void expm(int row, double *A) { int i; int m_vals[] = {3, 5, 7, 9, 13}; double theta[] = {0.01495585217958292, 0.2539398330063230, 0.9504178996162932, 2.097847961257068, 5.371920351148152}; int lentheta = 5; double normA = onenorm(row, row, A); if (normA <= theta[4]) { for (i = 0; i < lentheta; i++) { if (normA <= theta[i]) { padeapprox(m_vals[i], row, A); break; } } } else { int s; double t = frexp(normA / (theta[4]), &s); s = s - (t == 0.5); t = pow(2, -s); int row2 = row * row; /* int i1 = 1;*/ // dscal_(&row2, &t, A, &i1); dscal_3l(row2, t, A); padeapprox(m_vals[4], row, A); double *temp = malloc(row * row * sizeof(double)); for (int ii = 0; ii < row * row; ii++) temp[ii] = 0.0; // char ta = 'n'; double alpha = 1; double beta = 0; for (i = 0; i < s; i++) { // dgemm_(&ta, &ta, &row, &row, &row, &alpha, A, &row, A, // &row, &beta, temp, &row); dgemm_nn_3l(row, row, row, A, row, A, row, temp, row); dmcopy(row, row, temp, row, A, row); } free(temp); } }
/************************************************ Mass-spring system: nx/2 masses connected each other with springs (in a row), and the first and the last one to walls. nu (<=nx) controls act on the first nu masses. The system is sampled with sampling time Ts. ************************************************/ void mass_spring_system(double Ts, int nx, int nu, double *A, double *B, double *b, double *x0) { int nx2 = nx * nx; int info = 0; int pp = nx / 2; // number of masses /************************************************ * build the continuous time system ************************************************/ double *T; d_zeros(&T, pp, pp); int ii; for (ii = 0; ii < pp; ii++) T[ii * (pp + 1)] = -2; for (ii = 0; ii < pp - 1; ii++) T[ii * (pp + 1) + 1] = 1; for (ii = 1; ii < pp; ii++) T[ii * (pp + 1) - 1] = 1; double *Z; d_zeros(&Z, pp, pp); double *I; d_zeros(&I, pp, pp); for (ii = 0; ii < pp; ii++) I[ii * (pp + 1)] = 1.0; // = eye(pp); double *Ac; d_zeros(&Ac, nx, nx); dmcopy(pp, pp, Z, pp, Ac, nx); dmcopy(pp, pp, T, pp, Ac + pp, nx); dmcopy(pp, pp, I, pp, Ac + pp * nx, nx); dmcopy(pp, pp, Z, pp, Ac + pp * (nx + 1), nx); free(T); free(Z); free(I); d_zeros(&I, nu, nu); for (ii = 0; ii < nu; ii++) I[ii * (nu + 1)] = 1.0; // I = eye(nu); double *Bc; d_zeros(&Bc, nx, nu); dmcopy(nu, nu, I, nu, Bc + pp, nx); free(I); /************************************************ * compute the discrete time system ************************************************/ double *bb; d_zeros(&bb, nx, 1); dmcopy(nx, 1, bb, nx, b, nx); dmcopy(nx, nx, Ac, nx, A, nx); dscal_3l(nx2, Ts, A); expm(nx, A); d_zeros(&T, nx, nx); d_zeros(&I, nx, nx); for (ii = 0; ii < nx; ii++) I[ii * (nx + 1)] = 1.0; // I = eye(nx); dmcopy(nx, nx, A, nx, T, nx); daxpy_3l(nx2, -1.0, I, T); dgemm_nn_3l(nx, nu, nx, T, nx, Bc, nx, B, nx); int *ipiv = (int *)malloc(nx * sizeof(int)); dgesv_3l(nx, nu, Ac, nx, ipiv, B, nx, &info); free(ipiv); free(Ac); free(Bc); free(bb); /************************************************ * initial state ************************************************/ if (nx == 4) { x0[0] = 5; x0[1] = 10; x0[2] = 15; x0[3] = 20; } else { int jj; for (jj = 0; jj < nx; jj++) x0[jj] = 1; } }
