コード例 #1
0
dgMatrix dgDynamicBody::CalculateInertiaMatrix() const
{
	dgMatrix matrix(m_principalAxis * m_matrix);
	matrix.m_posit = dgVector::m_wOne;
	dgMatrix diagonal(dgGetIdentityMatrix());
	diagonal[0][0] = m_mass[0];
	diagonal[1][1] = m_mass[1];
	diagonal[2][2] = m_mass[2];
	return matrix * diagonal * matrix.Inverse();
}
コード例 #2
0
ファイル: kernel_matrix.cpp プロジェクト: shwetabhandare/PySG
double
KernelMatrix<ValueType>::
calculate(const ExampleSet& test, const ExampleSet& train,
          const Kernel& kernel, bool norm_test, bool normalize, uint n_th)
{
    double elapsed = 0.0;
#ifdef HAVE_MPI
    if (MPI::COMM_WORLD.Get_rank()==0) {
#endif
        resize(test.size(), train.size());
        //label_.resize(test.size());
        //matrix_.resize(boost::extents[test.size()][train.size()]);
        if (norm_test||normalize) self_.resize(train.size());
#ifdef HAVE_MPI
    }
#endif

    for (uint i=0; i!=test.size(); ++i) {
        std::vector<value_type> v(train.size());
        if (norm_test||normalize)
            elapsed += calculate(v, test[i], train, kernel, n_th, &self_[i]);
        else
            elapsed += calculate(v, test[i], train, kernel, n_th);

#ifdef HAVE_MPI
        if (MPI::COMM_WORLD.Get_rank()==0) {
#endif
            label_[i] = test[i].first;
            for (uint j=0; j!=train.size(); ++j)
                matrix_[i][j] = v[j];
#ifdef HAVE_MPI
        }
#endif
    }

    if (normalize) {
        std::vector<value_type> diag(train.size());
        elapsed += diagonal(diag, train, kernel, n_th);
#ifdef HAVE_MPI
        if (MPI::COMM_WORLD.Get_rank()==0) {
#endif
            boost::timer tm;
            for (uint i=0; i!=test.size(); ++i) {
                for (uint j=0; j!=train.size(); ++j) {
                    matrix_[i][j] /= sqrt(self_[i]*diag[j]);
                }
            }
            elapsed += tm.elapsed();
#ifdef HAVE_MPI
        }
#endif
    }
    return elapsed;
}
コード例 #3
0
ファイル: E.CPP プロジェクト: nkirov/nkirov.github.com
int check()
{
 int i,j;
 for(i=0;i<size;i++)
  for(j=0;j<size;j++)
	{
	 if(j<=size-length && board[i][j]==duma[0])
	  {
		horizontal(1,i,j);
		if(sreshtano)
		 {
		  print();
		  return -1;
		 }
	  }
	 if(j>=length-1 && board[i][j]==duma[0])
	  {
		horizontal(0,i,j);
		if(sreshtano)
		 {
		  print();
		  return -1;
		 }
	  }
	 if(i>=length-1 && board[i][j]==duma[0])
	  {
		vertical(0,i,j);
		if(sreshtano)
		 {
		  print();
		  return -1;
		 }
	  }
	 if(i<=size-length && board[i][j]==duma[0])
	  {
		vertical(1,i,j);
		if(sreshtano)
		 {
		  print();
		  return -1;
		 }
	  }
	 if(board[i][j]==duma[0])
	  {
		diagonal(i,j);
		if(sreshtano)
		 {
		  print();
		  return -1;
		 }
	  }
	}
 return 0;
}
コード例 #4
0
ファイル: SparseMatrix.cpp プロジェクト: Haider-BA/geode
void SparseMatrix::
initialize_diagonal_index() const
{
    if(diagonal_index.size()) return;
    Array<int> diagonal(min(rows(),columns()),uninit);
    for(int i=0;i<diagonal.size();i++){
        diagonal[i]=find_entry(i,i);
        GEODE_ASSERT(diagonal[i]>=0);
        diagonal[i]+=A.offsets[i];}
    diagonal_index=diagonal;
}
コード例 #5
0
ファイル: tictactoe.c プロジェクト: mohd-akram/tic-tac-toe
static
int evaluate(char grid[SIZE][SIZE], Index2d pos, char player)
{
	int rank = 0;

	rank = max(rank, horizontal(grid, pos, player));
	rank = max(rank, vertical(grid, pos, player));
	rank = max(rank, diagonal(grid, pos, player));
	rank = max(rank, anti_diagonal(grid, pos, player));

	return rank;
}
コード例 #6
0
ファイル: misc.hpp プロジェクト: milthorpe/LibBi
void bi::cov(const GammaPdf& q, M1 Sigma) {
  /* pre-condition */
  BI_ASSERT(Sigma.size1() == q.size());
  BI_ASSERT(Sigma.size2() == q.size());

  real alpha = q.shape();
  real beta = q.scale();
  real sigma = alpha*std::pow(beta, 2);

  Sigma.clear();
  set_elements(diagonal(Sigma), sigma);
}
コード例 #7
0
ファイル: misc.hpp プロジェクト: milthorpe/LibBi
void bi::cov(const InverseGammaPdf& q, M1 Sigma) {
  /* pre-condition */
  BI_ASSERT(Sigma.size1() == q.size());
  BI_ASSERT(Sigma.size2() == q.size());
  BI_ASSERT(q.shape() > 2.0);

  real alpha = q.shape();
  real beta = q.scale();
  real sigma = std::pow(beta, 2)/(std::pow(alpha - 1.0, 2)*(alpha - 2.0));

  Sigma.clear();
  set_elements(diagonal(Sigma), sigma);
}
コード例 #8
0
ファイル: misc.hpp プロジェクト: milthorpe/LibBi
void bi::cov(const UniformPdf<V1>& q, M1 Sigma) {
  /* pre-condition */
  BI_ASSERT(Sigma.size1() == q.size());
  BI_ASSERT(Sigma.size2() == q.size());

  temp_host_vector<real>::type diff(q.size());
  diff = q.upper();
  sub_elements(diff, q.lower(), diff);
  sq_elements(diff, diff);

  Sigma.clear();
  axpy(1.0/12.0, diff, diagonal(Sigma));
}
コード例 #9
0
ファイル: version1.c プロジェクト: totemc/Hackerrank
int main() {

    /* Enter your code here. Read input from STDIN. Print output to STDOUT */    
    
    int t;
    
    scanf("%d", &t);
    
    int answer = diagonal(t);
    
    printf("%d", answer);
   
    return 0;
}
コード例 #10
0
void RectangularMatrixTest::diagonal() {
    Vector3 diagonal(-1.0f, 5.0f, 11.0f);

    Matrix4x3 a(Vector3(-1.0f,  1.0f,  3.0f),
                Vector3( 4.0f,  5.0f,  7.0f),
                Vector3( 8.0f,  9.0f, 11.0f),
                Vector3(12.0f, 13.0f, 15.0f));
    CORRADE_COMPARE(a.diagonal(), diagonal);

    Matrix3x4 b(Vector4(-1.0f, 4.0f,  8.0f, 12.0f),
                Vector4( 1.0f, 5.0f,  9.0f, 13.0f),
                Vector4( 3.0f, 7.0f, 11.0f, 15.0f));
    CORRADE_COMPARE(b.diagonal(), diagonal);
}
コード例 #11
0
void RectangularMatrixTest::constructFromDiagonal() {
    Vector3 diagonal(-1.0f, 5.0f, 11.0f);

    Matrix3x4 expectedA(Vector4(-1.0f, 0.0f,  0.0f, 0.0f),
                        Vector4( 0.0f, 5.0f,  0.0f, 0.0f),
                        Vector4( 0.0f, 0.0f, 11.0f, 0.0f));
    CORRADE_COMPARE(Matrix3x4::fromDiagonal(diagonal), expectedA);

    Matrix4x3 expectedB(Vector3(-1.0f, 0.0f,  0.0f),
                        Vector3( 0.0f, 5.0f,  0.0f),
                        Vector3( 0.0f, 0.0f, 11.0f),
                        Vector3( 0.0f, 0.0f,  0.0f));
    CORRADE_COMPARE(Matrix4x3::fromDiagonal(diagonal), expectedB);
}
コード例 #12
0
ファイル: main.c プロジェクト: Diamorph/CoursesRepo
int main(void){
	int i;
	COORD pos;
	pos.X = 79;
	pos.Y = 24;
	for (i = 1; i <= 52; i++){
		pos = diagonal(pos,UP);
		if ((pos.X == 79) && (pos.Y != 0)){
			pos.Y--;
		}
		if (pos.Y == 0){
			pos.X--;
		}
		pos = diagonal(pos, DOWN);
		if ((pos.Y == 24) && (pos.X != 0)){
			pos.X--;
		}
		 if (pos.X == 0){
			pos.Y--;
		}
	}
	getchar();
	return EXIT_SUCCESS;
}
コード例 #13
0
/*
 * Function: calculate_g_score
 *
 * @Paramters:	Point current	~ current location
 *		Point goal	~ 
 * 
 * Calculates the g score for the neighbooring points to
 * the current point. The diagonal movemnts cost is increased
 * since diagonal movement on a grid is sqrt(2) * horizontal/vertical
 * movement. Elevation change is also factored into the cost.
 * 
 * @returns:	int calculated movement cost
 */
int calculate_g_score(Point current, Point target)
{
	if (equals(current, target))
	{
		return 0;
	}
	else if (diagonal(current, target))
	{
		return 14 + current.g_score + abs(current.height - target.height);
		//return 50 + current.g_score + abs(current.height - target.height);
	}
	else 
	{
		return 10 + current.g_score + abs(current.height - target.height);
	}
}
コード例 #14
0
ファイル: Game.cpp プロジェクト: zpooky/sp-stuff
Peice verify(Board b){
  for(unsigned y=0;y<Board::Y;++y){
    auto h = horizontal(b,y);
    if(h != Peice::EMPTY){
      return h;
    }
  }
  for(unsigned x=0;x<Board::X;++x){
    auto h = vertical(b,x);
    if(h != Peice::EMPTY){
      return h;
    }
  }
  auto d = diagonal(b);
  return d;
}
コード例 #15
0
ファイル: Matrix4.cpp プロジェクト: 93RNounen/mangosbot
Matrix4::Matrix4(const Any& any) {
    any.verifyNameBeginsWith("Matrix4", "CFrame", "CoordinateFrame");
    any.verifyType(Any::ARRAY);

