void TensorMechanicsPlasticModel::dflowPotential_dstressV(const RankTwoTensor & stress, Real intnl, std::vector<RankFourTensor> & dr_dstress) const { return dr_dstress.assign(1, dflowPotential_dstress(stress, intnl)); }
void FiniteStrainPlasticBase::checkDerivatives() { _console << "\n ++++++++++++++ \nChecking the derivatives\n"; outputAndCheckDebugParameters(); _console << "dyieldFunction_dstress. Relative L2 norms.\n"; std::vector<RankTwoTensor> df_dstress; std::vector<RankTwoTensor> fddf_dstress; dyieldFunction_dstress(_fspb_debug_stress, _fspb_debug_intnl, df_dstress); fddyieldFunction_dstress(_fspb_debug_stress, _fspb_debug_intnl, fddf_dstress); for (unsigned alpha = 0 ; alpha < numberOfYieldFunctions() ; ++alpha) { _console << "alpha = " << alpha << " Relative L2norm = " << 2*(df_dstress[alpha] - fddf_dstress[alpha]).L2norm()/(df_dstress[alpha] + fddf_dstress[alpha]).L2norm() << "\n"; _console << "Coded:\n"; df_dstress[alpha].print(); _console << "Finite difference:\n"; fddf_dstress[alpha].print(); } _console << "dflowPotential_dstress. Relative L2 norms.\n"; std::vector<RankFourTensor> dr_dstress; std::vector<RankFourTensor> fddr_dstress; dflowPotential_dstress(_fspb_debug_stress, _fspb_debug_intnl, dr_dstress); fddflowPotential_dstress(_fspb_debug_stress, _fspb_debug_intnl, fddr_dstress); for (unsigned alpha = 0 ; alpha < numberOfYieldFunctions() ; ++alpha) { _console << "alpha = " << alpha << " Relative L2norm = " << 2*(dr_dstress[alpha] - fddr_dstress[alpha]).L2norm()/(dr_dstress[alpha] + fddr_dstress[alpha]).L2norm() << "\n"; _console << "Coded:\n"; dr_dstress[alpha].print(); _console << "Finite difference:\n"; fddr_dstress[alpha].print(); } _console << "dflowPotential_dintnl. Relative L2 norms.\n"; std::vector<std::vector<RankTwoTensor> > dr_dintnl; std::vector<std::vector<RankTwoTensor> > fddr_dintnl; dflowPotential_dintnl(_fspb_debug_stress, _fspb_debug_intnl, dr_dintnl); fddflowPotential_dintnl(_fspb_debug_stress, _fspb_debug_intnl, fddr_dintnl); for (unsigned alpha = 0 ; alpha < numberOfYieldFunctions() ; ++alpha) { for (unsigned a = 0 ; a < numberOfInternalParameters() ; ++a) { _console << "alpha = " << alpha << " a = " << a << " Relative L2norm = " << 2*(dr_dintnl[alpha][a] - fddr_dintnl[alpha][a]).L2norm()/(dr_dintnl[alpha][a] + fddr_dintnl[alpha][a]).L2norm() << "\n"; _console << "Coded:\n"; dr_dintnl[alpha][a].print(); _console << "Finite difference:\n"; fddr_dintnl[alpha][a].print(); } } }
RankFourTensor TensorMechanicsPlasticJ2::consistentTangentOperator(const RankTwoTensor & trial_stress, Real intnl_old, const RankTwoTensor & stress, Real intnl, const RankFourTensor & E_ijkl, const std::vector<Real> & cumulative_pm) const { if (!_use_custom_cto) return TensorMechanicsPlasticModel::consistentTangentOperator( trial_stress, intnl_old, stress, intnl, E_ijkl, cumulative_pm); Real mu = E_ijkl(0, 1, 0, 1); Real h = 3 * mu + dyieldStrength(intnl); RankTwoTensor sij = stress.deviatoric(); Real sII = stress.secondInvariant(); Real equivalent_stress = std::sqrt(3.0 * sII); Real zeta = cumulative_pm[0] / (1.0 + 3.0 * mu * cumulative_pm[0] / equivalent_stress); return E_ijkl - 3.0 * mu * mu / sII / h * sij.outerProduct(sij) - 4.0 * mu * mu * zeta * dflowPotential_dstress(stress, intnl); }
