コード例 #1
0
ファイル: zetaconsts.c プロジェクト: BigEd/wp34s
void zetadk(decNumber *dk, int n, int k, decContext *ctx) {
	int i;
	decNumber t, r, s, v, sum, const_4;

	int_to_dn(&const_4, 4, ctx);
	decNumberZero(&sum);
	for (i=0; i<=k; i++) {
		int_to_dn(&t, n+i-1, ctx);
		decNumberFactorial(&s, &t, ctx);
		int_to_dn(&t, i, ctx);
		decNumberPower(&r, &const_4, &t, ctx);
		decNumberMultiply(&v, &s, &r, ctx);
		int_to_dn(&t, n-i, ctx);
		decNumberFactorial(&s, &t, ctx);
		int_to_dn(&t, 2*i, ctx);
		decNumberFactorial(&r, &t, ctx);
		decNumberMultiply(&t, &r, &s, ctx);
		decNumberDivide(&r, &v, &t, ctx);
		decNumberAdd(&sum, &sum, &r, ctx);
	}
	int_to_dn(&t, n, ctx);
#if 1
	// Don't bother rounding to int, the conversion in compile_consts
	// will do this if required due to the extra precision being carries.
	decNumberMultiply(dk, &t, &sum, ctx);
#else
	// We can round this to integers this way....
	decNumberMultiply(&s, &t, &sum, ctx);
	decNumberToIntegralValue(dk, &s, ctx);
#endif
}
コード例 #2
0
ファイル: ilogbd32.c プロジェクト: gftg85/libdfp
_RETURN_TYPE
INTERNAL_FUNCTION_NAME (DEC_TYPE x)
{
  DEC_TYPE result;
  decContext context;
  decNumber dn_result;
  decNumber dn_x;
  decNumber dn_absx;
  decNumber dn_logx;
  decNumber dn_one;
  decNumber dn_cmp;
  enum rounding round;

  FUNC_CONVERT_TO_DN (&x, &dn_x);
  if (decNumberIsZero (&dn_x))
    {
      DFP_EXCEPT (FE_INVALID);
      DFP_ERRNO (EDOM);
      return _FBLOG0;
    }
  if (decNumberIsInfinite (&dn_x))
    {
      DFP_EXCEPT (FE_INVALID);
      DFP_ERRNO (EDOM);
      return decNumberIsNegative (&dn_x) ? _MIN_VALUE : _MAX_VALUE;
    }
  if (decNumberIsNaN (&dn_x))
    {
      DFP_EXCEPT (FE_INVALID);
      DFP_ERRNO (EDOM);
      return _FBLOGNAN;
    }

  decContextDefault (&context, DEFAULT_CONTEXT);

  decNumberAbs (&dn_absx, &dn_x, &context);

  /* For DFP, we use radix 10 instead of whatever FLT_RADIX happens to be */
  decNumberLog10 (&dn_logx, &dn_absx, &context);

  /* Capture the case where truncation will return the wrong result,
     by rounding up if -1.0 < x < 1.0  */
  round = DEC_ROUND_DOWN;
  decNumberFromInt32 (&dn_one, 1);
  decNumberCompare (&dn_cmp, &dn_x, &dn_one, &context);
  if (-decNumberIsNegative(&dn_cmp))
    {
      decNumberFromInt32 (&dn_one, -1);
      decNumberCompare (&dn_cmp, &dn_x, &dn_one, &context);
      if (!decNumberIsNegative(&dn_cmp) && !decNumberIsZero(&dn_cmp))
	round = DEC_ROUND_UP;
    }
  context.round = round;

  decNumberToIntegralValue (&dn_result, &dn_logx, &context);

  FUNC_CONVERT_FROM_DN (&dn_result, &result, &context);
  /* Use _Decimal* to int casting.  */
  return (_RETURN_TYPE) result;
}
コード例 #3
0
ファイル: llroundd32.c プロジェクト: gftg85/libdfp
static __ROUND_RETURN_TYPE
IEEE_FUNCTION_NAME (DEC_TYPE x)
{
  DEC_TYPE result;
  decContext context;
  decNumber dn_result;
  decNumber dn_x;

  FUNC_CONVERT_TO_DN (&x, &dn_x);
  if (decNumberIsNaN (&dn_x) || decNumberIsInfinite (&dn_x)
	|| x > __MAX_VALUE || x < __MIN_VALUE)
    {
      DFP_EXCEPT (FE_INVALID);
      return (__ROUND_RETURN_TYPE) x;
    }

  decContextDefault (&context, DEFAULT_CONTEXT);
  context.round = __ROUND_MODE;
  decNumberToIntegralValue (&dn_result,&dn_x,&context);