int main() { printf("\n"); printf("\n"); printf("\n"); printf(" HPMPC -- Library for High-Performance implementation of solvers for MPC.\n"); printf(" Copyright (C) 2014 by Technical University of Denmark. All rights reserved.\n"); printf("\n"); printf(" HPMPC is distributed in the hope that it will be useful,\n"); printf(" but WITHOUT ANY WARRANTY; without even the implied warranty of\n"); printf(" MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.\n"); printf(" See the GNU Lesser General Public License for more details.\n"); printf("\n"); printf("\n"); printf("\n"); printf("Riccati solver performance test - single precision\n"); printf("\n"); // maximum frequency of the processor const float GHz_max = 2.9; //3.6; //2.9; printf("Frequency used to compute theoretical peak: %5.1f GHz (edit test_dricposv.c to modify this value).\n", GHz_max); printf("\n"); // maximum flops per cycle, single precision #if defined(TARGET_X64_AVX) const float flops_max = 16; printf("Testing solvers for AVX instruction set, 64 bit: theoretical peak %5.1f Gflops\n", flops_max*GHz_max); #elif defined(TARGET_X64_SSE3) || defined(TARGET_AMD_SSE3) const float flops_max = 8; printf("Testing solvers for SSE3 instruction set, 64 bit: theoretical peak %5.1f Gflops\n", flops_max*GHz_max); #elif defined(TARGET_CORTEXA9) const float flops_max = 4; printf("Testing solvers for ARMv7a NEON instruction set: theoretical peak %5.1f Gflops\n", flops_max*GHz_max); #elif defined(TARGET_X86_ATOM) const float flops_max = 4; printf("Testing solvers for SSE3 instruction set, 32 bit, optimized for Intel Atom: theoretical peak %5.1f Gflops\n", flops_max*GHz_max); #elif defined(TARGET_POWERPC_G2) const float flops_max = 2; printf("Testing solvers for POWERPC instruction set, 32 bit: theoretical peak %5.1f Gflops\n", flops_max*GHz_max); #elif defined(TARGET_C99_4X4) const float flops_max = 2; printf("Testing reference solvers, 4x4 kernel: theoretical peak %5.1f Gflops\n", flops_max*GHz_max); #elif defined(TARGET_C99_2X2) const float flops_max = 2; printf("Testing reference solvers, 2x2 kernel: theoretical peak %5.1f Gflops\n", flops_max*GHz_max); #endif printf("\n"); printf("Tested solvers:\n"); printf("-sv : Riccati factorization and system solution (prediction step in IP methods)\n"); printf("-trs: system solution after a previous call to Riccati factorization (correction step in IP methods)\n"); printf("\n"); printf("\n"); #if defined(TARGET_X64_AVX) || defined(TARGET_X64_SSE3) || defined(TARGET_X86_ATOM) || defined(TARGET_AMD_SSE3) printf("\nflush to zero on\n"); _MM_SET_FLUSH_ZERO_MODE(_MM_FLUSH_ZERO_ON); // flush to zero subnormals !!! works only with one thread !!! #endif // to throw floating-point exception /*#ifndef __APPLE__*/ /* feenableexcept(FE_DIVBYZERO | FE_INVALID | FE_OVERFLOW);*/ /*#endif*/ int err; int i, j, ii, jj, idx; const int bsd = D_MR; //d_get_mr(); const int bss = S_MR; //s_get_mr(); int info = 0; int nn[] = {4, 6, 8, 10, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92, 96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144, 148, 152, 156, 160, 164, 168, 172, 176, 180, 184, 188, 192, 196, 200, 204, 