void MultiPlasticityLinearSystem::calculateJacobian(const RankTwoTensor & stress, const std::vector<Real> & intnl, const std::vector<Real> & pm, const RankFourTensor & E_inv, const std::vector<bool> & active, const std::vector<bool> & deactivated_due_to_ld, std::vector<std::vector<Real> > & jac) { // see comments at the start of .h file mooseAssert(intnl.size() == _num_models, "Size of intnl is " << intnl.size() << " which is incorrect in calculateJacobian"); mooseAssert(pm.size() == _num_surfaces, "Size of pm is " << pm.size() << " which is incorrect in calculateJacobian"); mooseAssert(active.size() == _num_surfaces, "Size of active is " << active.size() << " which is incorrect in calculateJacobian"); mooseAssert(deactivated_due_to_ld.size() == _num_surfaces, "Size of deactivated_due_to_ld is " << deactivated_due_to_ld.size() << " which is incorrect in calculateJacobian"); unsigned ind = 0; unsigned active_surface_ind = 0; std::vector<bool> active_surface(_num_surfaces); // active and not deactivated_due_to_ld for (unsigned surface = 0 ; surface < _num_surfaces ; ++surface) active_surface[surface] = (active[surface] && !deactivated_due_to_ld[surface]); unsigned num_active_surface = 0; for (unsigned surface = 0 ; surface < _num_surfaces ; ++surface) if (active_surface[surface]) num_active_surface++; std::vector<bool> active_model(_num_models); // whether a model has surfaces that are active and not deactivated_due_to_ld for (unsigned model = 0 ; model < _num_models ; ++model) active_model[model] = anyActiveSurfaces(model, active_surface); unsigned num_active_model = 0; for (unsigned model = 0 ; model < _num_models ; ++model) if (active_model[model]) num_active_model++; ind = 0; std::vector<unsigned int> active_model_index(_num_models); for (unsigned model = 0 ; model < _num_models ; ++model) if (active_model[model]) active_model_index[model] = ind++; else active_model_index[model] = _num_models+1; // just a dummy, that will probably cause a crash if something goes wrong std::vector<RankTwoTensor> df_dstress; dyieldFunction_dstress(stress, intnl, active_surface, df_dstress); std::vector<Real> df_dintnl; dyieldFunction_dintnl(stress, intnl, active_surface, df_dintnl); std::vector<RankTwoTensor> r; flowPotential(stress, intnl, active, r); std::vector<RankFourTensor> dr_dstress; dflowPotential_dstress(stress, intnl, active, dr_dstress); std::vector<RankTwoTensor> dr_dintnl; dflowPotential_dintnl(stress, intnl, active, dr_dintnl); std::vector<Real> h; hardPotential(stress, intnl, active, h); std::vector<RankTwoTensor> dh_dstress; dhardPotential_dstress(stress, intnl, active, dh_dstress); std::vector<Real> dh_dintnl; dhardPotential_dintnl(stress, intnl, active, dh_dintnl); // d(epp)/dstress = sum_{active alpha} pm[alpha]*dr_dstress RankFourTensor depp_dstress; ind = 0; for (unsigned surface = 0 ; surface < _num_surfaces ; ++surface) if (active[surface]) // includes deactivated_due_to_ld depp_dstress += pm[surface]*dr_dstress[ind++]; depp_dstress += E_inv; // d(epp)/dpm_{active_surface_index} = r_{active_surface_index} std::vector<RankTwoTensor> depp_dpm; depp_dpm.resize(num_active_surface); ind = 0; active_surface_ind = 0; for (unsigned surface = 0 ; surface < _num_surfaces ; ++surface) { if (active[surface]) { if (active_surface[surface]) // do not include the deactived_due_to_ld, since their pm are not dofs in the NR depp_dpm[active_surface_ind++] = r[ind]; ind++; } } // d(epp)/dintnl_{active_model_index} = sum(pm[asdf]*dr_dintnl[fdsa]) std::vector<RankTwoTensor> depp_dintnl; depp_dintnl.assign(num_active_model, RankTwoTensor()); ind = 0; for (unsigned surface = 0 ; surface < _num_surfaces ; ++surface) { if (active[surface]) { unsigned int model_num = modelNumber(surface); if (active_model[model_num]) // only include models with surfaces which are still active after deactivated_due_to_ld depp_dintnl[active_model_index[model_num]] += pm[surface]*dr_dintnl[ind]; ind++; } } // df_dstress has been calculated above // df_dpm is always zero // df_dintnl has been calculated above, but only the active_surface+active_model stuff needs to be included in Jacobian: see below std::vector<RankTwoTensor> dic_dstress; dic_dstress.assign(num_active_model, RankTwoTensor()); ind = 0; for (unsigned surface = 0 ; surface < _num_surfaces ; ++surface) { if (active[surface]) { unsigned int model_num = modelNumber(surface); if (active_model[model_num]) // only include ic for models with active_surface (ie, if model only contains deactivated_due_to_ld don't include it) dic_dstress[active_model_index[model_num]] += pm[surface]*dh_dstress[ind]; ind++; } } std::vector<std::vector<Real> > dic_dpm; dic_dpm.resize(num_active_model); ind = 0; active_surface_ind = 0; for (unsigned model = 0 ; model < num_active_model ; ++model) dic_dpm[model].assign(num_active_surface, 0); for (unsigned surface = 0 ; surface < _num_surfaces ; ++surface) { if (active[surface]) { if (active_surface[surface]) // only take derivs wrt active-but-not-deactivated_due_to_ld pm { unsigned int model_num = modelNumber(surface); // if (active_model[model_num]) // do not need this check as if the surface has active_surface, the model must be deemed active! dic_dpm[active_model_index[model_num]][active_surface_ind] = h[ind]; active_surface_ind++; } ind++; } } std::vector<std::vector<Real> > dic_dintnl; dic_dintnl.resize(num_active_model); for (unsigned model = 0 ; model < num_active_model ; ++model) { dic_dintnl[model].assign(num_active_model, 0); dic_dintnl[model][model] = 1; // deriv wrt internal parameter } ind = 0; for (unsigned surface = 0 ; surface < _num_surfaces ; ++surface) { if (active[surface]) { unsigned int model_num = modelNumber(surface); if (active_model[model_num]) // only the models that contain surfaces that are still active after deactivation_due_to_ld dic_dintnl[active_model_index[model_num]][active_model_index[model_num]] += pm[surface]*dh_dintnl[ind]; ind++; } } unsigned int dim = 3; unsigned int system_size = 6 + num_active_surface + num_active_model; // "6" comes from symmeterizing epp jac.resize(system_size); for (unsigned i = 0 ; i < system_size ; ++i) jac[i].assign(system_size, 0); unsigned int row_num = 0; unsigned int col_num = 0; for (unsigned i = 0 ; i < dim ; ++i) for (unsigned j = 0 ; j <= i ; ++j) { for (unsigned k = 0 ; k < dim ; ++k) for (unsigned l = 0 ; l <= k ; ++l) jac[col_num][row_num++] = depp_dstress(i, j, k, l) + (k != l ? depp_dstress(i, j, l, k) : 0); // extra