  FUNC_CONVERT_FROM_DN(&dn_result, &result, &context);
  /* Use _Decimal* to __ROUND_RETURN_TYPE casting.  */
  return (__ROUND_RETURN_TYPE)result;

/*  return (__ROUND_RETURN_TYPE)decNumberToInteger (&dn_result); */
}
コード例 #4
0
INT_TYPE
DFP_TO_INT (DFP_C_TYPE x)
{
  /* decNumber's decimal* types have the same format as C's _Decimal*
     types, but they have different calling conventions.  */

  IEEE_TYPE s;
  char buf[BUFMAX];
  char *pos;
  decNumber qval, n1, n2;
  decContext context;

  decContextDefault (&context, CONTEXT_INIT);
  /* Need non-default rounding mode here.  */
  context.round = DEC_ROUND_DOWN;

  HOST_TO_IEEE (x, &s);
  TO_INTERNAL (&s, &n1);
  /* Rescale if the exponent is less than zero.  */
  decNumberToIntegralValue (&n2, &n1, &context);
  /* Get a value to use for the quantize call.  */
  decNumberFromString (&qval, (char *) "1.0", &context);
  /* Force the exponent to zero.  */
  decNumberQuantize (&n1, &n2, &qval, &context);
  /* This is based on text in N1107 section 5.1; it might turn out to be
     undefined behavior instead.  */
  if (context.status & DEC_Invalid_operation)
    {
#if defined (L_sd_to_si) || defined (L_dd_to_si) || defined (L_td_to_si)
      if (decNumberIsNegative(&n2))
        return INT_MIN;
      else
        return INT_MAX;
#elif defined (L_sd_to_di) || defined (L_dd_to_di) || defined (L_td_to_di)
      if (decNumberIsNegative(&n2))
        /* Find a defined constant that will work here.  */
        return (-9223372036854775807LL - 1LL);
      else
        /* Find a defined constant that will work here.  */
        return 9223372036854775807LL;
#elif defined (L_sd_to_usi) || defined (L_dd_to_usi) || defined (L_td_to_usi)
      return UINT_MAX;
#elif defined (L_sd_to_udi) || defined (L_dd_to_udi) || defined (L_td_to_udi)
        /* Find a defined constant that will work here.  */
      return 18446744073709551615ULL;
#endif
    }
  /* Get a string, which at this point will not include an exponent.  */
  decNumberToString (&n1, buf);
  /* Ignore the fractional part.  */
  pos = strchr (buf, '.');
  if (pos)
    *pos = 0;
  /* Use a C library function to convert to the integral type.  */
  return STR_TO_INT (buf, NULL, 10);
}
コード例 #5
0
void* decSingleToIntegralValue (decSingle* _0, const decSingle* _1, decContext* ctx, int32_t rnd) noexcept
{
  decNumber _0num;
  decNumber _1num;
  decSingleToNumber (_1, &_1num);
  enum rounding prev_rnd = ctx->round;
  ctx->round = (enum rounding)rnd;
  decNumberToIntegralValue (&_0num, &_1num, ctx);
  ctx->round = prev_rnd;
  return decSingleFromNumber (_0, &_0num, ctx);
}
コード例 #6
0
ファイル: roundevend32.c プロジェクト: gftg85/libdfp
DEC_TYPE
INTERNAL_FUNCTION_NAME (DEC_TYPE x)
{
  decContext context;
  decNumber dn_result;
  DEC_TYPE result;
  decNumber dn_x;

  FUNC_CONVERT_TO_DN (&x, &dn_x);

  decContextDefault (&context, DEFAULT_CONTEXT);
  decContextDefault (&context, DEFAULT_CONTEXT);
  context.round = DEC_ROUND_HALF_EVEN;
  decNumberToIntegralValue (&dn_result, &dn_x, &context);
  decNumberToIntegralValue (&dn_result, &dn_x, &context);

  FUNC_CONVERT_FROM_DN (&dn_result, &result, &context);

  return result;
}
コード例 #7
0
ファイル: logbd32.c プロジェクト: gftg85/libdfp
DEC_TYPE
INTERNAL_FUNCTION_NAME (DEC_TYPE x)
{
  decContext context;
  decNumber dn_result;
  DEC_TYPE result;
  decNumber dn_x;
  decNumber dn_tmp;
  decNumber dn_log10;
  decNumber dn_one;
  decNumber dn_cmp;
  enum rounding round;