208, 212, 216, 220, 224, 228, 232, 236, 240, 244, 248, 252, 256, 260, 264, 268, 272, 276, 280, 284, 288, 292, 296, 300}; int nnrep[] = {10000, 10000, 10000, 10000, 10000, 4000, 4000, 2000, 2000, 1000, 1000, 400, 400, 400, 200, 200, 200, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 40, 40, 40, 40, 40, 20, 20, 20, 20, 20, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10}; int vnx[] = {8, 12, 16, 24, 32, 48, 64, 96, 128, 192, 256, 512, 1024}; int vnrep[] = {100, 100, 100, 100, 100, 100, 50, 50, 50, 20, 10, 10}; int vN[] = {4, 8, 12, 16, 24, 32, 48, 64, 96, 128, 192, 256}; int ll; for(ll=0; ll<77; ll++) /* for(ll=0; ll<1; ll++)*/ { int nx = nn[ll];//NX;//16;//nn[ll]; // number of states (it has to be even for the mass-spring system test problem) int nu = 2;//NU;//5; // number of inputs (controllers) (it has to be at least 1 and at most nx/2 for the mass-spring system test problem) int N = 10;//NN;//10; // horizon lenght int nrep = nnrep[ll]; /* int nx = NX;//16;//nn[ll]; // number of states (it has to be even for the mass-spring system test problem)*/ /* int nu = NU;//5; // number of inputs (controllers) (it has to be at least 1 and at most nx/2 for the mass-spring system test problem)*/ /* int N = NN;//10; // horizon lenght*/ /* int nrep = NREP;*/ int rep; int nz = nx+nu+1; int pnz = bss*((nz+bss-nu%bss+bss-1)/bss); /************************************************ * dynamical system ************************************************/ double *A; d_zeros(&A, nx, nx); // states update matrix double *B; d_zeros(&B, nx, nu); // inputs matrix double *b; d_zeros(&b, nx, 1); // states offset double *x0; d_zeros(&x0, nx, 1); // initial state double Ts = 0.5; // sampling time mass_spring_system(Ts, nx, nu, N, A, B, b, x0); for(jj=0; jj<nx; jj++) b[jj] = 0.1; for(jj=0; jj<nx; jj++) x0[jj] = 0; x0[0] = 3.5; x0[1] = 3.5; // d_print_mat(nx, nx, A, nx); // d_print_mat(nx, nu, B, nx); // d_print_mat(nx, 1, b, nx); // d_print_mat(nx, 1, x0, nx); /* packed */ double *BAb; d_zeros(&BAb, nx, nz); dmcopy(nx, nu, B, nx, BAb, nx); dmcopy(nx, nx, A, nx, BAb+nu*nx, nx); dmcopy(nx, 1 , b, nx, BAb+(nu+nx)*nx, nx); // d_print_mat(nx, nx+nu+1, BAb, nx); /* transposed */ double *BAbt; d_zeros_align(&BAbt, pnz, pnz); for(ii=0; ii<nx; ii++) for(jj=0; jj<nz; jj++) { BAbt[jj+pnz*ii] = BAb[ii+nx*jj]; } // d_print_mat(nz, nx+1, BAbt, pnz); // s_print_mat(nz, nx+1, sBAbt, pnz); // return 0; /* packed into contiguous memory */ double *pBAbt; d_zeros_align(&pBAbt, pnz, pnz); d_cvt_mat2pmat(nz, nx, 0, bsd, BAbt, pnz, pBAbt, pnz); float *psBAbt; s_zeros_align(&psBAbt, pnz, pnz); s_cvt_d2s_pmat(nz, nx, bsd, pBAbt, pnz, bss, psBAbt, pnz); // d_print_pmat(nz, nx, bsd, pBAbt, pnz); // s_print_pmat(nz, nx, bss, spBAbt, pnz); /************************************************ * cost function ************************************************/ double *Q; d_zeros_align(&Q, pnz, pnz); for(ii=0; ii<nu; ii++) Q[ii*(pnz+1)] = 2.0; for(; ii<pnz; ii++) Q[ii*(pnz+1)] = 1.0; for(ii=0; ii<nz; ii++) Q[nx+nu+ii*pnz] = 1.0; Q[(nx+nu)*(pnz+1)] = 1e6; /* packed into contiguous memory */ float *pQ; s_zeros_align(&pQ, pnz, pnz); cvt_d2s_mat2pmat(nz, nz, 