part is needed because i assume dstress(i, j) = dstress(j, i) for (unsigned surface = 0 ; surface < num_active_surface ; ++surface) jac[col_num][row_num++] = depp_dpm[surface](i, j); for (unsigned a = 0 ; a < num_active_model ; ++a) jac[col_num][row_num++] = depp_dintnl[a](i, j); row_num = 0; col_num++; } ind = 0; for (unsigned surface = 0 ; surface < _num_surfaces ; ++surface) if (active_surface[surface]) { for (unsigned k = 0 ; k < dim ; ++k) for (unsigned l = 0 ; l <= k ; ++l) jac[col_num][row_num++] = df_dstress[ind](k, l) + (k != l ? df_dstress[ind](l, k) : 0); // extra part is needed because i assume dstress(i, j) = dstress(j, i) for (unsigned beta = 0 ; beta < num_active_surface ; ++beta) jac[col_num][row_num++] = 0; // df_dpm for (unsigned model = 0 ; model < _num_models ; ++model) if (active_model[model]) // only use df_dintnl for models in active_model { if (modelNumber(surface) == model) jac[col_num][row_num++] = df_dintnl[ind]; else jac[col_num][row_num++] = 0; } ind++; row_num = 0; col_num++; } for (unsigned a = 0 ; a < num_active_model ; ++a) { for (unsigned k = 0 ; k < dim ; ++k) for (unsigned l = 0 ; l <= k ; ++l) jac[col_num][row_num++] = dic_dstress[a](k, l) + (k != l ? dic_dstress[a](l, k) : 0); // extra part is needed because i assume dstress(i, j) = dstress(j, i) for (unsigned alpha = 0 ; alpha < num_active_surface ; ++alpha) jac[col_num][row_num++] = dic_dpm[a][alpha]; for (unsigned b = 0 ; b < num_active_model ; ++b) jac[col_num][row_num++] = dic_dintnl[a][b]; row_num = 0; col_num++; } mooseAssert(col_num == system_size, "Incorrect filling of cols in Jacobian"); }
void MultiPlasticityDebugger::checkDerivatives() { Moose::err << "\n\n++++++++++++++++++++++++\nChecking the derivatives\n++++++++++++++++++++++++\n"; outputAndCheckDebugParameters(); std::vector<bool> act; act.assign(_num_surfaces, true); Moose::err << "\ndyieldFunction_dstress. Relative L2 norms.\n"; std::vector<RankTwoTensor> df_dstress; std::vector<RankTwoTensor> fddf_dstress; dyieldFunction_dstress(_fspb_debug_stress, _fspb_debug_intnl, act, df_dstress); fddyieldFunction_dstress(_fspb_debug_stress, _fspb_debug_intnl, fddf_dstress); for (unsigned surface = 0; surface < _num_surfaces; ++surface) { Moose::err << "surface = " << surface << " Relative L2norm = " << 2 * (df_dstress[surface] - fddf_dstress[surface]).L2norm() / (df_dstress[surface] + fddf_dstress[surface]).L2norm() << "\n"; Moose::err << "Coded:\n"; df_dstress[surface].print(); Moose::err << "Finite difference:\n"; fddf_dstress[surface].print(); } Moose::err << "\ndyieldFunction_dintnl.\n"; std::vector<Real> df_dintnl; dyieldFunction_dintnl(_fspb_debug_stress, _fspb_debug_intnl, act, df_dintnl); Moose::err << "Coded:\n"; for (unsigned surface = 0; surface < _num_surfaces; ++surface) Moose::err << df_dintnl[surface] << " "; Moose::err << "\n"; std::vector<Real> fddf_dintnl; fddyieldFunction_dintnl(_fspb_debug_stress, _fspb_debug_intnl, fddf_dintnl); Moose::err << "Finite difference:\n"; for (unsigned surface = 0; surface < _num_surfaces; ++surface) Moose::err << fddf_dintnl[surface] << " "; Moose::err << "\n"; Moose::err << "\ndflowPotential_dstress. Relative L2 norms.