bool MarkerDetector::findMarkers(const BGRAVideoFrame& frame, std::vector<Marker>& detectedMarkers) { cv::Mat bgraMat(frame.height, frame.width, CV_8UC3, frame.data, frame.stride); // Convert the image to grayscale prepareImage(bgraMat, m_grayscaleImage); // Make it binary performThreshold(m_grayscaleImage, m_thresholdImg); // Detect contours findContours(m_thresholdImg, m_contours, m_grayscaleImage.cols / 20); // Find closed contours that can be approximated with 4 points findMarkerCandidates(m_contours, detectedMarkers); // Find is them are markers detectMarkers(m_grayscaleImage, detectedMarkers); // Calcualte their poses estimatePosition(detectedMarkers); //sort by id std::sort(detectedMarkers.begin(), detectedMarkers.end()); return false; }
// The workflow of the marker detection routine is the following: // 1. convert the input image to grayscale; // 2. perform a binary threshold operation; // 3. detect contours; // 4. search for possible markers; // 5. detect and decode markers; // 6. estimate marker 3D pose. void MarkerDetector::processFrame(const cv::Mat& frame) { // ... std::vector<Marker> markers; //cv::Mat bgraMat( frame.rows, frame.cols, CV_8UC4 ); //cv::cvtColor( frame, bgraMat, CV_BGR2BGRA ); // Convert the image to grayscale. // See: http://docs.opencv.org/modules/imgproc/doc/miscellaneous_transformations.html#cvtcolor // The conversion to grayscale is necessary because markers usually contain only black and white blocks. // So it is much easier to operate with them using grayscale images. //cv::cvtColor( bgraMat, grayscaleImage, CV_BGRA2GRAY ); cv::cvtColor(frame, grayscaleImage, CV_BGR2GRAY); // Make it binary. // See: http://docs.opencv.org/modules/imgproc/doc/miscellaneous_transformations.html#adaptivethreshold // The binarization operation will transform each pixel of our image to black (0 intensity) or white (255 intensity). // This step is required to find contours. cv::threshold(grayscaleImage, thresholdImg, 127.0, 255.0, cv::THRESH_BINARY_INV); #ifdef _DEBUG cv::imshow("THR", thresholdImg); #endif // Detect contours. MarkerDetector::findContours(thresholdImg, contours, grayscaleImage.cols / 5); #ifdef _DEBUG cv::Mat contoursImage(thresholdImg.size(), CV_8UC1); contoursImage = cv::Scalar(0); // See: http://docs.opencv.org/modules/imgproc/doc/structural_analysis_and_shape_descriptors.html#drawcontours cv::drawContours(contoursImage, contours, -1, cv::Scalar(255), 2, CV_AA); cv::imshow("CNT", contoursImage); #endif // Find closed contours that can be approximated with 4 points. findMarkerCandidates(contours, markers); // Find if there are markers. detectMarkers(grayscaleImage, markers); // Calcualte their poses. estimatePosition(markers); // Sort by id. // See: http://www.cplusplus.com/reference/algorithm/sort/ std::sort(markers.begin(), markers.end()); // ... transformations.clear(); ids.clear(); for (size_t i = 0; i < markers.size(); i++) { transformations.push_back(markers[i].transformation); ids.push_back(markers[i].id); } }
void ofxAruco::detectBoard(ofPixels & pixels){ detectMarkers(pixels); boardProbability = boardDetector.detect(markers,boardConfig,board,camParams,markerSize); }