コード例 #1
0
ファイル: mymatrix.cpp プロジェクト: Guildenstern/Tartini
/** Matrix inverse assuming the array follows this index pattern.
  * [0 1 2]
  * [3 4 5]
  * [6 7 8]
  * @param x matrix to invert
  * @param y stores the result in y
  * @return true if the matrix was inverted. false if no solution.
  */
bool invert3x3matrix(const double *x, double *y)
{
  double det = determinant3x3(x);
  if(fabs(det) < MY_EPSILON) return false;
  y[0] = determinant2x2(x[4], x[5], x[7], x[8]) / det;
  y[1] = determinant2x2(x[2], x[1], x[8], x[7]) / det;
  y[2] = determinant2x2(x[1], x[2], x[4], x[5]) / det;
  y[3] = determinant2x2(x[5], x[3], x[8], x[6]) / det;
  y[4] = determinant2x2(x[0], x[2], x[6], x[8]) / det;
  y[5] = determinant2x2(x[2], x[0], x[5], x[3]) / det;
  y[6] = determinant2x2(x[3], x[4], x[6], x[7]) / det;
  y[7] = determinant2x2(x[1], x[0], x[7], x[6]) / det;
  y[8] = determinant2x2(x[0], x[1], x[3], x[4]) / det;
  return true;
}
コード例 #2
0
ファイル: mymatrix.cpp プロジェクト: Guildenstern/Tartini
/** Matrix inverse assuming the array follows this index pattern.
  * [0  1]
  * [2  3]
  * @return true if the matrix was inverted. false if no solution.
  */
bool invert2x2matrix(const double *input, double *output)
{
  double det = determinant2x2(input[0], input[1], input[2], input[3]);
  if(fabs(det) < MY_EPSILON) return false;
  output[0] = input[3] / det;
  output[1] = -input[1] / det;
  output[2] = -input[2] / det;
  output[3] = input[0] / det;
  return true;
}
コード例 #3
0
double determinant(const Matrix& mat)
{
    if(mat.getm()==1)
        return determinant1x1(mat);
    else if(mat.getm()==2)
        return determinant2x2(mat);
    else if(mat.getm()==3)
        return determinant3x3(mat);
    
    double det = 0;
    
    Matrix * subMat[mat.getm()]; 
    for(int i=0; i<mat.getm(); i++)
    {
       subMat[i] = new Matrix(mat.getm()-1, mat.getm()-1); 
    }
    
    for(int i=0; i<mat.getm(); i++)
    {
        for(int j=0; j<mat.getm()-1; j++)
        {
            for(int k=0, l=0; k<mat.getm()-1; k++,l++)
            {
                if(i==l)
                    l++; 
                (*(subMat[i]))[j][k]=mat[j+1][l];
            }
        }   
    }
    
    for(int i=0, sign=1; i<mat.getm(); i++)
    {
        det+=sign*mat[0][i]*determinant(*subMat[i]);
        if(sign==-1)
            sign=1;
        else
            sign=-1;
    }
    
    for(int i=0; i<mat.getm(); i++)
    {
       delete subMat[i];
    }
    return det;
}
コード例 #4
0
static double determinant3x3(double a1, double a2, double a3, double b1, double b2, double b3, double c1, double c2, double c3)
{
    return a1 * determinant2x2(b2, b3, c2, c3)
         - b1 * determinant2x2(a2, a3, c2, c3)
         + c1 * determinant2x2(a2, a3, b2, b3);
}