    const std::string& name = any.name();
    if (name == "Matrix4") {
        any.verifySize(16);

        for (int r = 0; r < 4; ++r) {
            for (int c = 0; c < 4; ++c) {
                elt[r][c] = any[r * 4 + c];
            }
        }
    } else if (name == "Matrix4::scale") {
        if (any.size() == 1) {
            *this = scale(any[0].floatValue());
        } else if (any.size() == 3) {
            *this = scale(any[0], any[1], any[2]);
        } else {
            any.verify(false, "Matrix4::scale() takes either 1 or 3 arguments");
        }
    } else if (name == "Matrix4::rollDegrees") {
        any.verifySize(1);
        *this = rollDegrees(any[0].floatValue());
    } else if (name == "Matrix4::yawDegrees") {
        any.verifySize(1);
        *this = yawDegrees(any[0].floatValue());
    } else if (name == "Matrix4::pitchDegrees") {
        any.verifySize(1);
        *this = pitchDegrees(any[0].floatValue());
    } else if (name == "Matrix4::translation") {
        if (any.size() == 3) {
            *this = translation(any[0], any[1], any[2]);
        } else {
            any.verify(false, "Matrix4::translation() requires 3 arguments");
        }    
    } else if (name == "Matrix4::diagonal") {
        any.verifySize(4);
        *this = diagonal(any[0], any[1], any[2], any[3]);
    } else if (name == "Matrix4::identity") {
        *this = identity();
    } else if (beginsWith(name, "CFrame") || beginsWith(name, "CoordinateFrame")) {
        *this = CFrame(any);
    } else {
        any.verify(false, "Expected Matrix4 constructor");
    }
}
コード例 #16
0
Eigen::MatrixXd Reconstruction3D::computeE(const std::pair<Eigen::MatrixXd, Eigen::MatrixXd>& K, const Eigen::MatrixXd& F, bool applyConstraint)
{
	Eigen::MatrixXd E = K.second.transpose() * F * K.first;
	//E /= E(2, 2);	// o erro aumenta
	
	if (applyConstraint)
	{
		Eigen::JacobiSVD<Eigen::MatrixXd, Eigen::FullPivHouseholderQRPreconditioner> svd(E, Eigen::ComputeFullU | Eigen::ComputeFullV);
		Eigen::VectorXd singularValues = svd.singularValues();
		Eigen::DiagonalMatrix< double, 3, 3 > diagonal(1, 1, 0);
		Eigen::MatrixXd D = diagonal.toDenseMatrix();
		Eigen::MatrixXd constrainedMat = svd.matrixU() * D * svd.matrixV().transpose();
		E = constrainedMat;
	}
	//std::cout << std::fixed
	//	<< "E In  determinant : " << F.determinant() << std::endl
	//	<< "E Out determinant : " << constrainedMat.determinant() << std::endl << std::endl;
	
	return E;
}
コード例 #17
0
player_bullet player_bullet_init(player p)
{
	player_bullet b;

	b.a = p.a;
	b.rot = 2 * pi * rand() / RAND_MAX;
	b.h = p.h + rskala() * 10 * 2.0;

	b.obraz = load_bitmap("media/pocisk.bmp", NULL);
	if (!b.obraz)
	{
		set_gfx_mode(GFX_TEXT, 0, 0, 0, 0);
		allegro_message("Nie moge zaladowac grafiki ( pocisk )");
		allegro_exit();
	}

	int d = diagonal(b.obraz->w, b.obraz->h);
	b.obraz_rot = create_bitmap(d, d);

	return b;
}
コード例 #18
0
ファイル: bisect.cpp プロジェクト: 10imaging/viennacl
/**
* The main program is now as follows:
**/
int main()
{
    typedef float NumericT;

    bool bResult = false;
    unsigned int mat_size = 30;

/**
*   Create STL-vectors holding the diagonal, the superdiagonal, and the computed eigenvalues:
**/
    std::vector<NumericT> diagonal(mat_size);
    std::vector<NumericT> superdiagonal(mat_size);
    std::vector<NumericT> eigenvalues_bisect(mat_size);

/**
* Initialize the data with the helper routine defined earlier:
**/
    initInputData(diagonal, superdiagonal, mat_size);


/**
* Run the bisection algorithm for the provided input
**/
    std::cout << "Start the bisection algorithm" << std::endl;
    bResult = viennacl::linalg::bisect(diagonal, superdiagonal, eigenvalues_bisect);
    std::cout << std::endl << "---TUTORIAL COMPLETED---" << std::endl;

/**
* Uncomment the following code to also have the results printed:
**/
/*
    // ------------Print the results---------------
    std::cout << "mat_size = " << mat_size << std::endl;
    for (unsigned int i = 0; i < mat_size; ++i)
    {
      std::cout << "Eigenvalue " << i << ": " << std::setprecision(8) << eigenvalues_bisect[i] << std::endl;
    }
*/
    exit(bResult == true ? EXIT_SUCCESS : EXIT_FAILURE);
}
コード例 #19
0
ファイル: logistic_normal.cpp プロジェクト: DocJon/iSCAM
/**
 * Compute standardized residuals.
 * res{_by} = [log(O_{by}/\tilde(O)) - log(E_{by}/\tilde(E))] / (W_y G_y^{0.5})
**/
void logistic_normal::compute_standardized_residuals()
{

	// Assumed the covariance matrix (m_V) has already been calculated.
	// when the likelihood was called.
	
	m_residual.allocate(m_O);
	m_residual.initialize();

	int i,j,k;
	double n;
	
	for( i = m_y1; i <= m_y2; i++ )
	{
		n             = m_nB2(i);
		double gOmean = pow(prod(m_Op(i),n),1./n);
		dvector   t1  = log(m_Op(i)/gOmean);

		double gEmean = pow(prod(value(m_Ep(i)),n),1./n);
		dvector   t2  = log(value(m_Ep(i))/gEmean);

		dmatrix  I = identity_matrix(m_b1,n-1);

		dmatrix tF(m_b1,n,m_b1,n-1);
		tF.sub(m_b1,n-1) = I;
		tF(n)         = 1;

		dmatrix  Hinv    = inv(I + 1);
		dmatrix FHinv    = tF * Hinv;
		dmatrix     G    = FHinv * value(m_V(i)) * trans(FHinv);
		
		dvector sd    = sqrt(diagonal(G));
		for( j = m_b1; j <= m_nB2(i); j++ )
		{
			k = m_nAgeIndex(i)(j);
			m_residual(i)(k) = (t1(j)-t2(j)) / (sd(j)*m_dWy(i));
		}
	}
}
コード例 #20
0
void ear_init ( )

/******************************************************************************/
/*
  Purpose:

    EAR_INIT initializes the data structures, and calls Triangulate2 to clip ears.

