コード例 #1
0
int HYPRE_ParCSR_SuperLUSolve(HYPRE_Solver solver, HYPRE_ParCSRMatrix A,
                              HYPRE_ParVector b, HYPRE_ParVector x )
{
#ifdef HAVE_SUPERLU
   int    nrows, i, info;
   double *bData, *xData;
   SuperMatrix B;
   SuperLUStat_t slu_stat;
   trans_t       trans;
   HYPRE_SuperLU *sluPtr = (HYPRE_SuperLU *) solver;

   /* ---------------------------------------------------------------- */
   /* make sure setup has been called                                  */
   /* ---------------------------------------------------------------- */

   assert ( sluPtr != NULL );
   if ( ! (sluPtr->factorized_) )
   {
      printf("HYPRE_ParCSR_SuperLUSolve ERROR - not factorized yet.\n");
      return -1;
   }

   /* ---------------------------------------------------------------- */
   /* fetch right hand side and solution vector                        */
   /* ---------------------------------------------------------------- */

   xData = hypre_VectorData(hypre_ParVectorLocalVector((hypre_ParVector *)x));
   bData = hypre_VectorData(hypre_ParVectorLocalVector((hypre_ParVector *)b));
   nrows = hypre_ParVectorGlobalSize((hypre_ParVector *)x); 
   for (i = 0; i < nrows; i++) xData[i] = bData[i];

   /* ---------------------------------------------------------------- */
   /* solve                                                            */
   /* ---------------------------------------------------------------- */

   dCreate_Dense_Matrix(&B, nrows, 1, bData, nrows, SLU_DN, SLU_D,SLU_GE);

   /* -------------------------------------------------------------
    * solve the problem
    * -----------------------------------------------------------*/

   trans = NOTRANS;
   StatInit(&slu_stat);
   dgstrs (trans, &(sluPtr->SLU_Lmat), &(sluPtr->SLU_Umat), 
           sluPtr->permC_, sluPtr->permR_, &B, &slu_stat, &info);
   Destroy_SuperMatrix_Store(&B);
   StatFree(&slu_stat);
   return 0;
#else
   printf("HYPRE_ParCSR_SuperLUSolve ERROR - SuperLU not enabled.\n");
   *solver = (HYPRE_Solver) NULL;
   return -1;
#endif
}
コード例 #2
0
void tlin::solve(SuperFactors *F, SuperMatrix *BX, superlu_options_t *opt) {
  assert(F);

  if (!opt) opt = &defaultOpt;

  SuperLUStat_t stat;
  StatInit(&stat);

  int result;
  dgstrs(NOTRANS, F->L, F->U, F->perm_c, F->perm_r, BX, &stat, &result);

  StatFree(&stat);
}
コード例 #3
0
ファイル: ditersol.c プロジェクト: AmEv7Fam/opentoonz
void dpsolve(int n, double x[], double y[])
{
    extern void dcopy_(int *, double [], int *, double [], int *);

    int i_1 = 1;
    SuperMatrix *L = GLOBAL_L, *U = GLOBAL_U;
    SuperLUStat_t *stat = GLOBAL_STAT;
    int *perm_c = GLOBAL_PERM_C, *perm_r = GLOBAL_PERM_R;
    int info;
    static DNformat X;
    static SuperMatrix XX = {SLU_DN, SLU_D, SLU_GE, 1, 1, &X};

    dcopy_(&n, y, &i_1, x, &i_1);
    XX.nrow = n;
    X.lda = n;
    X.nzval = x;
    dgstrs(NOTRANS, L, U, perm_c, perm_r, &XX, stat, &info);
}
コード例 #4
0
static PyObject* superluWrappersSparseFactorSolve(PyObject* self,
                                                PyObject* args)
{
  trans_t trans=TRANS;
  int info=0;
  PyObject *sparseFactor,*x;
  if(!PyArg_ParseTuple(args,"OO",
                       &sparseFactor,
                       &x))
    return NULL;
  SFP(sparseFactor)->storeX.nzval = DDATA(x);
  dgstrs(trans,
         &SFP(sparseFactor)->L,
         &SFP(sparseFactor)->U,
         SFP(sparseFactor)->perm_c,
         SFP(sparseFactor)->perm_r,
         &SFP(sparseFactor)->X,
         &SFP(sparseFactor)->stat,
         &info);
  Py_INCREF(Py_None); 
  return Py_None;
}
コード例 #5
0
ファイル: pdgssv.c プロジェクト: GridOPTICS/FNCS-gridlab-d
void
pdgssv(int nprocs, SuperMatrix *A, int *perm_c, int *perm_r, 
       SuperMatrix *L, SuperMatrix *U, SuperMatrix *B, int *info )
{
/*
 * -- SuperLU MT routine (version 2.0) --
 * Lawrence Berkeley National Lab, Univ. of California Berkeley,
 * and Xerox Palo Alto Research Center.
 * September 10, 2007
 *
 * Purpose
 * =======
 *
 * PDGSSV solves the system of linear equations A*X=B, using the parallel
 * LU factorization routine PDGSTRF. It performs the following steps:
 *
 *   1. If A is stored column-wise (A->Stype = NC):
 *
 *      1.1. Permute the columns of A, forming A*Pc, where Pc is a 
 *           permutation matrix. 
 *           For more details of this step, see sp_preorder.c.
 *
 *      1.2. Factor A as Pr*A*Pc=L*U with the permutation Pr determined
 *           by Gaussian elimination with partial pivoting.
 *           L is unit lower triangular with offdiagonal entries
 *           bounded by 1 in magnitude, and U is upper triangular.
 *
 *      1.3. Solve the system of equations A*X=B using the factored
 *           form of A.
 *
 *   2. If A is stored row-wise (A->Stype = NR), apply the above algorithm
 *      to the tranpose of A:
 *
 *      2.1. Permute columns of tranpose(A) (rows of A),
 *           forming transpose(A)*Pc, where Pc is a permutation matrix. 
 *           For more details of this step, see sp_preorder.c.
 *
 *      2.2. Factor A as Pr*transpose(A)*Pc=L*U with the permutation Pr
 *           determined by Gaussian elimination with partial pivoting.
 *           L is unit lower triangular with offdiagonal entries
 *           bounded by 1 in magnitude, and U is upper triangular.
 *
 *      2.3. Solve the system of equations A*X=B using the factored
 *           form of A.
 * 
 *   See supermatrix.h for the definition of "SuperMatrix" structure.
 *
 *
 * Arguments
 * =========
 *
 * nprocs (input) int
 *        Number of processes (or threads) to be spawned and used to perform
 *        the LU factorization by pdgstrf(). There is a single thread of
 *        control to call pdgstrf(), and all threads spawned by pdgstrf()
 *        are terminated before returning from pdgstrf().
 *
 * A      (input) SuperMatrix*
 *        Matrix A in A*X=B, of dimension (A->nrow, A->ncol), where
 *        A->nrow = A->ncol. Currently, the type of A can be:
 *        Stype = NC or NR; Dtype = _D; Mtype = GE. In the future,
 *        more general A will be handled.
 *
 * perm_c (input/output) int*
 *        If A->Stype=NC, column permutation vector of size A->ncol,
 *        which defines the permutation matrix Pc; perm_c[i] = j means 
 *        column i of A is in position j in A*Pc.
 *        On exit, perm_c may be overwritten by the product of the input
 *        perm_c and a permutation that postorders the elimination tree
 *        of Pc'*A'*A*Pc; perm_c is not changed if the elimination tree
 *        is already in postorder.
 *
 *        If A->Stype=NR, column permutation vector of size A->nrow
 *        which describes permutation of columns of tranpose(A) 
 *        (rows of A) as described above.
 * 
 * perm_r (output) int*,
 *        If A->Stype=NR, row permutation vector of size A->nrow, 
 *        which defines the permutation matrix Pr, and is determined 
 *        by partial pivoting.  perm_r[i] = j means row i of A is in 
 *        position j in Pr*A.
 *
 *        If A->Stype=NR, permutation vector of size A->ncol, which
 *        determines permutation of rows of transpose(A)
 *        (columns of A) as described above.
 *
 * L      (output) SuperMatrix*
 *        The factor L from the factorization 
 *            Pr*A*Pc=L*U              (if A->Stype=NC) or
 *            Pr*transpose(A)*Pc=L*U   (if A->Stype=NR).
 *        Uses compressed row subscripts storage for supernodes, i.e.,
 *        L has types: Stype = SCP, Dtype = _D, Mtype = TRLU.
 *
 * U      (output) SuperMatrix*
 *	  The factor U from the factorization
 *            Pr*A*Pc=L*U              (if A->Stype=NC) or
 *            Pr*transpose(A)*Pc=L*U   (if A->Stype=NR).
 *        Use column-wise storage scheme, i.e., U has types:
 *        Stype = NCP, Dtype = _D, Mtype = TRU.
 *
 * B      (input/output) SuperMatrix*
 *        B has types: Stype = DN, Dtype = _D, Mtype = GE.
 *        On entry, the right hand side matrix.
 *        On exit, the solution matrix if info = 0;
 *
 * info   (output) int*
 *	  = 0: successful exit
 *        > 0: if info = i, and i is
 *             <= A->ncol: U(i,i) is exactly zero. The factorization has
 *                been completed, but the factor U is exactly singular,
 *                so the solution could not be computed.
 *             > A->ncol: number of bytes allocated when memory allocation
 *                failure occurred, plus A->ncol.
 *   
 */
    trans_t  trans;
    NCformat *Astore;
    DNformat *Bstore;
    SuperMatrix *AA; /* A in NC format used by the factorization routine.*/
    SuperMatrix AC; /* Matrix postmultiplied by Pc */
    int i, n, panel_size, relax;
    fact_t   fact;
    yes_no_t refact, usepr;
    double diag_pivot_thresh, drop_tol;
    void *work;
    int lwork;
    superlumt_options_t superlumt_options;
    Gstat_t  Gstat;
    double   t; /* Temporary time */
    double   *utime;
    flops_t  *ops, flopcnt;

    /* ------------------------------------------------------------
       Test the input parameters.
       ------------------------------------------------------------*/
    Astore = A->Store;
    Bstore = B->Store;
    *info = 0;
    if ( nprocs <= 0 ) *info = -1;
    else if ( A->nrow != A->ncol || A->nrow < 0 || 
	      (A->Stype != SLU_NC && A->Stype != SLU_NR) ||
	      A->Dtype != SLU_D || A->Mtype != SLU_GE )
	*info = -2;
    else if ( B->ncol < 0 || Bstore->lda < SUPERLU_MAX(1, A->nrow) )*info = -7;
    if ( *info != 0 ) {
        i = -(*info);
	xerbla_("pdgssv", &i);
	return;
    }

#if 0
    /* Use the best sequential code. 
       if this part is commented out, we will use the parallel code 
       run on one processor. */
    if ( nprocs == 1 ) {
        return;
    }
#endif

    fact               = EQUILIBRATE;
    refact             = NO;
    trans              = NOTRANS;
    panel_size         = sp_ienv(1);
    relax              = sp_ienv(2);
    diag_pivot_thresh  = 1.0;
    usepr              = NO;
    drop_tol           = 0.0;
    work               = NULL;
    lwork              = 0;

    /* ------------------------------------------------------------
       Allocate storage and initialize statistics variables. 
       ------------------------------------------------------------*/
    n = A->ncol;
    StatAlloc(n, nprocs, panel_size, relax, &Gstat);
    StatInit(n, nprocs, &Gstat);
    utime = Gstat.utime;
    ops = Gstat.ops;

    /* ------------------------------------------------------------
       Convert A to NC format when necessary.
       ------------------------------------------------------------*/
    if ( A->Stype == SLU_NR ) {
	NRformat *Astore = A->Store;
	AA = (SuperMatrix *) SUPERLU_MALLOC( sizeof(SuperMatrix) );
	dCreate_CompCol_Matrix(AA, A->ncol, A->nrow, Astore->nnz, 
			       Astore->nzval, Astore->colind, Astore->rowptr,
			       SLU_NC, A->Dtype, A->Mtype);
	trans = TRANS;
    } else if ( A->Stype == SLU_NC ) AA = A;

    /* ------------------------------------------------------------
       Initialize the option structure superlumt_options using the
       user-input parameters;
       Apply perm_c to the columns of original A to form AC.
       ------------------------------------------------------------*/
    pdgstrf_init(nprocs, fact, trans, refact, panel_size, relax,
		 diag_pivot_thresh, usepr, drop_tol, perm_c, perm_r,
		 work, lwork, AA, &AC, &superlumt_options, &Gstat);

    /* ------------------------------------------------------------
       Compute the LU factorization of A.
       The following routine will create nprocs threads.
       ------------------------------------------------------------*/
    pdgstrf(&superlumt_options, &AC, perm_r, L, U, &Gstat, info);

    flopcnt = 0;
    for (i = 0; i < nprocs; ++i) flopcnt += Gstat.procstat[i].fcops;
    ops[FACT] = flopcnt;

#if ( PRNTlevel==1 )
    printf("nprocs = %d, flops %e, Mflops %.2f\n",
	   nprocs, flopcnt, flopcnt/utime[FACT]*1e-6);
    printf("Parameters: w %d, relax %d, maxsuper %d, rowblk %d, colblk %d\n",
	   sp_ienv(1), sp_ienv(2), sp_ienv(3), sp_ienv(4), sp_ienv(5));
    fflush(stdout);
#endif

    /* ------------------------------------------------------------
       Solve the system A*X=B, overwriting B with X.
       ------------------------------------------------------------*/
    if ( *info == 0 ) {
        t = SuperLU_timer_();
	dgstrs (trans, L, U, perm_r, perm_c, B, &Gstat, info);
	utime[SOLVE] = SuperLU_timer_() - t;
	ops[SOLVE] = ops[TRISOLVE];
    }

    /* ------------------------------------------------------------
       Deallocate storage after factorization.
       ------------------------------------------------------------*/
    pxgstrf_finalize(&superlumt_options, &AC);
    if ( A->Stype == SLU_NR ) {
	Destroy_SuperMatrix_Store(AA);
	SUPERLU_FREE(AA);
    }

    /* ------------------------------------------------------------
       Print timings, then deallocate statistic variables.
       ------------------------------------------------------------*/
#ifdef PROFILE
    {
	SCPformat *Lstore = (SCPformat *) L->Store;
	ParallelProfile(n, Lstore->nsuper+1, Gstat.num_panels, nprocs, &Gstat);
    }
#endif
    //PrintStat(&Gstat);	//FT Commented
    StatFree(&Gstat);
}
コード例 #6
0
void
dgssv(SuperMatrix *A, int *perm_c, int *perm_r, SuperMatrix *L,
      SuperMatrix *U, SuperMatrix *B, int *info )
{
/*
 * Purpose
 * =======
 *
 * DGSSV solves the system of linear equations A*X=B, using the
 * LU factorization from DGSTRF. It performs the following steps:
 *
 *   1. If A is stored column-wise (A->Stype = SLU_NC):
 *
 *      1.1. Permute the columns of A, forming A*Pc, where Pc
 *           is a permutation matrix. For more details of this step, 
 *           see sp_preorder.c.
 *
 *      1.2. Factor A as Pr*A*Pc=L*U with the permutation Pr determined
 *           by Gaussian elimination with partial pivoting.
 *           L is unit lower triangular with offdiagonal entries
 *           bounded by 1 in magnitude, and U is upper triangular.
 *
 *      1.3. Solve the system of equations A*X=B using the factored
 *           form of A.
 *
 *   2. If A is stored row-wise (A->Stype = SLU_NR), apply the
 *      above algorithm to the transpose of A:
 *
 *      2.1. Permute columns of transpose(A) (rows of A),
 *           forming transpose(A)*Pc, where Pc is a permutation matrix. 
 *           For more details of this step, see sp_preorder.c.
 *
 *      2.2. Factor A as Pr*transpose(A)*Pc=L*U with the permutation Pr
 *           determined by Gaussian elimination with partial pivoting.
 *           L is unit lower triangular with offdiagonal entries
 *           bounded by 1 in magnitude, and U is upper triangular.
 *
 *      2.3. Solve the system of equations A*X=B using the factored
 *           form of A.
 *
 *   See supermatrix.h for the definition of 'SuperMatrix' structure.
 * 
 * Arguments
 * =========
 *
 * A       (input) SuperMatrix*
 *         Matrix A in A*X=B, of dimension (A->nrow, A->ncol). The number
 *         of linear equations is A->nrow. Currently, the type of A can be:
 *         Stype = SLU_NC or SLU_NR; Dtype = SLU_D; Mtype = SLU_GE.
 *         In the future, more general A may be handled.
 *
 * perm_c  (input/output) int*
 *         If A->Stype = SLU_NC, column permutation vector of size A->ncol
 *         which defines the permutation matrix Pc; perm_c[i] = j means 
 *         column i of A is in position j in A*Pc.
 *         On exit, perm_c may be overwritten by the product of the input
 *         perm_c and a permutation that postorders the elimination tree
 *         of Pc'*A'*A*Pc; perm_c is not changed if the elimination tree
 *         is already in postorder.
 *
 *         If A->Stype = SLU_NR, column permutation vector of size A->nrow
 *         which describes permutation of columns of transpose(A) 
 *         (rows of A) as described above.
 * 
 * perm_r  (output) int*
 *         If A->Stype = SLU_NC, row permutation vector of size A->nrow, 
 *         which defines the permutation matrix Pr, and is determined 
 *         by partial pivoting.  perm_r[i] = j means row i of A is in 
 *         position j in Pr*A.
 *
 *         If A->Stype = SLU_NR, permutation vector of size A->ncol, which
 *         determines permutation of rows of transpose(A)
 *         (columns of A) as described above.
 *
 * L       (output) SuperMatrix*
 *         The factor L from the factorization 
 *             Pr*A*Pc=L*U              (if A->Stype = SLU_NC) or
 *             Pr*transpose(A)*Pc=L*U   (if A->Stype = SLU_NR).
 *         Uses compressed row subscripts storage for supernodes, i.e.,
 *         L has types: Stype = SC, Dtype = SLU_D, Mtype = TRLU.
 *         
 * U       (output) SuperMatrix*
 *	   The factor U from the factorization 
 *             Pr*A*Pc=L*U              (if A->Stype = SLU_NC) or
 *             Pr*transpose(A)*Pc=L*U   (if A->Stype = SLU_NR).
 *         Uses column-wise storage scheme, i.e., U has types:
 *         Stype = SLU_NC, Dtype = SLU_D, Mtype = TRU.
 *
 * B       (input/output) SuperMatrix*
 *         B has types: Stype = SLU_DN, Dtype = SLU_D, Mtype = SLU_GE.
 *         On entry, the right hand side matrix.
 *         On exit, the solution matrix if info = 0;
 *
 * info    (output) int*
 *	   = 0: successful exit
 *         > 0: if info = i, and i is
 *             <= A->ncol: U(i,i) is exactly zero. The factorization has
 *                been completed, but the factor U is exactly singular,
 *                so the solution could not be computed.
 *             > A->ncol: number of bytes allocated when memory allocation
 *                failure occurred, plus A->ncol.
 *   
 */
    double   t1;	/* Temporary time */
    char     refact[1], trans[1];
    DNformat *Bstore;
    SuperMatrix *AA;/* A in SLU_NC format used by the factorization routine.*/
    SuperMatrix AC; /* Matrix postmultiplied by Pc */
    int      lwork = 0, *etree, i;
    
    /* Set default values for some parameters */
    double   diag_pivot_thresh = 1.0;
    double   drop_tol = 0;
    int      panel_size;     /* panel size */
    int      relax;          /* no of columns in a relaxed snodes */
    double   *utime;
    extern SuperLUStat_t SuperLUStat;

    /* Test the input parameters ... */
    *info = 0;
    Bstore = B->Store;
    if ( A->nrow != A->ncol || A->nrow < 0 ||
	 (A->Stype != SLU_NC && A->Stype != SLU_NR) ||
	 A->Dtype != SLU_D || A->Mtype != SLU_GE )
	*info = -1;
    else if ( B->ncol < 0 || Bstore->lda < SUPERLU_MAX(0, A->nrow) ||
	B->Stype != SLU_DN || B->Dtype != SLU_D || B->Mtype != SLU_GE )
	*info = -6;
    if ( *info != 0 ) {
	i = -(*info);
	xerbla_("dgssv", &i);
	return;
    }
    
    *refact = 'N';
    *trans = 'N';
    panel_size = sp_ienv(1);
    relax = sp_ienv(2);

    StatInit(panel_size, relax);
    utime = SuperLUStat.utime;
 
    /* Convert A to SLU_NC format when necessary. */
    if ( A->Stype == SLU_NR ) {
	NRformat *Astore = A->Store;
	AA = (SuperMatrix *) SUPERLU_MALLOC( sizeof(SuperMatrix) );
	dCreate_CompCol_Matrix(AA, A->ncol, A->nrow, Astore->nnz, 
			       Astore->nzval, Astore->colind, Astore->rowptr,
			       SLU_NC, A->Dtype, A->Mtype);
	*trans = 'T';
    } else if ( A->Stype == SLU_NC ) AA = A;

    etree = intMalloc(A->ncol);

    t1 = SuperLU_timer_();
    sp_preorder(refact, AA, perm_c, etree, &AC);
    utime[ETREE] = SuperLU_timer_() - t1;

    /*printf("Factor PA = LU ... relax %d\tw %d\tmaxsuper %d\trowblk %d\n", 
	  relax, panel_size, sp_ienv(3), sp_ienv(4));*/
    t1 = SuperLU_timer_(); 
    /* Compute the LU factorization of A. */
    dgstrf(refact, &AC, diag_pivot_thresh, drop_tol, relax, panel_size,
	   etree, NULL, lwork, perm_r, perm_c, L, U, info);
    utime[FACT] = SuperLU_timer_() - t1;

    t1 = SuperLU_timer_();
    if ( *info == 0 ) {
        /* Solve the system A*X=B, overwriting B with X. */
        dgstrs (trans, L, U, perm_r, perm_c, B, info);
    }
    utime[SOLVE] = SuperLU_timer_() - t1;