0, bss, Q, pnz, pQ, pnz); /* matrices series */ float *(hpQ[N+1]); float *(hq[N+1]); float *(hux[N+1]); float *(hpi[N+1]); float *(hpBAbt[N]); float *(hrb[N]); float *(hrq[N+1]); for(jj=0; jj<N; jj++) { s_zeros_align(&hpQ[jj], pnz, pnz); s_zeros_align(&hq[jj], pnz, 1); s_zeros_align(&hux[jj], pnz, 1); s_zeros_align(&hpi[jj], nx, 1); hpBAbt[jj] = psBAbt; s_zeros_align(&hrb[jj], nx, 1); s_zeros_align(&hrq[jj], nx+nu, 1); } s_zeros_align(&hpQ[N], pnz, pnz); s_zeros_align(&hq[N], pnz, 1); s_zeros_align(&hux[N], pnz, 1); s_zeros_align(&hpi[N], nx, 1); s_zeros_align(&hrq[N], nx+nu, 1); // starting guess for(jj=0; jj<nx; jj++) hux[0][nu+jj] = (float) x0[jj]; float *pL; s_zeros_align(&pL, pnz, pnz); float *pBAbtL; s_zeros_align(&pBAbtL, pnz, pnz); /************************************************ * riccati-like iteration ************************************************/ // predictor // restore cost function for(ii=0; ii<N; ii++) { for(jj=0; jj<pnz*pnz; jj++) hpQ[ii][jj]=pQ[jj]; } for(jj=0; jj<pnz*pnz; jj++) hpQ[N][jj]=pQ[jj]; // call the solver sricposv_mpc(nx, nu, N, pnz, hpBAbt, hpQ, hux, pL, pBAbtL, COMPUTE_MULT, hpi, &info); if(PRINTRES==1) { /* print result */ printf("\n\nsv\n\n"); for(ii=0; ii<N; ii++) s_print_mat(1, nu, hux[ii], 1); } if(PRINTRES==1 && COMPUTE_MULT==1) { // print result printf("\n\nsv\n\n"); for(ii=0; ii<N; ii++) s_print_mat(1, nx, hpi[ii+1], 1); } // corrector // clear solution for(ii=0; ii<N; ii++) { for(jj=0; jj<nu; jj++) hux[ii][jj] = 0; for(jj=0; jj<nx; jj++) hux[ii+1][nu+jj] = 0; } // restore linear part of cost function for(ii=0; ii<N; ii++) { for(jj=0; jj<nx+nu; jj++) hq[ii][jj] = Q[nx+nu+pnz*jj]; } for(jj=0; jj<nx+nu; jj++) hq[N][jj] = Q[nx+nu+pnz*jj]; // call the solver sricpotrs_mpc(nx, nu, N, pnz, hpBAbt, hpQ, hq, hux, pBAbtL, COMPUTE_MULT, hpi); if(PRINTRES==1) { // print result printf("\n\ntrs\n\n"); for(ii=0; ii<N; ii++) s_print_mat(1, nu, hux[ii], 1); } if(PRINTRES==1 && COMPUTE_MULT==1) { // print result printf("\n\ntrs\n\n"); for(ii=0; ii<N; ii++) s_print_mat(1, nx, hpi[ii+1], 1); } // restore cost function for(ii=0; ii<N; ii++) { for(jj=0; jj<pnz*pnz; jj++) hpQ[ii][jj]=pQ[jj]; } for(jj=0; jj<pnz*pnz; jj++) hpQ[N][jj]=pQ[jj]; // restore linear part of cost function for(ii=0; ii<N; ii++) { for(jj=0; jj<nx+nu; jj++) hq[ii][jj] = Q[nx+nu+pnz*jj]; } for(jj=0; jj<nx+nu; jj++) hq[N][jj] = Q[nx+nu+pnz*jj]; // residuals computation sres(nx, nu, N, pnz, hpBAbt, hpQ, hq, hux, hpi, hrq, hrb); if(PRINTRES==1 && COMPUTE_MULT==1) { // print result printf("\n\nres\n\n"); for(ii=0; ii<+N; ii++) s_print_mat(1, nx+nu, hrq[ii], 1); for(ii=0; ii<N; ii++) s_print_mat(1, nx, hrb[ii], 1); } // timing struct timeval tv0, tv1, tv2; gettimeofday(&tv0, NULL); // start // double precision for(rep=0; rep<nrep; rep++) { // restore cost function for(ii=0; ii<N; ii++) { for(jj=0; jj<pnz*pnz; jj++) hpQ[ii][jj]=pQ[jj]; } for(jj=0; jj<pnz*pnz; jj++) hpQ[N][jj]=pQ[jj]; // call the solver sricposv_mpc(nx, nu, N, pnz, hpBAbt, hpQ, hux, pL, pBAbtL, COMPUTE_MULT, hpi, &info); } gettimeofday(&tv1, NULL); // start for(rep=0; rep<nrep; rep++) { // clear solution