sphase1"); phase_sl = getval("phase_sl"); gstab = getval("gstab"); gt1 = getval("gt1"); if (getval("gt2") > 0) gt2=getval("gt2"); else gt2=gt1*0.1; gt3 = getval("gt3"); gt4 = getval("gt4"); gt5 = getval("gt5"); gt6 = getval("gt6"); gt7 = getval("gt7"); gt8 = getval("gt8"); gt9 = getval("gt9"); gt10 = getval("gt10"); gzlvl1 = getval("gzlvl1"); gzlvl2 = getval("gzlvl2"); gzlvl3 = getval("gzlvl3"); gzlvl4 = getval("gzlvl4"); gzlvl5 = getval("gzlvl5"); gzlvl6 = getval("gzlvl6"); gzlvl7 = getval("gzlvl7"); gzlvl8 = getval("gzlvl8"); gzlvl9 = getval("gzlvl9"); gzlvl10 = getval("gzlvl10"); if(autocal[0]=='n') { getstr("spcosed",spcosed); getstr("spcareb",spcareb); getstr("spca180",spca180); getstr("cacbdecseq",cacbdecseq); d_c90 = getval("d_c90"); d_c180 = getval("d_c180"); d_creb = getval("d_creb"); d_csed = getval("d_csed"); pwc90 = getval("pwc90"); pwca180 = getval("pwca180"); pwca180dec = getval("pwca180dec"); pwcareb = getval("pwcareb"); pwcosed = getval("pwcosed"); d_cacbdec = getval("d_cacbdec"); pwcacbdec = getval("pwcacbdec"); dres_dec = getval("dres_dec"); } else { strcpy(spcosed,"Phard_118p"); strcpy(spcareb,"Preburp_-15p"); strcpy(spca180,"Phard_-118p"); strcpy(cacbdecseq,"Pcb_dec"); if (FIRST_FID) { compC = getval("compC"); pwC = getval("pwC"); pwClvl = getval("pwClvl"); co180 = pbox(spcosed, CO180, CA180ps, dfrq, compC*pwC, pwClvl); creb = pbox(spcareb, CREB180, CAB180ps, dfrq, compC*pwC, pwClvl); ca180 = pbox(spca180, CA180, CA180ps, dfrq, compC*pwC, pwClvl); cbdec = pbox(cacbdecseq, CBDEC,CBDECps, dfrq, compC*pwC, pwClvl); c90 = pbox("Phard90", C90, CA180ps, dfrq, compC*pwC, pwClvl); } d_c90 = c90.pwr; d_c180 = ca180.pwr; d_creb = creb.pwr; d_csed = co180.pwr; pwc90 = c90.pw; pwca180 = ca180.pw; pwca180dec = ca180.pw; pwcareb = creb.pw; pwcosed = co180.pw; d_cacbdec = cbdec.pwr; pwcacbdec = 1.0/cbdec.dmf; dres_dec = cbdec.dres; } /* LOAD PHASE TABLE */ settable(t1,2,phi1); settable(t2,4,phi2); settable(t3,8,phi3); settable(t4,2,phi4); settable(t5,1,phi5); settable(t6,8,rec); /* CHECK VALIDITY OF PARAMETER RANGES */ if(ix==1) printf("Uses shared AT in the N dimension. Choose ni2 as desired\n"); if((dm[A] == 'y' || dm[B] == 'y' || dm[C] == 'y' )) { printf("incorrect dec1 decoupler flags! "); psg_abort(1); } if((dm2[A] == 'y' || dm2[B] == 'y' || dm2[C] == 'y')) { printf("incorrect dec2 decoupler flags! Should be 'nnn' "); psg_abort(1); } if( tsatpwr > 6 ) { printf("TSATPWR too large !!! "); psg_abort(1); } if( dpwr > -16 ) { printf("DPWR too large! "); psg_abort(1); } if( dpwr2 > -16 ) { printf("DPWR2 too large! "); psg_abort(1); } if( pw > 200.0e-6 ) { printf("dont fry the probe, pw too high ! "); psg_abort(1); } if( pwN > 200.0e-6 ) { printf("dont fry the probe, pwN too high ! "); psg_abort(1); } if( gt1 > 3e-3 || gt2 > 3e-3 || gt3 > 3e-3 || gt4 > 3e-3 || gt5 > 3e-3 || gt6 > 3e-3 || gt7 > 3e-3 || gt8 > 3e-3 || gt9 > 3e-3 || gt10 > 3e-3) { printf("gti values must be < 3e-3\n"); psg_abort(1); } if(tpwrsl > 30) { printf("tpwrsl must be less than 25\n"); psg_abort(1); } if( pwDlvl > 59) { printf("pwDlvl too high\n"); psg_abort(1); } if( dpwr3 > 50) { printf("dpwr3 too high\n"); psg_abort(1); } if( pw_sl > 10e-3) { printf("too long pw_sl\n"); psg_abort(1); } if(d_cacbdec > 40) { printf("d_cacbdec is too high; < 41\n"); psg_abort(1); } if(nietl_flg[A] == 'y' && sel_flg[A] == 'y') { printf("nietl_flg and sel_flg cannot both be y\n"); psg_abort(1); } if (fc180[A] =='y' && ni > 1.0) { text_error("must set fc180='n' to allow C' evolution (ni>1)\n"); psg_abort(1); } /* Phase incrementation for hypercomplex 2D data */ if (phase == 2) tsadd(t2,1,4); if (phase2 == 2) { tsadd(t5,2,4); icosel = 1; } else icosel = -1; if (nietl_flg[A] == 'y') icosel = -1*icosel; /* Set up f1180 tau2 = t1 */ tau1 = d2; if(f1180[A] == 'y') { tau1 += ( 1.0 / (2.0*sw1) - 4.0/PI*pwc90 - POWER_DELAY - 4.0e-6 - WFG_START_DELAY - pwca180dec - WFG_STOP_DELAY - 2.0*pwN - POWER_DELAY - 4.0e-6); } if(f1180[A] == 'n') tau1 = ( tau1 - 4.0/PI*pwc90 - POWER_DELAY - 4.0e-6 - WFG_START_DELAY - pwca180dec - WFG_STOP_DELAY - 2.0*pwN - POWER_DELAY - 4.0e-6); if(tau1 < 0.2e-6) tau1 = 0.2e-6; tau1 = tau1/2.0; /* Set up f2180 tau2 = t2 */ tau2 = d3; if(f2180[A] == 'y') { tau2 += ( 1.0 / (2.0*sw2) ); if(tau2 < 0.2e-6) tau2 = 0.2e-6; } tau2 = tau2/2.0; /* Calculate modifications to phases for States-TPPI acquisition */ if( ix == 1) d2_init = d2 ; t1_counter = (int) ( (d2-d2_init)*sw1 + 0.5 ); if(t1_counter % 2) { tsadd(t2,2,4); tsadd(t6,2,4); } if( ix == 1) d3_init = d3 ; t2_counter = (int) ( (d3-d3_init)*sw2 + 0.5 ); if(t2_counter % 2) { tsadd(t3,2,4); tsadd(t6,2,4); } /* BEGIN ACTUAL PULSE SEQUENCE */ status(A); obspower(tsatpwr); /* Set transmitter power for 1H presaturation */ decpower(d_c180); /* Set Dec1 power to high power */ dec2power(pwNlvl); /* Set Dec2 power for 15N hard pulses */ decoffset(dof); /* Presaturation Period */ if (fsat[0] == 'y') { delay(2.0e-5); rgpulse(d1,zero,2.0e-6,2.0e-6); obspower(tpwr); /* Set transmitter power for hard 1H pulses */ delay(2.0e-5); if(fscuba[0] == 'y') { delay(2.2e-2); rgpulse(pw,zero,2.0e-6,0.0); rgpulse(2*pw,one,2.0e-6,0.0); rgpulse(pw,zero,2.0e-6,0.0); delay(2.2e-2); } } else { delay(d1); } obspower(tpwr); /* Set transmitter power for hard 1H pulses */ txphase(zero); dec2phase(zero); delay(1.0e-5); /* Begin Pulses */ status(B); rcvroff(); lk_hold(); delay(20.0e-6); initval(1.0,v2); obsstepsize(phase_sl); xmtrphase(v2); /* shaped pulse */ obspower(tpwrsl); shaped_pulse(shp_sl,pw_sl,one,4.0e-6,0.0); xmtrphase(zero); obspower(tpwr); txphase(zero); delay(4.0e-6); /* shaped pulse */ rgpulse(pw,zero,0.0,0.0); /* 90 deg 1H pulse */ delay(0.2e-6); zgradpulse(gzlvl5,gt5); delay(2.0e-6); delay(taua - gt5 - 2.2e-6); /* taua <= 1/4JNH */ sim3pulse(2*pw,0.0,2*pwN,zero,zero,zero,0.0,0.0); txphase(three); dec2phase(zero); decphase(zero); delay(taua - gt5 - 200.2e-6 - 2.0e-6); delay(0.2e-6); zgradpulse(gzlvl5,gt5); delay(200.0e-6); if (sel_flg[A] == 'n') { rgpulse(pw,three,2.0e-6,0.0); decpower(d_c180); delay(0.2e-6); zgradpulse(gzlvl3,gt3); delay(200.0e-6); dec2rgpulse(pwN,zero,0.0,0.0); delay(tauc); dec2rgpulse(2*pwN,zero,0.0,0.0); decrgpulse(pwca180,zero,0.0,0.0); dec2phase(one); delay(tauc - pwca180); dec2rgpulse(pwN,one,0.0,0.0); } else { rgpulse(pw,one,2.0e-6,0.0); decpower(d_c180); initval(1.0,v5); dec2stepsize(45.0); dcplr2phase(v5); delay(0.2e-6); zgradpulse(gzlvl3,gt3); delay(200.0e-6); dec2rgpulse(pwN,zero,0.0,0.0); dcplr2phase(zero); delay(1.34e-3 - SAPS_DELAY - 2.0*pw); rgpulse(pw,one,0.0,0.0); rgpulse(2.0*pw,zero,0.0,0.0); rgpulse(pw,one,0.0,0.0); delay(tauc - 1.34e-3 - 2.0*pw); dec2rgpulse(2*pwN,zero,0.0,0.0); decrgpulse(pwca180,zero,0.0,0.0); dec2phase(one); delay(tauc - pwca180); dec2rgpulse(pwN,one,0.0,0.0); } /* END sel_flg */ decphase(t1); decpower(d_c90); delay(0.2e-6); zgradpulse(gzlvl8,gt8); delay(200.0e-6); /* Cay to CaxC'z */ dec2phase(zero); txphase(zero); /* Turn on D decoupling using the third decoupler */ dec3phase(one); dec3power(pwDlvl); dec3rgpulse(pwD,one,4.0e-6,0.0); dec3phase(zero); dec3power(dpwr3); dec3unblank(); setstatus(DEC3ch, TRUE, 'w', FALSE, dmf3); /* Turn on D decoupling */ if (cacb_dec[A] == 'n') { decrgpulse(pwc90,t1,2.0e-6,0.0); delay(taud -POWER_DELAY -4.0e-6 -WFG_START_DELAY); initval(1.0,v3); decstepsize(sphase); dcplrphase(v3); decpower(d_creb); decshaped_pulse(spcareb,pwcareb,zero,4.0e-6,0.0); dcplrphase(zero); decpower(d_csed); decshaped_pulse(spcosed,pwcosed,zero,4.0e-6,0.0); delay(taud - WFG_STOP_DELAY - POWER_DELAY - 4.0e-6 - WFG_START_DELAY - pwcosed - WFG_STOP_DELAY - POWER_DELAY - 2.0e-6); decpower(d_c90); decrgpulse(pwc90,one,2.0e-6,0.0); } else { decrgpulse(pwc90,t1,2.0e-6,0.0); /* CaCb dec on */ decpower(d_cacbdec); decprgon(cacbdecseq,pwcacbdec,dres_dec); decon(); /* CaCb dec on */ delay(taud - POWER_DELAY - PRG_START_DELAY - PRG_STOP_DELAY - POWER_DELAY - 4.0e-6 - WFG_START_DELAY); /* CaCb dec off */ decoff(); decprgoff(); /* CaCb dec off */ initval(1.0,v3); decstepsize(sphase); dcplrphase(v3); decpower(d_creb); decshaped_pulse(spcareb,pwcareb,zero,4.0e-6,0.0); dcplrphase(zero); decpower(d_csed); decshaped_pulse(spcosed,pwcosed,zero,4.0e-6,0.0); /* CaCb dec on */ decpower(d_cacbdec); decprgon(cacbdecseq,pwcacbdec,dres_dec); decon(); /* CaCb dec on */ delay(taud - WFG_STOP_DELAY - POWER_DELAY - 4.0e-6 - WFG_START_DELAY - pwcosed - WFG_STOP_DELAY - POWER_DELAY - PRG_START_DELAY - PRG_STOP_DELAY - POWER_DELAY - 2.0e-6); /* CaCb dec off */ decoff(); decprgoff(); /* CaCb dec off */ decpower(d_c90); decrgpulse(pwc90,one,2.0e-6,0.0); } /* END cacb_dec */ /* Turn off D decoupling */ setstatus(DEC3ch, FALSE, 'c', FALSE, dmf3); dec3blank(); dec3phase(three); dec3power(pwDlvl); dec3rgpulse(pwD,three,4.0e-6,0.0); /* Turn off D decoupling */ decoffset(dof+(174-56)*dfrq); /* change Dec1 carrier to Co */ delay(2.0e-7); zgradpulse(gzlvl4,gt4); delay(100.0e-6); /* t1 period for C' chemical shift evolution; Ca 180 and N 180 are used to decouple */ decrgpulse(pwc90,t2,2.0e-6,0.0); if (fc180[A]=='n') { decpower(d_c180); delay(tau1); decshaped_pulse(spca180,pwca180dec,zero,4.0e-6,0.0); dec2rgpulse(2*pwN,zero,0.0,0.0); delay(tau1); decpower(d_c90); } else decrgpulse(2*pwc90,zero,0.0,0.0); decrgpulse(pwc90,zero,4.0e-6,0.0); decoffset(dof); /* set carrier to Ca */ delay(2.0e-7); zgradpulse(gzlvl9,gt9); delay(100.0e-6); /* Refocusing CayC'z to Cax */ /* Turn on D decoupling using the third decoupler */ dec3phase(one); dec3power(pwDlvl); dec3rgpulse(pwD,one,4.0e-6,0.0); dec3phase(zero); dec3power(dpwr3); dec3unblank(); setstatus(DEC3ch, TRUE, 'w', FALSE, dmf3); /* Turn on D decoupling */ if (cacb_dec[A] == 'n') { decrgpulse(pwc90,zero,0.0e-6,0.0); delay(taud - POWER_DELAY - 4.0e-6 - WFG_START_DELAY - pwcosed - WFG_STOP_DELAY - POWER_DELAY - 4.0e-6 - WFG_START_DELAY); decpower(d_csed); decshaped_pulse(spcosed,pwcosed,zero,4.0e-6,0.0); decpower(d_creb); initval(1.0,v4); decstepsize(sphase1); dcplrphase(v4); decshaped_pulse(spcareb,pwcareb,zero,4.0e-6,0.0); dcplrphase(zero); delay(taud - WFG_STOP_DELAY - POWER_DELAY - 4.0e-6); decpower(d_c90); decrgpulse(pwc90,one,4.0e-6,0.0); } else { decrgpulse(pwc90,zero,0.0e-6,0.0); /* CaCb dec on */ decpower(d_cacbdec); decprgon(cacbdecseq,pwcacbdec,dres_dec); decon(); /* CaCb dec on */ delay(taud - POWER_DELAY - PRG_START_DELAY - PRG_STOP_DELAY - POWER_DELAY - 4.0e-6 - WFG_START_DELAY - pwcosed - WFG_STOP_DELAY - POWER_DELAY - 4.0e-6 - WFG_START_DELAY); /* CaCb dec off */ decoff(); decprgoff(); /* CaCb dec off */ decpower(d_csed); decshaped_pulse(spcosed,pwcosed,zero,4.0e-6,0.0); decpower(d_creb); initval(1.0,v4); decstepsize(sphase1); dcplrphase(v4); decshaped_pulse(spcareb,pwcareb,zero,4.0e-6,0.0); dcplrphase(zero); /* CaCb dec on */ decpower(d_cacbdec); decprgon(cacbdecseq,pwcacbdec,dres_dec); decon(); /* CaCb dec on */ delay(taud - WFG_STOP_DELAY - POWER_DELAY - PRG_START_DELAY - PRG_STOP_DELAY - POWER_DELAY - 4.0e-6); /* CaCb dec off */ decoff(); decprgoff(); /* CaCb dec off */ decpower(d_c90); decrgpulse(pwc90,one,4.0e-6,0.0); } /* END cacb_dec */ /* Turn off D decoupling */ setstatus(DEC3ch, FALSE, 'c', FALSE, dmf3); dec3blank(); dec3phase(three); dec3power(pwDlvl); dec3rgpulse(pwD,three,4.0e-6,0.0); /* Turn off D decoupling */ decpower(d_c180); txphase(zero); delay(2.0e-7); zgradpulse(gzlvl10,gt10); delay(100.0e-6); /* Constant t2 period */ if (bigTN - tau2 >= 0.2e-6) { dec2rgpulse(pwN,t3,2.0e-6,0.0); dec2phase(t4); delay(bigTN - tau2 + pwca180); dec2rgpulse(2*pwN,t4,0.0,0.0); decrgpulse(pwca180,zero,0.0,0.0); dec2phase(t5); decpower(d_csed); delay(bigTN - gt1 - 502.0e-6 - 2.0*GRADIENT_DELAY - POWER_DELAY - WFG_START_DELAY - pwcosed - WFG_STOP_DELAY); delay(2.0e-6); zgradpulse(gzlvl1,gt1); delay(500.0e-6); decshaped_pulse(spcosed,pwcosed,zero,0.0,0.0); delay(tau2); sim3pulse(pw,0.0e-6,pwN,zero,zero,t5,0.0,0.0); } else { dec2rgpulse(pwN,t3,2.0e-6,0.0); dec2rgpulse(2.0*pwN,t4,2.0e-6,2.0e-6); dec2phase(t5); delay(tau2 - bigTN); decrgpulse(pwca180,zero,0.0,0.0); decpower(d_csed); delay(bigTN - pwca180 - POWER_DELAY - gt1 - 502.0e-6 - 2.0*GRADIENT_DELAY - WFG_START_DELAY - pwcosed - WFG_STOP_DELAY); delay(2.0e-6); zgradpulse(gzlvl1,gt1); delay(500.0e-6); decshaped_pulse(spcosed,pwcosed,zero,0.0,0.0); delay(tau2); sim3pulse(pw,0.0e-6,pwN,zero,zero,t5,0.0,0.0); } if (nietl_flg[A] == 'n') { delay(0.2e-6); zgradpulse(gzlvl6,gt6); delay(2.0e-6); dec2phase(zero); delay(taub - gt6 - 2.2e-6); sim3pulse(2*pw,0.0e-6,2*pwN,zero,zero,zero,0.0,0.0); delay(0.2e-6); zgradpulse(gzlvl6,gt6); delay(200.0e-6); delay(taub - gt6 - 200.2e-6); txphase(one); dec2phase(one); sim3pulse(pw,0.0e-6,pwN,one,zero,one,0.0,0.0); delay(0.2e-6); zgradpulse(gzlvl7,gt7); delay(2.0e-6); txphase(zero); dec2phase(zero); delay(taub - gt7 - 2.2e-6); sim3pulse(2*pw,0.0e-6,2*pwN,zero,zero,zero,0.0,0.0); delay(0.2e-6); zgradpulse(gzlvl7,gt7); delay(200.0e-6); delay(taub - gt7 - 200.2e-6); sim3pulse(pw,0.0e-6,pwN,zero,zero,zero,0.0,0.0); } else { /* shaped pulse */ obspower(tpwrsl); shaped_pulse(shp_sl,pw_sl,zero,4.0e-6,0.0); obspower(tpwr); txphase(zero); delay(4.0e-6); /* shaped pulse */ delay(0.2e-6); zgradpulse(gzlvl6,gt6); delay(2.0e-6); dec2phase(zero); delay(taub - POWER_DELAY - 4.0e-6 - WFG_START_DELAY - pw_sl - WFG_STOP_DELAY - POWER_DELAY - 4.0e-6 - gt6 - 2.2e-6); sim3pulse(2*pw,0.0e-6,2*pwN,zero,zero,zero,0.0,0.0); txphase(one); dec2phase(zero); delay(0.2e-6); zgradpulse(gzlvl6,gt6); delay(200.0e-6); delay(taub - gt6 - 200.2e-6); sim3pulse(pw,0.0e-6,pwN,one,zero,zero,0.0,0.0); delay(0.2e-6); zgradpulse(gzlvl7,gt7); delay(2.0e-6); txphase(zero); dec2phase(zero); delay(taub - gt7 - 2.2e-6); sim3pulse(2*pw,0.0e-6,2*pwN,zero,zero,zero,0.0,0.0); txphase(one); dec2phase(one); delay(0.2e-6); zgradpulse(gzlvl7,gt7); delay(200.0e-6); delay(taub - gt7 - 200.2e-6); sim3pulse(pw,0.0e-6,pwN,one,zero,one,0.0,0.0); txphase(zero); } delay(gt2 +gstab -0.5*(pwN -pw) -2.0*pw/PI); rgpulse(2*pw,zero,0.0,0.0); delay(2.0e-6); zgradpulse(icosel*gzlvl2, gt2); decpower(dpwr); dec2power(dpwr2); delay(gstab -2.0e-6 -2.0*GRADIENT_DELAY -2.0*POWER_DELAY); lk_sample(); status(C); setreceiver(t6); }