    SUPERLU_FREE (etree);
    Destroy_CompCol_Permuted(&AC);
    if ( A->Stype == SLU_NR ) {
	Destroy_SuperMatrix_Store(AA);
	SUPERLU_FREE(AA);
    }

    /*PrintStat( &SuperLUStat );*/
    StatFree();

}
コード例 #7
0
ファイル: c_fortran_dgssv.c プロジェクト: Amanotoko/fem
void
c_fortran_dgssv_(int *iopt, int *n, int *nnz, int *nrhs, 
                 double *values, int *rowind, int *colptr,
                 double *b, int *ldb,
		 fptr *f_factors, /* a handle containing the address
				     pointing to the factored matrices */
		 int *info)

{
/* 
 * This routine can be called from Fortran.
 *
 * iopt (input) int
 *      Specifies the operation:
 *      = 1, performs LU decomposition for the first time
 *      = 2, performs triangular solve
 *      = 3, free all the storage in the end
 *
 * f_factors (input/output) fptr* 
 *      If iopt == 1, it is an output and contains the pointer pointing to
 *                    the structure of the factored matrices.
 *      Otherwise, it it an input.
 *
 */
 
    SuperMatrix A, AC, B;
    SuperMatrix *L, *U;
    int *perm_r; /* row permutations from partial pivoting */
    int *perm_c; /* column permutation vector */
    int *etree;  /* column elimination tree */
    SCformat *Lstore;
    NCformat *Ustore;
    int      i, panel_size, permc_spec, relax;
    trans_t  trans;
    mem_usage_t   mem_usage;
    superlu_options_t options;
    SuperLUStat_t stat;
    factors_t *LUfactors;

    trans = NOTRANS;

    if ( *iopt == 1 ) { /* LU decomposition */

        /* Set the default input options. */
        set_default_options(&options);

	/* Initialize the statistics variables. */
	StatInit(&stat);

	/* Adjust to 0-based indexing */
	for (i = 0; i < *nnz; ++i) --rowind[i];
	for (i = 0; i <= *n; ++i) --colptr[i];

	dCreate_CompCol_Matrix(&A, *n, *n, *nnz, values, rowind, colptr,
			       SLU_NC, SLU_D, SLU_GE);
	L = (SuperMatrix *) SUPERLU_MALLOC( sizeof(SuperMatrix) );
	U = (SuperMatrix *) SUPERLU_MALLOC( sizeof(SuperMatrix) );
	if ( !(perm_r = intMalloc(*n)) ) ABORT("Malloc fails for perm_r[].");
	if ( !(perm_c = intMalloc(*n)) ) ABORT("Malloc fails for perm_c[].");
	if ( !(etree = intMalloc(*n)) ) ABORT("Malloc fails for etree[].");

	/*
	 * Get column permutation vector perm_c[], according to permc_spec:
	 *   permc_spec = 0: natural ordering 
	 *   permc_spec = 1: minimum degree on structure of A'*A
	 *   permc_spec = 2: minimum degree on structure of A'+A
	 *   permc_spec = 3: approximate minimum degree for unsymmetric matrices
	 */    	
	permc_spec = options.ColPerm;
	get_perm_c(permc_spec, &A, perm_c);
	
	sp_preorder(&options, &A, perm_c, etree, &AC);

	panel_size = sp_ienv(1);
	relax = sp_ienv(2);

	dgstrf(&options, &AC, relax, panel_size, etree,
                NULL, 0, perm_c, perm_r, L, U, &stat, info);

	if ( *info == 0 ) {
	    Lstore = (SCformat *) L->Store;
	    Ustore = (NCformat *) U->Store;
	    printf("No of nonzeros in factor L = %d\n", Lstore->nnz);
	    printf("No of nonzeros in factor U = %d\n", Ustore->nnz);
	    printf("No of nonzeros in L+U = %d\n", Lstore->nnz + Ustore->nnz);
	    dQuerySpace(L, U, &mem_usage);
	    printf("L\\U MB %.3f\ttotal MB needed %.3f\n",
		   mem_usage.for_lu/1e6, mem_usage.total_needed/1e6);
	} else {
	    printf("dgstrf() error returns INFO= %d\n", *info);
	    if ( *info <= *n ) { /* factorization completes */
		dQuerySpace(L, U, &mem_usage);
		printf("L\\U MB %.3f\ttotal MB needed %.3f\n",
		       mem_usage.for_lu/1e6, mem_usage.total_needed/1e6);
	    }
	}
	
	/* Restore to 1-based indexing */
	for (i = 0; i < *nnz; ++i) ++rowind[i];
	for (i = 0; i <= *n; ++i) ++colptr[i];

	/* Save the LU factors in the factors handle */
	LUfactors = (factors_t*) SUPERLU_MALLOC(sizeof(factors_t));
	LUfactors->L = L;
	LUfactors->U = U;
	LUfactors->perm_c = perm_c;
	LUfactors->perm_r = perm_r;
	*f_factors = (fptr) LUfactors;

	/* Free un-wanted storage */
	SUPERLU_FREE(etree);
	Destroy_SuperMatrix_Store(&A);
	Destroy_CompCol_Permuted(&AC);
	StatFree(&stat);

    } else if ( *iopt == 2 ) { /* Triangular solve */
	/* Initialize the statistics variables. */
	StatInit(&stat);

	/* Extract the LU factors in the factors handle */
	LUfactors = (factors_t*) *f_factors;
	L = LUfactors->L;
	U = LUfactors->U;
	perm_c = LUfactors->perm_c;
	perm_r = LUfactors->perm_r;

	dCreate_Dense_Matrix(&B, *n, *nrhs, b, *ldb, SLU_DN, SLU_D, SLU_GE);

        /* Solve the system A*X=B, overwriting B with X. */
        dgstrs (trans, L, U, perm_c, perm_r, &B, &stat, info);

	Destroy_SuperMatrix_Store(&B);
	StatFree(&stat);

    } else if ( *iopt == 3 ) { /* Free storage */
	/* Free the LU factors in the factors handle */
	LUfactors = (factors_t*) *f_factors;
	SUPERLU_FREE (LUfactors->perm_r);
	SUPERLU_FREE (LUfactors->perm_c);
	Destroy_SuperNode_Matrix(LUfactors->L);
	Destroy_CompCol_Matrix(LUfactors->U);
        SUPERLU_FREE (LUfactors->L);
        SUPERLU_FREE (LUfactors->U);
	SUPERLU_FREE (LUfactors);
    } else {
	fprintf(stderr,"Invalid iopt=%d passed to c_fortran_dgssv()\n",*iopt);
	exit(-1);
    }
}
コード例 #8
0
ファイル: dgssvx.c プロジェクト: ducpdx/hypre
void
dgssvx(superlu_options_t *options, SuperMatrix *A, int *perm_c, int *perm_r,
       int *etree, char *equed, double *R, double *C,
       SuperMatrix *L, SuperMatrix *U, void *work, int lwork,
       SuperMatrix *B, SuperMatrix *X, double *recip_pivot_growth, 
       double *rcond, double *ferr, double *berr, 
       mem_usage_t *mem_usage, SuperLUStat_t *stat, int *info )
{
/*
 * Purpose
 * =======
 *
 * DGSSVX solves the system of linear equations A*X=B or A'*X=B, using
 * the LU factorization from dgstrf(). Error bounds on the solution and
 * a condition estimate are also provided. It performs the following steps:
 *
 *   1. If A is stored column-wise (A->Stype = SLU_NC):
 *  
 *      1.1. If options->Equil = YES, scaling factors are computed to
 *           equilibrate the system:
 *           options->Trans = NOTRANS:
 *               diag(R)*A*diag(C) *inv(diag(C))*X = diag(R)*B
 *           options->Trans = TRANS:
 *               (diag(R)*A*diag(C))**T *inv(diag(R))*X = diag(C)*B
 *           options->Trans = CONJ:
 *               (diag(R)*A*diag(C))**H *inv(diag(R))*X = diag(C)*B
 *           Whether or not the system will be equilibrated depends on the
 *           scaling of the matrix A, but if equilibration is used, A is
 *           overwritten by diag(R)*A*diag(C) and B by diag(R)*B
 *           (if options->Trans=NOTRANS) or diag(C)*B (if options->Trans
 *           = TRANS or CONJ).
 *
 *      1.2. Permute columns of A, forming A*Pc, where Pc is a permutation
 *           matrix that usually preserves sparsity.
 *           For more details of this step, see sp_preorder.c.
 *
 *      1.3. If options->Fact != FACTORED, the LU decomposition is used to
 *           factor the matrix A (after equilibration if options->Equil = YES)
 *           as Pr*A*Pc = L*U, with Pr determined by partial pivoting.
 *
 *      1.4. Compute the reciprocal pivot growth factor.
 *
 *      1.5. If some U(i,i) = 0, so that U is exactly singular, then the
 *           routine returns with info = i. Otherwise, the factored form of 
 *           A is used to estimate the condition number of the matrix A. If
 *           the reciprocal of the condition number is less than machine
 *           precision, info = A->ncol+1 is returned as a warning, but the
 *           routine still goes on to solve for X and computes error bounds
 *           as described below.
 *
 *      1.6. The system of equations is solved for X using the factored form
 *           of A.
 *
 *      1.7. If options->IterRefine != NOREFINE, iterative refinement is
 *           applied to improve the computed solution matrix and calculate
 *           error bounds and backward error estimates for it.
 *
 *      1.8. If equilibration was used, the matrix X is premultiplied by
 *           diag(C) (if options->Trans = NOTRANS) or diag(R)
 *           (if options->Trans = TRANS or CONJ) so that it solves the
 *           original system before equilibration.
 *
 *   2. If A is stored row-wise (A->Stype = SLU_NR), apply the above algorithm
 *      to the transpose of A:
 *
 *      2.1. If options->Equil = YES, scaling factors are computed to
 *           equilibrate the system:
 *           options->Trans = NOTRANS:
 *               diag(R)*A*diag(C) *inv(diag(C))*X = diag(R)*B
 *           options->Trans = TRANS:
 *               (diag(R)*A*diag(C))**T *inv(diag(R))*X = diag(C)*B
 *           options->Trans = CONJ:
 *               (diag(R)*A*diag(C))**H *inv(diag(R))*X = diag(C)*B
 *           Whether or not the system will be equilibrated depends on the
 *           scaling of the matrix A, but if equilibration is used, A' is
 *           overwritten by diag(R)*A'*diag(C) and B by diag(R)*B 
 *           (if trans='N') or diag(C)*B (if trans = 'T' or 'C').
 *
 *      2.2. Permute columns of transpose(A) (rows of A), 
 *           forming transpose(A)*Pc, where Pc is a permutation matrix that 
 *           usually preserves sparsity.
 *           For more details of this step, see sp_preorder.c.
 *
 *      2.3. If options->Fact != FACTORED, the LU decomposition is used to
 *           factor the transpose(A) (after equilibration if 
 *           options->Fact = YES) as Pr*transpose(A)*Pc = L*U with the
 *           permutation Pr determined by partial pivoting.
 *
 *      2.4. Compute the reciprocal pivot growth factor.
 *
 *      2.5. If some U(i,i) = 0, so that U is exactly singular, then the
 *           routine returns with info = i. Otherwise, the factored form 
 *           of transpose(A) is used to estimate the condition number of the
 *           matrix A. If the reciprocal of the condition number
 *           is less than machine precision, info = A->nrow+1 is returned as
 *           a warning, but the routine still goes on to solve for X and
 *           computes error bounds as described below.
 *
 *      2.6. The system of equations is solved for X using the factored form
 *           of transpose(A).
 *
 *      2.7. If options->IterRefine != NOREFINE, iterative refinement is
 *           applied to improve the computed solution matrix and calculate
 *           error bounds and backward error estimates for it.
 *
 *      2.8. If equilibration was used, the matrix X is premultiplied by
 *           diag(C) (if options->Trans = NOTRANS) or diag(R) 
 *           (if options->Trans = TRANS or CONJ) so that it solves the
 *           original system before equilibration.
 *
 *   See supermatrix.h for the definition of 'SuperMatrix' structure.
 *
 * Arguments
 * =========
 *
 * options (input) superlu_options_t*
 *         The structure defines the input parameters to control
 *         how the LU decomposition will be performed and how the
 *         system will be solved.
 *
 * A       (input/output) SuperMatrix*
 *         Matrix A in A*X=B, of dimension (A->nrow, A->ncol). The number
 *         of the linear equations is A->nrow. Currently, the type of A can be:
 *         Stype = SLU_NC or SLU_NR, Dtype = SLU_D, Mtype = SLU_GE.
 *         In the future, more general A may be handled.
 *
 *         On entry, If options->Fact = FACTORED and equed is not 'N', 
 *         then A must have been equilibrated by the scaling factors in
 *         R and/or C.  
 *         On exit, A is not modified if options->Equil = NO, or if 
 *         options->Equil = YES but equed = 'N' on exit.
 *         Otherwise, if options->Equil = YES and equed is not 'N',
 *         A is scaled as follows:
 *         If A->Stype = SLU_NC:
 *           equed = 'R':  A := diag(R) * A
 *           equed = 'C':  A := A * diag(C)
 *           equed = 'B':  A := diag(R) * A * diag(C).
 *         If A->Stype = SLU_NR:
 *           equed = 'R':  transpose(A) := diag(R) * transpose(A)
 *           equed = 'C':  transpose(A) := transpose(A) * diag(C)
 *           equed = 'B':  transpose(A) := diag(R) * transpose(A) * diag(C).
 *
 * perm_c  (input/output) int*
 *	   If A->Stype = SLU_NC, Column permutation vector of size A->ncol,
 *         which defines the permutation matrix Pc; perm_c[i] = j means
 *         column i of A is in position j in A*Pc.
 *         On exit, perm_c may be overwritten by the product of the input
 *         perm_c and a permutation that postorders the elimination tree
 *         of Pc'*A'*A*Pc; perm_c is not changed if the elimination tree
 *         is already in postorder.
 *
 *         If A->Stype = SLU_NR, column permutation vector of size A->nrow,
 *         which describes permutation of columns of transpose(A) 
 *         (rows of A) as described above.
 * 
 * perm_r  (input/output) int*
 *         If A->Stype = SLU_NC, row permutation vector of size A->nrow, 
 *         which defines the permutation matrix Pr, and is determined
 *         by partial pivoting.  perm_r[i] = j means row i of A is in 
 *         position j in Pr*A.
 *
 *         If A->Stype = SLU_NR, permutation vector of size A->ncol, which
 *         determines permutation of rows of transpose(A)
 *         (columns of A) as described above.
 *
 *         If options->Fact = SamePattern_SameRowPerm, the pivoting routine
 *         will try to use the input perm_r, unless a certain threshold
 *         criterion is violated. In that case, perm_r is overwritten by a
 *         new permutation determined by partial pivoting or diagonal
 *         threshold pivoting.
 *         Otherwise, perm_r is output argument.
 * 
 * etree   (input/output) int*,  dimension (A->ncol)
 *         Elimination tree of Pc'*A'*A*Pc.
 *         If options->Fact != FACTORED and options->Fact != DOFACT,
 *         etree is an input argument, otherwise it is an output argument.
 *         Note: etree is a vector of parent pointers for a forest whose
 *         vertices are the integers 0 to A->ncol-1; etree[root]==A->ncol.
 *
 * equed   (input/output) char*
 *         Specifies the form of equilibration that was done.
 *         = 'N': No equilibration.
 *         = 'R': Row equilibration, i.e., A was premultiplied by diag(R).
 *         = 'C': Column equilibration, i.e., A was postmultiplied by diag(C).
 *         = 'B': Both row and column equilibration, i.e., A was replaced 
 *                by diag(R)*A*diag(C).
 *         If options->Fact = FACTORED, equed is an input argument,
 *         otherwise it is an output argument.
 *
 * R       (input/output) double*, dimension (A->nrow)
 *         The row scale factors for A or transpose(A).
 *         If equed = 'R' or 'B', A (if A->Stype = SLU_NC) or transpose(A)
 *             (if A->Stype = SLU_NR) is multiplied on the left by diag(R).
 *         If equed = 'N' or 'C', R is not accessed.
 *         If options->Fact = FACTORED, R is an input argument,
 *             otherwise, R is output.
 *         If options->zFact = FACTORED and equed = 'R' or 'B', each element
 *             of R must be positive.
 * 
 * C       (input/output) double*, dimension (A->ncol)
 *         The column scale factors for A or transpose(A).
 *         If equed = 'C' or 'B', A (if A->Stype = SLU_NC) or transpose(A)
 *             (if A->Stype = SLU_NR) is multiplied on the right by diag(C).
 *         If equed = 'N' or 'R', C is not accessed.
 *         If options->Fact = FACTORED, C is an input argument,
 *             otherwise, C is output.
 *         If options->Fact = FACTORED and equed = 'C' or 'B', each element
 *             of C must be positive.
 *         
 * L       (output) SuperMatrix*
 *	   The factor L from the factorization
 *             Pr*A*Pc=L*U              (if A->Stype SLU_= NC) or
 *             Pr*transpose(A)*Pc=L*U   (if A->Stype = SLU_NR).
 *         Uses compressed row subscripts storage for supernodes, i.e.,
 *         L has types: Stype = SLU_SC, Dtype = SLU_D, Mtype = SLU_TRLU.
 *
 * U       (output) SuperMatrix*
 *	   The factor U from the factorization
 *             Pr*A*Pc=L*U              (if A->Stype = SLU_NC) or
 *             Pr*transpose(A)*Pc=L*U   (if A->Stype = SLU_NR).
 *         Uses column-wise storage scheme, i.e., U has types:
 *         Stype = SLU_NC, Dtype = SLU_D, Mtype = SLU_TRU.
 *
 * work    (workspace/output) void*, size (lwork) (in bytes)
 *         User supplied workspace, should be large enough
 *         to hold data structures for factors L and U.
 *         On exit, if fact is not 'F', L and U point to this array.
 *
 * lwork   (input) int
 *         Specifies the size of work array in bytes.
 *         = 0:  allocate space internally by system malloc;
 *         > 0:  use user-supplied work array of length lwork in bytes,
 *               returns error if space runs out.
 *         = -1: the routine guesses the amount of space needed without
 *               performing the factorization, and returns it in
 *               mem_usage->total_needed; no other side effects.
 *
 *         See argument 'mem_usage' for memory usage statistics.
 *
 * B       (input/output) SuperMatrix*
 *         B has types: Stype = SLU_DN, Dtype = SLU_D, Mtype = SLU_GE.
 *         On entry, the right hand side matrix.
 *         If B->ncol = 0, only LU decomposition is performed, the triangular
 *                         solve is skipped.
 *         On exit,
 *            if equed = 'N', B is not modified; otherwise
 *            if A->Stype = SLU_NC:
 *               if options->Trans = NOTRANS and equed = 'R' or 'B',
 *                  B is overwritten by diag(R)*B;
 *               if options->Trans = TRANS or CONJ and equed = 'C' of 'B',
 *                  B is overwritten by diag(C)*B;
 *            if A->Stype = SLU_NR:
 *               if options->Trans = NOTRANS and equed = 'C' or 'B',
 *                  B is overwritten by diag(C)*B;
 *               if options->Trans = TRANS or CONJ and equed = 'R' of 'B',
 *                  B is overwritten by diag(R)*B.
 *
 * X       (output) SuperMatrix*
 *         X has types: Stype = SLU_DN, Dtype = SLU_D, Mtype = SLU_GE. 
 *         If info = 0 or info = A->ncol+1, X contains the solution matrix
 *         to the original system of equations. Note that A and B are modified
 *         on exit if equed is not 'N', and the solution to the equilibrated
 *         system is inv(diag(C))*X if options->Trans = NOTRANS and
 *         equed = 'C' or 'B', or inv(diag(R))*X if options->Trans = 'T' or 'C'
 *         and equed = 'R' or 'B'.
 *
 * recip_pivot_growth (output) double*
 *         The reciprocal pivot growth factor max_j( norm(A_j)/norm(U_j) ).
 *         The infinity norm is used. If recip_pivot_growth is much less
 *         than 1, the stability of the LU factorization could be poor.
 *
 * rcond   (output) double*
 *         The estimate of the reciprocal condition number of the matrix A
 *         after equilibration (if done). If rcond is less than the machine
 *         precision (in particular, if rcond = 0), the matrix is singular
 *         to working precision. This condition is indicated by a return
 *         code of info > 0.
 *
 * FERR    (output) double*, dimension (B->ncol)   
 *         The estimated forward error bound for each solution vector   
 *         X(j) (the j-th column of the solution matrix X).   
 *         If XTRUE is the true solution corresponding to X(j), FERR(j) 
 *         is an estimated upper bound for the magnitude of the largest 
 *         element in (X(j) - XTRUE) divided by the magnitude of the   
 *         largest element in X(j).  The estimate is as reliable as   
 *         the estimate for RCOND, and is almost always a slight   
 *         overestimate of the true error.
 *         If options->IterRefine = NOREFINE, ferr = 1.0.
 *
 * BERR    (output) double*, dimension (B->ncol)
 *         The componentwise relative backward error of each solution   
 *         vector X(j) (i.e., the smallest relative change in   
 *         any element of A or B that makes X(j) an exact solution).
 *         If options->IterRefine = NOREFINE, berr = 1.0.
 *
 * mem_usage (output) mem_usage_t*
 *         Record the memory usage statistics, consisting of following fields:
 *         - for_lu (float)
 *           The amount of space used in bytes for L\U data structures.
 *         - total_needed (float)
 *           The amount of space needed in bytes to perform factorization.
 *         - expansions (int)
 *           The number of memory expansions during the LU factorization.
 *
 * stat   (output) SuperLUStat_t*
 *        Record the statistics on runtime and floating-point operation count.
 *        See util.h for the definition of 'SuperLUStat_t'.
 *
 * info    (output) int*
 *         = 0: successful exit   
 *         < 0: if info = -i, the i-th argument had an illegal value   
 *         > 0: if info = i, and i is   
 *              <= A->ncol: U(i,i) is exactly zero. The factorization has   
 *                    been completed, but the factor U is exactly   
 *                    singular, so the solution and error bounds   
 *                    could not be computed.   
 *              = A->ncol+1: U is nonsingular, but RCOND is less than machine
 *                    precision, meaning that the matrix is singular to
 *                    working precision. Nevertheless, the solution and
 *                    error bounds are computed because there are a number
 *                    of situations where the computed solution can be more
 *                    accurate than the value of RCOND would suggest.   
 *              > A->ncol+1: number of bytes allocated when memory allocation
 *                    failure occurred, plus A->ncol.
 *
 */