for(ii=0; ii<N; ii++) { for(jj=0; jj<nu; jj++) hux[ii][jj] = 0; for(jj=0; jj<nx; jj++) hux[ii+1][nu+jj] = 0; } // restore linear part of cost function for(ii=0; ii<N; ii++) { for(jj=0; jj<nx+nu; jj++) hq[ii][jj] = Q[nx+nu+pnz*jj]; } for(jj=0; jj<nx+nu; jj++) hq[N][jj] = Q[nx+nu+pnz*jj]; // call the solver sricpotrs_mpc(nx, nu, N, pnz, hpBAbt, hpQ, hq, hux, pBAbtL, COMPUTE_MULT, hpi); } gettimeofday(&tv2, NULL); // start float time_sv = (float) (tv1.tv_sec-tv0.tv_sec)/(nrep+0.0)+(tv1.tv_usec-tv0.tv_usec)/(nrep*1e6); float flop_sv = (1.0/3.0*nx*nx*nx+3.0/2.0*nx*nx) + N*(7.0/3.0*nx*nx*nx+4.0*nx*nx*nu+2.0*nx*nu*nu+1.0/3.0*nu*nu*nu+13.0/2.0*nx*nx+9.0*nx*nu+5.0/2.0*nu*nu); if(COMPUTE_MULT==1) flop_sv += N*2*nx*nx; float Gflops_sv = 1e-9*flop_sv/time_sv; float time_trs = (float) (tv2.tv_sec-tv1.tv_sec)/(nrep+0.0)+(tv2.tv_usec-tv1.tv_usec)/(nrep*1e6); float flop_trs = N*(8.0*nx*nx+8.0*nx*nu+2.0*nu*nu); if(COMPUTE_MULT==1) flop_trs += N*2*nx*nx; float Gflops_trs = 1e-9*flop_trs/time_trs; float Gflops_max = flops_max * GHz_max; if(ll==0) printf("\nnx\tnu\tN\tsv time\t\tsv Gflops\tsv \%\t\ttrs time\ttrs Gflops\ttrs \%\n\n"); printf("%d\t%d\t%d\t%e\t%f\t%f\t%e\t%f\t%f\n", nx, nu, N, time_sv, Gflops_sv, 100.0*Gflops_sv/Gflops_max, time_trs, Gflops_trs, 100.0*Gflops_trs/Gflops_max); /************************************************ * return ************************************************/ free(A); free(B); free(b); free(x0); free(BAb); free(BAbt); free(pBAbt); free(Q); free(pQ); free(pL); free(pBAbtL); for(jj=0; jj<N; jj++) { free(hpQ[jj]); free(hq[jj]); free(hux[jj]); free(hpi[jj]); } free(hpQ[N]); free(hq[N]); free(hux[N]); free(hpi[N]); } // increase size printf("\n"); printf("\n"); printf("\n"); return 0; }
/* computes the Pade approximation of degree m of the matrix A */ void padeapprox(int m, int row, double *A) { int row2 = row * row; /* int i1 = 1;*/ /* double d0 = 0;*/ /* double d1 = 1;*/ /* double dm1 = -1;*/ double *U = malloc(row * row * sizeof(double)); for (int ii = 0; ii < row * row; ii++) U[ii] = 0.0; double *V = malloc(row * row * sizeof(double)); for (int ii = 0; ii < row * row; ii++) V[ii] = 0.0; if (m == 3) { double c[] = {120, 60, 12, 1}; double *A0 = malloc(row * row * sizeof(double)); for (int ii = 0; ii < row * row; ii++) A0[ii] = 0.0; for (int ii = 0; ii < row; ii++) A0[ii * (row + 1)] = 1.0; double *A2 = malloc(row * row * sizeof(double)); for (int ii = 0; ii < row * row; ii++) A2[ii] = 0.0; // char ta = 'n'; double alpha = 1; double beta = 0; // dgemm_(&ta, &ta, &row, &row, &row, &alpha, A, &row, A, &row, // &beta, A2, &row); dgemm_nn_3l(row, row, row, A, row, A, row, A2, row); double *temp = malloc(row * row * sizeof(double)); // dscal_(&row2, &d0, temp, &i1); dscal_3l(row2, 0, temp); // daxpy_(&row2, &c[3], A2, &i1, temp, &i1); daxpy_3l(row2, c[3], A2, temp); // daxpy_(&row2, &c[1], A0, &i1, temp, &i1); daxpy_3l(row2, c[1], A0, temp); // dgemm_(&ta, &ta, &row, &row, &row, &alpha, A, &row, temp, // &row, &beta, U, &row); dgemm_nn_3l(row, row, row, A, row, temp, row, U, row); // dscal_(&row2, &d0, V, &i1); dscal_3l(row2, 