コード例 #1
0
/*
 * keypad controller should be initialized in the following sequence
 * only, otherwise it might get into FSM stuck state.
 *
 * - Initialize keypad control parameters, like no. of rows, columns,
 *   timing values etc.,
 * - configure rows and column gpios pull up/down.
 * - set irq edge type.
 * - enable the keypad controller.
 */
static int __devinit pmic8xxx_kp_probe(struct platform_device *pdev)
{
	const struct pm8xxx_keypad_platform_data *pdata =
					dev_get_platdata(&pdev->dev);
	const struct matrix_keymap_data *keymap_data;
	struct pmic8xxx_kp *kp;
	int rc;
	u8 ctrl_val;

	struct pm_gpio kypd_drv = {
		.direction	= PM_GPIO_DIR_OUT,
		.output_buffer	= PM_GPIO_OUT_BUF_OPEN_DRAIN,
		.output_value	= 0,
		.pull		= PM_GPIO_PULL_NO,
		.vin_sel	= PM_GPIO_VIN_S4,
		.out_strength	= PM_GPIO_STRENGTH_LOW,
		.function	= PM_GPIO_FUNC_1,
		.inv_int_pol	= 1,
	};

	struct pm_gpio kypd_sns = {
		.direction	= PM_GPIO_DIR_IN,
		.pull		= PM_GPIO_PULL_UP_31P5,
		.vin_sel	= PM_GPIO_VIN_S4,
		.out_strength	= PM_GPIO_STRENGTH_NO,
		.function	= PM_GPIO_FUNC_NORMAL,
		.inv_int_pol	= 1,
	};

/* IDPower GPIO ISV add */
        struct pm_gpio kypd_sns_dis_pin = {
                .direction      = PM_GPIO_DIR_IN,
                .pull           = PM_GPIO_PULL_UP_31P5,
                .vin_sel        = PM_GPIO_VIN_S4,
                .out_strength   = PM_GPIO_STRENGTH_NO,
                .function       = PM_GPIO_FUNC_NORMAL,
                .inv_int_pol    = 1,
                .disable_pin     = 1,
        };
/* IDPower GPIO ISV add */

	if (!pdata || !pdata->num_cols || !pdata->num_rows ||
		pdata->num_cols > PM8XXX_MAX_COLS ||
		pdata->num_rows > PM8XXX_MAX_ROWS ||
		pdata->num_cols < PM8XXX_MIN_COLS) {
		dev_err(&pdev->dev, "invalid platform data\n");
		return -EINVAL;
	}

	if (!pdata->scan_delay_ms ||
		pdata->scan_delay_ms > MAX_SCAN_DELAY ||
		pdata->scan_delay_ms < MIN_SCAN_DELAY ||
		!is_power_of_2(pdata->scan_delay_ms)) {
		dev_err(&pdev->dev, "invalid keypad scan time supplied\n");
		return -EINVAL;
	}

	if (!pdata->row_hold_ns ||
		pdata->row_hold_ns > MAX_ROW_HOLD_DELAY ||
		pdata->row_hold_ns < MIN_ROW_HOLD_DELAY ||
		((pdata->row_hold_ns % MIN_ROW_HOLD_DELAY) != 0)) {
		dev_err(&pdev->dev, "invalid keypad row hold time supplied\n");
		return -EINVAL;
	}

	if (!pdata->debounce_ms ||
		((pdata->debounce_ms % 5) != 0) ||
		pdata->debounce_ms > MAX_DEBOUNCE_TIME ||
		pdata->debounce_ms < MIN_DEBOUNCE_TIME) {
		dev_err(&pdev->dev, "invalid debounce time supplied\n");
		return -EINVAL;
	}

	keymap_data = pdata->keymap_data;
	if (!keymap_data) {
		dev_err(&pdev->dev, "no keymap data supplied\n");
		return -EINVAL;
	}

	kp = kzalloc(sizeof(*kp), GFP_KERNEL);
	if (!kp)
		return -ENOMEM;

	platform_set_drvdata(pdev, kp);

	kp->pdata	= pdata;
	kp->dev		= &pdev->dev;

	kp->input = input_allocate_device();
	if (!kp->input) {
		dev_err(&pdev->dev, "unable to allocate input device\n");
		rc = -ENOMEM;
		goto err_alloc_device;
	}

	kp->key_sense_irq = platform_get_irq(pdev, 0);
	if (kp->key_sense_irq < 0) {
		dev_err(&pdev->dev, "unable to get keypad sense irq\n");
		rc = -ENXIO;
		goto err_get_irq;
	}

	kp->key_stuck_irq = platform_get_irq(pdev, 1);
	if (kp->key_stuck_irq < 0) {
		dev_err(&pdev->dev, "unable to get keypad stuck irq\n");
		rc = -ENXIO;
		goto err_get_irq;
	}

	kp->input->name = pdata->input_name ? : "PMIC8XXX keypad";
	kp->input->phys = pdata->input_phys_device ? : "pmic8xxx_keypad/input0";

	kp->input->dev.parent	= &pdev->dev;

	kp->input->id.bustype	= BUS_I2C;
	kp->input->id.version	= 0x0001;
	kp->input->id.product	= 0x0001;
	kp->input->id.vendor	= 0x0001;

	kp->input->evbit[0]	= BIT_MASK(EV_KEY);

	if (pdata->rep)
		__set_bit(EV_REP, kp->input->evbit);

	kp->input->keycode	= kp->keycodes;
	kp->input->keycodemax	= PM8XXX_MATRIX_MAX_SIZE;
	kp->input->keycodesize	= sizeof(kp->keycodes);
	kp->input->open		= pmic8xxx_kp_open;
	kp->input->close	= pmic8xxx_kp_close;

	matrix_keypad_build_keymap(keymap_data, PM8XXX_ROW_SHIFT,
					kp->input->keycode, kp->input->keybit);

	input_set_capability(kp->input, EV_MSC, MSC_SCAN);
	input_set_drvdata(kp->input, kp);

	/* initialize keypad state */
	memset(kp->keystate, 0xff, sizeof(kp->keystate));
	memset(kp->stuckstate, 0xff, sizeof(kp->stuckstate));

	rc = pmic8xxx_kpd_init(kp);
	if (rc < 0) {
		dev_err(&pdev->dev, "unable to initialize keypad controller\n");
		goto err_get_irq;
	}

	rc = pmic8xxx_kp_config_gpio(pdata->cols_gpio_start,
					pdata->num_cols, kp, &kypd_sns);
	if (rc < 0) {
		dev_err(&pdev->dev, "unable to configure keypad sense lines\n");
		goto err_gpio_config;
	}

/* IDPower GPIO ISV add */
        /* gpio 154,155 (Hi-Z) */
        rc = pmic8xxx_kp_config_gpio( 154,  2, kp, &kypd_sns_dis_pin);
        if (rc < 0) {
                dev_err(&pdev->dev, "unable to configure keypad sense lines\n");
                goto err_gpio_config;
        }
/* IDPower GPIO ISV add */

	rc = pmic8xxx_kp_config_gpio(pdata->rows_gpio_start,
					pdata->num_rows, kp, &kypd_drv);
	if (rc < 0) {
		dev_err(&pdev->dev, "unable to configure keypad drive lines\n");
		goto err_gpio_config;
	}

	rc = request_any_context_irq(kp->key_sense_irq, pmic8xxx_kp_irq,
				 IRQF_TRIGGER_RISING, "pmic-keypad", kp);
	if (rc < 0) {
		dev_err(&pdev->dev, "failed to request keypad sense irq\n");
		goto err_get_irq;
	}

	rc = request_any_context_irq(kp->key_stuck_irq, pmic8xxx_kp_stuck_irq,
				 IRQF_TRIGGER_RISING, "pmic-keypad-stuck", kp);
	if (rc < 0) {
		dev_err(&pdev->dev, "failed to request keypad stuck irq\n");
		goto err_req_stuck_irq;
	}

	rc = pmic8xxx_kp_read_u8(kp, &ctrl_val, KEYP_CTRL);
	if (rc < 0) {
		dev_err(&pdev->dev, "failed to read KEYP_CTRL register\n");
		goto err_pmic_reg_read;
	}

	kp->ctrl_reg = ctrl_val;

	rc = input_register_device(kp->input);
	if (rc < 0) {
		dev_err(&pdev->dev, "unable to register keypad input device\n");
		goto err_pmic_reg_read;
	}

	device_init_wakeup(&pdev->dev, pdata->wakeup);

	return 0;

err_pmic_reg_read:
	free_irq(kp->key_stuck_irq, kp);
err_req_stuck_irq:
	free_irq(kp->key_sense_irq, kp);
err_gpio_config:
err_get_irq:
	input_free_device(kp->input);
err_alloc_device:
	platform_set_drvdata(pdev, NULL);
	kfree(kp);
	return rc;
}

static int __devexit pmic8xxx_kp_remove(struct platform_device *pdev)
{
	struct pmic8xxx_kp *kp = platform_get_drvdata(pdev);

	device_init_wakeup(&pdev->dev, 0);
	free_irq(kp->key_stuck_irq, kp);
	free_irq(kp->key_sense_irq, kp);
	input_unregister_device(kp->input);
	kfree(kp);

	platform_set_drvdata(pdev, NULL);
	return 0;
}

#ifdef CONFIG_PM_SLEEP
static int pmic8xxx_kp_suspend(struct device *dev)
{
	struct platform_device *pdev = to_platform_device(dev);
	struct pmic8xxx_kp *kp = platform_get_drvdata(pdev);
	struct input_dev *input_dev = kp->input;

	if (device_may_wakeup(dev)) {
		enable_irq_wake(kp->key_sense_irq);
	} else {
		mutex_lock(&input_dev->mutex);

		if (input_dev->users)
			pmic8xxx_kp_disable(kp);

		mutex_unlock(&input_dev->mutex);
	}

	return 0;
}

static int pmic8xxx_kp_resume(struct device *dev)
{
	struct platform_device *pdev = to_platform_device(dev);
	struct pmic8xxx_kp *kp = platform_get_drvdata(pdev);
	struct input_dev *input_dev = kp->input;

	if (device_may_wakeup(dev)) {
		disable_irq_wake(kp->key_sense_irq);
	} else {
		mutex_lock(&input_dev->mutex);

		if (input_dev->users)
			pmic8xxx_kp_enable(kp);

		mutex_unlock(&input_dev->mutex);
	}

	return 0;
}
#endif

static SIMPLE_DEV_PM_OPS(pm8xxx_kp_pm_ops,
			 pmic8xxx_kp_suspend, pmic8xxx_kp_resume);

static struct platform_driver pmic8xxx_kp_driver = {
	.probe		= pmic8xxx_kp_probe,
	.remove		= __devexit_p(pmic8xxx_kp_remove),
	.driver		= {
		.name = PM8XXX_KEYPAD_DEV_NAME,
		.owner = THIS_MODULE,
		.pm = &pm8xxx_kp_pm_ops,
	},
};
module_platform_driver(pmic8xxx_kp_driver);

MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("PMIC8XXX keypad driver");
MODULE_VERSION("1.0");
MODULE_ALIAS("platform:pmic8xxx_keypad");
MODULE_AUTHOR("Trilok Soni <*****@*****.**>");
コード例 #2
0
ファイル: arizona-ldo1.c プロジェクト: valexandersaulys/linux
static int arizona_ldo1_probe(struct platform_device *pdev)
{
	struct arizona *arizona = dev_get_drvdata(pdev->dev.parent);
	const struct regulator_desc *desc;
	struct regulator_config config = { };
	struct arizona_ldo1 *ldo1;
	int ret;

	arizona->external_dcvdd = false;

	ldo1 = devm_kzalloc(&pdev->dev, sizeof(*ldo1), GFP_KERNEL);
	if (!ldo1)
		return -ENOMEM;

	ldo1->arizona = arizona;

	/*
	 * Since the chip usually supplies itself we provide some
	 * default init_data for it.  This will be overridden with
	 * platform data if provided.
	 */
	switch (arizona->type) {
	case WM5102:
	case WM8997:
		desc = &arizona_ldo1_hc;
		ldo1->init_data = arizona_ldo1_dvfs;
		break;
	default:
		desc = &arizona_ldo1;
		ldo1->init_data = arizona_ldo1_default;
		break;
	}

	ldo1->init_data.consumer_supplies = &ldo1->supply;
	ldo1->supply.supply = "DCVDD";
	ldo1->supply.dev_name = dev_name(arizona->dev);

	config.dev = arizona->dev;
	config.driver_data = ldo1;
	config.regmap = arizona->regmap;

	if (IS_ENABLED(CONFIG_OF)) {
		if (!dev_get_platdata(arizona->dev)) {
			ret = arizona_ldo1_of_get_pdata(arizona, &config, desc);
			if (ret < 0)
				return ret;

			config.ena_gpio_initialized = true;
		}
	}

	config.ena_gpio = arizona->pdata.ldoena;

	if (arizona->pdata.ldo1)
		config.init_data = arizona->pdata.ldo1;
	else
		config.init_data = &ldo1->init_data;

	/*
	 * LDO1 can only be used to supply DCVDD so if it has no
	 * consumers then DCVDD is supplied externally.
	 */
	if (config.init_data->num_consumer_supplies == 0)
		arizona->external_dcvdd = true;

	ldo1->regulator = devm_regulator_register(&pdev->dev, desc, &config);
	if (IS_ERR(ldo1->regulator)) {
		ret = PTR_ERR(ldo1->regulator);
		dev_err(arizona->dev, "Failed to register LDO1 supply: %d\n",
			ret);
		return ret;
	}

	of_node_put(config.of_node);

	platform_set_drvdata(pdev, ldo1);

	return 0;
}
コード例 #3
0
static int __devinit cyttsp4_i2c_probe(struct i2c_client *client,
	const struct i2c_device_id *i2c_id)
{
	struct cyttsp4_i2c *ts_i2c;
	struct device *dev = &client->dev;
	char const *adap_id = dev_get_platdata(dev);
	char const *id;
	int rc;

	dev_info(dev, "%s: Starting %s probe...\n", __func__, CYTTSP4_I2C_NAME);

	dev_dbg(dev, "%s: debug on\n", __func__);
	dev_vdbg(dev, "%s: verbose debug on\n", __func__);

	if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) {
		dev_err(dev, "%s: fail check I2C functionality\n", __func__);
		rc = -EIO;
		goto error_alloc_data_failed;
	}

	ts_i2c = kzalloc(sizeof(struct cyttsp4_i2c), GFP_KERNEL);
	if (ts_i2c == NULL) {
		dev_err(dev, "%s: Error, kzalloc.\n", __func__);
		rc = -ENOMEM;
		goto error_alloc_data_failed;
	}

	mutex_init(&ts_i2c->lock);
	ts_i2c->client = client;
	client->dev.bus = &i2c_bus_type;
	i2c_set_clientdata(client, ts_i2c);
	dev_set_drvdata(&client->dev, ts_i2c);

	if (adap_id)
		id = adap_id;
	else
		id = CYTTSP4_I2C_NAME;

	dev_dbg(dev, "%s: add adap='%s' (CYTTSP4_I2C_NAME=%s)\n", __func__, id,
		CYTTSP4_I2C_NAME);

	pm_runtime_enable(&client->dev);

	rc = cyttsp4_add_adapter(id, &ops, dev);
	if (rc) {
		dev_err(dev, "%s: Error on probe %s\n", __func__,
			CYTTSP4_I2C_NAME);
		goto add_adapter_err;
	}

	dev_info(dev, "%s: Successful probe %s\n", __func__, CYTTSP4_I2C_NAME);

	return 0;

add_adapter_err:
	pm_runtime_disable(&client->dev);
	dev_set_drvdata(&client->dev, NULL);
	i2c_set_clientdata(client, NULL);
	kfree(ts_i2c);
error_alloc_data_failed:
	return rc;
}
コード例 #4
0
static int cyttsp4_debug_probe(struct cyttsp4_device *ttsp)
{
	struct device *dev = &ttsp->dev;
	struct cyttsp4_debug_data *dd;
	struct cyttsp4_debug_platform_data *pdata = dev_get_platdata(dev);
	int rc;

	dev_info(dev, "%s: startup\n", __func__);
	dev_dbg(dev, "%s: debug on\n", __func__);
	dev_vdbg(dev, "%s: verbose debug on\n", __func__);