    DNformat  *Bstore, *Xstore;
    double    *Bmat, *Xmat;
    int       ldb, ldx, nrhs;
    SuperMatrix *AA;/* A in SLU_NC format used by the factorization routine.*/
    SuperMatrix AC; /* Matrix postmultiplied by Pc */
    int       colequ, equil, nofact, notran, rowequ, permc_spec;
    trans_t   trant;
    char      norm[1];
    int       i, j, info1;
    double    amax, anorm, bignum, smlnum, colcnd, rowcnd, rcmax, rcmin;
    int       relax, panel_size;
    double    drop_tol;
    double    t0;      /* temporary time */
    double    *utime;

    /* External functions */
    extern double dlangs(char *, SuperMatrix *);
    extern double hypre_F90_NAME_LAPACK(dlamch,DLAMCH)(const char *);

    Bstore = (DNformat*) B->Store;
    Xstore = (DNformat*) X->Store;
    Bmat   = (  double*) Bstore->nzval;
    Xmat   = (  double*) Xstore->nzval;
    ldb    = Bstore->lda;
    ldx    = Xstore->lda;
    nrhs   = B->ncol;

    *info = 0;
    nofact = (options->Fact != FACTORED);
    equil = (options->Equil == YES);
    notran = (options->Trans == NOTRANS);
    if ( nofact ) {
	*(unsigned char *)equed = 'N';
	rowequ = FALSE;
	colequ = FALSE;
    } else {
	rowequ = superlu_lsame(equed, "R") || superlu_lsame(equed, "B");
	colequ = superlu_lsame(equed, "C") || superlu_lsame(equed, "B");
        smlnum = hypre_F90_NAME_LAPACK(dlamch,DLAMCH)("Safe minimum");
	bignum = 1. / smlnum;
    }

#if 0
printf("dgssvx: Fact=%4d, Trans=%4d, equed=%c\n",
       options->Fact, options->Trans, *equed);
#endif

    /* Test the input parameters */
    if (!nofact && options->Fact != DOFACT && options->Fact != SamePattern &&
	options->Fact != SamePattern_SameRowPerm &&
	!notran && options->Trans != TRANS && options->Trans != CONJ &&
	!equil && options->Equil != NO)
	*info = -1;
    else if ( A->nrow != A->ncol || A->nrow < 0 ||
	      (A->Stype != SLU_NC && A->Stype != SLU_NR) ||
	      A->Dtype != SLU_D || A->Mtype != SLU_GE )
	*info = -2;
    else if (options->Fact == FACTORED &&
	     !(rowequ || colequ || superlu_lsame(equed, "N")))
	*info = -6;
    else {
	if (rowequ) {
	    rcmin = bignum;
	    rcmax = 0.;
	    for (j = 0; j < A->nrow; ++j) {
		rcmin = SUPERLU_MIN(rcmin, R[j]);
		rcmax = SUPERLU_MAX(rcmax, R[j]);
	    }
	    if (rcmin <= 0.) *info = -7;
	    else if ( A->nrow > 0)
		rowcnd = SUPERLU_MAX(rcmin,smlnum) / SUPERLU_MIN(rcmax,bignum);
	    else rowcnd = 1.;
	}
	if (colequ && *info == 0) {
	    rcmin = bignum;
	    rcmax = 0.;
	    for (j = 0; j < A->nrow; ++j) {
		rcmin = SUPERLU_MIN(rcmin, C[j]);
		rcmax = SUPERLU_MAX(rcmax, C[j]);
	    }
	    if (rcmin <= 0.) *info = -8;
	    else if (A->nrow > 0)
		colcnd = SUPERLU_MAX(rcmin,smlnum) / SUPERLU_MIN(rcmax,bignum);
	    else colcnd = 1.;
	}
	if (*info == 0) {
	    if ( lwork < -1 ) *info = -12;
	    else if ( B->ncol < 0 || Bstore->lda < SUPERLU_MAX(0, A->nrow) ||
		      B->Stype != SLU_DN || B->Dtype != SLU_D || 
		      B->Mtype != SLU_GE )
		*info = -13;
	    else if ( X->ncol < 0 || Xstore->lda < SUPERLU_MAX(0, A->nrow) ||
		      (B->ncol != 0 && B->ncol != X->ncol) ||
                      X->Stype != SLU_DN ||
		      X->Dtype != SLU_D || X->Mtype != SLU_GE )
		*info = -14;
	}
    }
    if (*info != 0) {
	i = -(*info);
	superlu_xerbla("dgssvx", &i);
	return;
    }
    
    /* Initialization for factor parameters */
    panel_size = sp_ienv(1);
    relax      = sp_ienv(2);
    drop_tol   = 0.0;

    utime = stat->utime;
    
    /* Convert A to SLU_NC format when necessary. */
    if ( A->Stype == SLU_NR ) {
	NRformat *Astore = (NRformat*) A->Store;
	AA = (SuperMatrix *) SUPERLU_MALLOC( sizeof(SuperMatrix) );
	dCreate_CompCol_Matrix(AA, A->ncol, A->nrow, Astore->nnz, 
			       (double*) Astore->nzval, Astore->colind, Astore->rowptr,
			       SLU_NC, A->Dtype, A->Mtype);
	if ( notran ) { /* Reverse the transpose argument. */
	    trant = TRANS;
	    notran = 0;
	} else {
	    trant = NOTRANS;
	    notran = 1;
	}
    } else { /* A->Stype == SLU_NC */
	trant = options->Trans;
	AA = A;
    }

    if ( nofact && equil ) {
	t0 = SuperLU_timer_();
	/* Compute row and column scalings to equilibrate the matrix A. */
	dgsequ(AA, R, C, &rowcnd, &colcnd, &amax, &info1);
	
	if ( info1 == 0 ) {
	    /* Equilibrate matrix A. */
	    dlaqgs(AA, R, C, rowcnd, colcnd, amax, equed);
	    rowequ = superlu_lsame(equed, "R") || superlu_lsame(equed, "B");
	    colequ = superlu_lsame(equed, "C") || superlu_lsame(equed, "B");
	}
	utime[EQUIL] = SuperLU_timer_() - t0;
    }

    if ( nrhs > 0 ) {
        /* Scale the right hand side if equilibration was performed. */
        if ( notran ) {
	    if ( rowequ ) {
	        for (j = 0; j < nrhs; ++j)
		    for (i = 0; i < A->nrow; ++i) {
		        Bmat[i + j*ldb] *= R[i];
	            }
	    }
        } else if ( colequ ) {
	    for (j = 0; j < nrhs; ++j)
	        for (i = 0; i < A->nrow; ++i) {
	            Bmat[i + j*ldb] *= C[i];
	        }
        }
    }

    if ( nofact ) {
	
        t0 = SuperLU_timer_();
	/*
	 * Gnet column permutation vector perm_c[], according to permc_spec:
	 *   permc_spec = NATURAL:  natural ordering 
	 *   permc_spec = MMD_AT_PLUS_A: minimum degree on structure of A'+A
	 *   permc_spec = MMD_ATA:  minimum degree on structure of A'*A
	 *   permc_spec = COLAMD:   approximate minimum degree column ordering
	 *   permc_spec = MY_PERMC: the ordering already supplied in perm_c[]
	 */
	permc_spec = options->ColPerm;
	if ( permc_spec != MY_PERMC && options->Fact == DOFACT )
            get_perm_c(permc_spec, AA, perm_c);
	utime[COLPERM] = SuperLU_timer_() - t0;

	t0 = SuperLU_timer_();
	sp_preorder(options, AA, perm_c, etree, &AC);
	utime[ETREE] = SuperLU_timer_() - t0;
    
/*	printf("Factor PA = LU ... relax %d\tw %d\tmaxsuper %d\trowblk %d\n", 
	       relax, panel_size, sp_ienv(3), sp_ienv(4));
	fflush(stdout); */
	
	/* Compute the LU factorization of A*Pc. */
	t0 = SuperLU_timer_();
	dgstrf(options, &AC, drop_tol, relax, panel_size,
	       etree, work, lwork, perm_c, perm_r, L, U, stat, info);
	utime[FACT] = SuperLU_timer_() - t0;
	
	if ( lwork == -1 ) {
	    mem_usage->total_needed = *info - A->ncol;
	    return;
	}
    }

    if ( options->PivotGrowth ) {
        if ( *info > 0 ) {
	    if ( *info <= A->ncol ) {
	        /* Compute the reciprocal pivot growth factor of the leading
	           rank-deficient *info columns of A. */
	        *recip_pivot_growth = dPivotGrowth(*info, AA, perm_c, L, U);
	    }
	    return;
        }

        /* Compute the reciprocal pivot growth factor *recip_pivot_growth. */
        *recip_pivot_growth = dPivotGrowth(A->ncol, AA, perm_c, L, U);
    }

    if ( options->ConditionNumber ) {
        /* Estimate the reciprocal of the condition number of A. */
        t0 = SuperLU_timer_();
        if ( notran ) {
	    *(unsigned char *)norm = '1';
        } else {
	    *(unsigned char *)norm = 'I';
        }
        anorm = dlangs(norm, AA);
        dgscon(norm, L, U, anorm, rcond, stat, info);
        utime[RCOND] = SuperLU_timer_() - t0;
    }
    
    if ( nrhs > 0 ) {
        /* Compute the solution matrix X. */
        for (j = 0; j < nrhs; j++)  /* Save a copy of the right hand sides */
            for (i = 0; i < B->nrow; i++)
	        Xmat[i + j*ldx] = Bmat[i + j*ldb];
    
        t0 = SuperLU_timer_();
        dgstrs (trant, L, U, perm_c, perm_r, X, stat, info);
        utime[SOLVE] = SuperLU_timer_() - t0;
    
        /* Use iterative refinement to improve the computed solution and compute
           error bounds and backward error estimates for it. */
        t0 = SuperLU_timer_();
        if ( options->IterRefine != NOREFINE ) {
            dgsrfs(trant, AA, L, U, perm_c, perm_r, equed, R, C, B,
                   X, ferr, berr, stat, info);
        } else {
            for (j = 0; j < nrhs; ++j) ferr[j] = berr[j] = 1.0;
        }
        utime[REFINE] = SuperLU_timer_() - t0;

        /* Transform the solution matrix X to a solution of the original system. */
        if ( notran ) {
	    if ( colequ ) {
	        for (j = 0; j < nrhs; ++j)
		    for (i = 0; i < A->nrow; ++i) {
                        Xmat[i + j*ldx] *= C[i];
	            }
	    }
        } else if ( rowequ ) {
	    for (j = 0; j < nrhs; ++j)
	        for (i = 0; i < A->nrow; ++i) {
	            Xmat[i + j*ldx] *= R[i];
                }
        }
    } /* end if nrhs > 0 */

    if ( options->ConditionNumber ) {
        /* Set INFO = A->ncol+1 if the matrix is singular to working precision. */
       if (*rcond < hypre_F90_NAME_LAPACK(dlamch,DLAMCH)("E")) *info=A->ncol+1;
    }

    if ( nofact ) {
        dQuerySpace(L, U, mem_usage);
        Destroy_CompCol_Permuted(&AC);
    }
    if ( A->Stype == SLU_NR ) {
	Destroy_SuperMatrix_Store(AA);
	SUPERLU_FREE(AA);
    }

}
コード例 #9
0
ファイル: pdgssvx.c プロジェクト: GridOPTICS/FNCS-gridlab-d
void
pdgssvx(int nprocs, superlumt_options_t *superlumt_options, SuperMatrix *A, 
	int *perm_c, int *perm_r, equed_t *equed, double *R, double *C,
	SuperMatrix *L, SuperMatrix *U,
	SuperMatrix *B, SuperMatrix *X, double *recip_pivot_growth, 
	double *rcond, double *ferr, double *berr, 
	superlu_memusage_t *superlu_memusage, int *info)
{
/*
 * -- SuperLU MT routine (version 2.0) --
 * Lawrence Berkeley National Lab, Univ. of California Berkeley, 
 * and Xerox Palo Alto Research Center.
 * September 10, 2007
 *
 * Purpose
 * =======
 *
 * pdgssvx() solves the system of linear equations A*X=B or A'*X=B, using
 * the LU factorization from dgstrf(). Error bounds on the solution and
 * a condition estimate are also provided. It performs the following steps:
 *
 * 1. If A is stored column-wise (A->Stype = NC):
 *  
 *    1.1. If fact = EQUILIBRATE, scaling factors are computed to equilibrate
 *         the system:
 *           trans = NOTRANS: diag(R)*A*diag(C)*inv(diag(C))*X = diag(R)*B
 *           trans = TRANS:  (diag(R)*A*diag(C))**T *inv(diag(R))*X = diag(C)*B
 *           trans = CONJ:   (diag(R)*A*diag(C))**H *inv(diag(R))*X = diag(C)*B
 *         Whether or not the system will be equilibrated depends on the
 *         scaling of the matrix A, but if equilibration is used, A is
 *         overwritten by diag(R)*A*diag(C) and B by diag(R)*B 
 *         (if trans = NOTRANS) or diag(C)*B (if trans = TRANS or CONJ).
 *
 *    1.2. Permute columns of A, forming A*Pc, where Pc is a permutation matrix
 *         that usually preserves sparsity.
 *         For more details of this step, see dsp_colorder.c.
 *
 *    1.3. If fact = DOFACT or EQUILIBRATE, the LU decomposition is used to 
 *         factor the matrix A (after equilibration if fact = EQUILIBRATE) as
 *         Pr*A*Pc = L*U, with Pr determined by partial pivoting.
 *
 *    1.4. Compute the reciprocal pivot growth factor.
 *
 *    1.5. If some U(i,i) = 0, so that U is exactly singular, then the routine
 *         returns with info = i. Otherwise, the factored form of A is used to
 *         estimate the condition number of the matrix A. If the reciprocal of
 *         the condition number is less than machine precision, 
 *         info = A->ncol+1 is returned as a warning, but the routine still
 *         goes on to solve for X and computes error bounds as described below.
 *
 *    1.6. The system of equations is solved for X using the factored form
 *         of A.
 *
 *    1.7. Iterative refinement is applied to improve the computed solution
 *         matrix and calculate error bounds and backward error estimates
 *         for it.
 *
 *    1.8. If equilibration was used, the matrix X is premultiplied by
 *         diag(C) (if trans = NOTRANS) or diag(R) (if trans = TRANS or CONJ)
 *         so that it solves the original system before equilibration.
 *
 * 2. If A is stored row-wise (A->Stype = NR), apply the above algorithm
 *    to the tranpose of A:
 *
 *    2.1. If fact = EQUILIBRATE, scaling factors are computed to equilibrate
 *         the system:
 *           trans = NOTRANS:diag(R)*A'*diag(C)*inv(diag(C))*X = diag(R)*B
 *           trans = TRANS: (diag(R)*A'*diag(C))**T *inv(diag(R))*X = diag(C)*B
 *           trans = CONJ:  (diag(R)*A'*diag(C))**H *inv(diag(R))*X = diag(C)*B
 *         Whether or not the system will be equilibrated depends on the
 *         scaling of the matrix A, but if equilibration is used, A' is
 *         overwritten by diag(R)*A'*diag(C) and B by diag(R)*B 
 *         (if trans = NOTRANS) or diag(C)*B (if trans = TRANS or CONJ).
 *
 *    2.2. Permute columns of transpose(A) (rows of A), 
 *         forming transpose(A)*Pc, where Pc is a permutation matrix that
 *         usually preserves sparsity.
 *         For more details of this step, see dsp_colorder.c.
 *
 *    2.3. If fact = DOFACT or EQUILIBRATE, the LU decomposition is used to 
 *         factor the matrix A (after equilibration if fact = EQUILIBRATE) as
 *         Pr*transpose(A)*Pc = L*U, with the permutation Pr determined by
 *         partial pivoting.
 *
 *    2.4. Compute the reciprocal pivot growth factor.
 *
 *    2.5. If some U(i,i) = 0, so that U is exactly singular, then the routine
 *         returns with info = i. Otherwise, the factored form of transpose(A)
 *         is used to estimate the condition number of the matrix A.
 *         If the reciprocal of the condition number is less than machine
 *         precision, info = A->nrow+1 is returned as a warning, but the
 *         routine still goes on to solve for X and computes error bounds
 *         as described below.
 *
 *    2.6. The system of equations is solved for X using the factored form
 *         of transpose(A).
 *
 *    2.7. Iterative refinement is applied to improve the computed solution
 *         matrix and calculate error bounds and backward error estimates
 *         for it.
 *
 *    2.8. If equilibration was used, the matrix X is premultiplied by
 *         diag(C) (if trans = NOTRANS) or diag(R) (if trans = TRANS or CONJ)
 *         so that it solves the original system before equilibration.
 *
 * See supermatrix.h for the definition of 'SuperMatrix' structure.
 *
 * Arguments
 * =========
 *
 * nprocs (input) int
 *         Number of processes (or threads) to be spawned and used to perform
 *         the LU factorization by pdgstrf(). There is a single thread of
 *         control to call pdgstrf(), and all threads spawned by pdgstrf() 
 *         are terminated before returning from pdgstrf().
 *
 * superlumt_options (input) superlumt_options_t*
 *         The structure defines the input parameters and data structure
 *         to control how the LU factorization will be performed.
 *         The following fields should be defined for this structure:
 *
 *         o fact (fact_t)
 *           Specifies whether or not the factored form of the matrix
 *           A is supplied on entry, and if not, whether the matrix A should
 *           be equilibrated before it is factored.
 *           = FACTORED: On entry, L, U, perm_r and perm_c contain the 
 *             factored form of A. If equed is not NOEQUIL, the matrix A has
 *             been equilibrated with scaling factors R and C.
 *             A, L, U, perm_r are not modified.
 *           = DOFACT: The matrix A will be factored, and the factors will be
 *             stored in L and U.
 *           = EQUILIBRATE: The matrix A will be equilibrated if necessary,
 *             then factored into L and U.
 *
 *         o trans (trans_t)
 *           Specifies the form of the system of equations:
 *           = NOTRANS: A * X = B        (No transpose)
 *           = TRANS:   A**T * X = B     (Transpose)
 *           = CONJ:    A**H * X = B     (Transpose)
 *
 *         o refact (yes_no_t)
 *           Specifies whether this is first time or subsequent factorization.
 *           = NO:  this factorization is treated as the first one;
 *           = YES: it means that a factorization was performed prior to this
 *               one. Therefore, this factorization will re-use some
 *               existing data structures, such as L and U storage, column
 *               elimination tree, and the symbolic information of the
 *               Householder matrix.
 *
 *         o panel_size (int)
 *           A panel consists of at most panel_size consecutive columns.
 *
 *         o relax (int)
 *           To control degree of relaxing supernodes. If the number
 *           of nodes (columns) in a subtree of the elimination tree is less
 *           than relax, this subtree is considered as one supernode,
 *           regardless of the row structures of those columns.
 *
 *         o diag_pivot_thresh (double)
 *           Diagonal pivoting threshold. At step j of the Gaussian 
 *           elimination, if 
 *               abs(A_jj) >= diag_pivot_thresh * (max_(i>=j) abs(A_ij)),
 *           use A_jj as pivot, else use A_ij with maximum magnitude. 
 *           0 <= diag_pivot_thresh <= 1. The default value is 1, 
 *           corresponding to partial pivoting.
 *
 *         o usepr (yes_no_t)
 *           Whether the pivoting will use perm_r specified by the user.
 *           = YES: use perm_r; perm_r is input, unchanged on exit.
 *           = NO:  perm_r is determined by partial pivoting, and is output.
 *
 *         o drop_tol (double) (NOT IMPLEMENTED)
 *	     Drop tolerance parameter. At step j of the Gaussian elimination,
 *           if abs(A_ij)/(max_i abs(A_ij)) < drop_tol, drop entry A_ij.
 *           0 <= drop_tol <= 1. The default value of drop_tol is 0,
 *           corresponding to not dropping any entry.
 *
 *         o work (void*) of size lwork
 *           User-supplied work space and space for the output data structures.
 *           Not referenced if lwork = 0;
 *
 *         o lwork (int)
 *           Specifies the length of work array.
 *           = 0:  allocate space internally by system malloc;
 *           > 0:  use user-supplied work array of length lwork in bytes,
 *                 returns error if space runs out.
 *           = -1: the routine guesses the amount of space needed without
 *                 performing the factorization, and returns it in
 *                 superlu_memusage->total_needed; no other side effects.
 *
 * A       (input/output) SuperMatrix*
 *         Matrix A in A*X=B, of dimension (A->nrow, A->ncol), where
 *         A->nrow = A->ncol. Currently, the type of A can be:
 *         Stype = NC or NR, Dtype = _D, Mtype = GE. In the future,
 *         more general A will be handled.
 *
 *         On entry, If superlumt_options->fact = FACTORED and equed is not 
 *         NOEQUIL, then A must have been equilibrated by the scaling factors
 *         in R and/or C.  On exit, A is not modified 
 *         if superlumt_options->fact = FACTORED or DOFACT, or 
 *         if superlumt_options->fact = EQUILIBRATE and equed = NOEQUIL.
 *
 *         On exit, if superlumt_options->fact = EQUILIBRATE and equed is not
 *         NOEQUIL, A is scaled as follows:
 *         If A->Stype = NC:
 *           equed = ROW:  A := diag(R) * A
 *           equed = COL:  A := A * diag(C)
 *           equed = BOTH: A := diag(R) * A * diag(C).
 *         If A->Stype = NR:
 *           equed = ROW:  transpose(A) := diag(R) * transpose(A)
 *           equed = COL:  transpose(A) := transpose(A) * diag(C)
 *           equed = BOTH: transpose(A) := diag(R) * transpose(A) * diag(C).
 *
 * perm_c  (input/output) int*
 *	   If A->Stype = NC, Column permutation vector of size A->ncol,
 *         which defines the permutation matrix Pc; perm_c[i] = j means
 *         column i of A is in position j in A*Pc.
 *         On exit, perm_c may be overwritten by the product of the input
 *         perm_c and a permutation that postorders the elimination tree
 *         of Pc'*A'*A*Pc; perm_c is not changed if the elimination tree
 *         is already in postorder.
 *
 *         If A->Stype = NR, column permutation vector of size A->nrow,
 *         which describes permutation of columns of tranpose(A) 
 *         (rows of A) as described above.
 * 
 * perm_r  (input/output) int*
 *         If A->Stype = NC, row permutation vector of size A->nrow, 
 *         which defines the permutation matrix Pr, and is determined
 *         by partial pivoting.  perm_r[i] = j means row i of A is in 
 *         position j in Pr*A.
 *
 *         If A->Stype = NR, permutation vector of size A->ncol, which
 *         determines permutation of rows of transpose(A)
 *         (columns of A) as described above.
 *
 *         If superlumt_options->usepr = NO, perm_r is output argument;
 *         If superlumt_options->usepr = YES, the pivoting routine will try 
 *            to use the input perm_r, unless a certain threshold criterion
 *            is violated. In that case, perm_r is overwritten by a new
 *            permutation determined by partial pivoting or diagonal 
 *            threshold pivoting.
 * 
 * equed   (input/output) equed_t*
 *         Specifies the form of equilibration that was done.
 *         = NOEQUIL: No equilibration.
 *         = ROW:  Row equilibration, i.e., A was premultiplied by diag(R).
 *         = COL:  Column equilibration, i.e., A was postmultiplied by diag(C).
 *         = BOTH: Both row and column equilibration, i.e., A was replaced 
 *                 by diag(R)*A*diag(C).
 *         If superlumt_options->fact = FACTORED, equed is an input argument, 
 *         otherwise it is an output argument.
 *
 * R       (input/output) double*, dimension (A->nrow)
 *         The row scale factors for A or transpose(A).
 *         If equed = ROW or BOTH, A (if A->Stype = NC) or transpose(A)
 *            (if A->Stype = NR) is multiplied on the left by diag(R).
 *         If equed = NOEQUIL or COL, R is not accessed.
 *         If fact = FACTORED, R is an input argument; otherwise, R is output.
 *         If fact = FACTORED and equed = ROW or BOTH, each element of R must
 *            be positive.
 * 
 * C       (input/output) double*, dimension (A->ncol)
 *         The column scale factors for A or transpose(A).
 *         If equed = COL or BOTH, A (if A->Stype = NC) or trnspose(A)
 *            (if A->Stype = NR) is multiplied on the right by diag(C).
 *         If equed = NOEQUIL or ROW, C is not accessed.
 *         If fact = FACTORED, C is an input argument; otherwise, C is output.
 *         If fact = FACTORED and equed = COL or BOTH, each element of C must
 *            be positive.
 *         
 * L       (output) SuperMatrix*
 *	   The factor L from the factorization
 *             Pr*A*Pc=L*U              (if A->Stype = NC) or
 *             Pr*transpose(A)*Pc=L*U   (if A->Stype = NR).
 *         Uses compressed row subscripts storage for supernodes, i.e.,
 *         L has types: Stype = SCP, Dtype = _D, Mtype = TRLU.
 *
 * U       (output) SuperMatrix*
 *	   The factor U from the factorization
 *             Pr*A*Pc=L*U              (if A->Stype = NC) or
 *             Pr*transpose(A)*Pc=L*U   (if A->Stype = NR).
 *         Uses column-wise storage scheme, i.e., U has types:
 *         Stype = NCP, Dtype = _D, Mtype = TRU.
 *
 * B       (input/output) SuperMatrix*
 *         B has types: Stype = DN, Dtype = _D, Mtype = GE.
 *         On entry, the right hand side matrix.
 *         On exit,
 *            if equed = NOEQUIL, B is not modified; otherwise
 *            if A->Stype = NC:
 *               if trans = NOTRANS and equed = ROW or BOTH, B is overwritten
 *                  by diag(R)*B;
 *               if trans = TRANS or CONJ and equed = COL of BOTH, B is
 *                  overwritten by diag(C)*B;
 *            if A->Stype = NR:
 *               if trans = NOTRANS and equed = COL or BOTH, B is overwritten
 *                  by diag(C)*B;
 *               if trans = TRANS or CONJ and equed = ROW of BOTH, B is
 *                  overwritten by diag(R)*B.
 *
 * X       (output) SuperMatrix*
 *         X has types: Stype = DN, Dtype = _D, Mtype = GE. 
 *         If info = 0 or info = A->ncol+1, X contains the solution matrix
 *         to the original system of equations. Note that A and B are modified
 *         on exit if equed is not NOEQUIL, and the solution to the 
 *         equilibrated system is inv(diag(C))*X if trans = NOTRANS and
 *         equed = COL or BOTH, or inv(diag(R))*X if trans = TRANS or CONJ
 *         and equed = ROW or BOTH.
 *
 * recip_pivot_growth (output) double*
 *         The reciprocal pivot growth factor computed as
 *             max_j ( max_i(abs(A_ij)) / max_i(abs(U_ij)) ).
 *         If recip_pivot_growth is much less than 1, the stability of the
 *         LU factorization could be poor.
 *
 * rcond   (output) double*
 *         The estimate of the reciprocal condition number of the matrix A
 *         after equilibration (if done). If rcond is less than the machine
 *         precision (in particular, if rcond = 0), the matrix is singular
 *         to working precision. This condition is indicated by a return
 *         code of info > 0.
 *
 * ferr    (output) double*, dimension (B->ncol)   
 *         The estimated forward error bound for each solution vector   
 *         X(j) (the j-th column of the solution matrix X).   
 *         If XTRUE is the true solution corresponding to X(j), FERR(j) 
 *         is an estimated upper bound for the magnitude of the largest 
 *         element in (X(j) - XTRUE) divided by the magnitude of the   
 *         largest element in X(j).  The estimate is as reliable as   
 *         the estimate for RCOND, and is almost always a slight   
 *         overestimate of the true error.
 *
 * berr    (output) double*, dimension (B->ncol)
 *         The componentwise relative backward error of each solution   
 *         vector X(j) (i.e., the smallest relative change in   
 *         any element of A or B that makes X(j) an exact solution).
 *
 * superlu_memusage (output) superlu_memusage_t*
 *         Record the memory usage statistics, consisting of following fields:
 *         - for_lu (float)
 *           The amount of space used in bytes for L\U data structures.
 *         - total_needed (float)
 *           The amount of space needed in bytes to perform factorization.
 *         - expansions (int)
 *           The number of memory expansions during the LU factorization.
 *
 * info    (output) int*
 *         = 0: successful exit   
 *         < 0: if info = -i, the i-th argument had an illegal value   
 *         > 0: if info = i, and i is   
 *              <= A->ncol: U(i,i) is exactly zero. The factorization has   
 *                    been completed, but the factor U is exactly   
 *                    singular, so the solution and error bounds   
 *                    could not be computed.   
 *              = A->ncol+1: U is nonsingular, but RCOND is less than machine
 *                    precision, meaning that the matrix is singular to
 *                    working precision. Nevertheless, the solution and
 *                    error bounds are computed because there are a number
 *                    of situations where the computed solution can be more
 *                    accurate than the value of RCOND would suggest.   
 *              > A->ncol+1: number of bytes allocated when memory allocation
 *                    failure occurred, plus A->ncol.
 *
 */