\n"; std::vector<RankFourTensor> dr_dstress; std::vector<RankFourTensor> fddr_dstress; dflowPotential_dstress(_fspb_debug_stress, _fspb_debug_intnl, act, dr_dstress); fddflowPotential_dstress(_fspb_debug_stress, _fspb_debug_intnl, fddr_dstress); for (unsigned surface = 0; surface < _num_surfaces; ++surface) { Moose::err << "surface = " << surface << " Relative L2norm = " << 2 * (dr_dstress[surface] - fddr_dstress[surface]).L2norm() / (dr_dstress[surface] + fddr_dstress[surface]).L2norm() << "\n"; Moose::err << "Coded:\n"; dr_dstress[surface].print(); Moose::err << "Finite difference:\n"; fddr_dstress[surface].print(); } Moose::err << "\ndflowPotential_dintnl. Relative L2 norms.\n"; std::vector<RankTwoTensor> dr_dintnl; std::vector<RankTwoTensor> fddr_dintnl; dflowPotential_dintnl(_fspb_debug_stress, _fspb_debug_intnl, act, dr_dintnl); fddflowPotential_dintnl(_fspb_debug_stress, _fspb_debug_intnl, fddr_dintnl); for (unsigned surface = 0; surface < _num_surfaces; ++surface) { Moose::err << "surface = " << surface << " Relative L2norm = " << 2 * (dr_dintnl[surface] - fddr_dintnl[surface]).L2norm() / (dr_dintnl[surface] + fddr_dintnl[surface]).L2norm() << "\n"; Moose::err << "Coded:\n"; dr_dintnl[surface].print(); Moose::err << "Finite difference:\n"; fddr_dintnl[surface].print(); } }
void FiniteStrainPlasticBase::calculateJacobian(const RankTwoTensor & stress, const std::vector<Real> & intnl, const std::vector<Real> & pm, const RankFourTensor & E_inv, std::vector<std::vector<Real> > & jac) { // construct quantities used in the Newton-Raphson linear system // These should have been defined by the derived classes, if // they are different from the default functions given elsewhere // in this class std::vector<RankTwoTensor> df_dstress; dyieldFunction_dstress(stress, intnl, df_dstress); std::vector<std::vector<Real> > df_dintnl; dyieldFunction_dintnl(stress, intnl, df_dintnl); std::vector<RankTwoTensor> r; flowPotential(stress, intnl, r); std::vector<RankFourTensor> dr_dstress; dflowPotential_dstress(stress, intnl, dr_dstress); std::vector<std::vector<RankTwoTensor> > dr_dintnl; dflowPotential_dintnl(stress, intnl, dr_dintnl); std::vector<std::vector<Real> > h; hardPotential(stress, intnl, h); std::vector<std::vector<RankTwoTensor> > dh_dstress; dhardPotential_dstress(stress, intnl, dh_dstress); std::vector<std::vector<std::vector<Real> > > dh_dintnl; dhardPotential_dintnl(stress, intnl, dh_dintnl); // construct matrix entries // In the following // epp = pm*r - E_inv*(trial_stress - stress) = pm*r - delta_dp // f = yield function // ic = intnl - intnl_old + pm*h RankFourTensor depp_dstress; for (unsigned alpha = 0 ; alpha < numberOfYieldFunctions() ; ++alpha) depp_dstress += pm[alpha]*dr_dstress[alpha]; depp_dstress += E_inv; std::vector<RankTwoTensor> depp_dpm; depp_dpm.resize(numberOfYieldFunctions()); for (unsigned alpha = 0; alpha < numberOfYieldFunctions() ; ++alpha) depp_dpm[alpha] = r[alpha]; std::vector<RankTwoTensor> depp_dintnl; depp_dintnl.assign(numberOfInternalParameters(), RankTwoTensor()); for (unsigned a = 0; a < numberOfInternalParameters() ; ++a) for (unsigned alpha = 0 ; alpha < numberOfYieldFunctions() ; ++alpha) depp_dintnl[a] += pm[alpha]*dr_dintnl[alpha][a]; // df_dstress has been calculated above // df_dpm is always zero // df_dintnl