  Modified:

    30 April 2007

  Author:

    Joseph O'Rourke

  Local Parameters:

    Local, tVertex V0, V1, V2, three consecutive vertices of the polygon.
*/
{
  tVertex v0;
  tVertex v1;
  tVertex v2;
/*
  Initialize v1->ear for all vertices.
*/
  v1 = vertices;
  do
  {
    v2 = v1->next;
    v0 = v1->prev;
    v1->ear = diagonal ( v0, v2 );
    v1 = v1->next;
  } while ( v1 != vertices );

  return;
}
コード例 #21
0
ファイル: metric.hpp プロジェクト: ibaned/omega_h2
INLINE Matrix<dim, dim> intersect_metrics(
    Matrix<dim, dim> m1, Matrix<dim, dim> m2) {
  auto n = invert(m1) * m2;
  auto n_decomp = decompose_eigen(n);
  bool all_above_one = true;
  bool all_below_one = true;
  for (Int i = 0; i < dim; ++i) {
    if (n_decomp.l[i] > 1) all_below_one = false;
    if (n_decomp.l[i] < 1) all_above_one = false;
  }
  if (all_below_one) return m1;
  if (all_above_one) return m2;
  auto p = n_decomp.q;
  Vector<dim> w;
  for (Int i = 0; i < dim; ++i) {
    Real u = metric_product(m1, p[i]);
    Real v = metric_product(m2, p[i]);
    w[i] = max2(u, v);
  }
  auto ip = invert(p);
  auto m = transpose(ip) * diagonal(w) * ip;
  return m;
}
コード例 #22
0
ファイル: 2dmat.c プロジェクト: pradeepdubey/TEST
int main()
{
    int i, j, count;
    int r=SIZE,c=SIZE;
    int **arr = (int **)malloc(r * sizeof(int *));
    for (i=0; i<r; i++)
        arr[i] = (int *)malloc(c * sizeof(int));

// Note that arr[i][j] is same as *(*(arr+i)+j)
    count = 0;
    for (i = 0; i <r; i++)
        for (j = 0; j < c; j++)
            arr[i][j] = ++count;// OR *(*(arr+i)+j) = ++count

    printMat(arr,SIZE);
 /* Code for further processing and free the 
 dynamically allocated memory */
 int len=0;
 int **sol = diagonal(arr, SIZE, SIZE, &len);
    printSolMat(sol,len);

 return 0;
 }
コード例 #23
0
ファイル: multialign.c プロジェクト: TravisCG/VectorTile
void multialign(MultiFasta *mf, int kmersize, int mindiaglen){
   unsigned int i,j;

   /* Allocate memory for plasmid statistics */
   plasmidst.ps = malloc(sizeof(PosStat) * mf->num);
   if(plasmidst.ps == NULL){
      fprintf(stderr, "Memory not enough for this number of plasmids");
      return;
   }
   plasmidst.plasmidnum = mf->num;

   for(i = 0; i < mf->num; i++){
      j = strlen(mf->fasta[i].seq);
      plasmidst.ps[i].stat = calloc(j, sizeof(int));
      plasmidst.ps[i].numpos = j;
   }

   /* Calculate diagonals and vote for tile positions */
   for(i = 0; i < mf->num - 1; i++){
      for(j = i+1; j < mf->num; j++){
         printf("*******\n%s VS. %s\n*******\n", mf->fasta[i].header, mf->fasta[j].header);
         index1 = i;
         index2 = j;
         diagonal(mf->fasta[i].seq, mf->fasta[j].seq, kmersize, mindiaglen);
      }
   }

   /* Select best positions from plasmid statistics */
   tileplasmids(mf); 

   /* Release resources */
   for(i = 0; i < mf->num; i++){
      free(plasmidst.ps[i].stat);
   }

   free(plasmidst.ps);
}
コード例 #24
0
ファイル: Cantor.c プロジェクト: karthich/programming-contest
void cantor(long ip){
    int diag = diagonal(ip);
    int p,q,offset;
    if(diag%2==0){
        //going down
        p = diag;
        q = 1;
        offset = offset_from_diag(ip,diag-1);
        p-=offset;
        q+=offset;

    }
    else{
        //shit goes up
        p = 1;
        q = diag;
        offset = offset_from_diag(ip,diag-1);
        p+=offset;
        q-=offset;

    }
    printf("%d/%d",q,p);

}
コード例 #25
0
ファイル: RecastMesh.cpp プロジェクト: 0jpq0/server
static int triangulate(int n, const int* verts, int* indices, int* tris)
{
	int ntris = 0;
	int* dst = tris;
	
	// The last bit of the index is used to indicate if the vertex can be removed.
	for (int i = 0; i < n; i++)
	{
		int i1 = next(i, n);
		int i2 = next(i1, n);
		if (diagonal(i, i2, n, verts, indices))
			indices[i1] |= 0x80000000;
	}
	
	while (n > 3)
	{
		int minLen = -1;
		int mini = -1;
		for (int i = 0; i < n; i++)
		{
			int i1 = next(i, n);
			if (indices[i1] & 0x80000000)
			{
				const int* p0 = &verts[(indices[i] & 0x0fffffff) * 4];
				const int* p2 = &verts[(indices[next(i1, n)] & 0x0fffffff) * 4];
				
				int dx = p2[0] - p0[0];
				int dy = p2[2] - p0[2];
				int len = dx*dx + dy*dy;
				
				if (minLen < 0 || len < minLen)
				{
					minLen = len;
					mini = i;
				}
			}
		}
		
		if (mini == -1)
		{
			// Should not happen.
/*			printf("mini == -1 ntris=%d n=%d\n", ntris, n);
			for (int i = 0; i < n; i++)
			{
				printf("%d ", indices[i] & 0x0fffffff);
			}
			printf("\n");*/
			return -ntris;
		}
		
		int i = mini;
		int i1 = next(i, n);
		int i2 = next(i1, n);
		
		*dst++ = indices[i] & 0x0fffffff;
		*dst++ = indices[i1] & 0x0fffffff;
		*dst++ = indices[i2] & 0x0fffffff;
		ntris++;
		
		// Removes P[i1] by copying P[i+1]...P[n-1] left one index.
		n--;
		for (int k = i1; k < n; k++)
			indices[k] = indices[k+1];
		
		if (i1 >= n) i1 = 0;
		i = prev(i1,n);
		// Update diagonal flags.
		if (diagonal(prev(i, n), i1, n, verts, indices))
			indices[i] |= 0x80000000;
		else
			indices[i] &= 0x0fffffff;
		
		if (diagonal(i, next(i1, n), n, verts, indices))
			indices[i1] |= 0x80000000;
		else
			indices[i1] &= 0x0fffffff;
	}
	
	// Append the remaining triangle.
	*dst++ = indices[0] & 0x0fffffff;
	*dst++ = indices[1] & 0x0fffffff;
	*dst++ = indices[2] & 0x0fffffff;
	ntris++;
	
	return ntris;
}
コード例 #26
0
ファイル: ds_app_module.cpp プロジェクト: GridOPTICS/GridPACK
void gridpack::dynamic_simulation_r::DSAppModule::solve(
    gridpack::dynamic_simulation_r::DSBranch::Event fault)
{
  gridpack::utility::CoarseTimer *timer =
    gridpack::utility::CoarseTimer::instance();
  int t_total = timer->createCategory("Dynamic Simulation: Total Application");
#if 0
  timer->start(t_total);
  int t_matset = timer->createCategory("Dynamic Simulation: Matrix Setup");
  timer->start(t_matset);
  p_factory->setMode(YBUS);
  gridpack::mapper::FullMatrixMap<DSNetwork> ybusMap(p_network);
  boost::shared_ptr<gridpack::math::Matrix> orgYbus = ybusMap.mapToMatrix();
  ///p_branchIO.header("\n=== orginal ybus: ============\n");
  ///orgYbus->print();

  // Form constant impedance load admittance yl for all buses and add it to 
  // system Y matrix: ybus = ybus + yl
  p_factory->setMode(YL);
  boost::shared_ptr<gridpack::math::Matrix> ybus = ybusMap.mapToMatrix();
  ///p_branchIO.header("\n=== ybus after added yl: ============\n");
  ///ybus->print();
 
  // Construct permutation matrix perm by checking for multiple generators at a bus
  p_factory->setMode(PERM);
  gridpack::mapper::FullMatrixMap<DSNetwork> permMap(p_network);
  boost::shared_ptr<gridpack::math::Matrix> perm = permMap.mapToMatrix();
  timer->stop(t_matset);
  ///p_busIO->header("\n=== perm: ============\n");
  ///perm->print(); 

  // Form a transposed matrix of perm
  int t_trans = timer->createCategory("Dynamic Simulation: Matrix Transpose");
  timer->start(t_trans);
   boost::shared_ptr<gridpack::math::Matrix> permTrans(transpose(*perm));
  timer->stop(t_trans);
  ///p_busIO->header("\n=== permTrans: ============\n");
  ///permTrans->print();

  // Construct matrix Y_a using extracted xd and ra from gen data, 
  // and construct its diagonal matrix diagY_a
  timer->start(t_matset);
  p_factory->setMode(YA);
  gridpack::mapper::FullMatrixMap<DSNetwork> yaMap(p_network);
  boost::shared_ptr<gridpack::math::Matrix> diagY_a = yaMap.mapToMatrix();
  ///p_busIO->header("\n=== diagY_a: ============\n");
  ///diagY_a->print(); 
  // Convert diagY_a from sparse matrix to dense matrix Y_a so that SuperLU_DIST can solve
  gridpack::math::MatrixStorageType denseType = gridpack::math::Dense;
  boost::shared_ptr<gridpack::math::Matrix> Y_a(gridpack::math::storageType(*diagY_a, denseType));
  timer->stop(t_matset);

  // Construct matrix Ymod: Ymod = diagY_a * permTrans
  int t_matmul = timer->createCategory("Dynamic Simulation: Matrix Multiply");
  timer->start(t_matmul);
  boost::shared_ptr<gridpack::math::Matrix> Ymod(multiply(*diagY_a, *permTrans));
  timer->stop(t_matmul);
  ///p_busIO->header("\n=== Ymod: ============\n");
  ///Ymod->print(); 
 