    NCformat  *Astore;
    DNformat  *Bstore, *Xstore;
    double    *Bmat, *Xmat;
    int       ldb, ldx, nrhs;
    SuperMatrix *AA; /* A in NC format used by the factorization routine.*/
    SuperMatrix AC; /* Matrix postmultiplied by Pc */
    int       colequ, equil, dofact, notran, rowequ;
    char      norm[1];
    trans_t   trant;
    int       i, j, info1;
    double amax, anorm, bignum, smlnum, colcnd, rowcnd, rcmax, rcmin;
    int       n, relax, panel_size;
    Gstat_t   Gstat;
    double    t0;      /* temporary time */
    double    *utime;
    flops_t   *ops, flopcnt;
   
    /* External functions */
    extern double dlangs(char *, SuperMatrix *);
    extern double dlamch_(char *);

    Astore = A->Store;
    Bstore = B->Store;
    Xstore = X->Store;
    Bmat   = Bstore->nzval;
    Xmat   = Xstore->nzval;
    n      = A->ncol;
    ldb    = Bstore->lda;
    ldx    = Xstore->lda;
    nrhs   = B->ncol;
    superlumt_options->perm_c = perm_c;
    superlumt_options->perm_r = perm_r;

    *info = 0;
    dofact = (superlumt_options->fact == DOFACT);
    equil = (superlumt_options->fact == EQUILIBRATE);
    notran = (superlumt_options->trans == NOTRANS);
    if (dofact || equil) {
	*equed = NOEQUIL;
	rowequ = FALSE;
	colequ = FALSE;
    } else {
	rowequ = (*equed == ROW) || (*equed == BOTH);
	colequ = (*equed == COL) || (*equed == BOTH);
	smlnum = dlamch_("Safe minimum");
	bignum = 1. / smlnum;
    }

    /* ------------------------------------------------------------
       Test the input parameters.
       ------------------------------------------------------------*/
    if ( nprocs <= 0 ) *info = -1;
    else if ( (!dofact && !equil && (superlumt_options->fact != FACTORED))
	      || (!notran && (superlumt_options->trans != TRANS) && 
		 (superlumt_options->trans != CONJ))
	      || (superlumt_options->refact != YES && 
		  superlumt_options->refact != NO)
	      || (superlumt_options->usepr != YES &&
		  superlumt_options->usepr != NO)
	      || superlumt_options->lwork < -1 )
        *info = -2;
    else if ( A->nrow != A->ncol || A->nrow < 0 ||
	      (A->Stype != SLU_NC && A->Stype != SLU_NR) ||
	      A->Dtype != SLU_D || A->Mtype != SLU_GE )
	*info = -3;
    else if ((superlumt_options->fact == FACTORED) && 
	     !(rowequ || colequ || (*equed == NOEQUIL))) *info = -6;
    else {
	if (rowequ) {
	    rcmin = bignum;
	    rcmax = 0.;
	    for (j = 0; j < A->nrow; ++j) {
		rcmin = SUPERLU_MIN(rcmin, R[j]);
		rcmax = SUPERLU_MAX(rcmax, R[j]);
	    }
	    if (rcmin <= 0.) *info = -7;
	    else if ( A->nrow > 0)
		rowcnd = SUPERLU_MAX(rcmin,smlnum) / SUPERLU_MIN(rcmax,bignum);
	    else rowcnd = 1.;
	}
	if (colequ && *info == 0) {
	    rcmin = bignum;
	    rcmax = 0.;
	    for (j = 0; j < A->nrow; ++j) {
		rcmin = SUPERLU_MIN(rcmin, C[j]);
		rcmax = SUPERLU_MAX(rcmax, C[j]);
	    }
	    if (rcmin <= 0.) *info = -8;
	    else if (A->nrow > 0)
		colcnd = SUPERLU_MAX(rcmin,smlnum) / SUPERLU_MIN(rcmax,bignum);
	    else colcnd = 1.;
	}
	if (*info == 0) {
	    if ( B->ncol < 0 || Bstore->lda < SUPERLU_MAX(0, A->nrow) ||
		      B->Stype != SLU_DN || B->Dtype != SLU_D || 
		      B->Mtype != SLU_GE )
		*info = -11;
	    else if ( X->ncol < 0 || Xstore->lda < SUPERLU_MAX(0, A->nrow) ||
		      B->ncol != X->ncol || X->Stype != SLU_DN ||
		      X->Dtype != SLU_D || X->Mtype != SLU_GE )
		*info = -12;
	}
    }
    if (*info != 0) {
	i = -(*info);
	xerbla_("pdgssvx", &i);
	return;
    }
    
    
    /* ------------------------------------------------------------
       Allocate storage and initialize statistics variables. 
       ------------------------------------------------------------*/
    panel_size = superlumt_options->panel_size;
    relax = superlumt_options->relax;
    StatAlloc(n, nprocs, panel_size, relax, &Gstat);
    StatInit(n, nprocs, &Gstat);
    utime = Gstat.utime;
    ops = Gstat.ops;
    
    /* ------------------------------------------------------------
       Convert A to NC format when necessary.
       ------------------------------------------------------------*/
    if ( A->Stype == SLU_NR ) {
	NRformat *Astore = A->Store;
	AA = (SuperMatrix *) SUPERLU_MALLOC( sizeof(SuperMatrix) );
	dCreate_CompCol_Matrix(AA, A->ncol, A->nrow, Astore->nnz, 
			       Astore->nzval, Astore->colind, Astore->rowptr,
			       SLU_NC, A->Dtype, A->Mtype);
	if ( notran ) { /* Reverse the transpose argument. */
	    trant = TRANS;
	    notran = 0;
	} else {
	    trant = NOTRANS;
	    notran = 1;
	}
    } else { /* A->Stype == NC */
	trant = superlumt_options->trans;
	AA = A;
    }

    /* ------------------------------------------------------------
       Diagonal scaling to equilibrate the matrix.
       ------------------------------------------------------------*/
    if ( equil ) {
	t0 = SuperLU_timer_();
	/* Compute row and column scalings to equilibrate the matrix A. */
	dgsequ(AA, R, C, &rowcnd, &colcnd, &amax, &info1);
	
	if ( info1 == 0 ) {
	    /* Equilibrate matrix A. */
	    dlaqgs(AA, R, C, rowcnd, colcnd, amax, equed);
	    rowequ = (*equed == ROW) || (*equed == BOTH);
	    colequ = (*equed == COL) || (*equed == BOTH);
	}
	utime[EQUIL] = SuperLU_timer_() - t0;
    }

    /* ------------------------------------------------------------
       Scale the right hand side.
       ------------------------------------------------------------*/
    if ( notran ) {
	if ( rowequ ) {
	    for (j = 0; j < nrhs; ++j)
		for (i = 0; i < A->nrow; ++i) {
                        Bmat[i + j*ldb] *= R[i];
		}
	}
    } else if ( colequ ) {
	for (j = 0; j < nrhs; ++j)
	    for (i = 0; i < A->nrow; ++i) {
                    Bmat[i + j*ldb] *= C[i];
	    }
    }

    
    /* ------------------------------------------------------------
       Perform the LU factorization.
       ------------------------------------------------------------*/
    if ( dofact || equil ) {
	
        /* Obtain column etree, the column count (colcnt_h) and supernode
	   partition (part_super_h) for the Householder matrix. */
	t0 = SuperLU_timer_();
	sp_colorder(AA, perm_c, superlumt_options, &AC);
	utime[ETREE] = SuperLU_timer_() - t0;

#if ( PRNTlevel >= 2 )    
	printf("Factor PA = LU ... relax %d\tw %d\tmaxsuper %d\trowblk %d\n", 
	       relax, panel_size, sp_ienv(3), sp_ienv(4));
	fflush(stdout);
#endif
	
	/* Compute the LU factorization of A*Pc. */
	t0 = SuperLU_timer_();
	pdgstrf(superlumt_options, &AC, perm_r, L, U, &Gstat, info);
	utime[FACT] = SuperLU_timer_() - t0;
	
	flopcnt = 0;
	for (i = 0; i < nprocs; ++i) flopcnt += Gstat.procstat[i].fcops;
	ops[FACT] = flopcnt;

	if ( superlumt_options->lwork == -1 ) {
	    superlu_memusage->total_needed = *info - A->ncol;
	    return;
	}
    }

    if ( *info > 0 ) {
	if ( *info <= A->ncol ) {
	    /* Compute the reciprocal pivot growth factor of the leading
	       rank-deficient *info columns of A. */
	    *recip_pivot_growth = dPivotGrowth(*info, AA, perm_c, L, U);
	}
    } else {

	/* ------------------------------------------------------------
	   Compute the reciprocal pivot growth factor *recip_pivot_growth.
	   ------------------------------------------------------------*/
	*recip_pivot_growth = dPivotGrowth(A->ncol, AA, perm_c, L, U);

	/* ------------------------------------------------------------
	   Estimate the reciprocal of the condition number of A.
	   ------------------------------------------------------------*/
	t0 = SuperLU_timer_();
	if ( notran ) {
	    *(unsigned char *)norm = '1';
	} else {
	    *(unsigned char *)norm = 'I';
	}
	anorm = dlangs(norm, AA);
	dgscon(norm, L, U, anorm, rcond, info);
	utime[RCOND] = SuperLU_timer_() - t0;
    
	/* ------------------------------------------------------------
	   Compute the solution matrix X.
	   ------------------------------------------------------------*/
	for (j = 0; j < nrhs; j++)    /* Save a copy of the right hand sides */
	    for (i = 0; i < B->nrow; i++)
		Xmat[i + j*ldx] = Bmat[i + j*ldb];
    
	t0 = SuperLU_timer_();
	dgstrs(trant, L, U, perm_r, perm_c, X, &Gstat, info);
	utime[SOLVE] = SuperLU_timer_() - t0;
	ops[SOLVE] = ops[TRISOLVE];
    
	/* ------------------------------------------------------------
	   Use iterative refinement to improve the computed solution and
	   compute error bounds and backward error estimates for it.
	   ------------------------------------------------------------*/
	t0 = SuperLU_timer_();
	dgsrfs(trant, AA, L, U, perm_r, perm_c, *equed,
	       R, C, B, X, ferr, berr, &Gstat, info);
	utime[REFINE] = SuperLU_timer_() - t0;

	/* ------------------------------------------------------------
	   Transform the solution matrix X to a solution of the original
	   system.
	   ------------------------------------------------------------*/
	if ( notran ) {
	    if ( colequ ) {
		for (j = 0; j < nrhs; ++j)
		    for (i = 0; i < A->nrow; ++i) {
                        Xmat[i + j*ldx] *= C[i];
		    }
	    }
	} else if ( rowequ ) {
	    for (j = 0; j < nrhs; ++j)
		for (i = 0; i < A->nrow; ++i) {
                    Xmat[i + j*ldx] *= R[i];
		}
	}
	
	/* Set INFO = A->ncol+1 if the matrix is singular to 
	   working precision.*/
	if ( *rcond < dlamch_("E") ) *info = A->ncol + 1;
	
    }

    superlu_dQuerySpace(nprocs, L, U, panel_size, superlu_memusage);

    /* ------------------------------------------------------------
       Deallocate storage after factorization.
       ------------------------------------------------------------*/
    if ( superlumt_options->refact == NO ) {
        SUPERLU_FREE(superlumt_options->etree);
        SUPERLU_FREE(superlumt_options->colcnt_h);
	SUPERLU_FREE(superlumt_options->part_super_h);
    }
    if ( dofact || equil ) {
        Destroy_CompCol_Permuted(&AC);
    }
    if ( A->Stype == SLU_NR ) {
	Destroy_SuperMatrix_Store(AA);
	SUPERLU_FREE(AA);
    }