	/* get context and debug print buffers */
	dd = kzalloc(sizeof(*dd), GFP_KERNEL);
	if (dd == NULL) {
		dev_err(dev, "%s: Error, kzalloc\n", __func__);
		rc = -ENOMEM;
		goto cyttsp4_debug_probe_alloc_failed;
	}

	rc = device_create_file(dev, &dev_attr_int_count);
	if (rc) {
		dev_err(dev, "%s: Error, could not create int_count\n",
				__func__);
		goto cyttsp4_debug_probe_create_int_count_failed;
	}

	rc = device_create_file(dev, &dev_attr_formated_output);
	if (rc) {
		dev_err(dev, "%s: Error, could not create formated_output\n",
				__func__);
		goto cyttsp4_debug_probe_create_formated_failed;
	}

	mutex_init(&dd->sysfs_lock);
	dd->ttsp = ttsp;
	dd->pdata = pdata;
	dev_set_drvdata(dev, dd);

	pm_runtime_enable(dev);

	dd->si = cyttsp4_request_sysinfo(ttsp);
	if (dd->si == NULL) {
		dev_err(dev, "%s: Fail get sysinfo pointer from core\n",
				__func__);
		rc = -ENODEV;
		goto cyttsp4_debug_probe_sysinfo_failed;
	}

	rc = cyttsp4_subscribe_attention(ttsp, CY_ATTEN_IRQ,
		cyttsp4_debug_op_attention, CY_MODE_OPERATIONAL);
	if (rc < 0) {
		dev_err(dev, "%s: Error, could not subscribe Operating mode attention cb\n",
				__func__);
		goto cyttsp4_debug_probe_subscribe_op_failed;
	}

	rc = cyttsp4_subscribe_attention(ttsp, CY_ATTEN_IRQ,
		cyttsp4_debug_cat_attention, CY_MODE_CAT);
	if (rc < 0) {
		dev_err(dev, "%s: Error, could not subscribe CaT mode attention cb\n",
				__func__);
		goto cyttsp4_debug_probe_subscribe_cat_failed;
	}

	rc = cyttsp4_subscribe_attention(ttsp, CY_ATTEN_STARTUP,
		cyttsp4_debug_startup_attention, 0);
	if (rc < 0) {
		dev_err(dev, "%s: Error, could not subscribe startup attention cb\n",
				__func__);
		goto cyttsp4_debug_probe_subscribe_startup_failed;
	}
	return 0;

cyttsp4_debug_probe_subscribe_startup_failed:
	cyttsp4_unsubscribe_attention(ttsp, CY_ATTEN_IRQ,
		cyttsp4_debug_cat_attention, CY_MODE_CAT);
cyttsp4_debug_probe_subscribe_cat_failed:
	cyttsp4_unsubscribe_attention(ttsp, CY_ATTEN_IRQ,
		cyttsp4_debug_op_attention, CY_MODE_OPERATIONAL);
cyttsp4_debug_probe_subscribe_op_failed:
cyttsp4_debug_probe_sysinfo_failed:
	pm_runtime_suspend(dev);
	pm_runtime_disable(dev);
	dev_set_drvdata(dev, NULL);
	device_remove_file(dev, &dev_attr_formated_output);
cyttsp4_debug_probe_create_formated_failed:
	device_remove_file(dev, &dev_attr_int_count);
cyttsp4_debug_probe_create_int_count_failed:
	kfree(dd);
cyttsp4_debug_probe_alloc_failed:
	dev_err(dev, "%s failed.\n", __func__);
	return rc;
}
コード例 #5
0
static int tps51632_probe(struct i2c_client *client,
				const struct i2c_device_id *id)
{
	struct tps51632_regulator_platform_data *pdata;
	struct regulator_dev *rdev;
	struct tps51632_chip *tps;
	int ret;
	struct regulator_config config = { };

	if (client->dev.of_node) {
		const struct of_device_id *match;
		match = of_match_device(of_match_ptr(tps51632_of_match),
				&client->dev);
		if (!match) {
			dev_err(&client->dev, "Error: No device match found\n");
			return -ENODEV;
		}
	}

	pdata = dev_get_platdata(&client->dev);
	if (!pdata && client->dev.of_node)
		pdata = of_get_tps51632_platform_data(&client->dev);
	if (!pdata) {
		dev_err(&client->dev, "No Platform data\n");
		return -EINVAL;
	}

	if (pdata->enable_pwm_dvfs) {
		if ((pdata->base_voltage_uV < TPS51632_MIN_VOLATGE) ||
		    (pdata->base_voltage_uV > TPS51632_MAX_VOLATGE)) {
			dev_err(&client->dev, "Invalid base_voltage_uV setting\n");
			return -EINVAL;
		}

		if ((pdata->max_voltage_uV) &&
		    ((pdata->max_voltage_uV < TPS51632_MIN_VOLATGE) ||
		     (pdata->max_voltage_uV > TPS51632_MAX_VOLATGE))) {
			dev_err(&client->dev, "Invalid max_voltage_uV setting\n");
			return -EINVAL;
		}
	}

	tps = devm_kzalloc(&client->dev, sizeof(*tps), GFP_KERNEL);
	if (!tps) {
		dev_err(&client->dev, "Memory allocation failed\n");
		return -ENOMEM;
	}

	tps->dev = &client->dev;
	tps->desc.name = id->name;
	tps->desc.id = 0;
	tps->desc.ramp_delay = TPS51632_DEFAULT_RAMP_DELAY;
	tps->desc.min_uV = TPS51632_MIN_VOLATGE;
	tps->desc.uV_step = TPS51632_VOLATGE_STEP_10mV;
	tps->desc.linear_min_sel = TPS51632_MIN_VSEL;
	tps->desc.n_voltages = TPS51632_MAX_VSEL + 1;
	tps->desc.ops = &tps51632_dcdc_ops;
	tps->desc.type = REGULATOR_VOLTAGE;
	tps->desc.owner = THIS_MODULE;

	if (pdata->enable_pwm_dvfs)
		tps->desc.vsel_reg = TPS51632_VOLTAGE_BASE_REG;
	else
		tps->desc.vsel_reg = TPS51632_VOLTAGE_SELECT_REG;
	tps->desc.vsel_mask = TPS51632_VOUT_MASK;

	tps->regmap = devm_regmap_init_i2c(client, &tps51632_regmap_config);
	if (IS_ERR(tps->regmap)) {
		ret = PTR_ERR(tps->regmap);
		dev_err(&client->dev, "regmap init failed, err %d\n", ret);
		return ret;
	}
	i2c_set_clientdata(client, tps);

	ret = tps51632_init_dcdc(tps, pdata);
	if (ret < 0) {
		dev_err(tps->dev, "Init failed, err = %d\n", ret);
		return ret;
	}

	/* Register the regulators */
	config.dev = &client->dev;
	config.init_data = pdata->reg_init_data;
	config.driver_data = tps;
	config.regmap = tps->regmap;
	config.of_node = client->dev.of_node;

	rdev = devm_regulator_register(&client->dev, &tps->desc, &config);
	if (IS_ERR(rdev)) {
		dev_err(tps->dev, "regulator register failed\n");
		return PTR_ERR(rdev);
	}

	tps->rdev = rdev;
	return 0;
}
コード例 #6
0
ファイル: sec_charger.c プロジェクト: sdemills/SM-V700
static int __devinit sec_charger_probe(struct platform_device *pdev)
{
	struct sec_charger_info *charger;
	sec_charger_dev_t *mfd_dev = dev_get_drvdata(pdev->dev.parent);
	sec_charger_pdata_t *pdata = dev_get_platdata(mfd_dev->dev);
	int ret = 0;

	dev_dbg(&pdev->dev,
		"%s: SEC Charger Driver Loading\n", __func__);

	charger = kzalloc(sizeof(*charger), GFP_KERNEL);
	if (!charger)
		return -ENOMEM;

	platform_set_drvdata(pdev, charger);

	charger->client = mfd_dev->i2c;
	charger->pdata = pdata->charger_data;

	charger->psy_chg.name		= "sec-charger";
	charger->psy_chg.type		= POWER_SUPPLY_TYPE_UNKNOWN;
	charger->psy_chg.get_property	= sec_chg_get_property;
	charger->psy_chg.set_property	= sec_chg_set_property;
	charger->psy_chg.properties	= sec_charger_props;
	charger->psy_chg.num_properties	= ARRAY_SIZE(sec_charger_props);

	if (!charger->pdata->chg_gpio_init()) {
		dev_err(&pdev->dev,
			"%s: Failed to Initialize GPIO\n", __func__);
		goto err_free;
	}

	if (!sec_hal_chg_init(charger)) {
		dev_err(&pdev->dev,
			"%s: Failed to Initialize Charger\n", __func__);
		goto err_free;
	}

	ret = power_supply_register(&pdev->dev, &charger->psy_chg);
	if (ret) {
		dev_err(&pdev->dev,
			"%s: Failed to Register psy_chg\n", __func__);
		goto err_free;
	}

	if (charger->pdata->chg_irq) {
		INIT_DELAYED_WORK_DEFERRABLE(
			&charger->isr_work, sec_chg_isr_work);

		ret = request_threaded_irq(charger->pdata->chg_irq,
				NULL, sec_chg_irq_thread,
				charger->pdata->chg_irq_attr,
				"charger-irq", charger);
		if (ret) {
			dev_err(&pdev->dev,
				"%s: Failed to Reqeust IRQ\n", __func__);
			goto err_supply_unreg;
		}

			ret = enable_irq_wake(charger->pdata->chg_irq);
			if (ret < 0)
				dev_err(&pdev->dev,
					"%s: Failed to Enable Wakeup Source(%d)\n",
					__func__, ret);
		}

	ret = sec_chg_create_attrs(charger->psy_chg.dev);
	if (ret) {
		dev_err(&pdev->dev,
			"%s : Failed to create_attrs\n", __func__);
		goto err_req_irq;
	}

	dev_dbg(&pdev->dev,
		"%s: SEC Charger Driver Loaded\n", __func__);
	return 0;

err_req_irq:
	if (charger->pdata->chg_irq)
		free_irq(charger->pdata->chg_irq, charger);
err_supply_unreg:
	power_supply_unregister(&charger->psy_chg);
err_free:
	kfree(charger);

	return ret;
}
コード例 #7
0
ファイル: mdp3_ctrl.c プロジェクト: daeiron/LG_G3_Kernel
int mdp3_ctrl_init(struct msm_fb_data_type *mfd)
{
	struct device *dev = mfd->fbi->dev;
	struct msm_mdp_interface *mdp3_interface = &mfd->mdp;
	struct mdp3_session_data *mdp3_session = NULL;
	u32 intf_type = MDP3_DMA_OUTPUT_SEL_DSI_VIDEO;
	int rc;
	int splash_mismatch = 0;

	pr_debug("mdp3_ctrl_init\n");
	rc = mdp3_parse_dt_splash(mfd);
	if (rc)
		splash_mismatch = 1;

	mdp3_interface->on_fnc = mdp3_ctrl_on;
	mdp3_interface->off_fnc = mdp3_ctrl_off;
	mdp3_interface->do_histogram = NULL;
	mdp3_interface->cursor_update = NULL;
	mdp3_interface->dma_fnc = mdp3_ctrl_pan_display;
	mdp3_interface->ioctl_handler = mdp3_ctrl_ioctl_handler;
	mdp3_interface->kickoff_fnc = mdp3_ctrl_display_commit_kickoff;
	mdp3_interface->lut_update = mdp3_ctrl_lut_update;
	mdp3_interface->configure_panel = mdp3_update_panel_info;

	mdp3_session = kmalloc(sizeof(struct mdp3_session_data), GFP_KERNEL);
	if (!mdp3_session) {
		pr_err("fail to allocate mdp3 private data structure");
		return -ENOMEM;
	}
	memset(mdp3_session, 0, sizeof(struct mdp3_session_data));
	mutex_init(&mdp3_session->lock);
	INIT_WORK(&mdp3_session->clk_off_work, mdp3_dispatch_clk_off);
	INIT_WORK(&mdp3_session->dma_done_work, mdp3_dispatch_dma_done);
	atomic_set(&mdp3_session->vsync_countdown, 0);
	mutex_init(&mdp3_session->histo_lock);
	mdp3_session->dma = mdp3_get_dma_pipe(MDP3_DMA_CAP_ALL);
	if (!mdp3_session->dma) {
		rc = -ENODEV;
		goto init_done;
	}

	rc = mdp3_dma_init(mdp3_session->dma);
	if (rc) {
		pr_err("fail to init dma\n");
		goto init_done;
	}

	intf_type = mdp3_ctrl_get_intf_type(mfd);
	mdp3_session->intf = mdp3_get_display_intf(intf_type);
	if (!mdp3_session->intf) {
		rc = -ENODEV;
		goto init_done;
	}
	rc = mdp3_intf_init(mdp3_session->intf);
	if (rc) {
		pr_err("fail to init interface\n");
		goto init_done;
	}

	mdp3_session->dma->output_config.out_sel = intf_type;
	mdp3_session->mfd = mfd;
	mdp3_session->panel = dev_get_platdata(&mfd->pdev->dev);
	mdp3_session->status = mdp3_session->intf->active;
	mdp3_session->overlay.id = MSMFB_NEW_REQUEST;
	mdp3_bufq_init(&mdp3_session->bufq_in);
	mdp3_bufq_init(&mdp3_session->bufq_out);
	mdp3_session->histo_status = 0;
	mdp3_session->lut_sel = 0;
	BLOCKING_INIT_NOTIFIER_HEAD(&mdp3_session->notifier_head);

	init_timer(&mdp3_session->vsync_timer);
	mdp3_session->vsync_timer.function = mdp3_vsync_timer_func;
	mdp3_session->vsync_timer.data = (u32)mdp3_session;
	mdp3_session->vsync_period = 1000 / mfd->panel_info->mipi.frame_rate;
	mfd->mdp.private1 = mdp3_session;
	init_completion(&mdp3_session->dma_completion);
	if (intf_type != MDP3_DMA_OUTPUT_SEL_DSI_VIDEO)
		mdp3_session->wait_for_dma_done = mdp3_wait_for_dma_done;

	rc = sysfs_create_group(&dev->kobj, &vsync_fs_attr_group);
	if (rc) {
		pr_err("vsync sysfs group creation failed, ret=%d\n", rc);
		goto init_done;
	}

	mdp3_session->vsync_event_sd = sysfs_get_dirent(dev->kobj.sd, NULL,
							"vsync_event");
	if (!mdp3_session->vsync_event_sd) {
		pr_err("vsync_event sysfs lookup failed\n");
		rc = -ENODEV;
		goto init_done;
	}