  FUNC_CONVERT_TO_DN (&x, &dn_x);
  if (decNumberIsNaN (&dn_x))
    return x+x;
  if (decNumberIsInfinite (&dn_x))	/* +-Inf: Inf  */
    return DEC_INFINITY;
  if (decNumberIsZero (&dn_x))	/*  Pole Error if x==0 */
    {
      DFP_ERRNO (ERANGE);
      DFP_EXCEPT (FE_DIVBYZERO);
      return -DFP_HUGE_VAL;
    }
  if (decNumberIsInfinite (&dn_x) && decNumberIsNegative (&dn_x))
    return -x;

  decContextDefault (&context, DEFAULT_CONTEXT);
  decNumberAbs (&dn_tmp, &dn_x, &context);
  /*  For DFP, we use radix 10 instead of whatever FLT_RADIX
      happens to be */
  decNumberLog10 (&dn_log10, &dn_tmp, &context);

  /* Capture the case where truncation will return the wrong result,
     by rounding up if -1.0 < x < 1.0  */
  round = DEC_ROUND_DOWN;
  decNumberFromInt32 (&dn_one, 1);
  decNumberCompare (&dn_cmp, &dn_x, &dn_one, &context);
  if (-decNumberIsNegative(&dn_cmp))
    {
      decNumberFromInt32 (&dn_one, -1);
      decNumberCompare (&dn_cmp, &dn_x, &dn_one, &context);
      if (!decNumberIsNegative(&dn_cmp) && !decNumberIsZero(&dn_cmp))
	round = DEC_ROUND_UP;
    }
  context.round = round;

  decNumberToIntegralValue (&dn_result, &dn_log10, &context);

  FUNC_CONVERT_FROM_DN (&dn_result, &result, &context);

  return result;
}
コード例 #8
0
ファイル: roundd32.c プロジェクト: rzinsly/libdfp
DEC_TYPE
INTERNAL_FUNCTION_NAME (DEC_TYPE x)
{
  decContext context;
  decNumber dn_result;
  DEC_TYPE result;
  decNumber dn_x;

  FUNC_CONVERT_TO_DN (&x, &dn_x);
  if (decNumberIsNaN (&dn_x) || decNumberIsInfinite (&dn_x) ||
	decNumberIsZero (&dn_x))
    return x+x;

  decContextDefault (&context, DEFAULT_CONTEXT);
  context.round = __ROUND_MODE;
  decNumberToIntegralValue (&dn_result, &dn_x, &context);

  FUNC_CONVERT_FROM_DN (&dn_result, &result, &context);
  if (context.status & DEC_Overflow)
    DFP_EXCEPT (FE_OVERFLOW);

  return result;
}
コード例 #9
0
/* decNumber doesn't provide support for conversions to 64-bit integer
   types, so do it the hard way.  */
INT_TYPE
DFP_TO_INT (DFP_C_TYPE x)
{
  /* decNumber's decimal* types have the same format as C's _Decimal*
     types, but they have different calling conventions.  */

  /* TODO: Decimal float to integer conversions should raise FE_INVALID
     if the result value does not fit into the result type.  */

  IEEE_TYPE s;
  char buf[BUFMAX];
  char *pos;
  decNumber qval, n1, n2;
  decContext context;

  /* Use a large context to avoid losing precision.  */
  decContextDefault (&context, DEC_INIT_DECIMAL128);
  /* Need non-default rounding mode here.  */
  context.round = DEC_ROUND_DOWN;

  HOST_TO_IEEE (x, &s);
  TO_INTERNAL (&s, &n1);
  /* Rescale if the exponent is less than zero.  */
  decNumberToIntegralValue (&n2, &n1, &context);
  /* Get a value to use for the quantize call.  */
  decNumberFromString (&qval, (char *) "1.", &context);
  /* Force the exponent to zero.  */
  decNumberQuantize (&n1, &n2, &qval, &context);
  /* Get a string, which at this point will not include an exponent.  */
  decNumberToString (&n1, buf);
  /* Ignore the fractional part.  */
  pos = strchr (buf, '.');
  if (pos)
    *pos = 0;
  /* Use a C library function to convert to the integral type.  */
  return STR_TO_INT (buf, NULL, 10);
}
コード例 #10
0
ファイル: powd32.c プロジェクト: gftg85/libdfp
static DEC_TYPE
IEEE_FUNCTION_NAME (DEC_TYPE x, DEC_TYPE y)
{
  decContext context;
  decNumber dn_result;
  DEC_TYPE result;
  DEC_TYPE absx;
  decNumber dn_x;
  decNumber dn_absx;
  decNumber dn_y;
  decNumber dn_one;
  decNumber dn_two;
  decNumber dn_temp;
  decNumber dn_temp2;
  decNumber dn_temp3;
  int y_is_int;
  int y_is_oddint=0;
  int abs_x_vs_1;
  DEC_TYPE one = DFP_CONSTANT(1.0);
  DEC_TYPE two = DFP_CONSTANT(2.0);