  // Form matrix Y_b: Y_b(1:ngen, jg) = -Ymod, where jg represents the 
  // corresponding index sets of buses that the generators are connected to. 
  // Then construct Y_b's transposed matrix Y_c: Y_c = Y_b'
  // This two steps can be done by using a P matrix to get Y_c directly.
  timer->start(t_matset);
  p_factory->setMode(PMatrix);
  gridpack::mapper::FullMatrixMap<DSNetwork> pMap(p_network);
  boost::shared_ptr<gridpack::math::Matrix> P = pMap.mapToMatrix();
  ///p_busIO->header("\n=== P: ============\n");
  ///P->print();
  p_factory->setMode(YC);
  gridpack::mapper::FullMatrixMap<DSNetwork> cMap(p_network);
  boost::shared_ptr<gridpack::math::Matrix> Y_c = cMap.mapToMatrix();
  Y_c->scale(-1.0);
  ///p_busIO->header("\n=== Y_c: ============\n");
  ///Y_c->print();
  p_factory->setMode(YB);
  gridpack::mapper::FullMatrixMap<DSNetwork> bMap(p_network);
  boost::shared_ptr<gridpack::math::Matrix> Y_b = bMap.mapToMatrix();
  timer->stop(t_matset);
  ///p_busIO->header("\n=== Y_b: ============\n");
  ///Y_b->print();
  
  Y_c->scale(-1.0); // scale Y_c by -1.0 for linear solving
  // Convert Y_c from sparse matrix to dense matrix Y_cDense so that SuperLU_DIST can solve
  //gridpack::math::Matrix::StorageType denseType = gridpack::math::Matrix::Dense;
  timer->start(t_matset);
  boost::shared_ptr<gridpack::math::Matrix> Y_cDense(gridpack::math::storageType(*Y_c, denseType));
   
  // Form matrix permYmod
  p_factory->setMode(permYMOD);
  gridpack::mapper::FullMatrixMap<DSNetwork> pymMap(p_network);
  boost::shared_ptr<gridpack::math::Matrix>  permYmod= pymMap.mapToMatrix();
  ///p_busIO->header("\n=== permYmod: ============\n");
  ///permYmod->print();

  // Update ybus: ybus = ybus+permYmod (different dimension) => prefy11ybus
  p_factory->setMode(updateYbus);

  boost::shared_ptr<gridpack::math::Vector> vPermYmod(diagonal(*permYmod));
  ///p_busIO->header("\n=== vPermYmod: ============\n");
  ///vPermYmod->print();
  gridpack::mapper::BusVectorMap<DSNetwork> permYmodMap(p_network);
  permYmodMap.mapToBus(vPermYmod);

  boost::shared_ptr<gridpack::math::Matrix> prefy11ybus = ybusMap.mapToMatrix();
  timer->stop(t_matset);
  ///p_branchIO.header("\n=== prefy11ybus: ============\n");
  ///prefy11ybus->print();

  // Solve linear equations of ybus * X = Y_c
  //gridpack::math::LinearSolver solver1(*prefy11ybus);
  //solver1.configure(cursor);
  int t_solve = timer->createCategory("Dynamic Simulation: Solve Linear Equation");
  timer->start(t_solve);
  gridpack::math::LinearMatrixSolver solver1(*prefy11ybus);
  boost::shared_ptr<gridpack::math::Matrix> prefy11X(solver1.solve(*Y_cDense));
  timer->stop(t_solve);
  ///p_branchIO.header("\n=== prefy11X: ============\n");
  ///prefy11X->print(); 
  
  //-----------------------------------------------------------------------
  // Compute prefy11
  //-----------------------------------------------------------------------
  // Form reduced admittance matrix prefy11: prefy11 = Y_b * X
  timer->start(t_matmul);
  boost::shared_ptr<gridpack::math::Matrix> prefy11(multiply(*Y_b, *prefy11X)); 
  timer->stop(t_matmul);
  // Update prefy11: prefy11 = Y_a + prefy11
  prefy11->add(*Y_a);
  ///p_branchIO.header("\n=== Reduced Ybus: prefy11: ============\n");
  ///prefy11->print();

  //-----------------------------------------------------------------------
  // Compute fy11
  // Update ybus values at fault stage
  //-----------------------------------------------------------------------
  // Read the switch info from faults Event from input.xml
  int sw2_2 = fault.from_idx - 1;
  int sw3_2 = fault.to_idx - 1;

  boost::shared_ptr<gridpack::math::Matrix> fy11ybus(prefy11ybus->clone());
  ///p_branchIO.header("\n=== fy11ybus(original): ============\n");
  ///fy11ybus->print();
  gridpack::ComplexType x(0.0, -1e7);
#if 0
  fy11ybus->setElement(sw2_2, sw2_2, -x);
  fy11ybus->ready();
#else
  timer->start(t_matset);
  p_factory->setEvent(fault);
  p_factory->setMode(onFY);
  ybusMap.overwriteMatrix(fy11ybus);
  timer->stop(t_matset);
#endif
  ///p_branchIO.header("\n=== fy11ybus: ============\n");
  ///fy11ybus->print();

  // Solve linear equations of fy11ybus * X = Y_c
  timer->start(t_solve);
  gridpack::math::LinearMatrixSolver solver2(*fy11ybus);
  boost::shared_ptr<gridpack::math::Matrix> fy11X(solver2.solve(*Y_cDense)); 
  timer->stop(t_solve);
  ///p_branchIO.header("\n=== fy11X: ============\n");
  ///fy11X->print();
  
  // Form reduced admittance matrix fy11: fy11 = Y_b * X
  timer->start(t_matmul);
  boost::shared_ptr<gridpack::math::Matrix> fy11(multiply(*Y_b, *fy11X)); 
  timer->stop(t_matmul);
  // Update fy11: fy11 = Y_a + fy11
  fy11->add(*Y_a);
  ///p_branchIO.header("\n=== Reduced Ybus: fy11: ============\n");
  ///fy11->print();

  //-----------------------------------------------------------------------
  // Compute posfy11
  // Update ybus values at clear fault stage
  //-----------------------------------------------------------------------
  // Get the updating factor for posfy11 stage ybus
#if 0
  gridpack::ComplexType myValue = p_factory->setFactor(sw2_2, sw3_2);
#endif
  timer->start(t_matset);
  boost::shared_ptr<gridpack::math::Matrix> posfy11ybus(prefy11ybus->clone());
  timer->stop(t_matset);
  ///p_branchIO.header("\n=== posfy11ybus (original): ============\n");
  ///posfy11ybus->print();
#if 0
  gridpack::ComplexType big(0.0, 1e7);
  gridpack::ComplexType x11 = big - myValue;
  posfy11ybus->addElement(sw2_2, sw2_2, x+x11);

  gridpack::ComplexType x12 = myValue;
  posfy11ybus->addElement(sw2_2, sw3_2, x12);

  gridpack::ComplexType x21 = myValue;
  posfy11ybus->addElement(sw3_2, sw2_2, x21);

  gridpack::ComplexType x22 = -myValue; 
  posfy11ybus->addElement(sw3_2, sw3_2, x22);
  
  posfy11ybus->ready(); 
#else
  timer->start(t_matset);
  p_factory->setMode(posFY);
  ybusMap.incrementMatrix(posfy11ybus);
  timer->stop(t_matset);
#endif
  ///p_branchIO.header("\n=== posfy11ybus: ============\n");
  ///posfy11ybus->print();
    
  // Solve linear equations of posfy11ybus * X = Y_c
  timer->start(t_solve);
  gridpack::math::LinearMatrixSolver solver3(*posfy11ybus);
  boost::shared_ptr<gridpack::math::Matrix> posfy11X(solver3.solve(*Y_cDense)); 
  timer->stop(t_solve);
  ///p_branchIO.header("\n=== posfy11X: ============\n");
  ///posfy11X->print();
  
  // Form reduced admittance matrix posfy11: posfy11 = Y_b * X
  timer->start(t_matmul);
  boost::shared_ptr<gridpack::math::Matrix> posfy11(multiply(*Y_b, *posfy11X)); 
  timer->stop(t_matmul);
  // Update posfy11: posfy11 = Y_a + posfy11
  posfy11->add(*Y_a);
  ///p_branchIO.header("\n=== Reduced Ybus: posfy11: ============\n");
  ///posfy11->print();

  //-----------------------------------------------------------------------
  // Integration implementation (Modified Euler Method)
  //-----------------------------------------------------------------------
 
  // Map to create vector pelect  
  int t_vecset = timer->createCategory("Dynamic Simulation: Setup Vector");
  timer->start(t_vecset);
  p_factory->setMode(init_pelect);
  gridpack::mapper::BusVectorMap<DSNetwork> XMap1(p_network);
  boost::shared_ptr<gridpack::math::Vector> pelect = XMap1.mapToVector();
  ///p_busIO->header("\n=== pelect: ===\n");
  ///pelect->print();

  // Map to create vector eprime_s0 
  p_factory->setMode(init_eprime);
  gridpack::mapper::BusVectorMap<DSNetwork> XMap2(p_network);
  boost::shared_ptr<gridpack::math::Vector> eprime_s0 = XMap2.mapToVector();
  ///p_busIO->header("\n=== eprime: ===\n");
  ///eprime_s0->print();

  // Map to create vector mac_ang_s0
  p_factory->setMode(init_mac_ang);
  gridpack::mapper::BusVectorMap<DSNetwork> XMap3(p_network);
  boost::shared_ptr<gridpack::math::Vector> mac_ang_s0 = XMap3.mapToVector();
  ///p_busIO->header("\n=== mac_ang_s0: ===\n");
  ///mac_ang_s0->print();