	rc = mdp3_create_sysfs_link(dev);
	if (rc)
		pr_warn("problem creating link to mdp sysfs\n");

	kobject_uevent(&dev->kobj, KOBJ_ADD);
	pr_debug("vsync kobject_uevent(KOBJ_ADD)\n");

	if (mdp3_get_cont_spash_en()) {
		mdp3_session->clk_on = 1;
		mdp3_session->in_splash_screen = 1;
		mdp3_ctrl_notifier_register(mdp3_session,
			&mdp3_session->mfd->mdp_sync_pt_data.notifier);
	}

	if (splash_mismatch) {
		pr_err("splash memory mismatch, stop splash\n");
		mdp3_ctrl_off(mfd);
	}

	mdp3_session->vsync_before_commit = true;
init_done:
	if (IS_ERR_VALUE(rc))
		kfree(mdp3_session);

	return rc;
}
コード例 #8
0
ファイル: gpio_keys.c プロジェクト: aejsmith/linux
static int gpio_keys_probe(struct platform_device *pdev)
{
    struct device *dev = &pdev->dev;
    const struct gpio_keys_platform_data *pdata = dev_get_platdata(dev);
    struct gpio_keys_drvdata *ddata;
    struct input_dev *input;
    size_t size;
    int i, error;
    int wakeup = 0;

    if (!pdata) {
        pdata = gpio_keys_get_devtree_pdata(dev);
        if (IS_ERR(pdata))
            return PTR_ERR(pdata);
    }

    size = sizeof(struct gpio_keys_drvdata) +
           pdata->nbuttons * sizeof(struct gpio_button_data);
    ddata = devm_kzalloc(dev, size, GFP_KERNEL);
    if (!ddata) {
        dev_err(dev, "failed to allocate state\n");
        return -ENOMEM;
    }

    input = devm_input_allocate_device(dev);
    if (!input) {
        dev_err(dev, "failed to allocate input device\n");
        return -ENOMEM;
    }

    ddata->pdata = pdata;
    ddata->input = input;
    mutex_init(&ddata->disable_lock);

    platform_set_drvdata(pdev, ddata);
    input_set_drvdata(input, ddata);

    input->name = pdata->name ? : pdev->name;
    input->phys = "gpio-keys/input0";
    input->dev.parent = &pdev->dev;
    input->open = gpio_keys_open;
    input->close = gpio_keys_close;

    input->id.bustype = BUS_HOST;
    input->id.vendor = 0x0001;
    input->id.product = 0x0001;
    input->id.version = 0x0100;

    /* Enable auto repeat feature of Linux input subsystem */
    if (pdata->rep)
        __set_bit(EV_REP, input->evbit);

    for (i = 0; i < pdata->nbuttons; i++) {
        const struct gpio_keys_button *button = &pdata->buttons[i];
        struct gpio_button_data *bdata = &ddata->data[i];

        error = gpio_keys_setup_key(pdev, input, bdata, button);
        if (error)
            return error;

        if (button->wakeup)
            wakeup = 1;
    }

    error = sysfs_create_group(&pdev->dev.kobj, &gpio_keys_attr_group);
    if (error) {
        dev_err(dev, "Unable to export keys/switches, error: %d\n",
                error);
        return error;
    }

    error = input_register_device(input);
    if (error) {
        dev_err(dev, "Unable to register input device, error: %d\n",
                error);
        goto err_remove_group;
    }

    device_init_wakeup(&pdev->dev, wakeup);

    return 0;

err_remove_group:
    sysfs_remove_group(&pdev->dev.kobj, &gpio_keys_attr_group);
    return error;
}
コード例 #9
0
ファイル: spi-imx.c プロジェクト: acton393/linux
static int spi_imx_probe(struct platform_device *pdev)
{
	struct device_node *np = pdev->dev.of_node;
	const struct of_device_id *of_id =
			of_match_device(spi_imx_dt_ids, &pdev->dev);
	struct spi_imx_master *mxc_platform_info =
			dev_get_platdata(&pdev->dev);
	struct spi_master *master;
	struct spi_imx_data *spi_imx;
	struct resource *res;
	int i, ret, irq;

	if (!np && !mxc_platform_info) {
		dev_err(&pdev->dev, "can't get the platform data\n");
		return -EINVAL;
	}

	master = spi_alloc_master(&pdev->dev, sizeof(struct spi_imx_data));
	if (!master)
		return -ENOMEM;

	platform_set_drvdata(pdev, master);

	master->bits_per_word_mask = SPI_BPW_RANGE_MASK(1, 32);
	master->bus_num = np ? -1 : pdev->id;

	spi_imx = spi_master_get_devdata(master);
	spi_imx->bitbang.master = master;
	spi_imx->dev = &pdev->dev;

	spi_imx->devtype_data = of_id ? of_id->data :
		(struct spi_imx_devtype_data *)pdev->id_entry->driver_data;

	if (mxc_platform_info) {
		master->num_chipselect = mxc_platform_info->num_chipselect;
		master->cs_gpios = devm_kzalloc(&master->dev,
			sizeof(int) * master->num_chipselect, GFP_KERNEL);
		if (!master->cs_gpios)
			return -ENOMEM;

		for (i = 0; i < master->num_chipselect; i++)
			master->cs_gpios[i] = mxc_platform_info->chipselect[i];
 	}

	spi_imx->bitbang.chipselect = spi_imx_chipselect;
	spi_imx->bitbang.setup_transfer = spi_imx_setupxfer;
	spi_imx->bitbang.txrx_bufs = spi_imx_transfer;
	spi_imx->bitbang.master->setup = spi_imx_setup;
	spi_imx->bitbang.master->cleanup = spi_imx_cleanup;
	spi_imx->bitbang.master->prepare_message = spi_imx_prepare_message;
	spi_imx->bitbang.master->unprepare_message = spi_imx_unprepare_message;
	spi_imx->bitbang.master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
	if (is_imx35_cspi(spi_imx) || is_imx51_ecspi(spi_imx))
		spi_imx->bitbang.master->mode_bits |= SPI_LOOP;

	init_completion(&spi_imx->xfer_done);

	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	spi_imx->base = devm_ioremap_resource(&pdev->dev, res);
	if (IS_ERR(spi_imx->base)) {
		ret = PTR_ERR(spi_imx->base);
		goto out_master_put;
	}
	spi_imx->base_phys = res->start;

	irq = platform_get_irq(pdev, 0);
	if (irq < 0) {
		ret = irq;
		goto out_master_put;
	}

	ret = devm_request_irq(&pdev->dev, irq, spi_imx_isr, 0,
			       dev_name(&pdev->dev), spi_imx);
	if (ret) {
		dev_err(&pdev->dev, "can't get irq%d: %d\n", irq, ret);
		goto out_master_put;
	}

	spi_imx->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
	if (IS_ERR(spi_imx->clk_ipg)) {
		ret = PTR_ERR(spi_imx->clk_ipg);
		goto out_master_put;
	}

	spi_imx->clk_per = devm_clk_get(&pdev->dev, "per");
	if (IS_ERR(spi_imx->clk_per)) {
		ret = PTR_ERR(spi_imx->clk_per);
		goto out_master_put;
	}

	ret = clk_prepare_enable(spi_imx->clk_per);
	if (ret)
		goto out_master_put;

	ret = clk_prepare_enable(spi_imx->clk_ipg);
	if (ret)
		goto out_put_per;

	spi_imx->spi_clk = clk_get_rate(spi_imx->clk_per);
	/*
	 * Only validated on i.mx6 now, can remove the constrain if validated on
	 * other chips.
	 */
	if (is_imx51_ecspi(spi_imx)) {
		ret = spi_imx_sdma_init(&pdev->dev, spi_imx, master);
		if (ret == -EPROBE_DEFER)
			goto out_clk_put;

		if (ret < 0)
			dev_err(&pdev->dev, "dma setup error %d, use pio\n",
				ret);
	}

	spi_imx->devtype_data->reset(spi_imx);

	spi_imx->devtype_data->intctrl(spi_imx, 0);

	master->dev.of_node = pdev->dev.of_node;
	ret = spi_bitbang_start(&spi_imx->bitbang);
	if (ret) {
		dev_err(&pdev->dev, "bitbang start failed with %d\n", ret);
		goto out_clk_put;
	}

	if (!master->cs_gpios) {
		dev_err(&pdev->dev, "No CS GPIOs available\n");
		ret = -EINVAL;
		goto out_clk_put;
	}

	for (i = 0; i < master->num_chipselect; i++) {
		if (!gpio_is_valid(master->cs_gpios[i]))
			continue;

		ret = devm_gpio_request(&pdev->dev, master->cs_gpios[i],
					DRIVER_NAME);
		if (ret) {
			dev_err(&pdev->dev, "Can't get CS GPIO %i\n",
				master->cs_gpios[i]);
			goto out_clk_put;
		}
	}

	dev_info(&pdev->dev, "probed\n");

	clk_disable(spi_imx->clk_ipg);
	clk_disable(spi_imx->clk_per);
	return ret;

out_clk_put:
	clk_disable_unprepare(spi_imx->clk_ipg);
out_put_per:
	clk_disable_unprepare(spi_imx->clk_per);
out_master_put:
	spi_master_put(master);

	return ret;
}
コード例 #10
0
static int matrix_keypad_probe(struct platform_device *pdev)
{
	struct matrix_keypad_platform_data *pdata;
	struct matrix_keypad *keypad;
	struct input_dev *input_dev;
#ifdef CONFIG_SUPPORT_KEYPAD_LED
	struct device *sec_keypad;
#endif
	int err;

	pdata = dev_get_platdata(&pdev->dev);
	if (!pdata) {
		pdata = matrix_keypad_parse_dt(&pdev->dev);
		if (IS_ERR(pdata)) {
			dev_err(&pdev->dev, "no platform data defined\n");
			return PTR_ERR(pdata);
		}
	} else if (!pdata->keymap_data) {
		dev_err(&pdev->dev, "no keymap data defined\n");
		return -EINVAL;
	}

	keypad = kzalloc(sizeof(struct matrix_keypad), GFP_KERNEL);
	input_dev = input_allocate_device();
	if (!keypad || !input_dev) {
		err = -ENOMEM;
		goto err_free_mem;
	}

	keypad->input_dev = input_dev;
	keypad->pdata = pdata;
	keypad->row_shift = get_count_order(pdata->num_col_gpios);
	keypad->stopped = true;
	INIT_DELAYED_WORK(&keypad->work, matrix_keypad_scan);
	spin_lock_init(&keypad->lock);

	if (pdata->project)
		input_dev->name		= pdata->project;
	else
		input_dev->name		= pdev->name;

	input_dev->id.bustype	= BUS_HOST;
	input_dev->dev.parent	= &pdev->dev;
	input_dev->open		= matrix_keypad_start;
	input_dev->close	= matrix_keypad_stop;

	err = matrix_keypad_build_keymap(pdata->keymap_data, NULL,
					 pdata->num_row_gpios,
					 pdata->num_col_gpios,
					 NULL, input_dev);
	if (err) {
		dev_err(&pdev->dev, "failed to build keymap\n");
		goto err_free_mem;
	}

	if (!pdata->no_autorepeat)
		__set_bit(EV_REP, input_dev->evbit);
	input_set_capability(input_dev, EV_MSC, MSC_SCAN);
	input_set_drvdata(input_dev, keypad);

	err = matrix_keypad_init_gpio(pdev, keypad);
	if (err)
		goto err_free_mem;

	err = input_register_device(keypad->input_dev);
	if (err)
		goto err_free_gpio;

#ifdef CONFIG_SUPPORT_KEYPAD_LED
/* keypad led control */
	sec_keypad = sec_device_create(pdata, "sec_keypad");
	if (IS_ERR(sec_keypad))
		dev_err(&pdev->dev,"Failed to create device(sec_key)!\n");

	err = device_create_file(sec_keypad, &dev_attr_brightness);
	if (err) {
		dev_err(&pdev->dev,"Failed to create device file in sysfs entries(%s)!\n",
				dev_attr_brightness.attr.name);
	}

	dev_set_drvdata(sec_keypad, pdata);

	pdata->vddo_vreg = regulator_get(&pdev->dev,"vddo");
	if (IS_ERR(pdata->vddo_vreg)){
		pdata->vddo_vreg = NULL;
		printk(KERN_INFO "pdata->vddo_vreg error\n");
		err = -EPERM;
		goto err_free_gpio;
	}
#endif
	device_init_wakeup(&pdev->dev, pdata->wakeup);
	platform_set_drvdata(pdev, keypad);

	return 0;

err_free_gpio:
	matrix_keypad_free_gpio(keypad);
err_free_mem:
	input_free_device(input_dev);
	kfree(keypad);
	return err;
}
コード例 #11
0
ファイル: aat2870-core.c プロジェクト: 19Dan01/linux
static int aat2870_i2c_probe(struct i2c_client *client,
			     const struct i2c_device_id *id)
{
	struct aat2870_platform_data *pdata = dev_get_platdata(&client->dev);
	struct aat2870_data *aat2870;
	int i, j;
	int ret = 0;

	aat2870 = devm_kzalloc(&client->dev, sizeof(struct aat2870_data),
				GFP_KERNEL);
	if (!aat2870) {
		dev_err(&client->dev,
			"Failed to allocate memory for aat2870\n");
		return -ENOMEM;
	}

	aat2870->dev = &client->dev;
	dev_set_drvdata(aat2870->dev, aat2870);

	aat2870->client = client;
	i2c_set_clientdata(client, aat2870);

	aat2870->reg_cache = aat2870_regs;

	if (pdata->en_pin < 0)
		aat2870->en_pin = -1;
	else
		aat2870->en_pin = pdata->en_pin;

	aat2870->init = pdata->init;
	aat2870->uninit = pdata->uninit;
	aat2870->read = aat2870_read;
	aat2870->write = aat2870_write;
	aat2870->update = aat2870_update;

	mutex_init(&aat2870->io_lock);

	if (aat2870->init)
		aat2870->init(aat2870);

	if (aat2870->en_pin >= 0) {
		ret = devm_gpio_request_one(&client->dev, aat2870->en_pin,
					GPIOF_OUT_INIT_HIGH, "aat2870-en");
		if (ret < 0) {
			dev_err(&client->dev,
				"Failed to request GPIO %d\n", aat2870->en_pin);
			return ret;
		}
	}

	aat2870_enable(aat2870);

	for (i = 0; i < pdata->num_subdevs; i++) {
		for (j = 0; j < ARRAY_SIZE(aat2870_devs); j++) {
			if ((pdata->subdevs[i].id == aat2870_devs[j].id) &&
					!strcmp(pdata->subdevs[i].name,
						aat2870_devs[j].name)) {
				aat2870_devs[j].platform_data =
					pdata->subdevs[i].platform_data;
				break;
			}
		}
	}

	ret = mfd_add_devices(aat2870->dev, 0, aat2870_devs,
			      ARRAY_SIZE(aat2870_devs), NULL, 0, NULL);
	if (ret != 0) {
		dev_err(aat2870->dev, "Failed to add subdev: %d\n", ret);
		goto out_disable;
	}

	aat2870_init_debugfs(aat2870);

	return 0;