    /* ------------------------------------------------------------
       Print timings, then deallocate statistic variables.
       ------------------------------------------------------------*/
#ifdef PROFILE
    {
	SCPformat *Lstore = (SCPformat *) L->Store;
	ParallelProfile(n, Lstore->nsuper+1, Gstat.num_panels, nprocs, &Gstat);
    }
#endif
    PrintStat(&Gstat);
    StatFree(&Gstat);
}
コード例 #10
0
ファイル: dgsrfs.c プロジェクト: BranYang/scipy
/*! \brief
 *
 * <pre>
 *   Purpose   
 *   =======   
 *
 *   DGSRFS improves the computed solution to a system of linear   
 *   equations and provides error bounds and backward error estimates for 
 *   the solution.   
 *
 *   If equilibration was performed, the system becomes:
 *           (diag(R)*A_original*diag(C)) * X = diag(R)*B_original.
 *
 *   See supermatrix.h for the definition of 'SuperMatrix' structure.
 *
 *   Arguments   
 *   =========   
 *
 * trans   (input) trans_t
 *          Specifies the form of the system of equations:
 *          = NOTRANS: A * X = B  (No transpose)
 *          = TRANS:   A'* X = B  (Transpose)
 *          = CONJ:    A**H * X = B  (Conjugate transpose)
 *   
 *   A       (input) SuperMatrix*
 *           The original matrix A in the system, or the scaled A if
 *           equilibration was done. The type of A can be:
 *           Stype = SLU_NC, Dtype = SLU_D, Mtype = SLU_GE.
 *    
 *   L       (input) SuperMatrix*
 *	     The factor L from the factorization Pr*A*Pc=L*U. Use
 *           compressed row subscripts storage for supernodes, 
 *           i.e., L has types: Stype = SLU_SC, Dtype = SLU_D, Mtype = SLU_TRLU.
 * 
 *   U       (input) SuperMatrix*
 *           The factor U from the factorization Pr*A*Pc=L*U as computed by
 *           dgstrf(). Use column-wise storage scheme, 
 *           i.e., U has types: Stype = SLU_NC, Dtype = SLU_D, Mtype = SLU_TRU.
 *
 *   perm_c  (input) int*, dimension (A->ncol)
 *	     Column permutation vector, which defines the 
 *           permutation matrix Pc; perm_c[i] = j means column i of A is 
 *           in position j in A*Pc.
 *
 *   perm_r  (input) int*, dimension (A->nrow)
 *           Row permutation vector, which defines the permutation matrix Pr;
 *           perm_r[i] = j means row i of A is in position j in Pr*A.
 *
 *   equed   (input) Specifies the form of equilibration that was done.
 *           = 'N': No equilibration.
 *           = 'R': Row equilibration, i.e., A was premultiplied by diag(R).
 *           = 'C': Column equilibration, i.e., A was postmultiplied by
 *                  diag(C).
 *           = 'B': Both row and column equilibration, i.e., A was replaced 
 *                  by diag(R)*A*diag(C).
 *
 *   R       (input) double*, dimension (A->nrow)
 *           The row scale factors for A.
 *           If equed = 'R' or 'B', A is premultiplied by diag(R).
 *           If equed = 'N' or 'C', R is not accessed.
 * 
 *   C       (input) double*, dimension (A->ncol)
 *           The column scale factors for A.
 *           If equed = 'C' or 'B', A is postmultiplied by diag(C).
 *           If equed = 'N' or 'R', C is not accessed.
 *
 *   B       (input) SuperMatrix*
 *           B has types: Stype = SLU_DN, Dtype = SLU_D, Mtype = SLU_GE.
 *           The right hand side matrix B.
 *           if equed = 'R' or 'B', B is premultiplied by diag(R).
 *
 *   X       (input/output) SuperMatrix*
 *           X has types: Stype = SLU_DN, Dtype = SLU_D, Mtype = SLU_GE.
 *           On entry, the solution matrix X, as computed by dgstrs().
 *           On exit, the improved solution matrix X.
 *           if *equed = 'C' or 'B', X should be premultiplied by diag(C)
 *               in order to obtain the solution to the original system.
 *
 *   FERR    (output) double*, dimension (B->ncol)   
 *           The estimated forward error bound for each solution vector   
 *           X(j) (the j-th column of the solution matrix X).   
 *           If XTRUE is the true solution corresponding to X(j), FERR(j) 
 *           is an estimated upper bound for the magnitude of the largest 
 *           element in (X(j) - XTRUE) divided by the magnitude of the   
 *           largest element in X(j).  The estimate is as reliable as   
 *           the estimate for RCOND, and is almost always a slight   
 *           overestimate of the true error.
 *
 *   BERR    (output) double*, dimension (B->ncol)   
 *           The componentwise relative backward error of each solution   
 *           vector X(j) (i.e., the smallest relative change in   
 *           any element of A or B that makes X(j) an exact solution).
 *
 *   stat     (output) SuperLUStat_t*
 *            Record the statistics on runtime and floating-point operation count.
 *            See util.h for the definition of 'SuperLUStat_t'.
 *
 *   info    (output) int*   
 *           = 0:  successful exit   
 *            < 0:  if INFO = -i, the i-th argument had an illegal value   
 *
 *    Internal Parameters   
 *    ===================   
 *
 *    ITMAX is the maximum number of steps of iterative refinement.   
 *
 * </pre>
 */
void
dgsrfs(trans_t trans, SuperMatrix *A, SuperMatrix *L, SuperMatrix *U,
       int *perm_c, int *perm_r, char *equed, double *R, double *C,
       SuperMatrix *B, SuperMatrix *X, double *ferr, double *berr,
       SuperLUStat_t *stat, int *info)
{


#define ITMAX 5
    
    /* Table of constant values */
    int    ione = 1;
    double ndone = -1.;
    double done = 1.;
    
    /* Local variables */
    NCformat *Astore;
    double   *Aval;
    SuperMatrix Bjcol;
    DNformat *Bstore, *Xstore, *Bjcol_store;
    double   *Bmat, *Xmat, *Bptr, *Xptr;
    int      kase;
    double   safe1, safe2;
    int      i, j, k, irow, nz, count, notran, rowequ, colequ;
    int      ldb, ldx, nrhs;
    double   s, xk, lstres, eps, safmin;
    char     transc[1];
    trans_t  transt;
    double   *work;
    double   *rwork;
    int      *iwork;
    int      isave[3];

    extern int dlacon2_(int *, double *, double *, int *, double *, int *, int []);
#ifdef _CRAY
    extern int SCOPY(int *, double *, int *, double *, int *);
    extern int SSAXPY(int *, double *, double *, int *, double *, int *);
#else
    extern int dcopy_(int *, double *, int *, double *, int *);
    extern int daxpy_(int *, double *, double *, int *, double *, int *);
#endif

    Astore = A->Store;
    Aval   = Astore->nzval;
    Bstore = B->Store;
    Xstore = X->Store;
    Bmat   = Bstore->nzval;
    Xmat   = Xstore->nzval;
    ldb    = Bstore->lda;
    ldx    = Xstore->lda;
    nrhs   = B->ncol;
    
    /* Test the input parameters */
    *info = 0;
    notran = (trans == NOTRANS);
    if ( !notran && trans != TRANS && trans != CONJ ) *info = -1;
    else if ( A->nrow != A->ncol || A->nrow < 0 ||
	      A->Stype != SLU_NC || A->Dtype != SLU_D || A->Mtype != SLU_GE )
	*info = -2;
    else if ( L->nrow != L->ncol || L->nrow < 0 ||
 	      L->Stype != SLU_SC || L->Dtype != SLU_D || L->Mtype != SLU_TRLU )
	*info = -3;
    else if ( U->nrow != U->ncol || U->nrow < 0 ||
 	      U->Stype != SLU_NC || U->Dtype != SLU_D || U->Mtype != SLU_TRU )
	*info = -4;
    else if ( ldb < SUPERLU_MAX(0, A->nrow) ||
 	      B->Stype != SLU_DN || B->Dtype != SLU_D || B->Mtype != SLU_GE )
        *info = -10;
    else if ( ldx < SUPERLU_MAX(0, A->nrow) ||
 	      X->Stype != SLU_DN || X->Dtype != SLU_D || X->Mtype != SLU_GE )
	*info = -11;
    if (*info != 0) {
	i = -(*info);
	input_error("dgsrfs", &i);
	return;
    }

    /* Quick return if possible */
    if ( A->nrow == 0 || nrhs == 0) {
	for (j = 0; j < nrhs; ++j) {
	    ferr[j] = 0.;
	    berr[j] = 0.;
	}
	return;
    }

    rowequ = strncmp(equed, "R", 1)==0 || strncmp(equed, "B", 1)==0;
    colequ = strncmp(equed, "C", 1)==0 || strncmp(equed, "B", 1)==0;
    
    /* Allocate working space */
    work = doubleMalloc(2*A->nrow);
    rwork = (double *) SUPERLU_MALLOC( A->nrow * sizeof(double) );
    iwork = intMalloc(2*A->nrow);
    if ( !work || !rwork || !iwork ) 
        ABORT("Malloc fails for work/rwork/iwork.");
    
    if ( notran ) {
	*(unsigned char *)transc = 'N';
        transt = TRANS;
    } else if ( trans == TRANS ) {
	*(unsigned char *)transc = 'T';
	transt = NOTRANS;
    } else if ( trans == CONJ ) {
	*(unsigned char *)transc = 'C';
	transt = NOTRANS;
    }    

    /* NZ = maximum number of nonzero elements in each row of A, plus 1 */
    nz     = A->ncol + 1;
    eps    = dmach("Epsilon");
    safmin = dmach("Safe minimum");

    /* Set SAFE1 essentially to be the underflow threshold times the
       number of additions in each row. */
    safe1  = nz * safmin;
    safe2  = safe1 / eps;

    /* Compute the number of nonzeros in each row (or column) of A */
    for (i = 0; i < A->nrow; ++i) iwork[i] = 0;
    if ( notran ) {
	for (k = 0; k < A->ncol; ++k)
	    for (i = Astore->colptr[k]; i < Astore->colptr[k+1]; ++i) 
		++iwork[Astore->rowind[i]];
    } else {
	for (k = 0; k < A->ncol; ++k)
	    iwork[k] = Astore->colptr[k+1] - Astore->colptr[k];
    }	

    /* Copy one column of RHS B into Bjcol. */
    Bjcol.Stype = B->Stype;
    Bjcol.Dtype = B->Dtype;
    Bjcol.Mtype = B->Mtype;
    Bjcol.nrow  = B->nrow;
    Bjcol.ncol  = 1;
    Bjcol.Store = (void *) SUPERLU_MALLOC( sizeof(DNformat) );
    if ( !Bjcol.Store ) ABORT("SUPERLU_MALLOC fails for Bjcol.Store");
    Bjcol_store = Bjcol.Store;
    Bjcol_store->lda = ldb;
    Bjcol_store->nzval = work; /* address aliasing */
	
    /* Do for each right hand side ... */
    for (j = 0; j < nrhs; ++j) {
	count = 0;
	lstres = 3.;
	Bptr = &Bmat[j*ldb];
	Xptr = &Xmat[j*ldx];

	while (1) { /* Loop until stopping criterion is satisfied. */

	    /* Compute residual R = B - op(A) * X,   
	       where op(A) = A, A**T, or A**H, depending on TRANS. */
	    
#ifdef _CRAY
	    SCOPY(&A->nrow, Bptr, &ione, work, &ione);
#else
	    dcopy_(&A->nrow, Bptr, &ione, work, &ione);
#endif
	    sp_dgemv(transc, ndone, A, Xptr, ione, done, work, ione);

	    /* Compute componentwise relative backward error from formula 
	       max(i) ( abs(R(i)) / ( abs(op(A))*abs(X) + abs(B) )(i) )   
	       where abs(Z) is the componentwise absolute value of the matrix
	       or vector Z.  If the i-th component of the denominator is less
	       than SAFE2, then SAFE1 is added to the i-th component of the   
	       numerator before dividing. */

	    for (i = 0; i < A->nrow; ++i) rwork[i] = fabs( Bptr[i] );
	    
	    /* Compute abs(op(A))*abs(X) + abs(B). */
	    if ( notran ) {
		for (k = 0; k < A->ncol; ++k) {
		    xk = fabs( Xptr[k] );
		    for (i = Astore->colptr[k]; i < Astore->colptr[k+1]; ++i)
			rwork[Astore->rowind[i]] += fabs(Aval[i]) * xk;
		}
	    } else {  /* trans = TRANS or CONJ */
		for (k = 0; k < A->ncol; ++k) {
		    s = 0.;
		    for (i = Astore->colptr[k]; i < Astore->colptr[k+1]; ++i) {
			irow = Astore->rowind[i];
			s += fabs(Aval[i]) * fabs(Xptr[irow]);
		    }
		    rwork[k] += s;
		}
	    }
	    s = 0.;
	    for (i = 0; i < A->nrow; ++i) {
		if (rwork[i] > safe2) {
		    s = SUPERLU_MAX( s, fabs(work[i]) / rwork[i] );
		} else if ( rwork[i] != 0.0 ) {
                    /* Adding SAFE1 to the numerator guards against
                       spuriously zero residuals (underflow). */
		    s = SUPERLU_MAX( s, (safe1 + fabs(work[i])) / rwork[i] );
                }
                /* If rwork[i] is exactly 0.0, then we know the true 
                   residual also must be exactly 0.0. */
	    }
	    berr[j] = s;

	    /* Test stopping criterion. Continue iterating if   
	       1) The residual BERR(J) is larger than machine epsilon, and   
	       2) BERR(J) decreased by at least a factor of 2 during the   
	          last iteration, and   
	       3) At most ITMAX iterations tried. */

	    if (berr[j] > eps && berr[j] * 2. <= lstres && count < ITMAX) {
		/* Update solution and try again. */
		dgstrs (trans, L, U, perm_c, perm_r, &Bjcol, stat, info);
		
#ifdef _CRAY
		SAXPY(&A->nrow, &done, work, &ione,
		       &Xmat[j*ldx], &ione);
#else
		daxpy_(&A->nrow, &done, work, &ione,
		       &Xmat[j*ldx], &ione);
#endif
		lstres = berr[j];
		++count;
	    } else {
		break;
	    }
        
	} /* end while */

	stat->RefineSteps = count;

	/* Bound error from formula:
	   norm(X - XTRUE) / norm(X) .le. FERR = norm( abs(inv(op(A)))*   
	   ( abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) ))) / norm(X)   
          where   
            norm(Z) is the magnitude of the largest component of Z   
            inv(op(A)) is the inverse of op(A)   
            abs(Z) is the componentwise absolute value of the matrix or
	       vector Z   
            NZ is the maximum number of nonzeros in any row of A, plus 1   
            EPS is machine epsilon   

          The i-th component of abs(R)+NZ*EPS*(abs(op(A))*abs(X)+abs(B))   
          is incremented by SAFE1 if the i-th component of   
          abs(op(A))*abs(X) + abs(B) is less than SAFE2.   

          Use DLACON2 to estimate the infinity-norm of the matrix   
             inv(op(A)) * diag(W),   
          where W = abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) ))) */
	
	for (i = 0; i < A->nrow; ++i) rwork[i] = fabs( Bptr[i] );
	
	/* Compute abs(op(A))*abs(X) + abs(B). */
	if ( notran ) {
	    for (k = 0; k < A->ncol; ++k) {
		xk = fabs( Xptr[k] );
		for (i = Astore->colptr[k]; i < Astore->colptr[k+1]; ++i)
		    rwork[Astore->rowind[i]] += fabs(Aval[i]) * xk;
	    }
	} else {  /* trans == TRANS or CONJ */
	    for (k = 0; k < A->ncol; ++k) {
		s = 0.;
		for (i = Astore->colptr[k]; i < Astore->colptr[k+1]; ++i) {
		    irow = Astore->rowind[i];
		    xk = fabs( Xptr[irow] );
		    s += fabs(Aval[i]) * xk;
		}
		rwork[k] += s;
	    }
	}
	
	for (i = 0; i < A->nrow; ++i)
	    if (rwork[i] > safe2)
		rwork[i] = fabs(work[i]) + (iwork[i]+1)*eps*rwork[i];
	    else
		rwork[i] = fabs(work[i])+(iwork[i]+1)*eps*rwork[i]+safe1;

	kase = 0;

	do {
	    dlacon2_(&A->nrow, &work[A->nrow], work,
		    &iwork[A->nrow], &ferr[j], &kase, isave);
	    if (kase == 0) break;

	    if (kase == 1) {
		/* Multiply by diag(W)*inv(op(A)**T)*(diag(C) or diag(R)). */
		if ( notran && colequ )
		    for (i = 0; i < A->ncol; ++i) work[i] *= C[i];
		else if ( !notran && rowequ )
		    for (i = 0; i < A->nrow; ++i) work[i] *= R[i];
		
		dgstrs (transt, L, U, perm_c, perm_r, &Bjcol, stat, info);
		
		for (i = 0; i < A->nrow; ++i) work[i] *= rwork[i];
	    } else {
		/* Multiply by (diag(C) or diag(R))*inv(op(A))*diag(W). */
		for (i = 0; i < A->nrow; ++i) work[i] *= rwork[i];
		
		dgstrs (trans, L, U, perm_c, perm_r, &Bjcol, stat, info);
		
		if ( notran && colequ )
		    for (i = 0; i < A->ncol; ++i) work[i] *= C[i];
		else if ( !notran && rowequ )
		    for (i = 0; i < A->ncol; ++i) work[i] *= R[i];  
	    }
	    
	} while ( kase != 0 );


	/* Normalize error. */
	lstres = 0.;
 	if ( notran && colequ ) {
	    for (i = 0; i < A->nrow; ++i)
	    	lstres = SUPERLU_MAX( lstres, C[i] * fabs( Xptr[i]) );
  	} else if ( !notran && rowequ ) {
	    for (i = 0; i < A->nrow; ++i)
	    	lstres = SUPERLU_MAX( lstres, R[i] * fabs( Xptr[i]) );
	} else {
	    for (i = 0; i < A->nrow; ++i)
	    	lstres = SUPERLU_MAX( lstres, fabs( Xptr[i]) );
	}
	if ( lstres != 0. )
	    ferr[j] /= lstres;

    } /* for each RHS j ... */
    
    SUPERLU_FREE(work);
    SUPERLU_FREE(rwork);
    SUPERLU_FREE(iwork);
    SUPERLU_FREE(Bjcol.Store);

    return;