  // Map to create vector mac_spd_s0
  p_factory->setMode(init_mac_spd);
  gridpack::mapper::BusVectorMap<DSNetwork> XMap4(p_network);
  boost::shared_ptr<gridpack::math::Vector> mac_spd_s0 = XMap4.mapToVector();
  ///p_busIO->header("\n=== mac_spd_s0: ===\n");
  ///mac_spd_s0->print();

  // Map to create vector eqprime
  p_factory->setMode(init_eqprime);
  gridpack::mapper::BusVectorMap<DSNetwork> XMap5(p_network);
  boost::shared_ptr<gridpack::math::Vector> eqprime = XMap5.mapToVector();
  ///p_busIO->header("\n=== eqprime: ===\n");
  ///eqprime->print();

  // Map to create vector pmech  
  p_factory->setMode(init_pmech);
  gridpack::mapper::BusVectorMap<DSNetwork> XMap6(p_network);
  boost::shared_ptr<gridpack::math::Vector> pmech = XMap6.mapToVector();
  ///p_busIO->header("\n=== pmech: ===\n");
  ///pmech->print();

  // Map to create vector mva
  p_factory->setMode(init_mva);
  gridpack::mapper::BusVectorMap<DSNetwork> XMap7(p_network);
  boost::shared_ptr<gridpack::math::Vector> mva = XMap7.mapToVector();
  ///p_busIO->header("\n=== mva: ===\n");
  ///mva->print();

  // Map to create vector d0
  p_factory->setMode(init_d0);
  gridpack::mapper::BusVectorMap<DSNetwork> XMap8(p_network);
  boost::shared_ptr<gridpack::math::Vector> d0 = XMap8.mapToVector();
  ///p_busIO->header("\n=== d0: ===\n");
  ///d0->print();

  // Map to create vector h
  p_factory->setMode(init_h);
  gridpack::mapper::BusVectorMap<DSNetwork> XMap9(p_network);
  boost::shared_ptr<gridpack::math::Vector> h = XMap9.mapToVector();
  ///p_busIO->header("\n=== h: ===\n");
  ///h->print();

  ///p_busIO->header("\n============Start of Simulation:=====================\n");

  // Declare vector mac_ang_s1, mac_spd_s1
  boost::shared_ptr<gridpack::math::Vector> mac_ang_s1(mac_ang_s0->clone()); 
  boost::shared_ptr<gridpack::math::Vector> mac_spd_s1(mac_spd_s0->clone()); 
 
  // Declare vector eprime_s1
  boost::shared_ptr<gridpack::math::Vector> eprime_s1(mac_ang_s0->clone());
 
  // Declare vector dmac_ang_s0, dmac_spd_s0, dmac_ang_s1, dmac_spd_s1
  boost::shared_ptr<gridpack::math::Vector> dmac_ang_s0(mac_ang_s0->clone()); 
  boost::shared_ptr<gridpack::math::Vector> dmac_ang_s1(mac_ang_s0->clone()); 
  boost::shared_ptr<gridpack::math::Vector> dmac_spd_s0(mac_spd_s0->clone()); 
  boost::shared_ptr<gridpack::math::Vector> dmac_spd_s1(mac_spd_s0->clone()); 

  // Declare vector curr
  boost::shared_ptr<gridpack::math::Vector> curr(mac_ang_s0->clone());
  timer->stop(t_vecset);

  timer->start(t_trans);
  boost::shared_ptr<gridpack::math::Matrix> trans_prefy11(transpose(*prefy11));
  boost::shared_ptr<gridpack::math::Matrix> trans_fy11(transpose(*fy11));
  boost::shared_ptr<gridpack::math::Matrix> trans_posfy11(transpose(*posfy11));
  timer->stop(t_trans);

  timer->start(t_vecset);
  boost::shared_ptr<gridpack::math::Vector> vecTemp(mac_ang_s0->clone());
  timer->stop(t_vecset);

  // Simulation related variables
  int simu_k;
  int t_step[20];
  double t_width[20];
  int flagF;
  int S_Steps;
  int last_S_Steps;
  int steps3, steps2, steps1;
  double h_sol1, h_sol2;
  int flagF1, flagF2;
  int I_Steps;

  const double sysFreq = 60.0;
  double pi = 4.0*atan(1.0);
  const double basrad = 2.0 * pi * sysFreq;
  gridpack::ComplexType jay(0.0, 1.0);

  // switch info is set up here 
  int nswtch = 4;
  static double sw1[4];
  static double sw7[4];
  sw1[0] = 0.0;
  sw1[1] = fault.start;
  sw1[2] = fault.end;
  sw1[3] = p_sim_time;
  sw7[0] = p_time_step;
  sw7[1] = fault.step;
  sw7[2] = p_time_step;
  sw7[3] = p_time_step;
  simu_k = 0; 
  for (int i = 0; i < nswtch-1; i++) {
    t_step[i] = (int) ((sw1[i+1] -sw1[i]) / sw7[i]);   
    t_width[i] = (sw1[i+1] - sw1[i]) / t_step[i];
    simu_k += t_step[i];
  }
  simu_k++;

  steps3 = t_step[0] + t_step[1] + t_step[2] - 1;
  steps2 = t_step[0] + t_step[1] - 1;
  steps1 = t_step[0] - 1;
  h_sol1 = t_width[0];
  h_sol2 = h_sol1;
  flagF1 = 0; 
  flagF2 = 0; 
  p_S_Steps = 1; 
  last_S_Steps = -1;

  if (p_generatorWatch) {
    p_generatorIO->header("t");
    p_generatorIO->write("watch_header");
    p_generatorIO->header("\n");
  }
  for (I_Steps = 0; I_Steps < simu_k+1; I_Steps++) {
    if (I_Steps < steps1) {
      p_S_Steps = I_Steps;
      flagF1 = 0;
      flagF2 = 0;
    } else if (I_Steps == steps1) { 
      p_S_Steps = I_Steps;
      flagF1 = 0;
      flagF2 = 1;
    } else if (I_Steps == steps1+1) {
      p_S_Steps = I_Steps;
      flagF1 = 1;
      flagF2 = 1;
    } else if ((I_Steps>steps1+1) && (I_Steps<steps2+1)) {
      p_S_Steps = I_Steps - 1;
      flagF1 = 1;
      flagF2 = 1;
    } else if (I_Steps==steps2+1) {
      p_S_Steps = I_Steps - 1;
      flagF1 = 1;
      flagF2 = 2;
    } else if (I_Steps==steps2+2) {
      p_S_Steps = I_Steps - 1;
      flagF1 = 2;
      flagF2 = 2;
    } else if (I_Steps>steps2+2) {
      p_S_Steps = I_Steps - 2;
      flagF1 = 2;
      flagF2 = 2;
    }

    if (I_Steps !=0 && last_S_Steps != p_S_Steps) {
      mac_ang_s0->equate(*mac_ang_s1); 
      mac_spd_s0->equate(*mac_spd_s1); 
      eprime_s0->equate(*eprime_s1); 
    }

    vecTemp->equate(*mac_ang_s0); 
    vecTemp->scale(jay); 
    vecTemp->exp(); 
    vecTemp->elementMultiply(*eqprime); 
    eprime_s0->equate(*vecTemp); 
     
    // ---------- CALL i_simu_innerloop(k,p_S_Steps,flagF1): ----------
    int t_trnsmul = timer->createCategory("Dynamic Simulation: Transpose Multiply");
    timer->start(t_trnsmul);
    if (flagF1 == 0) {
      curr.reset(multiply(*trans_prefy11, *eprime_s0)); //MatMultTranspose(prefy11, eprime_s0, curr);
      //transposeMultiply(*prefy11,*eprime_s0,*curr);
    } else if (flagF1 == 1) {
      curr.reset(multiply(*trans_fy11, *eprime_s0)); //MatMultTranspose(fy11, eprime_s0, curr);
      //transposeMultiply(*fy11,*eprime_s0,*curr);
    } else if (flagF1 == 2) {
      curr.reset(multiply(*trans_posfy11, *eprime_s0)); //MatMultTranspose(posfy11, eprime_s0, curr);
      //transposeMultiply(*posfy11,*eprime_s0,*curr);
    } 
    timer->stop(t_trnsmul);
    
    // ---------- CALL mac_em2(k,p_S_Steps): ----------
    // ---------- pelect: ----------
    curr->conjugate(); 
    vecTemp->equate(*eprime_s0);
    vecTemp->elementMultiply(*curr);
    pelect->equate(*vecTemp); 
    pelect->real(); //Get the real part of pelect
    // ---------- dmac_ang: ----------
    vecTemp->equate(*mac_spd_s0); 
    vecTemp->add(-1.0); 
    vecTemp->scale(basrad); 
    dmac_ang_s0->equate(*vecTemp); 
    // ---------- dmac_spd: ----------
    vecTemp->equate(*pelect);
    vecTemp->elementMultiply(*mva); 
    dmac_spd_s0->equate(*pmech); 
    dmac_spd_s0->add(*vecTemp, -1.0); 
    vecTemp->equate(*mac_spd_s0); 
    vecTemp->add(-1.0); 
    vecTemp->elementMultiply(*d0); 
    dmac_spd_s0->add(*vecTemp, -1.0); 
    vecTemp->equate(*h); 
    vecTemp->scale(2.0); 
    dmac_spd_s0->elementDivide(*vecTemp); 

    mac_ang_s1->equate(*mac_ang_s0); 
    vecTemp->equate(*dmac_ang_s0);
    mac_ang_s1->add(*dmac_ang_s0, h_sol1); 
    mac_spd_s1->equate(*mac_spd_s0); 
    vecTemp->equate(*dmac_spd_s0);
    mac_spd_s1->add(*vecTemp, h_sol1); 

    vecTemp->equate(*mac_ang_s1); 
    vecTemp->scale(jay); 
    vecTemp->exp(); 
    vecTemp->elementMultiply(*eqprime);
    eprime_s1->equate(*vecTemp); 