out_disable:
	aat2870_disable(aat2870);
	return ret;
}
コード例 #12
0
static int __init mc13xxx_led_probe(struct platform_device *pdev)
{
    struct device *dev = &pdev->dev;
    struct mc13xxx_leds_platform_data *pdata = dev_get_platdata(dev);
    struct mc13xxx *mcdev = dev_get_drvdata(dev->parent);
    struct mc13xxx_led_devtype *devtype =
        (struct mc13xxx_led_devtype *)pdev->id_entry->driver_data;
    struct mc13xxx_leds *leds;
    int i, id, ret = -ENODATA;
    u32 init_led = 0;

    leds = devm_kzalloc(dev, sizeof(*leds), GFP_KERNEL);
    if (!leds)
        return -ENOMEM;

    leds->devtype = devtype;
    leds->master = mcdev;
    platform_set_drvdata(pdev, leds);

    if (dev->parent->of_node) {
        pdata = mc13xxx_led_probe_dt(pdev);
        if (IS_ERR(pdata))
            return PTR_ERR(pdata);
    } else if (!pdata)
        return -ENODATA;

    leds->num_leds = pdata->num_leds;

    if ((leds->num_leds < 1) ||
            (leds->num_leds > (devtype->led_max - devtype->led_min + 1))) {
        dev_err(dev, "Invalid LED count %d\n", leds->num_leds);
        return -EINVAL;
    }

    leds->led = devm_kzalloc(dev, leds->num_leds * sizeof(*leds->led),
                             GFP_KERNEL);
    if (!leds->led)
        return -ENOMEM;

    for (i = 0; i < devtype->num_regs; i++) {
        ret = mc13xxx_reg_write(mcdev, leds->devtype->ledctrl_base + i,
                                pdata->led_control[i]);
        if (ret)
            return ret;
    }

    for (i = 0; i < leds->num_leds; i++) {
        const char *name, *trig;

        ret = -EINVAL;

        id = pdata->led[i].id;
        name = pdata->led[i].name;
        trig = pdata->led[i].default_trigger;

        if ((id > devtype->led_max) || (id < devtype->led_min)) {
            dev_err(dev, "Invalid ID %i\n", id);
            break;
        }

        if (init_led & (1 << id)) {
            dev_warn(dev, "LED %i already initialized\n", id);
            break;
        }

        init_led |= 1 << id;
        leds->led[i].id = id;
        leds->led[i].leds = leds;
        leds->led[i].cdev.name = name;
        leds->led[i].cdev.default_trigger = trig;
        leds->led[i].cdev.flags = LED_CORE_SUSPENDRESUME;
        leds->led[i].cdev.brightness_set = mc13xxx_led_set;
        leds->led[i].cdev.max_brightness = mc13xxx_max_brightness(id);

        INIT_WORK(&leds->led[i].work, mc13xxx_led_work);

        ret = led_classdev_register(dev->parent, &leds->led[i].cdev);
        if (ret) {
            dev_err(dev, "Failed to register LED %i\n", id);
            break;
        }
    }

    if (ret)
        while (--i >= 0) {
            led_classdev_unregister(&leds->led[i].cdev);
            cancel_work_sync(&leds->led[i].work);
        }

    return ret;
}
コード例 #13
0
int16_t fimc_is_af_enable(void *device, bool onoff)
{
	int ret = 0;
	struct fimc_is_device_af *af_device = (struct fimc_is_device_af *)device;
	struct fimc_is_core *core;
	bool af_regulator = false, io_regulator = false;
	struct exynos_platform_fimc_is *core_pdata = dev_get_platdata(fimc_is_dev);

	core = (struct fimc_is_core *)dev_get_drvdata(fimc_is_dev);
	if (!core) {
		err("core is NULL");
		return -ENODEV;
	}

	pr_info("af_noise : running_rear_camera = %d, onoff = %d\n", core->running_rear_camera, onoff);
	if (!core->running_rear_camera) {
		if (core_pdata->use_ois_hsi2c) {
			fimc_is_af_i2c_config(af_device->client, true);
		}

		if (onoff) {
			fimc_is_af_power(af_device, true);
			ret = fimc_is_af_i2c_write(af_device->client, 0x02, 0x00);
			if (ret) {
				err("i2c write fail\n");
				goto power_off;
			}

			ret = fimc_is_af_i2c_write(af_device->client, 0x00, 0x00);
			if (ret) {
				err("i2c write fail\n");
				goto power_off;
			}

			ret = fimc_is_af_i2c_write(af_device->client, 0x01, 0x00);
			if (ret) {
				err("i2c write fail\n");
				goto power_off;
			}
			af_noise_count++;
			pr_info("af_noise : count = %d\n", af_noise_count);
		} else {
			/* Check the Power Pins */
			af_regulator = fimc_is_check_regulator_status("CAM_AF_2.8V_AP");
			io_regulator = fimc_is_check_regulator_status("CAM_IO_1.8V_AP");

			if (af_regulator && io_regulator) {
				ret = fimc_is_af_i2c_write(af_device->client, 0x02, 0x40);
				if (ret) {
					err("i2c write fail\n");
				}
				fimc_is_af_power(af_device, false);
			} else {
				pr_info("already power off.(%d)\n", __LINE__);
			}
		}

		if (core_pdata->use_ois_hsi2c) {
			fimc_is_af_i2c_config(af_device->client, false);
		}
	}

	return ret;

power_off:
	if (!core->running_rear_camera) {
		if (core_pdata->use_ois_hsi2c) {
			fimc_is_af_i2c_config(af_device->client, false);
		}

		af_regulator = fimc_is_check_regulator_status("CAM_AF_2.8V_AP");
		io_regulator = fimc_is_check_regulator_status("CAM_IO_1.8V_AP");
		if (af_regulator && io_regulator) {
			fimc_is_af_power(af_device, false);
		} else {
			pr_info("already power off.(%d)\n", __LINE__);
		}
	}
	return ret;
}
コード例 #14
0
static int si476x_core_probe(struct i2c_client *client,
			     const struct i2c_device_id *id)
{
	int rval;
	struct si476x_core          *core;
	struct si476x_platform_data *pdata;
	struct mfd_cell *cell;
	int              cell_num;

	core = devm_kzalloc(&client->dev, sizeof(*core), GFP_KERNEL);
	if (!core) {
		dev_err(&client->dev,
			"failed to allocate 'struct si476x_core'\n");
		return -ENOMEM;
	}
	core->client = client;

	core->regmap = devm_regmap_init_si476x(core);
	if (IS_ERR(core->regmap)) {
		rval = PTR_ERR(core->regmap);
		dev_err(&client->dev,
			"Failed to allocate register map: %d\n",
			rval);
		return rval;
	}

	i2c_set_clientdata(client, core);

	atomic_set(&core->is_alive, 0);
	core->power_state = SI476X_POWER_DOWN;

	pdata = dev_get_platdata(&client->dev);
	if (pdata) {
		memcpy(&core->power_up_parameters,
		       &pdata->power_up_parameters,
		       sizeof(core->power_up_parameters));

		core->gpio_reset = -1;
		if (gpio_is_valid(pdata->gpio_reset)) {
			rval = gpio_request(pdata->gpio_reset, "si476x reset");
			if (rval) {
				dev_err(&client->dev,
					"Failed to request gpio: %d\n", rval);
				return rval;
			}
			core->gpio_reset = pdata->gpio_reset;
			gpio_direction_output(core->gpio_reset, 0);
		}

		core->diversity_mode = pdata->diversity_mode;
		memcpy(&core->pinmux, &pdata->pinmux,
		       sizeof(struct si476x_pinmux));
	} else {
		dev_err(&client->dev, "No platform data provided\n");
		return -EINVAL;
	}

	core->supplies[0].supply = "vd";
	core->supplies[1].supply = "va";
	core->supplies[2].supply = "vio1";
	core->supplies[3].supply = "vio2";

	rval = devm_regulator_bulk_get(&client->dev,
				       ARRAY_SIZE(core->supplies),
				       core->supplies);
	if (rval) {
		dev_err(&client->dev, "Failet to gett all of the regulators\n");
		goto free_gpio;
	}

	mutex_init(&core->cmd_lock);
	init_waitqueue_head(&core->command);
	init_waitqueue_head(&core->tuning);

	rval = kfifo_alloc(&core->rds_fifo,
			   SI476X_DRIVER_RDS_FIFO_DEPTH *
			   sizeof(struct v4l2_rds_data),
			   GFP_KERNEL);
	if (rval) {
		dev_err(&client->dev, "Could not alloate the FIFO\n");
		goto free_gpio;
	}
	mutex_init(&core->rds_drainer_status_lock);
	init_waitqueue_head(&core->rds_read_queue);
	INIT_WORK(&core->rds_fifo_drainer, si476x_core_drain_rds_fifo);

	if (client->irq) {
		rval = devm_request_threaded_irq(&client->dev,
						 client->irq, NULL,
						 si476x_core_interrupt,
						 IRQF_TRIGGER_FALLING,
						 client->name, core);
		if (rval < 0) {
			dev_err(&client->dev, "Could not request IRQ %d\n",
				client->irq);
			goto free_kfifo;
		}
		disable_irq(client->irq);
		dev_dbg(&client->dev, "IRQ requested.\n");

		core->rds_fifo_depth = 20;
	} else {
		INIT_DELAYED_WORK(&core->status_monitor,
				  si476x_core_poll_loop);
		dev_info(&client->dev,
			 "No IRQ number specified, will use polling\n");

		core->rds_fifo_depth = 5;
	}

	core->chip_id = id->driver_data;

	rval = si476x_core_get_revision_info(core);
	if (rval < 0) {
		rval = -ENODEV;
		goto free_kfifo;
	}

	cell_num = 0;

	cell = &core->cells[SI476X_RADIO_CELL];
	cell->name = "si476x-radio";
	cell_num++;

#ifdef CONFIG_SND_SOC_SI476X
	if ((core->chip_id == SI476X_CHIP_SI4761 ||
	     core->chip_id == SI476X_CHIP_SI4764)	&&
	    core->pinmux.dclk == SI476X_DCLK_DAUDIO     &&
	    core->pinmux.dfs  == SI476X_DFS_DAUDIO      &&
	    core->pinmux.dout == SI476X_DOUT_I2S_OUTPUT &&
	    core->pinmux.xout == SI476X_XOUT_TRISTATE) {
		cell = &core->cells[SI476X_CODEC_CELL];
		cell->name          = "si476x-codec";
		cell_num++;
	}
#endif
	rval = mfd_add_devices(&client->dev,
			       (client->adapter->nr << 8) + client->addr,
			       core->cells, cell_num,
			       NULL, 0, NULL);
	if (!rval)
		return 0;

free_kfifo:
	kfifo_free(&core->rds_fifo);

free_gpio:
	if (gpio_is_valid(core->gpio_reset))
		gpio_free(core->gpio_reset);

	return rval;
}
コード例 #15
0
ファイル: da9063-regulator.c プロジェクト: 3null/linux
static int da9063_regulator_probe(struct platform_device *pdev)
{
	struct da9063 *da9063 = dev_get_drvdata(pdev->dev.parent);
	struct da9063_pdata *da9063_pdata = dev_get_platdata(da9063->dev);
	struct of_regulator_match *da9063_reg_matches = NULL;
	struct da9063_regulators_pdata *regl_pdata;
	const struct da9063_dev_model *model;
	struct da9063_regulators *regulators;
	struct da9063_regulator *regl;
	struct regulator_config config;
	bool bcores_merged, bmem_bio_merged;
	int id, irq, n, n_regulators, ret, val;
	size_t size;

	regl_pdata = da9063_pdata ? da9063_pdata->regulators_pdata : NULL;

	if (!regl_pdata)
		regl_pdata = da9063_parse_regulators_dt(pdev,
							&da9063_reg_matches);

	if (IS_ERR(regl_pdata) || regl_pdata->n_regulators == 0) {
		dev_err(&pdev->dev,
			"No regulators defined for the platform\n");
		return PTR_ERR(regl_pdata);
	}

	/* Find regulators set for particular device model */
	for (model = regulators_models; model->regulator_info; model++) {
		if (model->dev_model == da9063->model)
			break;
	}
	if (!model->regulator_info) {
		dev_err(&pdev->dev, "Chip model not recognised (%u)\n",
			da9063->model);
		return -ENODEV;
	}

	ret = regmap_read(da9063->regmap, DA9063_REG_CONFIG_H, &val);
	if (ret < 0) {
		dev_err(&pdev->dev,
			"Error while reading BUCKs configuration\n");
		return ret;
	}
	bcores_merged = val & DA9063_BCORE_MERGE;
	bmem_bio_merged = val & DA9063_BUCK_MERGE;

	n_regulators = model->n_regulators;
	if (bcores_merged)
		n_regulators -= 2; /* remove BCORE1, BCORE2 */
	else
		n_regulators--;    /* remove BCORES_MERGED */
	if (bmem_bio_merged)
		n_regulators -= 2; /* remove BMEM, BIO */
	else
		n_regulators--;    /* remove BMEM_BIO_MERGED */

	/* Allocate memory required by usable regulators */
	size = sizeof(struct da9063_regulators) +
		n_regulators * sizeof(struct da9063_regulator);
	regulators = devm_kzalloc(&pdev->dev, size, GFP_KERNEL);
	if (!regulators)
		return -ENOMEM;

	regulators->n_regulators = n_regulators;
	platform_set_drvdata(pdev, regulators);

	/* Register all regulators declared in platform information */
	n = 0;
	id = 0;
	while (n < regulators->n_regulators) {
		/* Skip regulator IDs depending on merge mode configuration */
		switch (id) {
		case DA9063_ID_BCORE1:
		case DA9063_ID_BCORE2:
			if (bcores_merged) {
				id++;
				continue;
			}
			break;
		case DA9063_ID_BMEM:
		case DA9063_ID_BIO:
			if (bmem_bio_merged) {
				id++;
				continue;
			}
			break;
		case DA9063_ID_BCORES_MERGED:
			if (!bcores_merged) {
				id++;
				continue;
			}
			break;
		case DA9063_ID_BMEM_BIO_MERGED:
			if (!bmem_bio_merged) {
				id++;
				continue;
			}
			break;
		}

		/* Initialise regulator structure */
		regl = &regulators->regulator[n];
		regl->hw = da9063;
		regl->info = &model->regulator_info[id];
		regl->desc = regl->info->desc;
		regl->desc.type = REGULATOR_VOLTAGE;
		regl->desc.owner = THIS_MODULE;

		if (regl->info->mode.reg)
			regl->mode = devm_regmap_field_alloc(&pdev->dev,
					da9063->regmap, regl->info->mode);
		if (regl->info->suspend.reg)
			regl->suspend = devm_regmap_field_alloc(&pdev->dev,
					da9063->regmap, regl->info->suspend);
		if (regl->info->sleep.reg)
			regl->sleep = devm_regmap_field_alloc(&pdev->dev,
					da9063->regmap, regl->info->sleep);
		if (regl->info->suspend_sleep.reg)
			regl->suspend_sleep = devm_regmap_field_alloc(&pdev->dev,
					da9063->regmap, regl->info->suspend_sleep);
		if (regl->info->ilimit.reg)
			regl->ilimit = devm_regmap_field_alloc(&pdev->dev,
					da9063->regmap, regl->info->ilimit);

		/* Register regulator */
		memset(&config, 0, sizeof(config));
		config.dev = &pdev->dev;
		config.init_data = da9063_get_regulator_initdata(regl_pdata, id);
		config.driver_data = regl;
		if (da9063_reg_matches)
			config.of_node = da9063_reg_matches[id].of_node;
		config.regmap = da9063->regmap;
		regl->rdev = devm_regulator_register(&pdev->dev, &regl->desc,
						     &config);
		if (IS_ERR(regl->rdev)) {
			dev_err(&pdev->dev,
				"Failed to register %s regulator\n",
				regl->desc.name);
			return PTR_ERR(regl->rdev);
		}
		id++;
		n++;
	}