} /* dgsrfs */
コード例 #11
0
ファイル: dgssvx.c プロジェクト: r35krag0th/pysparse
void
dgssvx(char *fact, char *trans, char *refact,
       SuperMatrix *A, factor_param_t *factor_params, int *perm_c,
       int *perm_r, int *etree, char *equed, double *R, double *C,
       SuperMatrix *L, SuperMatrix *U, void *work, int lwork,
       SuperMatrix *B, SuperMatrix *X, double *recip_pivot_growth, 
       double *rcond, double *ferr, double *berr, 
       mem_usage_t *mem_usage, int *info )
{
/*
 * Purpose
 * =======
 *
 * DGSSVX solves the system of linear equations A*X=B or A'*X=B, using
 * the LU factorization from dgstrf(). Error bounds on the solution and
 * a condition estimate are also provided. It performs the following steps:
 *
 *   1. If A is stored column-wise (A->Stype = NC):
 *  
 *      1.1. If fact = 'E', scaling factors are computed to equilibrate the
 *           system:
 *             trans = 'N':  diag(R)*A*diag(C)     *inv(diag(C))*X = diag(R)*B
 *             trans = 'T': (diag(R)*A*diag(C))**T *inv(diag(R))*X = diag(C)*B
 *             trans = 'C': (diag(R)*A*diag(C))**H *inv(diag(R))*X = diag(C)*B
 *           Whether or not the system will be equilibrated depends on the
 *           scaling of the matrix A, but if equilibration is used, A is
 *           overwritten by diag(R)*A*diag(C) and B by diag(R)*B (if trans='N')
 *           or diag(C)*B (if trans = 'T' or 'C').
 *
 *      1.2. Permute columns of A, forming A*Pc, where Pc is a permutation
 *           matrix that usually preserves sparsity.
 *           For more details of this step, see sp_preorder.c.
 *
 *      1.3. If fact = 'N' or 'E', the LU decomposition is used to factor the
 *           matrix A (after equilibration if fact = 'E') as Pr*A*Pc = L*U,
 *           with Pr determined by partial pivoting.
 *
 *      1.4. Compute the reciprocal pivot growth factor.
 *
 *      1.5. If some U(i,i) = 0, so that U is exactly singular, then the
 *           routine returns with info = i. Otherwise, the factored form of 
 *           A is used to estimate the condition number of the matrix A. If
 *           the reciprocal of the condition number is less than machine
 *           precision, info = A->ncol+1 is returned as a warning, but the
 *           routine still goes on to solve for X and computes error bounds
 *           as described below.
 *
 *      1.6. The system of equations is solved for X using the factored form
 *           of A.
 *
 *      1.7. Iterative refinement is applied to improve the computed solution
 *           matrix and calculate error bounds and backward error estimates
 *           for it.
 *
 *      1.8. If equilibration was used, the matrix X is premultiplied by
 *           diag(C) (if trans = 'N') or diag(R) (if trans = 'T' or 'C') so
 *           that it solves the original system before equilibration.
 *
 *   2. If A is stored row-wise (A->Stype = NR), apply the above algorithm
 *      to the transpose of A:
 *
 *      2.1. If fact = 'E', scaling factors are computed to equilibrate the
 *           system:
 *             trans = 'N':  diag(R)*A'*diag(C)     *inv(diag(C))*X = diag(R)*B
 *             trans = 'T': (diag(R)*A'*diag(C))**T *inv(diag(R))*X = diag(C)*B
 *             trans = 'C': (diag(R)*A'*diag(C))**H *inv(diag(R))*X = diag(C)*B
 *           Whether or not the system will be equilibrated depends on the
 *           scaling of the matrix A, but if equilibration is used, A' is
 *           overwritten by diag(R)*A'*diag(C) and B by diag(R)*B 
 *           (if trans='N') or diag(C)*B (if trans = 'T' or 'C').
 *
 *      2.2. Permute columns of transpose(A) (rows of A), 
 *           forming transpose(A)*Pc, where Pc is a permutation matrix that 
 *           usually preserves sparsity.
 *           For more details of this step, see sp_preorder.c.
 *
 *      2.3. If fact = 'N' or 'E', the LU decomposition is used to factor the
 *           transpose(A) (after equilibration if fact = 'E') as 
 *           Pr*transpose(A)*Pc = L*U with the permutation Pr determined by
 *           partial pivoting.
 *
 *      2.4. Compute the reciprocal pivot growth factor.
 *
 *      2.5. If some U(i,i) = 0, so that U is exactly singular, then the
 *           routine returns with info = i. Otherwise, the factored form 
 *           of transpose(A) is used to estimate the condition number of the
 *           matrix A. If the reciprocal of the condition number
 *           is less than machine precision, info = A->nrow+1 is returned as
 *           a warning, but the routine still goes on to solve for X and
 *           computes error bounds as described below.
 *
 *      2.6. The system of equations is solved for X using the factored form
 *           of transpose(A).
 *
 *      2.7. Iterative refinement is applied to improve the computed solution
 *           matrix and calculate error bounds and backward error estimates
 *           for it.
 *
 *      2.8. If equilibration was used, the matrix X is premultiplied by
 *           diag(C) (if trans = 'N') or diag(R) (if trans = 'T' or 'C') so
 *           that it solves the original system before equilibration.
 *
 *   See supermatrix.h for the definition of 'SuperMatrix' structure.
 *
 * Arguments
 * =========
 *
 * fact    (input) char*
 *         Specifies whether or not the factored form of the matrix
 *         A is supplied on entry, and if not, whether the matrix A should
 *         be equilibrated before it is factored.
 *         = 'F': On entry, L, U, perm_r and perm_c contain the factored
 *                form of A. If equed is not 'N', the matrix A has been
 *                equilibrated with scaling factors R and C.
 *                A, L, U, perm_r are not modified.
 *         = 'N': The matrix A will be factored, and the factors will be
 *                stored in L and U.
 *         = 'E': The matrix A will be equilibrated if necessary, then
 *                factored into L and U.
 *
 * trans   (input) char*
 *         Specifies the form of the system of equations:
 *         = 'N': A * X = B        (No transpose)
 *         = 'T': A**T * X = B     (Transpose)
 *         = 'C': A**H * X = B     (Transpose)
 *
 * refact  (input) char*
 *         Specifies whether we want to re-factor the matrix.
 *         = 'N': Factor the matrix A.
 *         = 'Y': Matrix A was factored before, now we want to re-factor
 *                matrix A with perm_r and etree as inputs. Use
 *                the same storage for the L\U factors previously allocated,
 *                expand it if necessary. User should insure to use the same
 *                memory model.  In this case, perm_r may be modified due to
 *                different pivoting determined by diagonal threshold.
 *         If fact = 'F', then refact is not accessed.
 *
 * A       (input/output) SuperMatrix*
 *         Matrix A in A*X=B, of dimension (A->nrow, A->ncol). The number
 *         of the linear equations is A->nrow. Currently, the type of A can be:
 *         Stype = NC or NR, Dtype = D_, Mtype = GE. In the future,
 *         more general A can be handled.
 *
 *         On entry, If fact = 'F' and equed is not 'N', then A must have
 *         been equilibrated by the scaling factors in R and/or C.  
 *         A is not modified if fact = 'F' or 'N', or if fact = 'E' and 
 *         equed = 'N' on exit.
 *
 *         On exit, if fact = 'E' and equed is not 'N', A is scaled as follows:
 *         If A->Stype = NC:
 *           equed = 'R':  A := diag(R) * A
 *           equed = 'C':  A := A * diag(C)
 *           equed = 'B':  A := diag(R) * A * diag(C).
 *         If A->Stype = NR:
 *           equed = 'R':  transpose(A) := diag(R) * transpose(A)
 *           equed = 'C':  transpose(A) := transpose(A) * diag(C)
 *           equed = 'B':  transpose(A) := diag(R) * transpose(A) * diag(C).
 *
 * factor_params (input) factor_param_t*
 *         The structure defines the input scalar parameters, consisting of
 *         the following fields. If factor_params = NULL, the default
 *         values are used for all the fields; otherwise, the values
 *         are given by the user.
 *         - panel_size (int): Panel size. A panel consists of at most
 *             panel_size consecutive columns. If panel_size = -1, use 
 *             default value 8.
 *         - relax (int): To control degree of relaxing supernodes. If the
 *             number of nodes (columns) in a subtree of the elimination
 *             tree is less than relax, this subtree is considered as one
 *             supernode, regardless of the row structures of those columns.
 *             If relax = -1, use default value 8.
 *         - diag_pivot_thresh (double): Diagonal pivoting threshold.
 *             At step j of the Gaussian elimination, if
 *                 abs(A_jj) >= diag_pivot_thresh * (max_(i>=j) abs(A_ij)),
 *             then use A_jj as pivot. 0 <= diag_pivot_thresh <= 1.
 *             If diag_pivot_thresh = -1, use default value 1.0,
 *             which corresponds to standard partial pivoting.
 *         - drop_tol (double): Drop tolerance threshold. (NOT IMPLEMENTED)
 *             At step j of the Gaussian elimination, if
 *                 abs(A_ij)/(max_i abs(A_ij)) < drop_tol,
 *             then drop entry A_ij. 0 <= drop_tol <= 1.
 *             If drop_tol = -1, use default value 0.0, which corresponds to
 *             standard Gaussian elimination.
 *
 * perm_c  (input/output) int*
 *	   If A->Stype = NC, Column permutation vector of size A->ncol,
 *         which defines the permutation matrix Pc; perm_c[i] = j means
 *         column i of A is in position j in A*Pc.
 *         On exit, perm_c may be overwritten by the product of the input
 *         perm_c and a permutation that postorders the elimination tree
 *         of Pc'*A'*A*Pc; perm_c is not changed if the elimination tree
 *         is already in postorder.
 *
 *         If A->Stype = NR, column permutation vector of size A->nrow,
 *         which describes permutation of columns of transpose(A) 
 *         (rows of A) as described above.
 * 
 * perm_r  (input/output) int*
 *         If A->Stype = NC, row permutation vector of size A->nrow, 
 *         which defines the permutation matrix Pr, and is determined
 *         by partial pivoting.  perm_r[i] = j means row i of A is in 
 *         position j in Pr*A.
 *
 *         If A->Stype = NR, permutation vector of size A->ncol, which
 *         determines permutation of rows of transpose(A)
 *         (columns of A) as described above.
 *
 *         If refact is not 'Y', perm_r is output argument;
 *         If refact = 'Y', the pivoting routine will try to use the input
 *         perm_r, unless a certain threshold criterion is violated.
 *         In that case, perm_r is overwritten by a new permutation
 *         determined by partial pivoting or diagonal threshold pivoting.
 * 
 * etree   (input/output) int*,  dimension (A->ncol)
 *         Elimination tree of Pc'*A'*A*Pc.
 *         If fact is not 'F' and refact = 'Y', etree is an input argument,
 *         otherwise it is an output argument.
 *         Note: etree is a vector of parent pointers for a forest whose
 *         vertices are the integers 0 to A->ncol-1; etree[root]==A->ncol.
 *
 * equed   (input/output) char*
 *         Specifies the form of equilibration that was done.
 *         = 'N': No equilibration.
 *         = 'R': Row equilibration, i.e., A was premultiplied by diag(R).
 *         = 'C': Column equilibration, i.e., A was postmultiplied by diag(C).
 *         = 'B': Both row and column equilibration, i.e., A was replaced 
 *                by diag(R)*A*diag(C).
 *         If fact = 'F', equed is an input argument, otherwise it is
 *         an output argument.
 *
 * R       (input/output) double*, dimension (A->nrow)
 *         The row scale factors for A or transpose(A).
 *         If equed = 'R' or 'B', A (if A->Stype = NC) or transpose(A) (if
 *             A->Stype = NR) is multiplied on the left by diag(R).
 *         If equed = 'N' or 'C', R is not accessed.
 *         If fact = 'F', R is an input argument; otherwise, R is output.
 *         If fact = 'F' and equed = 'R' or 'B', each element of R must
 *            be positive.
 * 
 * C       (input/output) double*, dimension (A->ncol)
 *         The column scale factors for A or transpose(A).
 *         If equed = 'C' or 'B', A (if A->Stype = NC) or transpose(A) (if 
 *             A->Stype = NR) is multiplied on the right by diag(C).
 *         If equed = 'N' or 'R', C is not accessed.
 *         If fact = 'F', C is an input argument; otherwise, C is output.
 *         If fact = 'F' and equed = 'C' or 'B', each element of C must
 *            be positive.
 *         
 * L       (output) SuperMatrix*
 *	   The factor L from the factorization
 *             Pr*A*Pc=L*U              (if A->Stype = NC) or
 *             Pr*transpose(A)*Pc=L*U   (if A->Stype = NR).
 *         Uses compressed row subscripts storage for supernodes, i.e.,
 *         L has types: Stype = SC, Dtype = D_, Mtype = TRLU.
 *
 * U       (output) SuperMatrix*
 *	   The factor U from the factorization
 *             Pr*A*Pc=L*U              (if A->Stype = NC) or
 *             Pr*transpose(A)*Pc=L*U   (if A->Stype = NR).
 *         Uses column-wise storage scheme, i.e., U has types:
 *         Stype = NC, Dtype = D_, Mtype = TRU.
 *
 * work    (workspace/output) void*, size (lwork) (in bytes)
 *         User supplied workspace, should be large enough
 *         to hold data structures for factors L and U.
 *         On exit, if fact is not 'F', L and U point to this array.
 *
 * lwork   (input) int
 *         Specifies the size of work array in bytes.
 *         = 0:  allocate space internally by system malloc;
 *         > 0:  use user-supplied work array of length lwork in bytes,
 *               returns error if space runs out.
 *         = -1: the routine guesses the amount of space needed without
 *               performing the factorization, and returns it in
 *               mem_usage->total_needed; no other side effects.
 *
 *         See argument 'mem_usage' for memory usage statistics.
 *
 * B       (input/output) SuperMatrix*
 *         B has types: Stype = DN, Dtype = D_, Mtype = GE.
 *         On entry, the right hand side matrix.
 *         On exit,
 *            if equed = 'N', B is not modified; otherwise
 *            if A->Stype = NC:
 *               if trans = 'N' and equed = 'R' or 'B', B is overwritten by
 *                  diag(R)*B;
 *               if trans = 'T' or 'C' and equed = 'C' of 'B', B is
 *                  overwritten by diag(C)*B;
 *            if A->Stype = NR:
 *               if trans = 'N' and equed = 'C' or 'B', B is overwritten by
 *                  diag(C)*B;
 *               if trans = 'T' or 'C' and equed = 'R' of 'B', B is
 *                  overwritten by diag(R)*B.
 *
 * X       (output) SuperMatrix*
 *         X has types: Stype = DN, Dtype = D_, Mtype = GE. 
 *         If info = 0 or info = A->ncol+1, X contains the solution matrix
 *         to the original system of equations. Note that A and B are modified
 *         on exit if equed is not 'N', and the solution to the equilibrated
 *         system is inv(diag(C))*X if trans = 'N' and equed = 'C' or 'B',
 *         or inv(diag(R))*X if trans = 'T' or 'C' and equed = 'R' or 'B'.
 *
 * recip_pivot_growth (output) double*
 *         The reciprocal pivot growth factor max_j( norm(A_j)/norm(U_j) ).
 *         The infinity norm is used. If recip_pivot_growth is much less
 *         than 1, the stability of the LU factorization could be poor.
 *
 * rcond   (output) double*
 *         The estimate of the reciprocal condition number of the matrix A
 *         after equilibration (if done). If rcond is less than the machine
 *         precision (in particular, if rcond = 0), the matrix is singular
 *         to working precision. This condition is indicated by a return
 *         code of info > 0.
 *
 * FERR    (output) double*, dimension (B->ncol)   
 *         The estimated forward error bound for each solution vector   
 *         X(j) (the j-th column of the solution matrix X).   
 *         If XTRUE is the true solution corresponding to X(j), FERR(j) 
 *         is an estimated upper bound for the magnitude of the largest 
 *         element in (X(j) - XTRUE) divided by the magnitude of the   
 *         largest element in X(j).  The estimate is as reliable as   
 *         the estimate for RCOND, and is almost always a slight   
 *         overestimate of the true error.
 *
 * BERR    (output) double*, dimension (B->ncol)
 *         The componentwise relative backward error of each solution   
 *         vector X(j) (i.e., the smallest relative change in   
 *         any element of A or B that makes X(j) an exact solution).
 *
 * mem_usage (output) mem_usage_t*
 *         Record the memory usage statistics, consisting of following fields:
 *         - for_lu (float)
 *           The amount of space used in bytes for L\U data structures.
 *         - total_needed (float)
 *           The amount of space needed in bytes to perform factorization.
 *         - expansions (int)
 *           The number of memory expansions during the LU factorization.
 *
 * info    (output) int*
 *         = 0: successful exit   
 *         < 0: if info = -i, the i-th argument had an illegal value   
 *         > 0: if info = i, and i is   
 *              <= A->ncol: U(i,i) is exactly zero. The factorization has   
 *                    been completed, but the factor U is exactly   
 *                    singular, so the solution and error bounds   
 *                    could not be computed.   
 *              = A->ncol+1: U is nonsingular, but RCOND is less than machine
 *                    precision, meaning that the matrix is singular to
 *                    working precision. Nevertheless, the solution and
 *                    error bounds are computed because there are a number
 *                    of situations where the computed solution can be more
 *                    accurate than the value of RCOND would suggest.   
 *              > A->ncol+1: number of bytes allocated when memory allocation
 *                    failure occurred, plus A->ncol.
 *
 */

    DNformat  *Bstore, *Xstore;
    double    *Bmat, *Xmat;
    int       ldb, ldx, nrhs;
    SuperMatrix *AA; /* A in NC format used by the factorization routine.*/
    SuperMatrix AC; /* Matrix postmultiplied by Pc */
    int       colequ, equil, nofact, notran, rowequ;
    char      trant[1], norm[1];
    int       i, j, info1;
    double    amax, anorm, bignum, smlnum, colcnd, rowcnd, rcmax, rcmin;
    int       relax, panel_size;
    double    diag_pivot_thresh, drop_tol;
    double    t0;      /* temporary time */
    double    *utime;
    extern SuperLUStat_t SuperLUStat;

    /* External functions */
    extern double dlangs(char *, SuperMatrix *);
    extern double dlamch_(char *);

    Bstore = B->Store;
    Xstore = X->Store;
    Bmat   = Bstore->nzval;
    Xmat   = Xstore->nzval;
    ldb    = Bstore->lda;
    ldx    = Xstore->lda;
    nrhs   = B->ncol;

#if 0
printf("dgssvx: fact=%c, trans=%c, refact=%c, equed=%c\n",
       *fact, *trans, *refact, *equed);
#endif
    
    *info = 0;
    nofact = lsame_(fact, "N");
    equil = lsame_(fact, "E");
    notran = lsame_(trans, "N");
    if (nofact || equil) {
	*(unsigned char *)equed = 'N';
	rowequ = FALSE;
	colequ = FALSE;
    } else {
	rowequ = lsame_(equed, "R") || lsame_(equed, "B");
	colequ = lsame_(equed, "C") || lsame_(equed, "B");
	smlnum = dlamch_("Safe minimum");
	bignum = 1. / smlnum;
    }

    /* Test the input parameters */
    if (!nofact && !equil && !lsame_(fact, "F")) *info = -1;
    else if (!notran && !lsame_(trans, "T") && !lsame_(trans, "C")) *info = -2;
    else if ( !(lsame_(refact,"Y") || lsame_(refact, "N")) ) *info = -3;
    else if ( A->nrow != A->ncol || A->nrow < 0 ||
	      (A->Stype != NC && A->Stype != NR) ||
	      A->Dtype != D_ || A->Mtype != GE )
	*info = -4;
    else if (lsame_(fact, "F") && !(rowequ || colequ || lsame_(equed, "N")))
	*info = -9;
    else {
	if (rowequ) {
	    rcmin = bignum;
	    rcmax = 0.;
	    for (j = 0; j < A->nrow; ++j) {
		rcmin = SUPERLU_MIN(rcmin, R[j]);
		rcmax = SUPERLU_MAX(rcmax, R[j]);
	    }
	    if (rcmin <= 0.) *info = -10;
	    else if ( A->nrow > 0)
		rowcnd = SUPERLU_MAX(rcmin,smlnum) / SUPERLU_MIN(rcmax,bignum);
	    else rowcnd = 1.;
	}
	if (colequ && *info == 0) {
	    rcmin = bignum;
	    rcmax = 0.;
	    for (j = 0; j < A->nrow; ++j) {
		rcmin = SUPERLU_MIN(rcmin, C[j]);
		rcmax = SUPERLU_MAX(rcmax, C[j]);
	    }
	    if (rcmin <= 0.) *info = -11;
	    else if (A->nrow > 0)
		colcnd = SUPERLU_MAX(rcmin,smlnum) / SUPERLU_MIN(rcmax,bignum);
	    else colcnd = 1.;
	}
	if (*info == 0) {
	    if ( lwork < -1 ) *info = -15;
	    else if ( B->ncol < 0 || Bstore->lda < SUPERLU_MAX(0, A->nrow) ||
		      B->Stype != DN || B->Dtype != D_ || 
		      B->Mtype != GE )
		*info = -16;
	    else if ( X->ncol < 0 || Xstore->lda < SUPERLU_MAX(0, A->nrow) ||
		      B->ncol != X->ncol || X->Stype != DN ||
		      X->Dtype != D_ || X->Mtype != GE )
		*info = -17;
	}
    }
    if (*info != 0) {
	i = -(*info);
	xerbla_("dgssvx", &i);
	return;
    }
    
    /* Default values for factor_params */
    panel_size = sp_ienv(1);
    relax      = sp_ienv(2);
    diag_pivot_thresh = 1.0;
    drop_tol   = 0.0;
    if ( factor_params != NULL ) {
	if ( factor_params->panel_size != -1 )
	    panel_size = factor_params->panel_size;
	if ( factor_params->relax != -1 ) relax = factor_params->relax;
	if ( factor_params->diag_pivot_thresh != -1 )
	    diag_pivot_thresh = factor_params->diag_pivot_thresh;
	if ( factor_params->drop_tol != -1 )
	    drop_tol = factor_params->drop_tol;
    }

    StatInit(panel_size, relax);
    utime = SuperLUStat.utime;
    
    /* Convert A to NC format when necessary. */
    if ( A->Stype == NR ) {
	NRformat *Astore = A->Store;
	AA = (SuperMatrix *) SUPERLU_MALLOC( sizeof(SuperMatrix) );
	dCreate_CompCol_Matrix(AA, A->ncol, A->nrow, Astore->nnz, 
			       Astore->nzval, Astore->colind, Astore->rowptr,
			       NC, A->Dtype, A->Mtype);
	if ( notran ) { /* Reverse the transpose argument. */
	    *trant = 'T';
	    notran = 0;
	} else {
	    *trant = 'N';
	    notran = 1;
	}
    } else { /* A->Stype == NC */
	*trant = *trans;
	AA = A;
    }

    if ( equil ) {
	t0 = SuperLU_timer_();
	/* Compute row and column scalings to equilibrate the matrix A. */
	dgsequ(AA, R, C, &rowcnd, &colcnd, &amax, &info1);
	
	if ( info1 == 0 ) {
	    /* Equilibrate matrix A. */
	    dlaqgs(AA, R, C, rowcnd, colcnd, amax, equed);
	    rowequ = lsame_(equed, "R") || lsame_(equed, "B");
	    colequ = lsame_(equed, "C") || lsame_(equed, "B");
	}
	utime[EQUIL] = SuperLU_timer_() - t0;
    }

    /* Scale the right hand side if equilibration was performed. */
    if ( notran ) {
	if ( rowequ ) {
	    for (j = 0; j < nrhs; ++j)
		for (i = 0; i < A->nrow; ++i) {
		  Bmat[i + j*ldb] *= R[i];
	        }
	}
    } else if ( colequ ) {
	for (j = 0; j < nrhs; ++j)
	    for (i = 0; i < A->nrow; ++i) {
	      Bmat[i + j*ldb] *= C[i];
	    }
    }

    if ( nofact || equil ) {
	
	t0 = SuperLU_timer_();
	sp_preorder(refact, AA, perm_c, etree, &AC);
	utime[ETREE] = SuperLU_timer_() - t0;
    
/*	printf("Factor PA = LU ... relax %d\tw %d\tmaxsuper %d\trowblk %d\n", 
	       relax, panel_size, sp_ienv(3), sp_ienv(4));
	fflush(stdout); */
	
	/* Compute the LU factorization of A*Pc. */
	t0 = SuperLU_timer_();
	dgstrf(refact, &AC, diag_pivot_thresh, drop_tol, relax, panel_size,
	       etree, work, lwork, perm_r, perm_c, L, U, info);
	utime[FACT] = SuperLU_timer_() - t0;
	
	if ( lwork == -1 ) {
	    mem_usage->total_needed = *info - A->ncol;
	    return;
	}
    }

    if ( *info > 0 ) {
	if ( *info <= A->ncol ) {
	    /* Compute the reciprocal pivot growth factor of the leading
	       rank-deficient *info columns of A. */
	    *recip_pivot_growth = dPivotGrowth(*info, AA, perm_c, L, U);
	}
	return;
    }

    /* Compute the reciprocal pivot growth factor *recip_pivot_growth. */
    *recip_pivot_growth = dPivotGrowth(A->ncol, AA, perm_c, L, U);

    /* Estimate the reciprocal of the condition number of A. */
    t0 = SuperLU_timer_();
    if ( notran ) {
	*(unsigned char *)norm = '1';
    } else {
	*(unsigned char *)norm = 'I';
    }
    anorm = dlangs(norm, AA);
    dgscon(norm, L, U, anorm, rcond, info);
    utime[RCOND] = SuperLU_timer_() - t0;
    
    /* Compute the solution matrix X. */
    for (j = 0; j < nrhs; j++)    /* Save a copy of the right hand sides */
	for (i = 0; i < B->nrow; i++)
	    Xmat[i + j*ldx] = Bmat[i + j*ldb];
    
    t0 = SuperLU_timer_();
    dgstrs (trant, L, U, perm_r, perm_c, X, info);
    utime[SOLVE] = SuperLU_timer_() - t0;
    
    /* Use iterative refinement to improve the computed solution and compute
       error bounds and backward error estimates for it. */
    t0 = SuperLU_timer_();
    dgsrfs(trant, AA, L, U, perm_r, perm_c, equed, R, C, B,
	      X, ferr, berr, info);
    utime[REFINE] = SuperLU_timer_() - t0;