0, V); // daxpy_(&row2, &c[2], A2, &i1, V, &i1); daxpy_3l(row2, c[2], A2, V); // daxpy_(&row2, &c[0], A0, &i1, V, &i1); daxpy_3l(row2, c[0], A0, V); free(A0); free(A2); free(temp); } else if (m == 5) { double c[] = {30240, 15120, 3360, 420, 30, 1}; double *A0 = malloc(row * row * sizeof(double)); for (int ii = 0; ii < row * row; ii++) A0[ii] = 0.0; for (int ii = 0; ii < row; ii++) A0[ii * (row + 1)] = 1.0; double *A2 = malloc(row * row * sizeof(double)); for (int ii = 0; ii < row * row; ii++) A2[ii] = 0.0; double *A4 = malloc(row * row * sizeof(double)); for (int ii = 0; ii < row * row; ii++) A4[ii] = 0.0; // char ta = 'n'; double alpha = 1; double beta = 0; // dgemm_(&ta, &ta, &row, &row, &row, &alpha, A, &row, A, &row, // &beta, A2, &row); dgemm_nn_3l(row, row, row, A, row, A, row, A2, row); // dgemm_(&ta, &ta, &row, &row, &row, &alpha, A2, &row, A2, &row, // &beta, A4, &row); dgemm_nn_3l(row, row, row, A2, row, A2, row, A4, row); dmcopy(row, row, A4, row, V, row); double *temp = malloc(row * row * sizeof(double)); for (int ii = 0; ii < row * row; ii++) temp[ii] = 0.0; dmcopy(row, row, A4, row, temp, row); // daxpy_(&row2, &c[3], A2, &i1, temp, &i1); daxpy_3l(row2, c[3], A2, temp); // daxpy_(&row2, &c[1], A0, &i1, temp, &i1); daxpy_3l(row2, c[1], A0, temp); // dgemm_(&ta, &ta, &row, &row, &row, &alpha, A, &row, temp, // &row, &beta, U, &row); dgemm_nn_3l(row, row, row, A, row, temp, row, U, row); // dscal_(&row2, &c[4], V, &i1); dscal_3l(row2, c[4], V); // daxpy_(&row2, &c[2], A2, &i1, V, &i1); daxpy_3l(row2, c[2], A2, V); // daxpy_(&row2, &c[0], A0, &i1, V, &i1); daxpy_3l(row2, c[0], A0, V); free(A0); free(A2); free(A4); free(temp); } else if (m == 7) { double c[] = {17297280, 8648640, 1995840, 277200, 25200, 1512, 56, 1}; double *A0 = malloc(row * row * sizeof(double)); for (int ii = 0; ii < row * row; ii++) A0[ii] = 0.0; for (int ii = 0; ii < row; ii++) A0[ii * (row + 1)] = 1.0; double *A2 = malloc(row * row * sizeof(double)); for (int ii = 0; ii < row * row; ii++) A2[ii] = 0.0; double *A4 = malloc(row * row * sizeof(double)); for (int ii = 0; ii < row * row; ii++) A4[ii] = 0.0; double *A6 = malloc(row * row * sizeof(double)); for (int ii = 0; ii < row * row; ii++) A6[ii] = 0.0; // char ta = 'n'; double alpha = 1; double beta = 1; // dgemm_(&ta, &ta, &row, &row, &row, &alpha, A, &row, A, &row, // &beta, A2, &row); dgemm_nn_3l(row, row, row, A, row, A, row, A2, row); // dgemm_(&ta, &ta, &row, &row, &row, &alpha, A2, &row, A2, &row, // &beta, A4, &row); dgemm_nn_3l(row, row, row, A2, row, A2, row, A4, row); // dgemm_(&ta, &ta, &row, &row, &row, &alpha, A4, &row, A2, &row, // &beta, A6, &row); dgemm_nn_3l(row, row, row, A4, row, A2, row, A6, row); double *temp = malloc(row * row * sizeof(double)); for (int ii = 0; ii < row * row; ii++) temp[ii] = 0.0; // dscal_(&row2, &d0, temp, &i1); dscal_3l(row2, 0, temp); // daxpy_(&row2, &c[3], A2, &i1, temp, &i1); daxpy_3l(row2, c[3], A2, temp); // daxpy_(&row2, &c[1], A0, &i1, temp, &i1); daxpy_3l(row2, c[1], A0, temp); // daxpy_(&row2, &c[5], A4, &i1, temp, &i1); daxpy_3l(row2, c[5], A4, temp); // daxpy_(&row2, &c[7], A6, &i1, temp, &i1); daxpy_3l(row2, c[7], A6, temp); // dgemm_(&ta, &ta, &row, &row, &row, &alpha, A, &row, temp, // &row, &beta, U, &row); dgemm_nn_3l(row, row, row, A, row, temp, row, U, row); // dscal_(&row2, &d0, V, &i1); dscal_3l(row2, 