	/* LDOs overcurrent event support */
	irq = platform_get_irq_byname(pdev, "LDO_LIM");
	if (irq < 0) {
		dev_err(&pdev->dev, "Failed to get IRQ.\n");
		return irq;
	}

	regulators->irq_ldo_lim = regmap_irq_get_virq(da9063->regmap_irq, irq);
	if (regulators->irq_ldo_lim >= 0) {
		ret = request_threaded_irq(regulators->irq_ldo_lim,
					   NULL, da9063_ldo_lim_event,
					   IRQF_TRIGGER_LOW | IRQF_ONESHOT,
					   "LDO_LIM", regulators);
		if (ret) {
			dev_err(&pdev->dev,
					"Failed to request LDO_LIM IRQ.\n");
			regulators->irq_ldo_lim = -ENXIO;
		}
	}

	return 0;
}
コード例 #16
0
static int hid_time_probe(struct platform_device *pdev)
{
	int ret = 0;
	struct hid_sensor_hub_device *hsdev = dev_get_platdata(&pdev->dev);
	struct hid_time_state *time_state = devm_kzalloc(&pdev->dev,
		sizeof(struct hid_time_state), GFP_KERNEL);

	if (time_state == NULL)
		return -ENOMEM;

	platform_set_drvdata(pdev, time_state);

	spin_lock_init(&time_state->lock_last_time);
	init_completion(&time_state->comp_last_time);
	time_state->common_attributes.hsdev = hsdev;
	time_state->common_attributes.pdev = pdev;

	ret = hid_sensor_parse_common_attributes(hsdev,
				HID_USAGE_SENSOR_TIME,
				&time_state->common_attributes);
	if (ret) {
		dev_err(&pdev->dev, "failed to setup common attributes!\n");
		return ret;
	}

	ret = hid_time_parse_report(pdev, hsdev, HID_USAGE_SENSOR_TIME,
					time_state);
	if (ret) {
		dev_err(&pdev->dev, "failed to setup attributes!\n");
		return ret;
	}

	time_state->callbacks.send_event = hid_time_proc_event;
	time_state->callbacks.capture_sample = hid_time_capture_sample;
	time_state->callbacks.pdev = pdev;
	ret = sensor_hub_register_callback(hsdev, HID_USAGE_SENSOR_TIME,
					&time_state->callbacks);
	if (ret < 0) {
		dev_err(&pdev->dev, "register callback failed!\n");
		return ret;
	}

	ret = sensor_hub_device_open(hsdev);
	if (ret) {
		dev_err(&pdev->dev, "failed to open sensor hub device!\n");
		goto err_open;
	}

	/*
	 * Enable HID input processing early in order to be able to read the
	 * clock already in devm_rtc_device_register().
	 */
	hid_device_io_start(hsdev->hdev);

	time_state->rtc = devm_rtc_device_register(&pdev->dev,
					"hid-sensor-time", &hid_time_rtc_ops,
					THIS_MODULE);

	if (IS_ERR_OR_NULL(time_state->rtc)) {
		hid_device_io_stop(hsdev->hdev);
		ret = time_state->rtc ? PTR_ERR(time_state->rtc) : -ENODEV;
		time_state->rtc = NULL;
		dev_err(&pdev->dev, "rtc device register failed!\n");
		goto err_rtc;
	}

	return ret;

err_rtc:
	sensor_hub_device_close(hsdev);
err_open:
	sensor_hub_remove_callback(hsdev, HID_USAGE_SENSOR_TIME);
	return ret;
}
コード例 #17
0
ファイル: gpio-adp5588.c プロジェクト: mdr78/Linux-x1000
static int adp5588_gpio_probe(struct i2c_client *client,
					const struct i2c_device_id *id)
{
	struct adp5588_gpio_platform_data *pdata =
			dev_get_platdata(&client->dev);
	struct adp5588_gpio *dev;
	struct gpio_chip *gc;
	int ret, i, revid;

	if (pdata == NULL) {
		dev_err(&client->dev, "missing platform data\n");
		return -ENODEV;
	}

	if (!i2c_check_functionality(client->adapter,
					I2C_FUNC_SMBUS_BYTE_DATA)) {
		dev_err(&client->dev, "SMBUS Byte Data not Supported\n");
		return -EIO;
	}

	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
	if (dev == NULL) {
		dev_err(&client->dev, "failed to alloc memory\n");
		return -ENOMEM;
	}

	dev->client = client;

	gc = &dev->gpio_chip;
	gc->direction_input = adp5588_gpio_direction_input;
	gc->direction_output = adp5588_gpio_direction_output;
	gc->get = adp5588_gpio_get_value;
	gc->set = adp5588_gpio_set_value;
	gc->can_sleep = true;

	gc->base = pdata->gpio_start;
	gc->ngpio = ADP5588_MAXGPIO;
	gc->label = client->name;
	gc->owner = THIS_MODULE;

	mutex_init(&dev->lock);

	ret = adp5588_gpio_read(dev->client, DEV_ID);
	if (ret < 0)
		goto err;

	revid = ret & ADP5588_DEVICE_ID_MASK;

	for (i = 0, ret = 0; i <= ADP5588_BANK(ADP5588_MAXGPIO); i++) {
		dev->dat_out[i] = adp5588_gpio_read(client, GPIO_DAT_OUT1 + i);
		dev->dir[i] = adp5588_gpio_read(client, GPIO_DIR1 + i);
		ret |= adp5588_gpio_write(client, KP_GPIO1 + i, 0);
		ret |= adp5588_gpio_write(client, GPIO_PULL1 + i,
				(pdata->pullup_dis_mask >> (8 * i)) & 0xFF);
		ret |= adp5588_gpio_write(client, GPIO_INT_EN1 + i, 0);
		if (ret)
			goto err;
	}

	if (pdata->irq_base) {
		if (WA_DELAYED_READOUT_REVID(revid)) {
			dev_warn(&client->dev, "GPIO int not supported\n");
		} else {
			ret = adp5588_irq_setup(dev);
			if (ret)
				goto err;
		}
	}

	ret = gpiochip_add(&dev->gpio_chip);
	if (ret)
		goto err_irq;

	dev_info(&client->dev, "IRQ Base: %d Rev.: %d\n",
			pdata->irq_base, revid);

	if (pdata->setup) {
		ret = pdata->setup(client, gc->base, gc->ngpio, pdata->context);
		if (ret < 0)
			dev_warn(&client->dev, "setup failed, %d\n", ret);
	}

	i2c_set_clientdata(client, dev);

	return 0;

err_irq:
	adp5588_irq_teardown(dev);
err:
	kfree(dev);
	return ret;
}
コード例 #18
0
/*
 * Probe for NAND controller
 */
static int lpc32xx_nand_probe(struct platform_device *pdev)
{
	struct lpc32xx_nand_host *host;
	struct mtd_info *mtd;
	struct nand_chip *chip;
	struct resource *rc;
	struct mtd_part_parser_data ppdata = {};
	int res;

	rc = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	if (rc == NULL) {
		dev_err(&pdev->dev, "No memory resource found for device\n");
		return -EBUSY;
	}

	/* Allocate memory for the device structure (and zero it) */
	host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL);
	if (!host) {
		dev_err(&pdev->dev, "failed to allocate device structure\n");
		return -ENOMEM;
	}
	host->io_base_dma = rc->start;

	host->io_base = devm_ioremap_resource(&pdev->dev, rc);
	if (IS_ERR(host->io_base))
		return PTR_ERR(host->io_base);

	if (pdev->dev.of_node)
		host->ncfg = lpc32xx_parse_dt(&pdev->dev);
	if (!host->ncfg) {
		dev_err(&pdev->dev,
			"Missing or bad NAND config from device tree\n");
		return -ENOENT;
	}
	if (host->ncfg->wp_gpio == -EPROBE_DEFER)
		return -EPROBE_DEFER;
	if (gpio_is_valid(host->ncfg->wp_gpio) &&
			gpio_request(host->ncfg->wp_gpio, "NAND WP")) {
		dev_err(&pdev->dev, "GPIO not available\n");
		return -EBUSY;
	}
	lpc32xx_wp_disable(host);

	host->pdata = dev_get_platdata(&pdev->dev);

	mtd = &host->mtd;
	chip = &host->nand_chip;
	chip->priv = host;
	mtd->priv = chip;
	mtd->owner = THIS_MODULE;
	mtd->dev.parent = &pdev->dev;

	/* Get NAND clock */
	host->clk = clk_get(&pdev->dev, NULL);
	if (IS_ERR(host->clk)) {
		dev_err(&pdev->dev, "Clock failure\n");
		res = -ENOENT;
		goto err_exit1;
	}
	clk_enable(host->clk);

	/* Set NAND IO addresses and command/ready functions */
	chip->IO_ADDR_R = SLC_DATA(host->io_base);
	chip->IO_ADDR_W = SLC_DATA(host->io_base);
	chip->cmd_ctrl = lpc32xx_nand_cmd_ctrl;
	chip->dev_ready = lpc32xx_nand_device_ready;
	chip->chip_delay = 20; /* 20us command delay time */

	/* Init NAND controller */
	lpc32xx_nand_setup(host);

	platform_set_drvdata(pdev, host);

	/* NAND callbacks for LPC32xx SLC hardware */
	chip->ecc.mode = NAND_ECC_HW_SYNDROME;
	chip->read_byte = lpc32xx_nand_read_byte;
	chip->read_buf = lpc32xx_nand_read_buf;
	chip->write_buf = lpc32xx_nand_write_buf;
	chip->ecc.read_page_raw = lpc32xx_nand_read_page_raw_syndrome;
	chip->ecc.read_page = lpc32xx_nand_read_page_syndrome;
	chip->ecc.write_page_raw = lpc32xx_nand_write_page_raw_syndrome;
	chip->ecc.write_page = lpc32xx_nand_write_page_syndrome;
	chip->ecc.write_oob = lpc32xx_nand_write_oob_syndrome;
	chip->ecc.read_oob = lpc32xx_nand_read_oob_syndrome;
	chip->ecc.calculate = lpc32xx_nand_ecc_calculate;
	chip->ecc.correct = nand_correct_data;
	chip->ecc.strength = 1;
	chip->ecc.hwctl = lpc32xx_nand_ecc_enable;

	/* bitflip_threshold's default is defined as ecc_strength anyway.
	 * Unfortunately, it is set only later at add_mtd_device(). Meanwhile
	 * being 0, it causes bad block table scanning errors in
	 * nand_scan_tail(), so preparing it here already. */
	mtd->bitflip_threshold = chip->ecc.strength;

	/*
	 * Allocate a large enough buffer for a single huge page plus
	 * extra space for the spare area and ECC storage area
	 */
	host->dma_buf_len = LPC32XX_DMA_DATA_SIZE + LPC32XX_ECC_SAVE_SIZE;
	host->data_buf = devm_kzalloc(&pdev->dev, host->dma_buf_len,
				      GFP_KERNEL);
	if (host->data_buf == NULL) {
		dev_err(&pdev->dev, "Error allocating memory\n");
		res = -ENOMEM;
		goto err_exit2;
	}

	res = lpc32xx_nand_dma_setup(host);
	if (res) {
		res = -EIO;
		goto err_exit2;
	}

	/* Find NAND device */
	if (nand_scan_ident(mtd, 1, NULL)) {
		res = -ENXIO;
		goto err_exit3;
	}

	/* OOB and ECC CPU and DMA work areas */
	host->ecc_buf = (uint32_t *)(host->data_buf + LPC32XX_DMA_DATA_SIZE);

	/*
	 * Small page FLASH has a unique OOB layout, but large and huge
	 * page FLASH use the standard layout. Small page FLASH uses a
	 * custom BBT marker layout.
	 */
	if (mtd->writesize <= 512)
		chip->ecc.layout = &lpc32xx_nand_oob_16;

	/* These sizes remain the same regardless of page size */
	chip->ecc.size = 256;
	chip->ecc.bytes = LPC32XX_SLC_DEV_ECC_BYTES;
	chip->ecc.prepad = chip->ecc.postpad = 0;

	/* Avoid extra scan if using BBT, setup BBT support */
	if (host->ncfg->use_bbt) {
		chip->bbt_options |= NAND_BBT_USE_FLASH;

		/*
		 * Use a custom BBT marker setup for small page FLASH that
		 * won't interfere with the ECC layout. Large and huge page
		 * FLASH use the standard layout.
		 */
		if (mtd->writesize <= 512) {
			chip->bbt_td = &bbt_smallpage_main_descr;
			chip->bbt_md = &bbt_smallpage_mirror_descr;
		}
	}

	/*
	 * Fills out all the uninitialized function pointers with the defaults
	 */
	if (nand_scan_tail(mtd)) {
		res = -ENXIO;
		goto err_exit3;
	}

	mtd->name = "nxp_lpc3220_slc";
	ppdata.of_node = pdev->dev.of_node;
	res = mtd_device_parse_register(mtd, NULL, &ppdata, host->ncfg->parts,
					host->ncfg->num_parts);
	if (!res)
		return res;

	nand_release(mtd);

err_exit3:
	dma_release_channel(host->dma_chan);
err_exit2:
	clk_disable(host->clk);
	clk_put(host->clk);
err_exit1:
	lpc32xx_wp_enable(host);
	gpio_free(host->ncfg->wp_gpio);

	return res;
}
コード例 #19
0
static int altera_tse_probe(struct udevice *dev)
{
	struct eth_pdata *pdata = dev_get_platdata(dev);
	struct altera_tse_priv *priv = dev_get_priv(dev);
	void *blob = (void *)gd->fdt_blob;
	int node = dev->of_offset;
	const char *list, *end;
	const fdt32_t *cell;
	void *base, *desc_mem = NULL;
	unsigned long addr, size;
	int parent, addrc, sizec;
	int len, idx;
	int ret;

	priv->dma_type = dev_get_driver_data(dev);
	if (priv->dma_type == ALT_SGDMA)
		priv->ops = &tse_sgdma_ops;
	else
		priv->ops = &tse_msgdma_ops;
	/*
	 * decode regs. there are multiple reg tuples, and they need to
	 * match with reg-names.
	 */
	parent = fdt_parent_offset(blob, node);
	of_bus_default_count_cells(blob, parent, &addrc, &sizec);
	list = fdt_getprop(blob, node, "reg-names", &len);
	if (!list)
		return -ENOENT;
	end = list + len;
	cell = fdt_getprop(blob, node, "reg", &len);
	if (!cell)
		return -ENOENT;
	idx = 0;
	while (list < end) {
		addr = fdt_translate_address((void *)blob,
					     node, cell + idx);
		size = fdt_addr_to_cpu(cell[idx + addrc]);
		base = map_physmem(addr, size, MAP_NOCACHE);
		len = strlen(list);
		if (strcmp(list, "control_port") == 0)
			priv->mac_dev = base;
		else if (strcmp(list, "rx_csr") == 0)
			priv->sgdma_rx = base;
		else if (strcmp(list, "rx_desc") == 0)
			priv->rx_desc = base;
		else if (strcmp(list, "rx_resp") == 0)
			priv->rx_resp = base;
		else if (strcmp(list, "tx_csr") == 0)
			priv->sgdma_tx = base;
		else if (strcmp(list, "tx_desc") == 0)
			priv->tx_desc = base;
		else if (strcmp(list, "s1") == 0)
			desc_mem = base;
		idx += addrc + sizec;
		list += (len + 1);
	}
	/* decode fifo depth */
	priv->rx_fifo_depth = fdtdec_get_int(blob, node,
		"rx-fifo-depth", 0);
	priv->tx_fifo_depth = fdtdec_get_int(blob, node,
		"tx-fifo-depth", 0);
	/* decode phy */
	addr = fdtdec_get_int(blob, node,
			      "phy-handle", 0);
	addr = fdt_node_offset_by_phandle(blob, addr);
	priv->phyaddr = fdtdec_get_int(blob, addr,
		"reg", 0);
	/* init desc */
	if (priv->dma_type == ALT_SGDMA) {
		len = sizeof(struct alt_sgdma_descriptor) * 4;
		if (!desc_mem) {
			desc_mem = dma_alloc_coherent(len, &addr);
			if (!desc_mem)
				return -ENOMEM;
		}
		memset(desc_mem, 0, len);
		priv->tx_desc = desc_mem;
		priv->rx_desc = priv->tx_desc +
			2 * sizeof(struct alt_sgdma_descriptor);
	}
	/* allocate recv packet buffer */
	priv->rx_buf = malloc_cache_aligned(PKTSIZE_ALIGN);
	if (!priv->rx_buf)
		return -ENOMEM;