    /* Transform the solution matrix X to a solution of the original system. */
    if ( notran ) {
	if ( colequ ) {
	    for (j = 0; j < nrhs; ++j)
		for (i = 0; i < A->nrow; ++i) {
                  Xmat[i + j*ldx] *= C[i];
	        }
	}
    } else if ( rowequ ) {
	for (j = 0; j < nrhs; ++j)
	    for (i = 0; i < A->nrow; ++i) {
	      Xmat[i + j*ldx] *= R[i];
            }
    }

    /* Set INFO = A->ncol+1 if the matrix is singular to working precision. */
    if ( *rcond < dlamch_("E") ) *info = A->ncol + 1;

    dQuerySpace(L, U, panel_size, mem_usage);

    if ( nofact || equil ) Destroy_CompCol_Permuted(&AC);
    if ( A->Stype == NR ) {
	Destroy_SuperMatrix_Store(AA);
	SUPERLU_FREE(AA);
    }

/*     PrintStat( &SuperLUStat ); */
    StatFree();
}
コード例 #12
0
ファイル: dgssv.c プロジェクト: AtomAleks/PyProp
void
dgssv(superlu_options_t *options, SuperMatrix *A, int *perm_c, int *perm_r,
      SuperMatrix *L, SuperMatrix *U, SuperMatrix *B,
      SuperLUStat_t *stat, int *info )
{

    DNformat *Bstore;
    SuperMatrix *AA;/* A in SLU_NC format used by the factorization routine.*/
    SuperMatrix AC; /* Matrix postmultiplied by Pc */
    int      lwork = 0, *etree, i;
    
    /* Set default values for some parameters */
    double   drop_tol = 0.;
    int      panel_size;     /* panel size */
    int      relax;          /* no of columns in a relaxed snodes */
    int      permc_spec;
    trans_t  trans = NOTRANS;
    double   *utime;
    double   t;	/* Temporary time */

    /* Test the input parameters ... */
    *info = 0;
    Bstore = B->Store;
    if ( options->Fact != DOFACT ) *info = -1;
    else if ( A->nrow != A->ncol || A->nrow < 0 ||
	 (A->Stype != SLU_NC && A->Stype != SLU_NR) ||
	 A->Dtype != SLU_D || A->Mtype != SLU_GE )
	*info = -2;
    else if ( B->ncol < 0 || Bstore->lda < SUPERLU_MAX(0, A->nrow) ||
	B->Stype != SLU_DN || B->Dtype != SLU_D || B->Mtype != SLU_GE )
	*info = -7;
    if ( *info != 0 ) {
	i = -(*info);
	xerbla_("dgssv", &i);
	return;
    }

    utime = stat->utime;

    /* Convert A to SLU_NC format when necessary. */
    if ( A->Stype == SLU_NR ) {
	NRformat *Astore = A->Store;
	AA = (SuperMatrix *) SUPERLU_MALLOC( sizeof(SuperMatrix) );
	dCreate_CompCol_Matrix(AA, A->ncol, A->nrow, Astore->nnz, 
			       Astore->nzval, Astore->colind, Astore->rowptr,
			       SLU_NC, A->Dtype, A->Mtype);
	trans = TRANS;
    } else {
        if ( A->Stype == SLU_NC ) AA = A;
    }

    t = SuperLU_timer_();
    /*
     * Get column permutation vector perm_c[], according to permc_spec:
     *   permc_spec = NATURAL:  natural ordering 
     *   permc_spec = MMD_AT_PLUS_A: minimum degree on structure of A'+A
     *   permc_spec = MMD_ATA:  minimum degree on structure of A'*A
     *   permc_spec = COLAMD:   approximate minimum degree column ordering
     *   permc_spec = MY_PERMC: the ordering already supplied in perm_c[]
     */
    permc_spec = options->ColPerm;
    if ( permc_spec != MY_PERMC && options->Fact == DOFACT )
      get_perm_c(permc_spec, AA, perm_c);
    utime[COLPERM] = SuperLU_timer_() - t;

    etree = intMalloc(A->ncol);

    t = SuperLU_timer_();
    sp_preorder(options, AA, perm_c, etree, &AC);
    utime[ETREE] = SuperLU_timer_() - t;

    panel_size = sp_ienv(1);
    relax = sp_ienv(2);

    /*printf("Factor PA = LU ... relax %d\tw %d\tmaxsuper %d\trowblk %d\n", 
	  relax, panel_size, sp_ienv(3), sp_ienv(4));*/
    t = SuperLU_timer_(); 
    /* Compute the LU factorization of A. */
    dgstrf(options, &AC, drop_tol, relax, panel_size,
	   etree, NULL, lwork, perm_c, perm_r, L, U, stat, info);
    utime[FACT] = SuperLU_timer_() - t;

    t = SuperLU_timer_();
    if ( *info == 0 ) {
        /* Solve the system A*X=B, overwriting B with X. */
        dgstrs (trans, L, U, perm_c, perm_r, B, stat, info);
    }
    utime[SOLVE] = SuperLU_timer_() - t;

    SUPERLU_FREE (etree);
    Destroy_CompCol_Permuted(&AC);
    if ( A->Stype == SLU_NR ) {
	Destroy_SuperMatrix_Store(AA);
	SUPERLU_FREE(AA);
    }

}
コード例 #13
0
ファイル: dgsisx.c プロジェクト: 1641731459/scipy
void
dgsisx(superlu_options_t *options, SuperMatrix *A, int *perm_c, int *perm_r,
       int *etree, char *equed, double *R, double *C,
       SuperMatrix *L, SuperMatrix *U, void *work, int lwork,
       SuperMatrix *B, SuperMatrix *X,
       double *recip_pivot_growth, double *rcond,
       GlobalLU_t *Glu, mem_usage_t *mem_usage, SuperLUStat_t *stat, int *info)
{

    DNformat  *Bstore, *Xstore;
    double    *Bmat, *Xmat;
    int       ldb, ldx, nrhs, n;
    SuperMatrix *AA;/* A in SLU_NC format used by the factorization routine.*/
    SuperMatrix AC; /* Matrix postmultiplied by Pc */
    int       colequ, equil, nofact, notran, rowequ, permc_spec, mc64;
    trans_t   trant;
    char      norm[1];
    int       i, j, info1;
    double    amax, anorm, bignum, smlnum, colcnd, rowcnd, rcmax, rcmin;
    int       relax, panel_size;
    double    diag_pivot_thresh;
    double    t0;      /* temporary time */
    double    *utime;

    int *perm = NULL; /* permutation returned from MC64 */

    /* External functions */
    extern double dlangs(char *, SuperMatrix *);

    Bstore = B->Store;
    Xstore = X->Store;
    Bmat   = Bstore->nzval;
    Xmat   = Xstore->nzval;
    ldb    = Bstore->lda;
    ldx    = Xstore->lda;
    nrhs   = B->ncol;
    n      = B->nrow;

    *info = 0;
    nofact = (options->Fact != FACTORED);
    equil = (options->Equil == YES);
    notran = (options->Trans == NOTRANS);
    mc64 = (options->RowPerm == LargeDiag);
    if ( nofact ) {
	*(unsigned char *)equed = 'N';
	rowequ = FALSE;
	colequ = FALSE;
    } else {
	rowequ = strncmp(equed, "R", 1)==0 || strncmp(equed, "B", 1)==0;
	colequ = strncmp(equed, "C", 1)==0 || strncmp(equed, "B", 1)==0;
	smlnum = dmach("Safe minimum");  /* lamch_("Safe minimum"); */
	bignum = 1. / smlnum;
    }

    /* Test the input parameters */
    if (options->Fact != DOFACT && options->Fact != SamePattern &&
	options->Fact != SamePattern_SameRowPerm &&
	options->Fact != FACTORED &&
	options->Trans != NOTRANS && options->Trans != TRANS && 
	options->Trans != CONJ &&
	options->Equil != NO && options->Equil != YES)
	*info = -1;
    else if ( A->nrow != A->ncol || A->nrow < 0 ||
	      (A->Stype != SLU_NC && A->Stype != SLU_NR) ||
	      A->Dtype != SLU_D || A->Mtype != SLU_GE )
	*info = -2;
    else if ( options->Fact == FACTORED &&
	     !(rowequ || colequ || strncmp(equed, "N", 1)==0) )
	*info = -6;
    else {
	if (rowequ) {
	    rcmin = bignum;
	    rcmax = 0.;
	    for (j = 0; j < A->nrow; ++j) {
		rcmin = SUPERLU_MIN(rcmin, R[j]);
		rcmax = SUPERLU_MAX(rcmax, R[j]);
	    }
	    if (rcmin <= 0.) *info = -7;
	    else if ( A->nrow > 0)
		rowcnd = SUPERLU_MAX(rcmin,smlnum) / SUPERLU_MIN(rcmax,bignum);
	    else rowcnd = 1.;
	}
	if (colequ && *info == 0) {
	    rcmin = bignum;
	    rcmax = 0.;
	    for (j = 0; j < A->nrow; ++j) {
		rcmin = SUPERLU_MIN(rcmin, C[j]);
		rcmax = SUPERLU_MAX(rcmax, C[j]);
	    }
	    if (rcmin <= 0.) *info = -8;
	    else if (A->nrow > 0)
		colcnd = SUPERLU_MAX(rcmin,smlnum) / SUPERLU_MIN(rcmax,bignum);
	    else colcnd = 1.;
	}
	if (*info == 0) {
	    if ( lwork < -1 ) *info = -12;
	    else if ( B->ncol < 0 || Bstore->lda < SUPERLU_MAX(0, A->nrow) ||
		      B->Stype != SLU_DN || B->Dtype != SLU_D || 
		      B->Mtype != SLU_GE )
		*info = -13;
	    else if ( X->ncol < 0 || Xstore->lda < SUPERLU_MAX(0, A->nrow) ||
		      (B->ncol != 0 && B->ncol != X->ncol) ||
		      X->Stype != SLU_DN ||
		      X->Dtype != SLU_D || X->Mtype != SLU_GE )
		*info = -14;
	}
    }
    if (*info != 0) {
	i = -(*info);
	input_error("dgsisx", &i);
	return;
    }

    /* Initialization for factor parameters */
    panel_size = sp_ienv(1);
    relax      = sp_ienv(2);
    diag_pivot_thresh = options->DiagPivotThresh;

    utime = stat->utime;

    /* Convert A to SLU_NC format when necessary. */
    if ( A->Stype == SLU_NR ) {
	NRformat *Astore = A->Store;
	AA = (SuperMatrix *) SUPERLU_MALLOC( sizeof(SuperMatrix) );
	dCreate_CompCol_Matrix(AA, A->ncol, A->nrow, Astore->nnz,
			       Astore->nzval, Astore->colind, Astore->rowptr,
			       SLU_NC, A->Dtype, A->Mtype);
	if ( notran ) { /* Reverse the transpose argument. */
	    trant = TRANS;
	    notran = 0;
	} else {
	    trant = NOTRANS;
	    notran = 1;
	}
    } else { /* A->Stype == SLU_NC */
	trant = options->Trans;
	AA = A;
    }

    if ( nofact ) {
	register int i, j;
	NCformat *Astore = AA->Store;
	int nnz = Astore->nnz;
	int *colptr = Astore->colptr;
	int *rowind = Astore->rowind;
	double *nzval = (double *)Astore->nzval;

	if ( mc64 ) {
	    t0 = SuperLU_timer_();
	    if ((perm = intMalloc(n)) == NULL)
		ABORT("SUPERLU_MALLOC fails for perm[]");

	    info1 = dldperm(5, n, nnz, colptr, rowind, nzval, perm, R, C);

	    if (info1 != 0) { /* MC64 fails, call dgsequ() later */
		mc64 = 0;
		SUPERLU_FREE(perm);
		perm = NULL;
	    } else {
	        if ( equil ) {
	            rowequ = colequ = 1;
		    for (i = 0; i < n; i++) {
		        R[i] = exp(R[i]);
		        C[i] = exp(C[i]);
		    }
		    /* scale the matrix */
		    for (j = 0; j < n; j++) {
		        for (i = colptr[j]; i < colptr[j + 1]; i++) {
			    nzval[i] *= R[rowind[i]] * C[j];
		        }
		    }
	            *equed = 'B';
                }

                /* permute the matrix */
		for (j = 0; j < n; j++) {
		    for (i = colptr[j]; i < colptr[j + 1]; i++) {
			/*nzval[i] *= R[rowind[i]] * C[j];*/
			rowind[i] = perm[rowind[i]];
		    }
		}
	    }
	    utime[EQUIL] = SuperLU_timer_() - t0;
	}

	if ( !mc64 & equil ) { /* Only perform equilibration, no row perm */
	    t0 = SuperLU_timer_();
	    /* Compute row and column scalings to equilibrate the matrix A. */
	    dgsequ(AA, R, C, &rowcnd, &colcnd, &amax, &info1);

	    if ( info1 == 0 ) {
		/* Equilibrate matrix A. */
		dlaqgs(AA, R, C, rowcnd, colcnd, amax, equed);
		rowequ = strncmp(equed, "R", 1)==0 || strncmp(equed, "B", 1)==0;
		colequ = strncmp(equed, "C", 1)==0 || strncmp(equed, "B", 1)==0;
	    }
	    utime[EQUIL] = SuperLU_timer_() - t0;
	}
    }


    if ( nofact ) {
	
	t0 = SuperLU_timer_();
	/*
	 * Gnet column permutation vector perm_c[], according to permc_spec:
	 *   permc_spec = NATURAL:  natural ordering 
	 *   permc_spec = MMD_AT_PLUS_A: minimum degree on structure of A'+A
	 *   permc_spec = MMD_ATA:  minimum degree on structure of A'*A
	 *   permc_spec = COLAMD:   approximate minimum degree column ordering
	 *   permc_spec = MY_PERMC: the ordering already supplied in perm_c[]
	 */
	permc_spec = options->ColPerm;
	if ( permc_spec != MY_PERMC && options->Fact == DOFACT )
	    get_perm_c(permc_spec, AA, perm_c);
	utime[COLPERM] = SuperLU_timer_() - t0;

	t0 = SuperLU_timer_();
	sp_preorder(options, AA, perm_c, etree, &AC);
	utime[ETREE] = SuperLU_timer_() - t0;

	/* Compute the LU factorization of A*Pc. */
	t0 = SuperLU_timer_();
	dgsitrf(options, &AC, relax, panel_size, etree, work, lwork,
                perm_c, perm_r, L, U, Glu, stat, info);
	utime[FACT] = SuperLU_timer_() - t0;

	if ( lwork == -1 ) {
	    mem_usage->total_needed = *info - A->ncol;
	    return;
	}

	if ( mc64 ) { /* Fold MC64's perm[] into perm_r[]. */
	    NCformat *Astore = AA->Store;
	    int nnz = Astore->nnz, *rowind = Astore->rowind;
	    int *perm_tmp, *iperm;
	    if ((perm_tmp = intMalloc(2*n)) == NULL)
		ABORT("SUPERLU_MALLOC fails for perm_tmp[]");
	    iperm = perm_tmp + n;
	    for (i = 0; i < n; ++i) perm_tmp[i] = perm_r[perm[i]];
	    for (i = 0; i < n; ++i) {
		perm_r[i] = perm_tmp[i];
		iperm[perm[i]] = i;
	    }

	    /* Restore A's original row indices. */
	    for (i = 0; i < nnz; ++i) rowind[i] = iperm[rowind[i]];

	    SUPERLU_FREE(perm); /* MC64 permutation */
	    SUPERLU_FREE(perm_tmp);
	}
    }

    if ( options->PivotGrowth ) {
	if ( *info > 0 ) return;

	/* Compute the reciprocal pivot growth factor *recip_pivot_growth. */
	*recip_pivot_growth = dPivotGrowth(A->ncol, AA, perm_c, L, U);
    }

    if ( options->ConditionNumber ) {
	/* Estimate the reciprocal of the condition number of A. */
	t0 = SuperLU_timer_();
	if ( notran ) {
	    *(unsigned char *)norm = '1';
	} else {
	    *(unsigned char *)norm = 'I';
	}
	anorm = dlangs(norm, AA);
	dgscon(norm, L, U, anorm, rcond, stat, &info1);
	utime[RCOND] = SuperLU_timer_() - t0;
    }

    if ( nrhs > 0 ) { /* Solve the system */
        double *rhs_work;

	/* Scale and permute the right-hand side if equilibration
           and permutation from MC64 were performed. */
	if ( notran ) {
	    if ( rowequ ) {
		for (j = 0; j < nrhs; ++j)
		    for (i = 0; i < n; ++i)
		        Bmat[i + j*ldb] *= R[i];
	    }
	} else if ( colequ ) {
	    for (j = 0; j < nrhs; ++j)
		for (i = 0; i < n; ++i) {
	            Bmat[i + j*ldb] *= C[i];
		}
	}

	/* Compute the solution matrix X. */
	for (j = 0; j < nrhs; j++)  /* Save a copy of the right hand sides */
	    for (i = 0; i < B->nrow; i++)
		Xmat[i + j*ldx] = Bmat[i + j*ldb];

	t0 = SuperLU_timer_();
	dgstrs (trant, L, U, perm_c, perm_r, X, stat, &info1);
	utime[SOLVE] = SuperLU_timer_() - t0;

	/* Transform the solution matrix X to a solution of the original
	   system. */
	if ( notran ) {
	    if ( colequ ) {
		for (j = 0; j < nrhs; ++j)
		    for (i = 0; i < n; ++i) {
                        Xmat[i + j*ldx] *= C[i];
                    }
	    }
	} else { /* transposed system */
	    if ( rowequ ) {
	        for (j = 0; j < nrhs; ++j)
		    for (i = 0; i < A->nrow; ++i) {
              	        Xmat[i + j*ldx] *= R[i];
                    }
	    }
	}

    } /* end if nrhs > 0 */

    if ( options->ConditionNumber ) {
	/* The matrix is singular to working precision. */
	/* if ( *rcond < dlamch_("E") && *info == 0) *info = A->ncol + 1; */
	if ( *rcond < dmach("E") && *info == 0) *info = A->ncol + 1;
    }

    if ( nofact ) {
	ilu_dQuerySpace(L, U, mem_usage);
	Destroy_CompCol_Permuted(&AC);
    }
    if ( A->Stype == SLU_NR ) {
	Destroy_SuperMatrix_Store(AA);
	SUPERLU_FREE(AA);
    }

}
コード例 #14
0
ファイル: dgsrfs.c プロジェクト: aceskpark/osfeo
void
dgsrfs(char *trans, SuperMatrix *A, SuperMatrix *L, SuperMatrix *U,
       int *perm_r, int *perm_c, char *equed, double *R, double *C,
       SuperMatrix *B, SuperMatrix *X, 
       double *ferr, double *berr, int *info)
{
/*
 *   Purpose   
 *   =======   
 *
 *   DGSRFS improves the computed solution to a system of linear   
 *   equations and provides error bounds and backward error estimates for 
 *   the solution.   
 *
 *   If equilibration was performed, the system becomes:
 *           (diag(R)*A_original*diag(C)) * X = diag(R)*B_original.
 *
 *   See supermatrix.h for the definition of 'SuperMatrix' structure.
 *
 *   Arguments   
 *   =========   
 *
 *   trans   (input) char*
 *           Specifies the form of the system of equations:   
 *           = 'N':  A * X = B     (No transpose)   
 *           = 'T':  A**T * X = B  (Transpose)   
 *           = 'C':  A**H * X = B  (Conjugate transpose = Transpose)
 *   
 *   A       (input) SuperMatrix*
 *           The original matrix A in the system, or the scaled A if
 *           equilibration was done. The type of A can be:
 *           Stype = NC, Dtype = _D, Mtype = GE.
 *    
 *   L       (input) SuperMatrix*
 *	     The factor L from the factorization Pr*A*Pc=L*U. Use
 *           compressed row subscripts storage for supernodes, 
 *           i.e., L has types: Stype = SC, Dtype = _D, Mtype = TRLU.
 * 
 *   U       (input) SuperMatrix*
 *           The factor U from the factorization Pr*A*Pc=L*U as computed by
 *           dgstrf(). Use column-wise storage scheme, 
 *           i.e., U has types: Stype = NC, Dtype = _D, Mtype = TRU.
 *
 *   perm_r  (input) int*, dimension (A->nrow)
 *           Row permutation vector, which defines the permutation matrix Pr;
 *           perm_r[i] = j means row i of A is in position j in Pr*A.
 *
 *   perm_c  (input) int*, dimension (A->ncol)
 *	     Column permutation vector, which defines the 
 *           permutation matrix Pc; perm_c[i] = j means column i of A is 
 *           in position j in A*Pc.
 *
 *   equed   (input) Specifies the form of equilibration that was done.
 *           = 'N': No equilibration.
 *           = 'R': Row equilibration, i.e., A was premultiplied by diag(R).
 *           = 'C': Column equilibration, i.e., A was postmultiplied by
 *                  diag(C).
 *           = 'B': Both row and column equilibration, i.e., A was replaced 
 *                  by diag(R)*A*diag(C).
 *
 *   R       (input) double*, dimension (A->nrow)
 *           The row scale factors for A.
 *           If equed = 'R' or 'B', A is premultiplied by diag(R).
 *           If equed = 'N' or 'C', R is not accessed.
 * 
 *   C       (input) double*, dimension (A->ncol)
 *           The column scale factors for A.
 *           If equed = 'C' or 'B', A is postmultiplied by diag(C).
 *           If equed = 'N' or 'R', C is not accessed.
 *
 *   B       (input) SuperMatrix*
 *           B has types: Stype = DN, Dtype = _D, Mtype = GE.
 *           The right hand side matrix B.
 *           if equed = 'R' or 'B', B is premultiplied by diag(R).
 *
 *   X       (input/output) SuperMatrix*
 *           X has types: Stype = DN, Dtype = _D, Mtype = GE.
 *           On entry, the solution matrix X, as computed by dgstrs().
 *           On exit, the improved solution matrix X.
 *           if *equed = 'C' or 'B', X should be premultiplied by diag(C)
 *               in order to obtain the solution to the original system.
 *
 *   FERR    (output) double*, dimension (B->ncol)   
 *           The estimated forward error bound for each solution vector   
 *           X(j) (the j-th column of the solution matrix X).   
 *           If XTRUE is the true solution corresponding to X(j), FERR(j) 
 *           is an estimated upper bound for the magnitude of the largest 
 *           element in (X(j) - XTRUE) divided by the magnitude of the   
 *           largest element in X(j).  The estimate is as reliable as   
 *           the estimate for RCOND, and is almost always a slight   
 *           overestimate of the true error.
 *
 *   BERR    (output) double*, dimension (B->ncol)   
 *           The componentwise relative backward error of each solution   
 *           vector X(j) (i.e., the smallest relative change in   
 *           any element of A or B that makes X(j) an exact solution).
 *
 *   info    (output) int*   
 *           = 0:  successful exit   
 *            < 0:  if INFO = -i, the i-th argument had an illegal value   
 *
 *    Internal Parameters   
 *    ===================   
 *
 *    ITMAX is the maximum number of steps of iterative refinement.   
 *
 */  