has been calculated above std::vector<RankTwoTensor> dic_dstress; dic_dstress.assign(numberOfInternalParameters(), RankTwoTensor()); for (unsigned a = 0 ; a < numberOfInternalParameters() ; ++a) for (unsigned alpha = 0 ; alpha < numberOfYieldFunctions() ; ++alpha) dic_dstress[a] += pm[alpha]*dh_dstress[a][alpha]; std::vector<std::vector<Real> > dic_dpm; dic_dpm.resize(numberOfInternalParameters()); for (unsigned a = 0 ; a < numberOfInternalParameters() ; ++a) { dic_dpm[a].resize(numberOfYieldFunctions()); for (unsigned alpha = 0 ; alpha < numberOfYieldFunctions() ; ++alpha) dic_dpm[a][alpha] = h[a][alpha]; } std::vector<std::vector<Real> > dic_dintnl; dic_dintnl.resize(numberOfInternalParameters()); for (unsigned a = 0 ; a < numberOfInternalParameters() ; ++a) { dic_dintnl[a].assign(numberOfInternalParameters(), 0); for (unsigned b = 0 ; b < numberOfInternalParameters() ; ++b) for (unsigned alpha = 0 ; alpha < numberOfYieldFunctions() ; ++alpha) dic_dintnl[a][b] += pm[alpha]*dh_dintnl[a][alpha][b]; dic_dintnl[a][a] += 1; } /** * now construct the Jacobian * It is: * ( depp_dstress depp_dpm depp_dintnl ) * ( df_dstress 0 df_dintnl ) * ( dic_dstress dic_dpm dic_dintnl ) * For the "epp" terms, only the i>=j components are kept in the RHS, so only these terms are kept here too */ unsigned int dim = 3; unsigned int system_size = 6 + numberOfYieldFunctions() + numberOfInternalParameters(); // "6" comes from symmeterizing epp jac.resize(system_size); for (unsigned i = 0 ; i < system_size ; ++i) jac[i].resize(system_size); unsigned int row_num = 0; unsigned int col_num = 0; for (unsigned i = 0 ; i < dim ; ++i) for (unsigned j = 0 ; j <= i ; ++j) { for (unsigned k = 0 ; k < dim ; ++k) for (unsigned l = 0 ; l <= k ; ++l) jac[col_num][row_num++] = depp_dstress(i, j, k, l) + (k != l ? depp_dstress(i, j, l, k) : 0); // extra part is needed because i assume dstress(i, j) = dstress(j, i) for (unsigned alpha = 0 ; alpha < numberOfYieldFunctions() ; ++alpha) jac[col_num][row_num++] = depp_dpm[alpha](i, j); for (unsigned a = 0 ; a < numberOfInternalParameters() ; ++a) jac[col_num][row_num++] = depp_dintnl[a](i, j); row_num = 0; col_num++; } for (unsigned alpha = 0 ; alpha < numberOfYieldFunctions() ; ++alpha) { for (unsigned k = 0 ; k < dim ; ++k) for (unsigned l = 0 ; l <= k ; ++l) jac[col_num][row_num++] = df_dstress[alpha](k, l) + (k != l ? df_dstress[alpha](l, k) : 0); // extra part is needed because i assume dstress(i, j) = dstress(j, i) for (unsigned beta = 0 ; beta < numberOfYieldFunctions() ; ++beta) jac[col_num][row_num++] = 0; for (unsigned a = 0 ; a < numberOfInternalParameters() ; ++a) jac[col_num][row_num++] = df_dintnl[alpha][a]; row_num = 0; col_num++; } for (unsigned a = 0 ; a < numberOfInternalParameters() ; ++a) { for (unsigned k = 0 ; k < dim ; ++k) for (unsigned l = 0 ; l <= k ; ++l) jac[col_num][row_num++] = dic_dstress[a](k, l) + (k != l ? dic_dstress[a](l, k) : 0); // extra part is needed because i assume dstress(i, j) = dstress(j, i) for (unsigned alpha = 0 ; alpha < numberOfYieldFunctions() ; ++alpha) jac[col_num][row_num++] = dic_dpm[a][alpha]; for (unsigned b = 0 ; b < numberOfInternalParameters() ; ++b) jac[col_num][row_num++] = dic_dintnl[a][b]; row_num = 0; col_num++; } }