    // ---------- CALL i_simu_innerloop2(k,p_S_Steps+1,flagF2): ----------
    timer->start(t_trnsmul);
    if (flagF2 == 0) {
      curr.reset(multiply(*trans_prefy11, *eprime_s1)); //MatMultTranspose(prefy11, eprime_s1, curr);
      //transposeMultiply(*prefy11,*eprime_s1,*curr);
    } else if (flagF2 == 1) {
      curr.reset(multiply(*trans_fy11, *eprime_s1)); //MatMultTranspose(fy11, eprime_s1, curr);
      //transposeMultiply(*fy11,*eprime_s1,*curr);
    } else if (flagF2 == 2) {
      curr.reset(multiply(*trans_posfy11, *eprime_s1)); //MatMultTranspose(posfy11, eprime_s1, curr);
      //transposeMultiply(*posfy11,*eprime_s1,*curr);
    }
    timer->stop(t_trnsmul);

    // ---------- CALL mac_em2(k,p_S_Steps+1): ---------- 
    // ---------- pelect: ----------
    curr->conjugate(); 
    vecTemp->equate(*eprime_s1);
    vecTemp->elementMultiply(*curr); 
    pelect->equate(*vecTemp); 
    pelect->real(); //Get the real part of pelect
    // ---------- dmac_ang: ----------
    vecTemp->equate(*mac_spd_s1); 
    vecTemp->add(-1.0); 
    vecTemp->scale(basrad); 
    dmac_ang_s1->equate(*vecTemp); 
    // ---------- dmac_spd: ----------
    vecTemp->equate(*pelect);
    vecTemp->elementMultiply(*mva); 
    dmac_spd_s1->equate(*pmech); 
    dmac_spd_s1->add(*vecTemp, -1.0); 
    vecTemp->equate(*mac_spd_s1); 
    vecTemp->add(-1.0); 
    vecTemp->elementMultiply(*d0); 
    dmac_spd_s1->add(*vecTemp, -1.0); 
    vecTemp->equate(*h); 
    vecTemp->scale(2.0); 
    dmac_spd_s1->elementDivide(*vecTemp); 

    vecTemp->equate(*dmac_ang_s0); 
    vecTemp->add(*dmac_ang_s1); 
    vecTemp->scale(0.5); 
    mac_ang_s1->equate(*mac_ang_s0); 
    mac_ang_s1->add(*vecTemp, h_sol2); 
    vecTemp->equate(*dmac_spd_s0); 
    vecTemp->add(*dmac_spd_s1); 
    vecTemp->scale(0.5); 
    mac_spd_s1->equate(*mac_spd_s0); 
    mac_spd_s1->add(*vecTemp, h_sol2); 
    if (p_generatorWatch && I_Steps%p_watchFrequency == 0) {
      p_factory->setMode(init_mac_ang);
      XMap3.mapToBus(mac_ang_s1);
      p_factory->setMode(init_mac_spd);
      XMap3.mapToBus(mac_spd_s1);
      char tbuf[32];
      sprintf(tbuf,"%8.4f",static_cast<double>(I_Steps)*p_time_step);
      p_generatorIO->header(tbuf);
      p_generatorIO->write("watch");
      p_generatorIO->header("\n");
    }

    // Print to screen
    if (last_S_Steps != p_S_Steps) {
      //sprintf(ioBuf, "\n========================S_Steps = %d=========================\n", p_S_Steps);
      //p_busIO->header(ioBuf);
      //mac_ang_s0->print();  
      //mac_spd_s0->print();  
      //pmech->print();
      //pelect->print();
      //sprintf(ioBuf, "========================End of S_Steps = %d=========================\n\n", p_S_Steps);
      //p_busIO->header(ioBuf);
    }
    if (I_Steps == simu_k) {
      p_factory->setMode(init_mac_ang);
      XMap3.mapToBus(mac_ang_s1);
      p_factory->setMode(init_mac_spd);
      XMap3.mapToBus(mac_spd_s1);
      p_factory->setMode(init_pmech);
      XMap6.mapToBus(pmech);
      p_factory->setMode(init_pelect);
      XMap1.mapToBus(pelect);
      //mac_ang_s1->print();  
      //mac_spd_s1->print();  
      //pmech->print();
      //pelect->print();
    } // End of Print to screen 
    
    last_S_Steps = p_S_Steps;
  }
  closeGeneratorWatchFile();
  timer->stop(t_total);
#else
  timer->start(t_total);
  int t_matset = timer->createCategory("Matrix Setup");
  timer->start(t_matset);
  p_factory->setMode(YBUS);
  gridpack::mapper::FullMatrixMap<DSNetwork> ybusMap(p_network);
  timer->stop(t_matset);

  int t_trans = timer->createCategory("Matrix Transpose");
  // Construct matrix diagY_a using xd and ra extracted from gen data, 
  timer->start(t_matset);
  p_factory->setMode(YA);
  gridpack::mapper::FullMatrixMap<DSNetwork> yaMap(p_network);
  boost::shared_ptr<gridpack::math::Matrix> diagY_a = yaMap.mapToMatrix();
  // Convert diagY_a from sparse matrix to dense matrix Y_a so that SuperLU_DIST can solve
  gridpack::math::MatrixStorageType denseType = gridpack::math::Dense;
  boost::shared_ptr<gridpack::math::Matrix> Y_a(gridpack::math::storageType(*diagY_a, denseType));
  timer->stop(t_matset);

  int t_matmul = timer->createCategory("Matrix Multiply");
  // Construct Y_c as a dense matrix
  timer->start(t_matset);
  p_factory->setMode(YC);
  gridpack::mapper::FullMatrixMap<DSNetwork> cMap(p_network);
  boost::shared_ptr<gridpack::math::Matrix> Y_cDense = cMap.mapToMatrix(true);

  // Construct Y_b
  p_factory->setMode(YB);
  gridpack::mapper::FullMatrixMap<DSNetwork> bMap(p_network);
  boost::shared_ptr<gridpack::math::Matrix> Y_b = bMap.mapToMatrix();
  timer->stop(t_matset);
  
  timer->start(t_matset);
  p_factory->setMode(updateYbus);
  boost::shared_ptr<gridpack::math::Matrix> prefy11ybus = ybusMap.mapToMatrix();
  timer->stop(t_matset);

  // Solve linear equations ybus * X = Y_c
  int t_solve = timer->createCategory("Solve Linear Equation");
  timer->start(t_solve);
  gridpack::math::LinearMatrixSolver solver1(*prefy11ybus);
  boost::shared_ptr<gridpack::math::Matrix> prefy11X(solver1.solve(*Y_cDense));
  timer->stop(t_solve);
  
  //-----------------------------------------------------------------------
  // Compute prefy11
  //-----------------------------------------------------------------------
  // Form reduced admittance matrix prefy11: prefy11 = Y_b * X
  timer->start(t_matmul);
  boost::shared_ptr<gridpack::math::Matrix> prefy11(multiply(*Y_b, *prefy11X)); 
  timer->stop(t_matmul);
  // Update prefy11: prefy11 = Y_a + prefy11
  prefy11->add(*Y_a);

  //-----------------------------------------------------------------------
  // Compute fy11
  // Update ybus values at beginning of fault
  //-----------------------------------------------------------------------
  // Read the switch info from fault. Event from input.xml
  int sw2_2 = fault.from_idx - 1;
  int sw3_2 = fault.to_idx - 1;

  boost::shared_ptr<gridpack::math::Matrix> fy11ybus(prefy11ybus->clone());
  gridpack::ComplexType x(0.0, -1e7);
  timer->start(t_matset);
  p_factory->setEvent(fault);
  p_factory->setMode(onFY);
  ybusMap.overwriteMatrix(fy11ybus);
  timer->stop(t_matset);

  // Solve linear equations of fy11ybus * X = Y_c
  timer->start(t_solve);
  gridpack::math::LinearMatrixSolver solver2(*fy11ybus);
  boost::shared_ptr<gridpack::math::Matrix> fy11X(solver2.solve(*Y_cDense)); 
  timer->stop(t_solve);
  
  // Form reduced admittance matrix fy11: fy11 = Y_b * X
  timer->start(t_matmul);
  boost::shared_ptr<gridpack::math::Matrix> fy11(multiply(*Y_b, *fy11X)); 
  timer->stop(t_matmul);
  // Update fy11: fy11 = Y_a + fy11
  fy11->add(*Y_a);