	/* stop controller */
	debug("Reset TSE & SGDMAs\n");
	altera_tse_stop(dev);

	/* start the phy */
	priv->interface = pdata->phy_interface;
	tse_mdio_init(dev->name, priv);
	priv->bus = miiphy_get_dev_by_name(dev->name);

	ret = tse_phy_init(priv, dev);

	return ret;
}
コード例 #20
0
static int serial_omap_probe(struct platform_device *pdev)
{
	struct omap_uart_port_info *omap_up_info = dev_get_platdata(&pdev->dev);
	struct uart_omap_port *up;
	struct resource *mem;
	void __iomem *base;
	int uartirq = 0;
	int wakeirq = 0;
	int ret;
	enum of_gpio_flags flags;
	int gpio_sel;
	unsigned long gpio_flags;

	/* The optional wakeirq may be specified in the board dts file */
	if (pdev->dev.of_node) {
		uartirq = irq_of_parse_and_map(pdev->dev.of_node, 0);
		if (!uartirq)
			return -EPROBE_DEFER;
		wakeirq = irq_of_parse_and_map(pdev->dev.of_node, 1);
		omap_up_info = of_get_uart_port_info(&pdev->dev);
		pdev->dev.platform_data = omap_up_info;
	} else {
		uartirq = platform_get_irq(pdev, 0);
		if (uartirq < 0)
			return -EPROBE_DEFER;
	}

	/* Check if the UART needs to be selected */
	gpio_sel = of_get_gpio_flags(pdev->dev.of_node, 0, &flags);
	if (gpio_is_valid(gpio_sel)) {
		dev_dbg(&pdev->dev, "using gpio %d for uart%d_sel\n",
			gpio_sel, pdev->id);
		gpio_flags = (flags & OF_GPIO_ACTIVE_LOW) ?
			GPIOF_OUT_INIT_LOW : GPIOF_OUT_INIT_HIGH;
		ret = devm_gpio_request_one(&pdev->dev, gpio_sel,
					    gpio_flags, "uart_sel");
		if (ret) {
			dev_err(&pdev->dev, "gpio%d request failed, ret %d\n",
				gpio_sel, ret);
			return ret;
		}
	} else if (gpio_sel == -EPROBE_DEFER) {
		return -EPROBE_DEFER;
	}

	up = devm_kzalloc(&pdev->dev, sizeof(*up), GFP_KERNEL);
	if (!up)
		return -ENOMEM;

	mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	base = devm_ioremap_resource(&pdev->dev, mem);
	if (IS_ERR(base))
		return PTR_ERR(base);

	up->dev = &pdev->dev;
	up->port.dev = &pdev->dev;
	up->port.type = PORT_OMAP;
	up->port.iotype = UPIO_MEM;
	up->port.irq = uartirq;
	up->wakeirq = wakeirq;
	if (!up->wakeirq)
		dev_info(up->port.dev, "no wakeirq for uart%d\n",
			 up->port.line);

	up->port.regshift = 2;
	up->port.fifosize = 64;
	up->port.ops = &serial_omap_pops;

	if (pdev->dev.of_node)
		up->port.line = of_alias_get_id(pdev->dev.of_node, "serial");
	else
		up->port.line = pdev->id;

	if (up->port.line < 0) {
		dev_err(&pdev->dev, "failed to get alias/pdev id, errno %d\n",
								up->port.line);
		ret = -ENODEV;
		goto err_port_line;
	}

	if (up->port.line >= OMAP_MAX_HSUART_PORTS) {
		dev_err(&pdev->dev, "uart ID %d >  MAX %d.\n", up->port.line,
			OMAP_MAX_HSUART_PORTS);
		ret = -ENXIO;
		goto err_port_line;
	}

	ret = serial_omap_probe_rs485(up, pdev->dev.of_node);
	if (ret < 0)
		goto err_rs485;

	sprintf(up->name, "OMAP UART%d", up->port.line);
	up->port.mapbase = mem->start;
	up->port.membase = base;
	up->port.flags = omap_up_info->flags;
	up->port.uartclk = omap_up_info->uartclk;
	if (!up->port.uartclk) {
		up->port.uartclk = DEFAULT_CLK_SPEED;
		dev_warn(&pdev->dev,
			 "No clock speed specified: using default: %d\n",
			 DEFAULT_CLK_SPEED);
	}

	up->latency = PM_QOS_CPU_DMA_LAT_DEFAULT_VALUE;
	up->calc_latency = PM_QOS_CPU_DMA_LAT_DEFAULT_VALUE;
	pm_qos_add_request(&up->pm_qos_request,
		PM_QOS_CPU_DMA_LATENCY, up->latency);
	INIT_WORK(&up->qos_work, serial_omap_uart_qos_work);

	platform_set_drvdata(pdev, up);
	if (omap_up_info->autosuspend_timeout == 0)
		omap_up_info->autosuspend_timeout = -1;

	device_init_wakeup(up->dev, true);
	pm_runtime_use_autosuspend(&pdev->dev);
	pm_runtime_set_autosuspend_delay(&pdev->dev,
			omap_up_info->autosuspend_timeout);

	pm_runtime_irq_safe(&pdev->dev);
	pm_runtime_enable(&pdev->dev);

	pm_runtime_get_sync(&pdev->dev);

	omap_serial_fill_features_erratas(up);

	ui[up->port.line] = up;
	serial_omap_add_console_port(up);

	ret = uart_add_one_port(&serial_omap_reg, &up->port);
	if (ret != 0)
		goto err_add_port;

	pm_runtime_mark_last_busy(up->dev);
	pm_runtime_put_autosuspend(up->dev);
	return 0;

err_add_port:
	pm_runtime_put(&pdev->dev);
	pm_runtime_disable(&pdev->dev);
err_rs485:
err_port_line:
	dev_err(&pdev->dev, "[UART%d]: failure [%s]: %d\n",
				pdev->id, __func__, ret);
	return ret;
}
コード例 #21
0
ファイル: atcpit100_timer.c プロジェクト: OpenNoah/u-boot
static int atcpit_timer_ofdata_to_platdata(struct udevice *dev)
{
	struct atcpit_timer_platdata *plat = dev_get_platdata(dev);
	plat->regs = map_physmem(devfdt_get_addr(dev) , 0x100 , MAP_NOCACHE);
	return 0;
}
コード例 #22
0
static int __devinit p3_bat_probe(struct platform_device *pdev)
{
	struct p3_battery_platform_data *pdata = dev_get_platdata(&pdev->dev);
	struct battery_data *battery;
	int ret;
	unsigned long trigger;
	int irq_num;

	if (!pdata) {
		pr_err("%s : No platform data\n", __func__);
		return -EINVAL;
	}
	
	battery = kzalloc(sizeof(*battery), GFP_KERNEL);
	if (!battery)
		return -ENOMEM;

	battery->pdata = pdata;
	
	battery->pdata->init_charger_gpio();

	platform_set_drvdata(pdev, battery);
	test_batterydata = battery;

	battery->present = 1;
	battery->info.level = 100;
	battery->info.charging_source = CHARGER_BATTERY;
	battery->info.batt_health = POWER_SUPPLY_HEALTH_GOOD;
#if !defined(CONFIG_MACH_SAMSUNG_P4) || !defined(CONFIG_MACH_SAMSUNG_P4WIFI) || !defined(CONFIG_MACH_SAMSUNG_P4LTE)
	battery->is_first_check = true;
#endif

	battery->psy_battery.name = "battery";
	battery->psy_battery.type = POWER_SUPPLY_TYPE_BATTERY;
	battery->psy_battery.properties = p3_battery_properties;
	battery->psy_battery.num_properties = ARRAY_SIZE(p3_battery_properties);
	battery->psy_battery.get_property = p3_bat_get_property;

	battery->psy_usb.name = "usb";
	battery->psy_usb.type = POWER_SUPPLY_TYPE_USB;
	battery->psy_usb.supplied_to = supply_list;
	battery->psy_usb.num_supplicants = ARRAY_SIZE(supply_list);
	battery->psy_usb.properties = p3_power_properties;
	battery->psy_usb.num_properties = ARRAY_SIZE(p3_power_properties);
	battery->psy_usb.get_property = p3_usb_get_property;

	battery->psy_ac.name = "ac";
	battery->psy_ac.type = POWER_SUPPLY_TYPE_MAINS;
	battery->psy_ac.supplied_to = supply_list;
	battery->psy_ac.num_supplicants = ARRAY_SIZE(supply_list);
	battery->psy_ac.properties = p3_power_properties;
	battery->psy_ac.num_properties = ARRAY_SIZE(p3_power_properties);
	battery->psy_ac.get_property = p3_ac_get_property;

	mutex_init(&battery->work_lock);

	wake_lock_init(&battery->vbus_wake_lock, WAKE_LOCK_SUSPEND,
		"vbus wake lock");
	wake_lock_init(&battery->work_wake_lock, WAKE_LOCK_SUSPEND,
		"batt_work wake lock");
	wake_lock_init(&battery->cable_wake_lock, WAKE_LOCK_SUSPEND,
		"temp wake lock");
	wake_lock_init(&battery->fullcharge_wake_lock, WAKE_LOCK_SUSPEND,
		"fullcharge wake lock");
#ifdef CONFIG_TARGET_LOCALE_KOR
	wake_lock_init(&battery->low_comp_wake_lock, WAKE_LOCK_SUSPEND,
		"low comp wake lock");
#endif
#ifdef __TEST_DEVICE_DRIVER__
	wake_lock_init(&battery->wake_lock_for_dev, WAKE_LOCK_SUSPEND,
		"test mode wake lock");
#endif /* __TEST_DEVICE_DRIVER__ */

	INIT_WORK(&battery->battery_work, p3_bat_work);
	INIT_WORK(&battery->cable_work, p3_cable_work);
	INIT_DELAYED_WORK(&battery->fuelgauge_work, fuelgauge_work_handler);
	INIT_DELAYED_WORK(&battery->fullcharging_work,
			fullcharging_work_handler);
	INIT_DELAYED_WORK(&battery->full_comp_work, full_comp_work_handler);
	INIT_DELAYED_WORK(&battery->TA_work, p3_TA_work_handler);
#ifdef CONFIG_TARGET_LOCALE_KOR
	INIT_DELAYED_WORK(&battery->low_comp_work, low_comp_work_handler);
#endif
	battery->p3_TA_workqueue = create_singlethread_workqueue(
		"p3_TA_workqueue");
#ifdef CONFIG_TARGET_LOCALE_KOR
	battery->low_bat_comp_workqueue = create_singlethread_workqueue(
		"low_bat_comp_workqueue");
#endif
	if (!battery->p3_TA_workqueue) {
		pr_err("Failed to create single workqueue\n");
		ret = -ENOMEM;
		goto err_workqueue_init;
	}
#ifdef CONFIG_TARGET_LOCALE_KOR
	if (!battery->low_bat_comp_workqueue) {
		pr_err("Failed to create low_bat_comp_workqueue workqueue\n");
		ret = -ENOMEM;
		goto err_workqueue_init;
	}
#endif

	battery->last_poll = alarm_get_elapsed_realtime();
	alarm_init(&battery->alarm, ANDROID_ALARM_ELAPSED_REALTIME_WAKEUP,
		p3_battery_alarm);

	ret = power_supply_register(&pdev->dev, &battery->psy_battery);
	if (ret) {
		pr_err("Failed to register battery power supply.\n");
		goto err_battery_psy_register;
	}

	ret = power_supply_register(&pdev->dev, &battery->psy_usb);
	if (ret) {
		pr_err("Failed to register USB power supply.\n");
		goto err_usb_psy_register;
	}

	ret = power_supply_register(&pdev->dev, &battery->psy_ac);
	if (ret) {
		pr_err("Failed to register AC power supply.\n");
		goto err_ac_psy_register;
	}

	/* create sec detail attributes */
	p3_bat_create_attrs(battery->psy_battery.dev);

#ifdef __TEST_DEVICE_DRIVER__
	sec_batt_test_create_attrs(battery->psy_ac.dev);
#endif /* __TEST_DEVICE_DRIVER__ */

	battery->p3_battery_initial = 1;
	battery->low_batt_boot_flag = 0;

	battery->connect_irq = gpio_to_irq(pdata->charger.connect_line);
	if (check_ta_conn(battery))
		trigger = IRQF_TRIGGER_HIGH;
	else
		trigger = IRQF_TRIGGER_LOW;

	if (request_irq(battery->connect_irq, p3_TA_interrupt_handler, trigger,
			"TA_CON intr", battery)) {
		pr_err("p3_TA_interrupt_handler register failed!\n");
		goto err_charger_irq;
	}
	disable_irq(battery->connect_irq);

	// Get initial cable status and enable connection irq.
	p3_get_cable_status(battery);
	battery->previous_cable_status = battery->current_cable_status;
	enable_irq(battery->connect_irq);

	if (check_ta_conn(battery) && check_UV_charging_case())
		battery->low_batt_boot_flag = 1;

	mutex_lock(&battery->work_lock);
	fg_alert_init();
	mutex_unlock(&battery->work_lock);

	p3_bat_status_update(&battery->psy_battery);

	p3_cable_check_status(battery);

	/* before enable fullcharge interrupt, check fullcharge */
	if ((battery->info.charging_source == CHARGER_AC ||
		(battery->info.charging_source == CHARGER_USB &&
		battery->info.force_usb_charging))
		&& battery->info.charging_enabled
		&& gpio_get_value(pdata->charger.fullcharge_line) == 1)
		p3_cable_charging(battery);

	/* Request IRQ */
	irq_num = gpio_to_irq(max17042_chip_data->pdata->fuel_alert_line);
	if (request_irq(irq_num, low_battery_isr,
			IRQF_TRIGGER_FALLING, "FUEL_ALRT irq", battery))
		pr_err("Can NOT request irq 'IRQ_FUEL_ALERT' %d ", irq_num);