0, V); // daxpy_(&row2, &c[2], A2, &i1, V, &i1); daxpy_3l(row2, c[2], A2, V); // daxpy_(&row2, &c[0], A0, &i1, V, &i1); daxpy_3l(row2, c[0], A0, V); // daxpy_(&row2, &c[4], A4, &i1, V, &i1); daxpy_3l(row2, c[4], A4, V); // daxpy_(&row2, &c[6], A6, &i1, V, &i1); daxpy_3l(row2, c[6], A6, V); free(A0); free(A2); free(A4); free(A6); free(temp); } else if (m == 9) { double c[] = {17643225600, 8821612800, 2075673600, 302702400, 30270240, 2162160, 110880, 3960, 90, 1}; double *A0 = malloc(row * row * sizeof(double)); for (int ii = 0; ii < row * row; ii++) A0[ii] = 0.0; for (int ii = 0; ii < row; ii++) A0[ii * (row + 1)] = 1.0; double *A2 = malloc(row * row * sizeof(double)); for (int ii = 0; ii < row * row; ii++) A2[ii] = 0.0; double *A4 = malloc(row * row * sizeof(double)); for (int ii = 0; ii < row * row; ii++) A4[ii] = 0.0; double *A6 = malloc(row * row * sizeof(double)); for (int ii = 0; ii < row * row; ii++) A6[ii] = 0.0; double *A8 = malloc(row * row * sizeof(double)); for (int ii = 0; ii < row * row; ii++) A8[ii] = 0.0; // char ta = 'n'; double alpha = 1; double beta = 0; // dgemm_(&ta, &ta, &row, &row, &row, &alpha, A, &row, A, &row, // &beta, A2, &row); dgemm_nn_3l(row, row, row, A, row, A, row, A2, row); // dgemm_(&ta, &ta, &row, &row, &row, &alpha, A2, &row, A2, &row, // &beta, A4, &row); dgemm_nn_3l(row, row, row, A2, row, A2, row, A4, row); // dgemm_(&ta, &ta, &row, &row, &row, &alpha, A4, &row, A2, &row, // &beta, A6, &row); dgemm_nn_3l(row, row, row, A4, row, A2, row, A6, row); // dgemm_(&ta, &ta, &row, &row, &row, &alpha, A6, &row, A2, &row, // &beta, A8, &row); dgemm_nn_3l(row, row, row, A6, row, A2, row, A8, row); dmcopy(row, row, A8, row, V, row); double *temp = malloc(row * row * sizeof(double)); for (int ii = 0; ii < row * row; ii++) temp[ii] = 0.0; dmcopy(row, row, A8, row, temp, row); // daxpy_(&row2, &c[3], A2, &i1, temp, &i1); daxpy_3l(row2, c[3], A2, temp); // daxpy_(&row2, &c[1], A0, &i1, temp, &i1); daxpy_3l(row2, c[1], A0, temp); // daxpy_(&row2, &c[5], A4, &i1, temp, &i1); daxpy_3l(row2, c[5], A4, temp); // daxpy_(&row2, &c[7], A6, &i1, temp, &i1); daxpy_3l(row2, c[7], A6, temp); // dgemm_(&ta, &ta, &row, &row, &row, &alpha, A, &row, temp, // &row, &beta, U, &row); dgemm_nn_3l(row, row, row, A, row, temp, row, U, row); // dscal_(&row2, &c[8], V, &i1); dscal_3l(row2, c[8], V); // daxpy_(&row2, &c[2], A2, &i1, V, &i1); daxpy_3l(row2, c[2], A2, V); // daxpy_(&row2, &c[0], A0, &i1, V, &i1); daxpy_3l(row2, c[0], A0, V); // daxpy_(&row2, &c[4], A4, &i1, V, &i1); daxpy_3l(row2, c[4], A4, V); // daxpy_(&row2, &c[6], A6, &i1, V, &i1); daxpy_3l(row2, c[6], A6, V); free(A0); free(A2); free(A4); free(A6); free(A8); free(temp); } else if (m == 13) { // tested double c[] = {64764752532480000, 32382376266240000, 7771770303897600, 1187353796428800, 129060195264000, 10559470521600, 670442572800, 33522128640, 1323241920, 40840800, 960960, 16380, 182, 1}; double *A0 = malloc(row * row * sizeof(double)); for (int ii = 0; ii < row * row; ii++) A0[ii] = 0.0; for (int