  //-----------------------------------------------------------------------
  // Compute posfy11
  // Update ybus values at clear fault stage
  //-----------------------------------------------------------------------
  // Get the updating factor for posfy11 stage ybus
  timer->start(t_matset);
  boost::shared_ptr<gridpack::math::Matrix> posfy11ybus(prefy11ybus->clone());
  timer->stop(t_matset);
  timer->start(t_matset);
  p_factory->setMode(posFY);
  ybusMap.incrementMatrix(posfy11ybus);
  timer->stop(t_matset);
    
  // Solve linear equations of posfy11ybus * X = Y_c
  timer->start(t_solve);
  gridpack::math::LinearMatrixSolver solver3(*posfy11ybus);
  boost::shared_ptr<gridpack::math::Matrix> posfy11X(solver3.solve(*Y_cDense)); 
  timer->stop(t_solve);
  
  // Form reduced admittance matrix posfy11: posfy11 = Y_b * X
  timer->start(t_matmul);
  boost::shared_ptr<gridpack::math::Matrix> posfy11(multiply(*Y_b, *posfy11X)); 
  timer->stop(t_matmul);
  // Update posfy11: posfy11 = Y_a + posfy11
  posfy11->add(*Y_a);

  //-----------------------------------------------------------------------
  // Integration implementation (Modified Euler Method)
  //-----------------------------------------------------------------------
 
  p_factory->setDSParams();
  p_factory->setMode(Eprime0);
  // create vectors used in solution method
  gridpack::mapper::BusVectorMap<DSNetwork> Emap(p_network);
  boost::shared_ptr<gridpack::math::Vector> eprime_s0 = Emap.mapToVector();
  boost::shared_ptr<gridpack::math::Vector> eprime_s1(eprime_s0->clone());
  boost::shared_ptr<gridpack::math::Vector> curr(eprime_s0->clone());

  timer->start(t_trans);
  boost::shared_ptr<gridpack::math::Matrix> trans_prefy11(transpose(*prefy11));
  boost::shared_ptr<gridpack::math::Matrix> trans_fy11(transpose(*fy11));
  boost::shared_ptr<gridpack::math::Matrix> trans_posfy11(transpose(*posfy11));
  timer->stop(t_trans);

  // Simulation related variables
  int simu_k;
  int t_step[20];
  double t_width[20];
  int flagF;
  int S_Steps;
  int last_S_Steps;
  int steps3, steps2, steps1;
  double h_sol1, h_sol2;
  int flagF1, flagF2;
  int I_Steps;

  const double sysFreq = 60.0;
  double pi = 4.0*atan(1.0);
  const double basrad = 2.0 * pi * sysFreq;
  gridpack::ComplexType jay(0.0, 1.0);

  // switch info is set up here 
  int nswtch = 4;
  static double sw1[4];
  static double sw7[4];
  sw1[0] = 0.0;
  sw1[1] = fault.start;
  sw1[2] = fault.end;
  sw1[3] = p_sim_time;
  sw7[0] = p_time_step;
  sw7[1] = fault.step;
  sw7[2] = p_time_step;
  sw7[3] = p_time_step;
  simu_k = 0; 
  for (int i = 0; i < nswtch-1; i++) {
    t_step[i] = (int) ((sw1[i+1] -sw1[i]) / sw7[i]);   
    t_width[i] = (sw1[i+1] - sw1[i]) / t_step[i];
    simu_k += t_step[i];
  }
  simu_k++;

  steps3 = t_step[0] + t_step[1] + t_step[2] - 1;
  steps2 = t_step[0] + t_step[1] - 1;
  steps1 = t_step[0] - 1;
  h_sol1 = t_width[0];
  h_sol2 = h_sol1;
  flagF1 = 0; 
  flagF2 = 0; 
  S_Steps = 1; 
  last_S_Steps = -1;

  if (p_generatorWatch) {
    p_generatorIO->header("t");
    if (p_generatorWatch) p_generatorIO->write("watch_header");
    p_generatorIO->header("\n");
  }
  for (I_Steps = 0; I_Steps < simu_k+1; I_Steps++) {
    if (I_Steps < steps1) {
      S_Steps = I_Steps;
      flagF1 = 0;
      flagF2 = 0;
    } else if (I_Steps == steps1) { 
      S_Steps = I_Steps;
      flagF1 = 0;
      flagF2 = 1;
    } else if (I_Steps == steps1+1) {
      S_Steps = I_Steps;
      flagF1 = 1;
      flagF2 = 1;
    } else if ((I_Steps>steps1+1) && (I_Steps<steps2+1)) {
      S_Steps = I_Steps - 1;
      flagF1 = 1;
      flagF2 = 1;
    } else if (I_Steps==steps2+1) {
      S_Steps = I_Steps - 1;
      flagF1 = 1;
      flagF2 = 2;
    } else if (I_Steps==steps2+2) {
      S_Steps = I_Steps - 1;
      flagF1 = 2;
      flagF2 = 2;
    } else if (I_Steps>steps2+2) {
      S_Steps = I_Steps - 2;
      flagF1 = 2;
      flagF2 = 2;
    }

    if (I_Steps !=0 && last_S_Steps != S_Steps) {
      p_factory->initDSStep(false);
    } else {
      p_factory->initDSStep(true);
    }
    p_factory->setMode(Eprime0);
    Emap.mapToVector(eprime_s0);
     
    // ---------- CALL i_simu_innerloop(k,S_Steps,flagF1): ----------
    int t_trnsmul = timer->createCategory("Transpose Multiply");
    timer->start(t_trnsmul);
    if (flagF1 == 0) {
      curr.reset(multiply(*trans_prefy11, *eprime_s0)); //MatMultTranspose(prefy11, eprime_s0, curr);
      //transposeMultiply(*prefy11,*eprime_s0,*curr);
    } else if (flagF1 == 1) {
      curr.reset(multiply(*trans_fy11, *eprime_s0)); //MatMultTranspose(fy11, eprime_s0, curr);
      //transposeMultiply(*fy11,*eprime_s0,*curr);
    } else if (flagF1 == 2) {
      curr.reset(multiply(*trans_posfy11, *eprime_s0)); //MatMultTranspose(posfy11, eprime_s0, curr);
      //transposeMultiply(*posfy11,*eprime_s0,*curr);
    } 
    timer->stop(t_trnsmul);
    
    p_factory->setMode(Current);
    Emap.mapToBus(curr);
    p_factory->predDSStep(h_sol1);
    p_factory->setMode(Eprime1);
    Emap.mapToVector(eprime_s1);

    // ---------- CALL i_simu_innerloop2(k,S_Steps+1,flagF2): ----------
    timer->start(t_trnsmul);
    if (flagF2 == 0) {
      curr.reset(multiply(*trans_prefy11, *eprime_s1)); //MatMultTranspose(prefy11, eprime_s1, curr);
      //transposeMultiply(*prefy11,*eprime_s1,*curr);
    } else if (flagF2 == 1) {
      curr.reset(multiply(*trans_fy11, *eprime_s1)); //MatMultTranspose(fy11, eprime_s1, curr);
      //transposeMultiply(*fy11,*eprime_s1,*curr);
    } else if (flagF2 == 2) {
      curr.reset(multiply(*trans_posfy11, *eprime_s1)); //MatMultTranspose(posfy11, eprime_s1, curr);
      //transposeMultiply(*posfy11,*eprime_s1,*curr);
    }
    timer->stop(t_trnsmul);

    p_factory->setMode(Current);
    Emap.mapToBus(curr);
    p_factory->corrDSStep(h_sol2);

    if (p_generatorWatch && I_Steps%p_watchFrequency == 0) {
      char tbuf[32];
      sprintf(tbuf,"%8.4f",static_cast<double>(I_Steps)*p_time_step);
      p_generatorIO->header(tbuf);
      p_generatorIO->write("watch");
      p_generatorIO->header("\n");
    }
    // Print to screen
    if (I_Steps == simu_k) {
      char ioBuf[128];
      sprintf(ioBuf, "\n========================S_Steps = %d=========================\n",
          S_Steps+1);
      p_busIO->header(ioBuf);
      sprintf(ioBuf, "\n         Bus ID     Generator ID"
          "    mac_ang         mac_spd         mech            elect\n\n");
      p_busIO->header(ioBuf);
      p_busIO->write();
      sprintf(ioBuf, "\n========================End of S_Steps = %d=========================\n\n",
          S_Steps+1);
      p_busIO->header(ioBuf);
    } // End of Print to screen 
    
    last_S_Steps = S_Steps;
  }
  closeGeneratorWatchFile();
  timer->stop(t_total);
#endif
}
コード例 #27
0
ファイル: lduMatrixOperations.C プロジェクト: Brzous/WindFOAM
void Foam::lduMatrix::operator-=(const lduMatrix& A)
{
    if (A.diagPtr_)
    {
        diag() -= A.diag();
    }

    if (symmetric() && A.symmetric())
    {
        upper() -= A.upper();
    }
    else if (symmetric() && A.asymmetric())
    {
        if (upperPtr_)
        {
            lower();
        }
        else
        {
            upper();
        }

        upper() -= A.upper();
        lower() -= A.lower();
    }
    else if (asymmetric() && A.symmetric())
    {
        if (A.upperPtr_)
        {
            lower() -= A.upper();
            upper() -= A.upper();
        }
        else
        {
            lower() -= A.lower();
            upper() -= A.lower();
        }