#ifdef CONFIG_SAMSUNG_LPM_MODE
	lpm_mode_check(battery);
#endif

	return 0;

err_charger_irq:
	alarm_cancel(&battery->alarm);
	power_supply_unregister(&battery->psy_ac);
err_ac_psy_register:
	power_supply_unregister(&battery->psy_usb);
err_usb_psy_register:
	power_supply_unregister(&battery->psy_battery);
err_battery_psy_register:
	destroy_workqueue(battery->p3_TA_workqueue);
#ifdef CONFIG_TARGET_LOCALE_KOR
	destroy_workqueue(battery->low_bat_comp_workqueue);
#endif
err_workqueue_init:
	wake_lock_destroy(&battery->vbus_wake_lock);
	wake_lock_destroy(&battery->work_wake_lock);
	wake_lock_destroy(&battery->cable_wake_lock);
	wake_lock_destroy(&battery->fullcharge_wake_lock);
#ifdef CONFIG_TARGET_LOCALE_KOR
	wake_lock_destroy(&battery->low_comp_wake_lock);
#endif
	mutex_destroy(&battery->work_lock);
	kfree(battery);

	return ret;
}
コード例 #23
0
static int fimc_is_probe(struct platform_device *pdev)
{
	struct exynos_platform_fimc_is *pdata;
#if defined (ENABLE_IS_CORE) || defined (USE_MCUCTL)
	struct resource *mem_res;
	struct resource *regs_res;
#endif
	struct fimc_is_core *core;
	int ret = -ENODEV;
#ifndef ENABLE_IS_CORE
	int i;
#endif
	u32 stream;
	struct pinctrl_state *s;

	probe_info("%s:start(%ld, %ld)\n", __func__,
		sizeof(struct fimc_is_core), sizeof(struct fimc_is_video_ctx));

	core = kzalloc(sizeof(struct fimc_is_core), GFP_KERNEL);
	if (!core) {
		probe_err("core is NULL");
		return -ENOMEM;
	}

	fimc_is_dev = &pdev->dev;
	dev_set_drvdata(fimc_is_dev, core);

	pdata = dev_get_platdata(&pdev->dev);
	if (!pdata) {
#ifdef CONFIG_OF
		ret = fimc_is_parse_dt(pdev);
		if (ret) {
			err("fimc_is_parse_dt is fail(%d)", ret);
			return ret;
		}

		pdata = dev_get_platdata(&pdev->dev);
#else
		BUG();
#endif
	}

#ifdef USE_ION_ALLOC
	core->fimc_ion_client = ion_client_create(ion_exynos, "fimc-is");
#endif
	core->pdev = pdev;
	core->pdata = pdata;
	core->current_position = SENSOR_POSITION_REAR;
	device_init_wakeup(&pdev->dev, true);

	/* for mideaserver force down */
	atomic_set(&core->rsccount, 0);

#if defined (ENABLE_IS_CORE) || defined (USE_MCUCTL)
	mem_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	if (!mem_res) {
		probe_err("Failed to get io memory region(%p)", mem_res);
		goto p_err1;
	}

	regs_res = request_mem_region(mem_res->start, resource_size(mem_res), pdev->name);
	if (!regs_res) {
		probe_err("Failed to request io memory region(%p)", regs_res);
		goto p_err1;
	}

	core->regs_res = regs_res;
	core->regs =  ioremap_nocache(mem_res->start, resource_size(mem_res));
	if (!core->regs) {
		probe_err("Failed to remap io region(%p)", core->regs);
		goto p_err2;
	}
#else
	core->regs_res = NULL;
	core->regs = NULL;
#endif

#ifdef ENABLE_IS_CORE
	core->irq = platform_get_irq(pdev, 0);
	if (core->irq < 0) {
		probe_err("Failed to get irq(%d)", core->irq);
		goto p_err3;
	}
#endif
	ret = pdata->clk_get(&pdev->dev);
	if (ret) {
		probe_err("clk_get is fail(%d)", ret);
		goto p_err3;
	}

	ret = fimc_is_mem_probe(&core->resourcemgr.mem, core->pdev);
	if (ret) {
		probe_err("fimc_is_mem_probe is fail(%d)", ret);
		goto p_err3;
	}

	ret = fimc_is_resourcemgr_probe(&core->resourcemgr, core);
	if (ret) {
		probe_err("fimc_is_resourcemgr_probe is fail(%d)", ret);
		goto p_err3;
	}

	ret = fimc_is_interface_probe(&core->interface,
		&core->resourcemgr.minfo,
		(ulong)core->regs,
		core->irq,
		core);
	if (ret) {
		probe_err("fimc_is_interface_probe is fail(%d)", ret);
		goto p_err3;
	}

	ret = fimc_is_debug_probe();
	if (ret) {
		probe_err("fimc_is_deubg_probe is fail(%d)", ret);
		goto p_err3;
	}

	ret = fimc_is_vender_probe(&core->vender);
	if (ret) {
		probe_err("fimc_is_vender_probe is fail(%d)", ret);
		goto p_err3;
	}

	/* group initialization */
	ret = fimc_is_groupmgr_probe(&core->groupmgr);
	if (ret) {
		probe_err("fimc_is_groupmgr_probe is fail(%d)", ret);
		goto p_err3;
	}

	for (stream = 0; stream < FIMC_IS_STREAM_COUNT; ++stream) {
		ret = fimc_is_ischain_probe(&core->ischain[stream],
			&core->interface,
			&core->resourcemgr,
			&core->groupmgr,
			&core->resourcemgr.mem,
			core->pdev,
			stream);
		if (ret) {
			probe_err("fimc_is_ischain_probe(%d) is fail(%d)", stream, ret);
			goto p_err3;
		}

#ifndef ENABLE_IS_CORE
		core->ischain[stream].hardware = &core->hardware;
#endif
	}

	ret = v4l2_device_register(&pdev->dev, &core->v4l2_dev);
	if (ret) {
		dev_err(&pdev->dev, "failed to register fimc-is v4l2 device\n");
		goto p_err3;
	}

#ifdef SOC_30S
	/* video entity - 3a0 */
	fimc_is_30s_video_probe(core);
#endif

#ifdef SOC_30C
	/* video entity - 3a0 capture */
	fimc_is_30c_video_probe(core);
#endif

#ifdef SOC_30P
	/* video entity - 3a0 preview */
	fimc_is_30p_video_probe(core);
#endif

#ifdef SOC_31S
	/* video entity - 3a1 */
	fimc_is_31s_video_probe(core);
#endif

#ifdef SOC_31C
	/* video entity - 3a1 capture */
	fimc_is_31c_video_probe(core);
#endif

#ifdef SOC_31P
	/* video entity - 3a1 preview */
	fimc_is_31p_video_probe(core);
#endif

#ifdef SOC_I0S
	/* video entity - isp0 */
	fimc_is_i0s_video_probe(core);
#endif

#ifdef SOC_I0C
	/* video entity - isp0 capture */
	fimc_is_i0c_video_probe(core);
#endif

#ifdef SOC_I0P
	/* video entity - isp0 preview */
	fimc_is_i0p_video_probe(core);
#endif

#ifdef SOC_I1S
	/* video entity - isp1 */
	fimc_is_i1s_video_probe(core);
#endif

#ifdef SOC_I1C
	/* video entity - isp1 capture */
	fimc_is_i1c_video_probe(core);
#endif

#ifdef SOC_I1P
	/* video entity - isp1 preview */
	fimc_is_i1p_video_probe(core);
#endif

#ifdef SOC_DIS
	/* video entity - dis */
	fimc_is_dis_video_probe(core);
#endif

#ifdef SOC_SCC
	/* video entity - scc */
	fimc_is_scc_video_probe(core);
#endif

#ifdef SOC_SCP
	/* video entity - scp */
	fimc_is_scp_video_probe(core);
#endif

#ifdef SOC_MCS
	/* video entity - scp */
	fimc_is_m0s_video_probe(core);
	fimc_is_m1s_video_probe(core);
	fimc_is_m0p_video_probe(core);
	fimc_is_m1p_video_probe(core);
	fimc_is_m2p_video_probe(core);
	fimc_is_m3p_video_probe(core);
	fimc_is_m4p_video_probe(core);
#endif

	platform_set_drvdata(pdev, core);

#ifndef ENABLE_IS_CORE
	ret = fimc_is_interface_ischain_probe(&core->interface_ischain,
		&core->hardware,
		&core->resourcemgr,
		core->pdev,
		(ulong)core->regs);
	if (ret) {
		dev_err(&pdev->dev, "interface_ischain_probe fail\n");
		goto p_err1;
	}

	ret = fimc_is_hardware_probe(&core->hardware, &core->interface, &core->interface_ischain);
	if (ret) {
		dev_err(&pdev->dev, "hardware_probe fail\n");
		goto p_err1;
	}

	/* set sysfs for set position to actuator */
	sysfs_actuator.init_step = 0;
	for (i = 0; i < INIT_MAX_SETTING; i++) {
		sysfs_actuator.init_positions[i] = -1;
		sysfs_actuator.init_delays[i] = -1;
	}
#endif

#if defined(CONFIG_SOC_EXYNOS5430) || defined(CONFIG_SOC_EXYNOS5433)
#if defined(CONFIG_VIDEOBUF2_ION)
	if (core->resourcemgr.mem.alloc_ctx)
		vb2_ion_attach_iommu(core->resourcemgr.mem.alloc_ctx);
#endif
#endif

	EXYNOS_MIF_ADD_NOTIFIER(&exynos_fimc_is_mif_throttling_nb);

#if defined(CONFIG_PM_RUNTIME)
	pm_runtime_enable(&pdev->dev);
#endif

#ifdef ENABLE_FAULT_HANDLER
#if (LINUX_VERSION_CODE < KERNEL_VERSION(3, 9, 0))
	exynos_sysmmu_set_fault_handler(fimc_is_dev, fimc_is_fault_handler);
#else
	iovmm_set_fault_handler(fimc_is_dev, fimc_is_fault_handler, NULL);
#endif
#endif

	/* set sysfs for debuging */
	sysfs_debug.en_clk_gate = 0;
	sysfs_debug.en_dvfs = 1;
#ifdef ENABLE_CLOCK_GATE
	sysfs_debug.en_clk_gate = 1;
#ifdef HAS_FW_CLOCK_GATE
	sysfs_debug.clk_gate_mode = CLOCK_GATE_MODE_FW;
#else
	sysfs_debug.clk_gate_mode = CLOCK_GATE_MODE_HOST;
#endif
#endif
	ret = sysfs_create_group(&core->pdev->dev.kobj, &fimc_is_debug_attr_group);

	s = pinctrl_lookup_state(pdata->pinctrl, "release");

	if (pinctrl_select_state(pdata->pinctrl, s) < 0) {
		probe_err("pinctrl_select_state is fail\n");
		goto p_err3;
	}

	probe_info("%s:end\n", __func__);
	return 0;

p_err3:
	iounmap(core->regs);
#if defined (ENABLE_IS_CORE) || defined (USE_MCUCTL)
p_err2:
	release_mem_region(regs_res->start, resource_size(regs_res));
#endif
p_err1:
	kfree(core);
	return ret;
}
コード例 #24
0
static int __devinit rc5t583_regulator_probe(struct platform_device *pdev)
{
	struct rc5t583 *rc5t583 = dev_get_drvdata(pdev->dev.parent);
	struct rc5t583_platform_data *pdata = dev_get_platdata(rc5t583->dev);
	struct regulator_init_data *reg_data;
	struct regulator_config config = { };
	struct rc5t583_regulator *reg = NULL;
	struct rc5t583_regulator *regs;
	struct regulator_dev *rdev;
	struct rc5t583_regulator_info *ri;
	int ret;
	int id;

	if (!pdata) {
		dev_err(&pdev->dev, "No platform data, exiting...\n");
		return -ENODEV;
	}

	regs = devm_kzalloc(&pdev->dev, RC5T583_REGULATOR_MAX *
			sizeof(struct rc5t583_regulator), GFP_KERNEL);
	if (!regs) {
		dev_err(&pdev->dev, "Memory allocation failed exiting..\n");
		return -ENOMEM;
	}


	for (id = 0; id < RC5T583_REGULATOR_MAX; ++id) {
		reg_data = pdata->reg_init_data[id];

		/* No need to register if there is no regulator data */
		if (!reg_data)
			continue;

		reg = &regs[id];
		ri = &rc5t583_reg_info[id];
		reg->reg_info = ri;
		reg->mfd = rc5t583;
		reg->dev = &pdev->dev;

		if (ri->deepsleep_id == RC5T583_DS_NONE)
			goto skip_ext_pwr_config;

		ret = rc5t583_ext_power_req_config(rc5t583->dev,
				ri->deepsleep_id,
				pdata->regulator_ext_pwr_control[id],
				pdata->regulator_deepsleep_slot[id]);
		/*
		 * Configuring external control is not a major issue,
		 * just give warning.
		 */
		if (ret < 0)
			dev_warn(&pdev->dev,
				"Failed to configure ext control %d\n", id);

skip_ext_pwr_config:
		config.dev = &pdev->dev;
		config.init_data = reg_data;
		config.driver_data = reg;
		config.regmap = rc5t583->regmap;

		rdev = regulator_register(&ri->desc, &config);
		if (IS_ERR(rdev)) {
			dev_err(&pdev->dev, "Failed to register regulator %s\n",
						ri->desc.name);
			ret = PTR_ERR(rdev);
			goto clean_exit;
		}
		reg->rdev = rdev;
	}
	platform_set_drvdata(pdev, regs);
	return 0;

clean_exit:
	while (--id >= 0)
		regulator_unregister(regs[id].rdev);

	return ret;
}
コード例 #25
0
ファイル: gp2ap002a00f.c プロジェクト: 168519/linux
static int gp2a_probe(struct i2c_client *client,
				const struct i2c_device_id *id)
{
	const struct gp2a_platform_data *pdata = dev_get_platdata(&client->dev);
	struct gp2a_data *dt;
	int error;

	if (!pdata)
		return -EINVAL;

	if (pdata->hw_setup) {
		error = pdata->hw_setup(client);
		if (error < 0)
			return error;
	}

	error = gpio_request_one(pdata->vout_gpio, GPIOF_IN, GP2A_I2C_NAME);
	if (error)
		goto err_hw_shutdown;

	dt = kzalloc(sizeof(struct gp2a_data), GFP_KERNEL);
	if (!dt) {
		error = -ENOMEM;
		goto err_free_gpio;
	}

	dt->pdata = pdata;
	dt->i2c_client = client;

	error = gp2a_initialize(dt);
	if (error < 0)
		goto err_free_mem;

	dt->input = input_allocate_device();
	if (!dt->input) {
		error = -ENOMEM;
		goto err_free_mem;
	}

	input_set_drvdata(dt->input, dt);

	dt->input->open = gp2a_device_open;
	dt->input->close = gp2a_device_close;
	dt->input->name = GP2A_I2C_NAME;
	dt->input->id.bustype = BUS_I2C;
	dt->input->dev.parent = &client->dev;

	input_set_capability(dt->input, EV_SW, SW_FRONT_PROXIMITY);

	error = request_threaded_irq(client->irq, NULL, gp2a_irq,
			IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING |
				IRQF_ONESHOT,
			GP2A_I2C_NAME, dt);
	if (error) {
		dev_err(&client->dev, "irq request failed\n");
		goto err_free_input_dev;
	}

	error = input_register_device(dt->input);
	if (error) {
		dev_err(&client->dev, "device registration failed\n");
		goto err_free_irq;
	}

	device_init_wakeup(&client->dev, pdata->wakeup);
	i2c_set_clientdata(client, dt);

	return 0;