ii = 0; ii < row; ii++) A0[ii * (row + 1)] = 1.0; double *A2 = malloc(row * row * sizeof(double)); for (int ii = 0; ii < row * row; ii++) A2[ii] = 0.0; double *A4 = malloc(row * row * sizeof(double)); for (int ii = 0; ii < row * row; ii++) A4[ii] = 0.0; double *A6 = malloc(row * row * sizeof(double)); for (int ii = 0; ii < row * row; ii++) A6[ii] = 0.0; // char ta = 'n'; double alpha = 1; double beta = 0; // dgemm_(&ta, &ta, &row, &row, &row, &alpha, A, &row, A, &row, // &beta, A2, &row); dgemm_nn_3l(row, row, row, A, row, A, row, A2, row); // dgemm_(&ta, &ta, &row, &row, &row, &alpha, A2, &row, A2, &row, // &beta, A4, &row); dgemm_nn_3l(row, row, row, A2, row, A2, row, A4, row); // dgemm_(&ta, &ta, &row, &row, &row, &alpha, A4, &row, A2, &row, // &beta, A6, &row); dgemm_nn_3l(row, row, row, A4, row, A2, row, A6, row); dmcopy(row, row, A2, row, U, row); double *temp = malloc(row * row * sizeof(double)); for (int ii = 0; ii < row * row; ii++) temp[ii] = 0.0; // dscal_(&row2, &c[9], U, &i1); dscal_3l(row2, c[9], U); // daxpy_(&row2, &c[11], A4, &i1, U, &i1); daxpy_3l(row2, c[11], A4, U); // daxpy_(&row2, &c[13], A6, &i1, U, &i1); daxpy_3l(row2, c[13], A6, U); // dgemm_(&ta, &ta, &row, &row, &row, &alpha, A6, &row, U, &row, // &beta, temp, &row); dgemm_nn_3l(row, row, row, A6, row, U, row, temp, row); // daxpy_(&row2, &c[7], A6, &i1, temp, &i1); daxpy_3l(row2, c[7], A6, temp); // daxpy_(&row2, &c[5], A4, &i1, temp, &i1); daxpy_3l(row2, c[5], A4, temp); // daxpy_(&row2, &c[3], A2, &i1, temp, &i1); daxpy_3l(row2, c[3], A2, temp); // daxpy_(&row2, &c[1], A0, &i1, temp, &i1); daxpy_3l(row2, c[1], A0, temp); // dgemm_(&ta, &ta, &row, &row, &row, &alpha, A, &row, temp, // &row, &beta, U, &row); dgemm_nn_3l(row, row, row, A, row, temp, row, U, row); dmcopy(row, row, A2, row, temp, row); // dscal_(&row2, &c[8], V, &i1); dscal_3l(row2, c[8], V); // daxpy_(&row2, &c[12], A6, &i1, temp, &i1); daxpy_3l(row2, c[12], A6, temp); // daxpy_(&row2, &c[10], A4, &i1, temp, &i1); daxpy_3l(row2, c[10], A4, temp); // dgemm_(&ta, &ta, &row, &row, &row, &alpha, A6, &row, temp, // &row, &beta, V, &row); dgemm_nn_3l(row, row, row, A6, row, temp, row, V, row); // daxpy_(&row2, &c[6], A6, &i1, V, &i1); daxpy_3l(row2, c[6], A6, V); // daxpy_(&row2, &c[4], A4, &i1, V, &i1); daxpy_3l(row2, c[4], A4, V); // daxpy_(&row2, &c[2], A2, &i1, V, &i1); daxpy_3l(row2, c[2], A2, V); // daxpy_(&row2, &c[0], A0, &i1, V, &i1); daxpy_3l(row2, c[0], A0, V); free(A0); free(A2); free(A4); free(A6); free(temp); } else { printf("%s\n", "Wrong Pade approximatin degree"); exit(1); } double *D = malloc(row * row * sizeof(double)); for (int ii = 0; ii < row * row; ii++) D[ii] = 0.0; // dcopy_(&row2, V, &i1, A, &i1); dmcopy(row, row, V, row, A, row); // daxpy_(&row2, &d1, U, &i1, A, &i1); daxpy_3l(row2, 1.0, U, A); // dcopy_(&row2, V, &i1, D, &i1); dmcopy(row, row, V, row, D, row); // daxpy_(&row2, &dm1, U, &i1, D, &i1); daxpy_3l(row2, -1.0, U, D); int *ipiv = (int *) calloc(row, sizeof(int)); int info = 0; // dgesv_(&row, &row, D, &row, ipiv, A, &row, &info); dgesv_3l(row, row, D, row, ipiv, A, row, &info); free(ipiv); free(D); free(U); free(V); }