#define ITMAX 5
    
    /* Table of constant values */
    int    ione = 1;
    double ndone = -1.;
    double done = 1.;
    
    /* Local variables */
    NCformat *Astore;
    double   *Aval;
    SuperMatrix Bjcol;
    DNformat *Bstore, *Xstore, *Bjcol_store;
    double   *Bmat, *Xmat, *Bptr, *Xptr;
    int      kase;
    double   safe1, safe2;
    int      i, j, k, irow, nz, count, notran, rowequ, colequ;
    int      ldb, ldx, nrhs;
    double   s, xk, lstres, eps, safmin;
    char     transt[1];
    double   *work;
    double   *rwork;
    int      *iwork;
    extern double dlamch_(char *);
    extern int dlacon_(int *, double *, double *, int *, double *, int *);
#ifdef _CRAY
    extern int SCOPY(int *, double *, int *, double *, int *);
    extern int SSAXPY(int *, double *, double *, int *, double *, int *);
#else
    extern int dcopy_(int *, double *, int *, double *, int *);
    extern int daxpy_(int *, double *, double *, int *, double *, int *);
#endif

    Astore = A->Store;
    Aval   = Astore->nzval;
    Bstore = B->Store;
    Xstore = X->Store;
    Bmat   = Bstore->nzval;
    Xmat   = Xstore->nzval;
    ldb    = Bstore->lda;
    ldx    = Xstore->lda;
    nrhs   = B->ncol;
    
    /* Test the input parameters */
    *info = 0;
    notran = lsame_(trans, "N");
    if ( !notran && !lsame_(trans, "T") && !lsame_(trans, "C"))	*info = -1;
    else if ( A->nrow != A->ncol || A->nrow < 0 ||
	      A->Stype != NC || A->Dtype != _D || A->Mtype != GE )
	*info = -2;
    else if ( L->nrow != L->ncol || L->nrow < 0 ||
 	      L->Stype != SC || L->Dtype != _D || L->Mtype != TRLU )
	*info = -3;
    else if ( U->nrow != U->ncol || U->nrow < 0 ||
 	      U->Stype != NC || U->Dtype != _D || U->Mtype != TRU )
	*info = -4;
    else if ( ldb < MAX(0, A->nrow) ||
 	      B->Stype != DN || B->Dtype != _D || B->Mtype != GE )
        *info = -10;
    else if ( ldx < MAX(0, A->nrow) ||
 	      X->Stype != DN || X->Dtype != _D || X->Mtype != GE )
	*info = -11;
    if (*info != 0) {
	i = -(*info);
	xerbla_("dgsrfs", &i);
	return;
    }

    /* Quick return if possible */
    if ( A->nrow == 0 || nrhs == 0) {
	for (j = 0; j < nrhs; ++j) {
	    ferr[j] = 0.;
	    berr[j] = 0.;
	}
	return;
    }

    rowequ = lsame_(equed, "R") || lsame_(equed, "B");
    colequ = lsame_(equed, "C") || lsame_(equed, "B");
    
    /* Allocate working space */
    work = doubleMalloc(2*A->nrow);
    rwork = (double *) SUPERLU_MALLOC( A->nrow * sizeof(double) );
    iwork = intMalloc(2*A->nrow);
    if ( !work || !rwork || !iwork ) 
        ABORT("Malloc fails for work/rwork/iwork.");
    
    if ( notran ) {
	*(unsigned char *)transt = 'T';
    } else {
	*(unsigned char *)transt = 'N';
    }

    /* NZ = maximum number of nonzero elements in each row of A, plus 1 */
    nz     = A->ncol + 1;
    eps    = dlamch_("Epsilon");
    safmin = dlamch_("Safe minimum");
    safe1  = nz * safmin;
    safe2  = safe1 / eps;

    /* Compute the number of nonzeros in each row (or column) of A */
    for (i = 0; i < A->nrow; ++i) iwork[i] = 0;
    if ( notran ) {
	for (k = 0; k < A->ncol; ++k)
	    for (i = Astore->colptr[k]; i < Astore->colptr[k+1]; ++i) 
		++iwork[Astore->rowind[i]];
    } else {
	for (k = 0; k < A->ncol; ++k)
	    iwork[k] = Astore->colptr[k+1] - Astore->colptr[k];
    }	

    /* Copy one column of RHS B into Bjcol. */
    Bjcol.Stype = B->Stype;
    Bjcol.Dtype = B->Dtype;
    Bjcol.Mtype = B->Mtype;
    Bjcol.nrow  = B->nrow;
    Bjcol.ncol  = 1;
    Bjcol.Store = (void *) SUPERLU_MALLOC( sizeof(DNformat) );
    if ( !Bjcol.Store ) ABORT("SUPERLU_MALLOC fails for Bjcol.Store");
    Bjcol_store = Bjcol.Store;
    Bjcol_store->lda = ldb;
    Bjcol_store->nzval = work; /* address aliasing */
	
    /* Do for each right hand side ... */
    for (j = 0; j < nrhs; ++j) {
	count = 0;
	lstres = 3.;
	Bptr = &Bmat[j*ldb];
	Xptr = &Xmat[j*ldx];

	while (1) { /* Loop until stopping criterion is satisfied. */

	    /* Compute residual R = B - op(A) * X,   
	       where op(A) = A, A**T, or A**H, depending on TRANS. */
	    
#ifdef _CRAY
	    SCOPY(&A->nrow, Bptr, &ione, work, &ione);
#else
	    dcopy_(&A->nrow, Bptr, &ione, work, &ione);
#endif
	    sp_dgemv(trans, ndone, A, Xptr, ione, done, work, ione);

	    /* Compute componentwise relative backward error from formula 
	       max(i) ( abs(R(i)) / ( abs(op(A))*abs(X) + abs(B) )(i) )   
	       where abs(Z) is the componentwise absolute value of the matrix
	       or vector Z.  If the i-th component of the denominator is less
	       than SAFE2, then SAFE1 is added to the i-th component of the   
	       numerator and denominator before dividing. */

	    for (i = 0; i < A->nrow; ++i) rwork[i] = fabs( Bptr[i] );
	    
	    /* Compute abs(op(A))*abs(X) + abs(B). */
	    if (notran) {
		for (k = 0; k < A->ncol; ++k) {
		    xk = fabs( Xptr[k] );
		    for (i = Astore->colptr[k]; i < Astore->colptr[k+1]; ++i)
			rwork[Astore->rowind[i]] += fabs(Aval[i]) * xk;
		}
	    } else {
		for (k = 0; k < A->ncol; ++k) {
		    s = 0.;
		    for (i = Astore->colptr[k]; i < Astore->colptr[k+1]; ++i) {
			irow = Astore->rowind[i];
			s += fabs(Aval[i]) * fabs(Xptr[irow]);
		    }
		    rwork[k] += s;
		}
	    }
	    s = 0.;
	    for (i = 0; i < A->nrow; ++i) {
		if (rwork[i] > safe2)
		    s = MAX( s, fabs(work[i]) / rwork[i] );
		else
		    s = MAX( s, (fabs(work[i]) + safe1) / 
				(rwork[i] + safe1) );
	    }
	    berr[j] = s;

	    /* Test stopping criterion. Continue iterating if   
	       1) The residual BERR(J) is larger than machine epsilon, and   
	       2) BERR(J) decreased by at least a factor of 2 during the   
	          last iteration, and   
	       3) At most ITMAX iterations tried. */

	    if (berr[j] > eps && berr[j] * 2. <= lstres && count < ITMAX) {
		/* Update solution and try again. */
		dgstrs (trans, L, U, perm_r, perm_c, &Bjcol, info);
		
#ifdef _CRAY
		SAXPY(&A->nrow, &done, work, &ione,
		       &Xmat[j*ldx], &ione);
#else
		daxpy_(&A->nrow, &done, work, &ione,
		       &Xmat[j*ldx], &ione);
#endif
		lstres = berr[j];
		++count;
	    } else {
		break;
	    }
        
	} /* end while */

	/* Bound error from formula:
	   norm(X - XTRUE) / norm(X) .le. FERR = norm( abs(inv(op(A)))*   
	   ( abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) ))) / norm(X)   
          where   
            norm(Z) is the magnitude of the largest component of Z   
            inv(op(A)) is the inverse of op(A)   
            abs(Z) is the componentwise absolute value of the matrix or
	       vector Z   
            NZ is the maximum number of nonzeros in any row of A, plus 1   
            EPS is machine epsilon   

          The i-th component of abs(R)+NZ*EPS*(abs(op(A))*abs(X)+abs(B))   
          is incremented by SAFE1 if the i-th component of   
          abs(op(A))*abs(X) + abs(B) is less than SAFE2.   

          Use DLACON to estimate the infinity-norm of the matrix   
             inv(op(A)) * diag(W),   
          where W = abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) ))) */
	
	for (i = 0; i < A->nrow; ++i) rwork[i] = fabs( Bptr[i] );
	
	/* Compute abs(op(A))*abs(X) + abs(B). */
	if ( notran ) {
	    for (k = 0; k < A->ncol; ++k) {
		xk = fabs( Xptr[k] );
		for (i = Astore->colptr[k]; i < Astore->colptr[k+1]; ++i)
		    rwork[Astore->rowind[i]] += fabs(Aval[i]) * xk;
	    }
	} else {
	    for (k = 0; k < A->ncol; ++k) {
		s = 0.;
		for (i = Astore->colptr[k]; i < Astore->colptr[k+1]; ++i) {
		    irow = Astore->rowind[i];
		    xk = fabs( Xptr[irow] );
		    s += fabs(Aval[i]) * xk;
		}
		rwork[k] += s;
	    }
	}
	
	for (i = 0; i < A->nrow; ++i)
	    if (rwork[i] > safe2)
		rwork[i] = fabs(work[i]) + (iwork[i]+1)*eps*rwork[i];
	    else
		rwork[i] = fabs(work[i])+(iwork[i]+1)*eps*rwork[i]+safe1;

	kase = 0;

	do {
	    dlacon_(&A->nrow, &work[A->nrow], work,
		    &iwork[A->nrow], &ferr[j], &kase);
	    if (kase == 0) break;

	    if (kase == 1) {
		/* Multiply by diag(W)*inv(op(A)**T)*(diag(C) or diag(R)). */
		if ( notran && colequ )
		    for (i = 0; i < A->ncol; ++i) work[i] *= C[i];
		else if ( !notran && rowequ )
		    for (i = 0; i < A->nrow; ++i) work[i] *= R[i];
		
		dgstrs (transt, L, U, perm_r, perm_c, &Bjcol, info);
		
		for (i = 0; i < A->nrow; ++i) work[i] *= rwork[i];
	    } else {
		/* Multiply by (diag(C) or diag(R))*inv(op(A))*diag(W). */
		for (i = 0; i < A->nrow; ++i) work[i] *= rwork[i];
		
		dgstrs (trans, L, U, perm_r, perm_c, &Bjcol, info);
		
		if ( notran && colequ )
		    for (i = 0; i < A->ncol; ++i) work[i] *= C[i];
		else if ( !notran && rowequ )
		    for (i = 0; i < A->ncol; ++i) work[i] *= R[i];  
	    }
	    
	} while ( kase != 0 );


	/* Normalize error. */
	lstres = 0.;
 	if ( notran && colequ ) {
	    for (i = 0; i < A->nrow; ++i)
	    	lstres = MAX( lstres, C[i] * fabs( Xptr[i]) );
  	} else if ( !notran && rowequ ) {
	    for (i = 0; i < A->nrow; ++i)
	    	lstres = MAX( lstres, R[i] * fabs( Xptr[i]) );
	} else {
	    for (i = 0; i < A->nrow; ++i)
	    	lstres = MAX( lstres, fabs( Xptr[i]) );
	}
	if ( lstres != 0. )
	    ferr[j] /= lstres;

    } /* for each RHS j ... */
    
    SUPERLU_FREE(work);
    SUPERLU_FREE(rwork);
    SUPERLU_FREE(iwork);
    SUPERLU_FREE(Bjcol.Store);

    return;

} /* dgsrfs */
コード例 #15
0
ファイル: pdrepeat.c プロジェクト: sourekj/Packages
main(int argc, char *argv[])
{
    SuperMatrix A, AC, L, U, B;
    NCformat    *Astore;
    SCPformat   *Lstore;
    NCPformat   *Ustore;
    superlumt_options_t superlumt_options;
    pxgstrf_shared_t pxgstrf_shared;
    pdgstrf_threadarg_t *pdgstrf_threadarg;
    int         nprocs;
    fact_t      fact;
    trans_t     trans;
    yes_no_t    refact, usepr;
    double      u, drop_tol;
    double      *a;
    int         *asub, *xa;
    int         *perm_c; /* column permutation vector */
    int         *perm_r; /* row permutations from partial pivoting */
    void        *work;
    int         info, lwork, nrhs, ldx; 
    int         m, n, nnz, permc_spec, panel_size, relax;
    int         i, firstfact;
    double      *rhsb, *xact;
    Gstat_t Gstat;
    flops_t     flopcnt;
    void parse_command_line();

    /* Default parameters to control factorization. */
    nprocs = 1;
    fact  = EQUILIBRATE;
    trans = NOTRANS;
    panel_size = sp_ienv(1);
    relax = sp_ienv(2);
    u     = 1.0;
    usepr = NO;
    drop_tol = 0.0;
    work = NULL;
    lwork = 0;
    nrhs  = 1;

    /* Get the number of processes from command line. */
    parse_command_line(argc, argv, &nprocs);

    /* Read the input matrix stored in Harwell-Boeing format. */
    dreadhb(&m, &n, &nnz, &a, &asub, &xa);

    /* Set up the sparse matrix data structure for A. */
    dCreate_CompCol_Matrix(&A, m, n, nnz, a, asub, xa, SLU_NC, SLU_D, SLU_GE);

    if (!(rhsb = doubleMalloc(m * nrhs))) SUPERLU_ABORT("Malloc fails for rhsb[].");
    dCreate_Dense_Matrix(&B, m, nrhs, rhsb, m, SLU_DN, SLU_D, SLU_GE);
    xact = doubleMalloc(n * nrhs);
    ldx = n;
    dGenXtrue(n, nrhs, xact, ldx);
    dFillRHS(trans, nrhs, xact, ldx, &A, &B);
    
    if (!(perm_r = intMalloc(m))) SUPERLU_ABORT("Malloc fails for perm_r[].");
    if (!(perm_c = intMalloc(n))) SUPERLU_ABORT("Malloc fails for perm_c[].");


    /********************************
     * THE FIRST TIME FACTORIZATION *
     ********************************/

    /* ------------------------------------------------------------
       Allocate storage and initialize statistics variables. 
       ------------------------------------------------------------*/
    StatAlloc(n, nprocs, panel_size, relax, &Gstat);
    StatInit(n, nprocs, &Gstat);

    /* ------------------------------------------------------------
       Get column permutation vector perm_c[], according to permc_spec:
       permc_spec = 0: natural ordering 
       permc_spec = 1: minimum degree ordering on structure of A'*A
       permc_spec = 2: minimum degree ordering on structure of A'+A
       permc_spec = 3: approximate minimum degree for unsymmetric matrices
       ------------------------------------------------------------*/ 	
    permc_spec = 1;
    get_perm_c(permc_spec, &A, perm_c);

    /* ------------------------------------------------------------
       Initialize the option structure superlumt_options using the
       user-input parameters;
       Apply perm_c to the columns of original A to form AC.
       ------------------------------------------------------------*/
    refact= NO;
    pdgstrf_init(nprocs, fact, trans, refact, panel_size, relax,
		 u, usepr, drop_tol, perm_c, perm_r,
		 work, lwork, &A, &AC, &superlumt_options, &Gstat);

    /* ------------------------------------------------------------
       Compute the LU factorization of A.
       The following routine will create nprocs threads.
       ------------------------------------------------------------*/
    pdgstrf(&superlumt_options, &AC, perm_r, &L, &U, &Gstat, &info);
    
    flopcnt = 0;
    for (i = 0; i < nprocs; ++i) flopcnt += Gstat.procstat[i].fcops;
    Gstat.ops[FACT] = flopcnt;

    /* ------------------------------------------------------------
       Solve the system A*X=B, overwriting B with X.
       ------------------------------------------------------------*/
    dgstrs(trans, &L, &U, perm_r, perm_c, &B, &Gstat, &info);
    
    printf("\n** Result of sparse LU **\n");
    dinf_norm_error(nrhs, &B, xact); /* Check inf. norm of the error */

    Destroy_CompCol_Permuted(&AC); /* Free extra arrays in AC. */


    /*********************************
     * THE SUBSEQUENT FACTORIZATIONS *
     *********************************/

    /* ------------------------------------------------------------
       Re-initialize statistics variables and options used by the
       factorization routine pdgstrf().
       ------------------------------------------------------------*/
    StatInit(n, nprocs, &Gstat);
    refact= YES;
    pdgstrf_init(nprocs, fact, trans, refact, panel_size, relax,
		 u, usepr, drop_tol, perm_c, perm_r,
		 work, lwork, &A, &AC, &superlumt_options, &Gstat);

    /* ------------------------------------------------------------
       Compute the LU factorization of A.
       The following routine will create nprocs threads.
       ------------------------------------------------------------*/
    pdgstrf(&superlumt_options, &AC, perm_r, &L, &U, &Gstat, &info);
    
    flopcnt = 0;
    for (i = 0; i < nprocs; ++i) flopcnt += Gstat.procstat[i].fcops;
    Gstat.ops[FACT] = flopcnt;

    /* ------------------------------------------------------------
       Re-generate right-hand side B, then solve A*X= B.
       ------------------------------------------------------------*/
    dFillRHS(trans, nrhs, xact, ldx, &A, &B);
    dgstrs(trans, &L, &U, perm_r, perm_c, &B, &Gstat, &info);

    
     /* ------------------------------------------------------------
       Deallocate storage after factorization.
       ------------------------------------------------------------*/
    pxgstrf_finalize(&superlumt_options, &AC);

    printf("\n** Result of sparse LU **\n");
    dinf_norm_error(nrhs, &B, xact); /* Check inf. norm of the error */

    Lstore = (SCPformat *) L.Store;
    Ustore = (NCPformat *) U.Store;
    printf("No of nonzeros in factor L = %d\n", Lstore->nnz);
    printf("No of nonzeros in factor U = %d\n", Ustore->nnz);
    printf("No of nonzeros in L+U = %d\n", Lstore->nnz + Ustore->nnz - n);
    fflush(stdout);

    SUPERLU_FREE (rhsb);
    SUPERLU_FREE (xact);
    SUPERLU_FREE (perm_r);
    SUPERLU_FREE (perm_c);
    Destroy_CompCol_Matrix(&A);
    Destroy_SuperMatrix_Store(&B);
    if ( lwork >= 0 ) {
        Destroy_SuperNode_SCP(&L);
        Destroy_CompCol_NCP(&U);
    }
    StatFree(&Gstat);
}
コード例 #16
0
ファイル: nl_superlu.c プロジェクト: Peiffert/CGoGN
NLboolean nlSolve_SUPERLU() {

	/* OpenNL Context */
	NLdouble* b = nlCurrentContext->b ;
	NLdouble* x = nlCurrentContext->x ;
	NLuint    n = nlCurrentContext->n ;

	superlu_context* context = (superlu_context*)(nlCurrentContext->direct_solver_context) ;
	nl_assert(context != NULL) ;

	/* SUPERLU variables */
	SuperMatrix B ;
	DNformat *vals = NULL ; /* access to result */
	double *rvals  = NULL ; /* access to result */

	/* Temporary variables */
	NLuint i ;
	NLint info ;

	StatInit(&(context->stat)) ;

	/*
	 * Step 1: convert right-hand side into SUPERLU representation
	 * -----------------------------------------------------------
	 */

	dCreate_Dense_Matrix(
		&B, n, 1, b, n,
		SLU_DN, /* Fortran-type column-wise storage */
		SLU_D,  /* doubles                          */
		SLU_GE  /* general storage                  */
	);

	/*
	 * Step 2: solve
	 * -------------
	 */

	dgstrs(NOTRANS,
		   &(context->L),
		   &(context->U),
		   context->perm_c,
		   context->perm_r,
		   &B,
		   &(context->stat),
		   &info) ;

	/*
	 * Step 3: get the solution
	 * ------------------------
	 */

	vals = (DNformat*)B.Store;
	rvals = (double*)(vals->nzval);
	for(i = 0; i <  n; i++)
		x[i] = rvals[i];

	/*
	 * Step 4: cleanup
	 * ---------------
	 */

	Destroy_SuperMatrix_Store(&B);
	StatFree(&(context->stat));

	return NL_TRUE ;
}