    }
    else if (asymmetric() && A.asymmetric())
    {
        lower() -= A.lower();
        upper() -= A.upper();
    }
    else if (diagonal())
    {
        if (A.upperPtr_)
        {
            upper() = -A.upper();
        }

        if (A.lowerPtr_)
        {
            lower() = -A.lower();
        }
    }
    else if (A.diagonal())
    {
    }
    else
    {
        FatalErrorIn("lduMatrix::operator-=(const lduMatrix& A)")
            << "Unknown matrix type combination"
            << abort(FatalError);
    }
}
コード例 #28
0
ファイル: node.cpp プロジェクト: Toeplitz/poll
glm::vec3 Node::scale_get()
{
  glm::vec3 diagonal(transform_scale[0][0], transform_scale[1][1], transform_scale[2][2]);
  return diagonal;
}
コード例 #29
0
ファイル: program.cpp プロジェクト: IMTtugraz/AGILE
int main(int argc, char* argv[])
{
  // Initialization of the network, the communicator and the allocation of
  // the GPU is done as in previous tutorials.
  agile::NetworkEnvironment environment(argc, argv);
  typedef agile::GPUCommunicator<unsigned, float, float> communicator_type;
  communicator_type com;
  com.allocateGPU();
  agile::GPUEnvironment::printInformation(std::cout);
  std::cout << std::endl;

  // We are interested in solving the linear problem \f$ Ax = y \f$, with a
  // given matrix \f$ A \f$ and a right-hand side vector \f$ y \f$. The unknown
  // is the vector \f$ x \f$.
  // Now, we can generate a matrix that shall be inverted (actually we do not
  // invert the matrix but use the CG algorithm). Note that CG requires a
  // symmetric positive definite (SPD) matrix and it is not too trivial to
  // write down a SPD matrix. If you fail to provide a SPD matrix to the CG
  // algorithm there is no guarantee that it will converge. You might be lucky,
  // you might be not...
  const unsigned SIZE = 20;
  float A_host[SIZE][SIZE];
  for (unsigned row = 0; row < SIZE; ++row)
    for (unsigned column = 0; column <= row; ++column)
    {
      A_host[row][column] = (float(SIZE) - float(row) + float(SIZE) / 2.0)
                            * (float(column) + 1.0);
      A_host[column][row] = A_host[row][column];
      if (row == column)
        A_host[row][column] = 2.0 * float(SIZE) + float(row) + float(column);
    }

  // The matrix is still in the host's memory and has to be transfered to the
  // GPU. This is done automatically by the constructor of \p GPUMatrixPitched.
  agile::GPUMatrixPitched<float> A(SIZE, SIZE, (float*)A_host);

  // Next we need a reference solution. We can create any vector we like at
  // this place.
  std::vector<float> x_reference_host(SIZE);
  for (unsigned counter = 0; counter < SIZE; ++counter)
    x_reference_host[counter] = float(SIZE) - float(counter) + float(SIZE/3);

  // This vector has to be transfered to the GPU memory too. For vectors, this
  // can be achieved by the member function \p assignFromHost.
  agile::GPUVector<float> x_reference;
  x_reference.assignFromHost(x_reference_host.begin(), x_reference_host.end());

  // We wrap the GPU matrix from above into a forward operator called
  // \p ForwardMatrix. Forward operators are simply objects that implement
  // the parenthesis-operator \p operator() which takes an
  // \p accumulated vector and returns a \p distributed one. In all other
  // respects the operator is a black box for us.
  // The \p ForwardMatrix operator requires a reference to the communicator
  // when constructing the object so that it has access to the network.
  typedef agile::ForwardMatrix<communicator_type, agile::GPUMatrixPitched<float> >
    forward_type;
  forward_type forward(com, A);

  // What we also want to use a preconditioner, which means that we change from
  // the original problem \f$ Ax = y \f$ to the equivalent one
  // \f$ PAx = Py \f$, where \f$ P \f$ is a preconditioner. The rationale is
  // that most often the matrix \f$ A \f$ is ill-conditioned and the CG algorithm
  // does not converge properly at all or it needs many iterations. The use of
  // a preconditioner makes the whole system better conditioned. The simplest
  // choice is to use the identity \f$ P = I \f$ (which means no preconditioning
  // at all). The best choice would be \f$ P = A^{-1} \f$ as we would have the
  // solution for \f$ x \f$ in the first step already (but then we need again
  // to find the inverse of \f$ A \f$ which we wanted to avoid). An
  // 'intermediate' possibility is to take \f$ P = diag(A)^{-1} \f$ which is
  // easy and fast to invert and gives better results than the identity.
  // A preconditioner belongs to the inverse operator. All inverse operators
  // implement a parenthesis-operator which takes a \p distributed vector
  // as input and returns an \p accumulated one (opposite to the forward
  // operators, thus).
#if JACOBI_PRECONDITIONER
  typedef agile::JacobiPreconditioner<communicator_type, float>
    preconditioner_type;
  std::vector<float> diagonal(SIZE);
  for (unsigned row = 0; row < SIZE; ++row)
    diagonal[row] = A_host[row][row];
  preconditioner_type preconditioner(com, diagonal);
#else
  typedef agile::InverseIdentity<communicator_type> preconditioner_type;
  preconditioner_type preconditioner(com);
#endif

  // The last operator needed is a measure. A measure operator has again
  // a parenthesis-operator. This timeis takes an \p accumulated vector as first
  // input and a \p distributed one as second input and returns a scalar
  // measuring somehow the size of the vectors. An example is the scalar
  // product operator.
  typedef agile::ScalarProductMeasure<communicator_type> measure_type;
  measure_type scalar_product(com);

  // Finally, generate the PCG solver. It needs the absolute and relative
  // tolerances as input so that it knows when the solution is good enough for
  // our purposes. Furthermore it requires the maximum amount of iterations
  // after which it simply capitulates without having found a solution.
  const double REL_TOLERANCE = 1e-12;
  const double ABS_TOLERANCE = 1e-6;
  const unsigned MAX_ITERATIONS = 100;
  agile::PreconditionedConjugateGradient<communicator_type, forward_type,
                                           preconditioner_type, measure_type>
    pcg(com, forward, preconditioner, scalar_product,
        REL_TOLERANCE, ABS_TOLERANCE, MAX_ITERATIONS);

  // What we have not generated, yet, is the right hand side \f$ y \f$. This is
  // simply one call to our forward operator.
  agile::GPUVector<float> y(SIZE);
  forward(x_reference, y);

  // We need one more vector to hold the result of the CG algorithm. Note that
  // we also supply the initial guess for the solution via this vector.
  agile::GPUVector<float> x(SIZE);

  // Finally, we have constructed, initialized, wrapped... everything. The only
  // thing left to do is to call the CG operator.
  pcg(y, x);

  // Print some statistics (and hope that the operator actually converged).
  if (pcg.convergence())
    std::cout << "CG converged in ";
  else
    std::cout << "Error: CG did not converge in ";
  std::cout << pcg.getIteration() + 1 << " iterations." << std::endl;
  std::cout << "Initial residual    = " << pcg.getRho0() << std::endl;
  std::cout << "Final residual      = " << pcg.getRho() << std::endl;
  std::cout << "Ratio rho_k / rho_0 = " << pcg.getRho() / pcg.getRho0()
            << std::endl;

  // As the vectors in this example were quite small we can even print them to
  // standard output.
  std::cout << "Reference: " << std::endl << "  ";
  for (unsigned counter = 0; counter < x_reference_host.size(); ++counter)
    std::cout << x_reference_host[counter] << " ";
  std::cout << std::endl;

  // The solution is still on the GPU and has to be transfered to the CPU memory.
  // This is accomplished using \p copyToHost.
  std::vector<float> x_host;
  x.copyToHost(x_host);

  // Output the solution, too.
  std::cout << "CG solution: " << std::endl << "  ";
  for (unsigned counter = 0; counter < x_host.size(); ++counter)
    std::cout << x_host[counter] << " ";
  std::cout << std::endl;

  // Finally, we also compute the difference between the reference solution and
  // the true solution (of course, we do this on the GPU).
  agile::GPUVector<float> difference(SIZE);
  subVector(x_reference, x, difference);

  // To measure the distance, we use the scalar product measure we have
  // introduced above. Note, that this operator wants the first vector in
  // accumulated format and the second one in distributed format. The solution
  // we got from the CG algorithm is accumulated (because CG is an inverse
  // operator). This means, we have to distribute the solution to have mixed
  // formats.
  agile::GPUVector<float> difference_dist(difference);
  com.distribute(difference_dist);
  std::cout << "L2 of difference: "
            << std::sqrt(std::abs(scalar_product(difference, difference_dist)))
            << std::endl;

  // So, that's it.
  return 0;
}
コード例 #30
0
ファイル: Omega_h_math.hpp プロジェクト: ibaned/omega_h
OMEGA_H_INLINE Matrix<dim, dim> compose_metric(
    Matrix<dim, dim> r, Vector<dim> h) {
  auto l = metric_eigenvalues(h);
  return r * diagonal(l) * transpose(r);
}