err_free_irq:
	free_irq(client->irq, dt);
err_free_input_dev:
	input_free_device(dt->input);
err_free_mem:
	kfree(dt);
err_free_gpio:
	gpio_free(pdata->vout_gpio);
err_hw_shutdown:
	if (pdata->hw_shutdown)
		pdata->hw_shutdown(client);
	return error;
}
コード例 #26
0
ファイル: gpio-generic.c プロジェクト: BharathKrish/HybridMem
static int bgpio_pdev_probe(struct platform_device *pdev)
{
	struct device *dev = &pdev->dev;
	struct resource *r;
	void __iomem *dat;
	void __iomem *set;
	void __iomem *clr;
	void __iomem *dirout;
	void __iomem *dirin;
	unsigned long sz;
	unsigned long flags = pdev->id_entry->driver_data;
	int err;
	struct gpio_chip *gc;
	struct bgpio_pdata *pdata = dev_get_platdata(dev);

	r = platform_get_resource_byname(pdev, IORESOURCE_MEM, "dat");
	if (!r)
		return -EINVAL;

	sz = resource_size(r);

	dat = bgpio_map(pdev, "dat", sz);
	if (IS_ERR(dat))
		return PTR_ERR(dat);

	set = bgpio_map(pdev, "set", sz);
	if (IS_ERR(set))
		return PTR_ERR(set);

	clr = bgpio_map(pdev, "clr", sz);
	if (IS_ERR(clr))
		return PTR_ERR(clr);

	dirout = bgpio_map(pdev, "dirout", sz);
	if (IS_ERR(dirout))
		return PTR_ERR(dirout);

	dirin = bgpio_map(pdev, "dirin", sz);
	if (IS_ERR(dirin))
		return PTR_ERR(dirin);

	gc = devm_kzalloc(&pdev->dev, sizeof(*gc), GFP_KERNEL);
	if (!gc)
		return -ENOMEM;

	err = bgpio_init(gc, dev, sz, dat, set, clr, dirout, dirin, flags);
	if (err)
		return err;

	if (pdata) {
		if (pdata->label)
			gc->label = pdata->label;
		gc->base = pdata->base;
		if (pdata->ngpio > 0)
			gc->ngpio = pdata->ngpio;
	}

	platform_set_drvdata(pdev, gc);

	return gpiochip_add_data(gc, NULL);
}
コード例 #27
0
static int m48t59_rtc_probe(struct platform_device *pdev)
{
	struct m48t59_plat_data *pdata = dev_get_platdata(&pdev->dev);
	struct m48t59_private *m48t59 = NULL;
	struct resource *res;
	int ret = -ENOMEM;
	char *name;
	const struct rtc_class_ops *ops;
	struct nvmem_config nvmem_cfg = {
		.name = "m48t59-",
		.word_size = 1,
		.stride = 1,
		.reg_read = m48t59_nvram_read,
		.reg_write = m48t59_nvram_write,
		.priv = pdev,
	};

	/* This chip could be memory-mapped or I/O-mapped */
	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	if (!res) {
		res = platform_get_resource(pdev, IORESOURCE_IO, 0);
		if (!res)
			return -EINVAL;
	}

	if (res->flags & IORESOURCE_IO) {
		/* If we are I/O-mapped, the platform should provide
		 * the operations accessing chip registers.
		 */
		if (!pdata || !pdata->write_byte || !pdata->read_byte)
			return -EINVAL;
	} else if (res->flags & IORESOURCE_MEM) {
		/* we are memory-mapped */
		if (!pdata) {
			pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata),
						GFP_KERNEL);
			if (!pdata)
				return -ENOMEM;
			/* Ensure we only kmalloc platform data once */
			pdev->dev.platform_data = pdata;
		}
		if (!pdata->type)
			pdata->type = M48T59RTC_TYPE_M48T59;

		/* Try to use the generic memory read/write ops */
		if (!pdata->write_byte)
			pdata->write_byte = m48t59_mem_writeb;
		if (!pdata->read_byte)
			pdata->read_byte = m48t59_mem_readb;
	}

	m48t59 = devm_kzalloc(&pdev->dev, sizeof(*m48t59), GFP_KERNEL);
	if (!m48t59)
		return -ENOMEM;

	m48t59->ioaddr = pdata->ioaddr;

	if (!m48t59->ioaddr) {
		/* ioaddr not mapped externally */
		m48t59->ioaddr = devm_ioremap(&pdev->dev, res->start,
						resource_size(res));
		if (!m48t59->ioaddr)
			return ret;
	}

	/* Try to get irq number. We also can work in
	 * the mode without IRQ.
	 */
	m48t59->irq = platform_get_irq(pdev, 0);
	if (m48t59->irq <= 0)
		m48t59->irq = NO_IRQ;

	if (m48t59->irq != NO_IRQ) {
		ret = devm_request_irq(&pdev->dev, m48t59->irq,
				m48t59_rtc_interrupt, IRQF_SHARED,
				"rtc-m48t59", &pdev->dev);
		if (ret)
			return ret;
	}
	switch (pdata->type) {
	case M48T59RTC_TYPE_M48T59:
		name = "m48t59";
		ops = &m48t59_rtc_ops;
		pdata->offset = 0x1ff0;
		break;
	case M48T59RTC_TYPE_M48T02:
		name = "m48t02";
		ops = &m48t02_rtc_ops;
		pdata->offset = 0x7f0;
		break;
	case M48T59RTC_TYPE_M48T08:
		name = "m48t08";
		ops = &m48t02_rtc_ops;
		pdata->offset = 0x1ff0;
		break;
	default:
		dev_err(&pdev->dev, "Unknown RTC type\n");
		return -ENODEV;
	}

	spin_lock_init(&m48t59->lock);
	platform_set_drvdata(pdev, m48t59);

	m48t59->rtc = devm_rtc_allocate_device(&pdev->dev);
	if (IS_ERR(m48t59->rtc))
		return PTR_ERR(m48t59->rtc);

	m48t59->rtc->nvram_old_abi = true;
	m48t59->rtc->ops = ops;

	nvmem_cfg.size = pdata->offset;
	ret = rtc_nvmem_register(m48t59->rtc, &nvmem_cfg);
	if (ret)
		return ret;

	ret = rtc_register_device(m48t59->rtc);
	if (ret)
		return ret;

	return 0;
}

/* work with hotplug and coldplug */
MODULE_ALIAS("platform:rtc-m48t59");

static struct platform_driver m48t59_rtc_driver = {
	.driver		= {
		.name	= "rtc-m48t59",
	},
	.probe		= m48t59_rtc_probe,
};
コード例 #28
0
ファイル: max8997.c プロジェクト: Astralix/mainline-dss11
static int max8997_i2c_probe(struct i2c_client *i2c,
			    const struct i2c_device_id *id)
{
	struct max8997_dev *max8997;
	struct max8997_platform_data *pdata = dev_get_platdata(&i2c->dev);
	int ret = 0;

	max8997 = devm_kzalloc(&i2c->dev, sizeof(struct max8997_dev),
				GFP_KERNEL);
	if (max8997 == NULL)
		return -ENOMEM;

	i2c_set_clientdata(i2c, max8997);
	max8997->dev = &i2c->dev;
	max8997->i2c = i2c;
	max8997->type = max8997_i2c_get_driver_data(i2c, id);
	max8997->irq = i2c->irq;

	if (IS_ENABLED(CONFIG_OF) && max8997->dev->of_node) {
		pdata = max8997_i2c_parse_dt_pdata(max8997->dev);
		if (IS_ERR(pdata))
			return PTR_ERR(pdata);
	}

	if (!pdata)
		return ret;

	max8997->pdata = pdata;
	max8997->ono = pdata->ono;

	mutex_init(&max8997->iolock);

	max8997->rtc = i2c_new_dummy(i2c->adapter, I2C_ADDR_RTC);
	i2c_set_clientdata(max8997->rtc, max8997);
	max8997->haptic = i2c_new_dummy(i2c->adapter, I2C_ADDR_HAPTIC);
	i2c_set_clientdata(max8997->haptic, max8997);
	max8997->muic = i2c_new_dummy(i2c->adapter, I2C_ADDR_MUIC);
	i2c_set_clientdata(max8997->muic, max8997);

	pm_runtime_set_active(max8997->dev);

	max8997_irq_init(max8997);

	ret = mfd_add_devices(max8997->dev, -1, max8997_devs,
			ARRAY_SIZE(max8997_devs),
			NULL, 0, NULL);
	if (ret < 0) {
		dev_err(max8997->dev, "failed to add MFD devices %d\n", ret);
		goto err_mfd;
	}

	/*
	 * TODO: enable others (flash, muic, rtc, battery, ...) and
	 * check the return value
	 */

	/* MAX8997 has a power button input. */
	device_init_wakeup(max8997->dev, pdata->wakeup);

	return ret;

err_mfd:
	mfd_remove_devices(max8997->dev);
	i2c_unregister_device(max8997->muic);
	i2c_unregister_device(max8997->haptic);
	i2c_unregister_device(max8997->rtc);
	return ret;
}
コード例 #29
0
ファイル: max8997_haptic.c プロジェクト: kongzizaixian/kernel
static int max8997_haptic_probe(struct platform_device *pdev)
{
    struct max8997_dev *iodev = dev_get_drvdata(pdev->dev.parent);
    const struct max8997_platform_data *pdata =
        dev_get_platdata(iodev->dev);
    const struct max8997_haptic_platform_data *haptic_pdata = NULL;
    struct max8997_haptic *chip;
    struct input_dev *input_dev;
    int error;

    if (pdata)
        haptic_pdata = pdata->haptic_pdata;

    if (!haptic_pdata) {
        dev_err(&pdev->dev, "no haptic platform data\n");
        return -EINVAL;
    }

    chip = kzalloc(sizeof(struct max8997_haptic), GFP_KERNEL);
    input_dev = input_allocate_device();
    if (!chip || !input_dev) {
        dev_err(&pdev->dev, "unable to allocate memory\n");
        error = -ENOMEM;
        goto err_free_mem;
    }

    INIT_WORK(&chip->work, max8997_haptic_play_effect_work);
    mutex_init(&chip->mutex);

    chip->client = iodev->haptic;
    chip->dev = &pdev->dev;
    chip->input_dev = input_dev;
    chip->pwm_period = haptic_pdata->pwm_period;
    chip->type = haptic_pdata->type;
    chip->mode = haptic_pdata->mode;
    chip->pwm_divisor = haptic_pdata->pwm_divisor;

    switch (chip->mode) {
    case MAX8997_INTERNAL_MODE:
        chip->internal_mode_pattern =
            haptic_pdata->internal_mode_pattern;
        chip->pattern_cycle = haptic_pdata->pattern_cycle;
        chip->pattern_signal_period =
            haptic_pdata->pattern_signal_period;
        break;

    case MAX8997_EXTERNAL_MODE:
        chip->pwm = pwm_request(haptic_pdata->pwm_channel_id,
                                "max8997-haptic");
        if (IS_ERR(chip->pwm)) {
            error = PTR_ERR(chip->pwm);
            dev_err(&pdev->dev,
                    "unable to request PWM for haptic, error: %d\n",
                    error);
            goto err_free_mem;
        }
        break;

    default:
        dev_err(&pdev->dev,
                "Invalid chip mode specified (%d)\n", chip->mode);
        error = -EINVAL;
        goto err_free_mem;
    }

    chip->regulator = regulator_get(&pdev->dev, "inmotor");
    if (IS_ERR(chip->regulator)) {
        error = PTR_ERR(chip->regulator);
        dev_err(&pdev->dev,
                "unable to get regulator, error: %d\n",
                error);
        goto err_free_pwm;
    }

    input_dev->name = "max8997-haptic";
    input_dev->id.version = 1;
    input_dev->dev.parent = &pdev->dev;
    input_dev->close = max8997_haptic_close;
    input_set_drvdata(input_dev, chip);
    input_set_capability(input_dev, EV_FF, FF_RUMBLE);

    error = input_ff_create_memless(input_dev, NULL,
                                    max8997_haptic_play_effect);
    if (error) {
        dev_err(&pdev->dev,
                "unable to create FF device, error: %d\n",
                error);
        goto err_put_regulator;
    }

    error = input_register_device(input_dev);
    if (error) {
        dev_err(&pdev->dev,
                "unable to register input device, error: %d\n",
                error);
        goto err_destroy_ff;
    }

    platform_set_drvdata(pdev, chip);
    return 0;

err_destroy_ff:
    input_ff_destroy(input_dev);
err_put_regulator:
    regulator_put(chip->regulator);
err_free_pwm:
    if (chip->mode == MAX8997_EXTERNAL_MODE)
        pwm_free(chip->pwm);
err_free_mem:
    input_free_device(input_dev);
    kfree(chip);

    return error;
}
コード例 #30
0
ファイル: tps65910.c プロジェクト: ReneNyffenegger/linux
static int tps65910_i2c_probe(struct i2c_client *i2c,
			      const struct i2c_device_id *id)
{
	struct tps65910 *tps65910;
	struct tps65910_board *pmic_plat_data;
	struct tps65910_board *of_pmic_plat_data = NULL;
	struct tps65910_platform_data *init_data;
	unsigned long chip_id = id->driver_data;
	int ret = 0;

	pmic_plat_data = dev_get_platdata(&i2c->dev);

	if (!pmic_plat_data && i2c->dev.of_node) {
		pmic_plat_data = tps65910_parse_dt(i2c, &chip_id);
		of_pmic_plat_data = pmic_plat_data;
	}

	if (!pmic_plat_data)
		return -EINVAL;

	init_data = devm_kzalloc(&i2c->dev, sizeof(*init_data), GFP_KERNEL);
	if (init_data == NULL)
		return -ENOMEM;

	tps65910 = devm_kzalloc(&i2c->dev, sizeof(*tps65910), GFP_KERNEL);
	if (tps65910 == NULL)
		return -ENOMEM;

	tps65910->of_plat_data = of_pmic_plat_data;
	i2c_set_clientdata(i2c, tps65910);
	tps65910->dev = &i2c->dev;
	tps65910->i2c_client = i2c;
	tps65910->id = chip_id;

	/* Work around silicon erratum SWCZ010: the tps65910 may miss the
	 * first I2C transfer. So issue a dummy transfer before the first
	 * real transfer.
	 */
	i2c_master_send(i2c, "", 1);
	tps65910->regmap = devm_regmap_init_i2c(i2c, &tps65910_regmap_config);
	if (IS_ERR(tps65910->regmap)) {
		ret = PTR_ERR(tps65910->regmap);
		dev_err(&i2c->dev, "regmap initialization failed: %d\n", ret);
		return ret;
	}

	init_data->irq = pmic_plat_data->irq;
	init_data->irq_base = pmic_plat_data->irq_base;

	tps65910_irq_init(tps65910, init_data->irq, init_data);
	tps65910_ck32k_init(tps65910, pmic_plat_data);
	tps65910_sleepinit(tps65910, pmic_plat_data);

	if (pmic_plat_data->pm_off && !pm_power_off) {
		tps65910_i2c_client = i2c;
		pm_power_off = tps65910_power_off;
	}

	ret = devm_mfd_add_devices(tps65910->dev, -1,
				   tps65910s, ARRAY_SIZE(tps65910s),
				   NULL, 0,
				   regmap_irq_get_domain(tps65910->irq_data));
	if (ret < 0) {
		dev_err(&i2c->dev, "mfd_add_devices failed: %d\n", ret);
		return ret;
	}

	return ret;
}