  FUNC_CONVERT_TO_DN (&x, &dn_x);
  FUNC_CONVERT_TO_DN (&y, &dn_y);
  FUNC_CONVERT_TO_DN (&one, &dn_one);

  decContextDefault (&context, DEFAULT_CONTEXT);
  if (decNumberIsZero (&dn_y))
    return one;
  if (decNumberIsNaN (&dn_x))
    return x+x;

  decNumberAbs (&dn_absx, &dn_x, &context);

  FUNC_CONVERT_FROM_DN (&dn_absx, &absx, &context);
  if(absx<one)
    abs_x_vs_1 = -1;
  else if (absx==one)
    abs_x_vs_1 = 0;
  else
    abs_x_vs_1 = 1;

/*  abs_x_vs_1 = decCompare(&dn_absx, &dn_one); */
  if(abs_x_vs_1 == 0 && !decNumberIsNegative (&dn_x)) /*  If x == +1 */
    return one;
  if (decNumberIsNaN (&dn_y))
    return y+y;

  /*  Detect if y is odd/an integer */
  decNumberToIntegralValue (&dn_temp, &dn_y, &context);
  decNumberSubtract (&dn_temp2, &dn_temp, &dn_y, &context);
  y_is_int = decNumberIsZero (&dn_temp2);
  if (y_is_int)
    {
      FUNC_CONVERT_TO_DN (&two, &dn_two);
      decNumberDivide (&dn_temp, &dn_y, &dn_two, &context);
      decNumberToIntegralValue (&dn_temp2, &dn_temp, &context);
      decNumberSubtract (&dn_temp3, &dn_temp2, &dn_temp, &context);
      y_is_oddint = !decNumberIsZero (&dn_temp3);
    }

  /*  Handle all special cases for which x = +-0 */
  if (decNumberIsZero (&dn_x))
    {
      if(decNumberIsNegative (&dn_y))
	{
	  if (decNumberIsInfinite (&dn_y))	/*  +-0^-Inf = +Inf */
	    return -y;
	  /*  Pole Error for x = +-0, y < 0 */
	  DFP_EXCEPT (FE_DIVBYZERO);
	  return decNumberIsNegative(&dn_x) && y_is_oddint ?
		-DFP_HUGE_VAL : DFP_HUGE_VAL;
	}
      return decNumberIsNegative(&dn_x) && y_is_oddint ?
		-DFP_CONSTANT(0.0) : DFP_CONSTANT(0.0);
    }

  /* Handle remaining special cases for x = +-Inf or y = +-Inf */
  if (decNumberIsInfinite (&dn_x) || decNumberIsInfinite (&dn_y))
    {
      if (abs_x_vs_1 == 0)	/*  If (-1)^(+-Inf) */
	return one;
      if (abs_x_vs_1 < 0)	/*  x^(+-Inf), where 0<x<1 */
	return decNumberIsNegative (&dn_y) ? DFP_HUGE_VAL
		: DFP_CONSTANT(0.0);
      if (decNumberIsNegative (&dn_y))
	result = DFP_CONSTANT(0.0);
      else
	result = (DEC_TYPE)DEC_INFINITY;
      if (y_is_oddint && decNumberIsNegative(&dn_x))
	result = -result;
      return result;
    }

  /* Domain Error: x < 0 && y is a finite non-int */
  if (decNumberIsNegative (&dn_x) && !y_is_int)
    {
      DFP_EXCEPT (FE_INVALID);
      return DFP_NAN;
    }

  decNumberPower (&dn_result, &dn_x, &dn_y, &context);
  FUNC_CONVERT_FROM_DN (&dn_result, &result, &context);

  if (context.status & DEC_Overflow)
    DFP_EXCEPT (FE_OVERFLOW);
  if (context.status & DEC_Underflow)
    DFP_EXCEPT (FE_UNDERFLOW);

  return result;
}