double dgamma(double x, double shape, double scale, int give_log) { double pr; #ifdef IEEE_754 if (ISNAN(x) || ISNAN(shape) || ISNAN(scale)) return x + shape + scale; #endif if (shape <= 0 || scale <= 0) ML_ERR_return_NAN; if (x < 0) return R_D__0; if (x == 0) { if (shape < 1) return ML_POSINF; if (shape > 1) return R_D__0; /* else */ return give_log ? -log(scale) : 1 / scale; } if (shape < 1) { pr = dpois_raw(shape, x/scale, give_log); return give_log ? pr + log(shape/x) : pr*shape/x; } /* else shape >= 1 */ pr = dpois_raw(shape-1, x/scale, give_log); return give_log ? pr - log(scale) : pr/scale; }
double dnchisq(double x, double df, double lambda, int give_log) { const double eps = 5e-15; double i, lambda2, term, sum, q, mid, dfmid, imax, errorbound; #ifdef IEEE_754 if (ISNAN(x) || ISNAN(df) || ISNAN(lambda)) return x + df + lambda; #endif if (lambda < 0 || df <= 0) ML_ERR_return_NAN; if (!R_FINITE(df) || !R_FINITE(lambda)) ML_ERR_return_NAN; if(x < 0) return R_D__0; if(x == 0 && df < 2.) return ML_POSINF; if(lambda == 0) return dchisq(x, df, give_log); lambda2 = 0.5 * lambda; /* find max element of sum */ imax = ceil((-(2+df) +sqrt((2-df) * (2-df) + 4 * lambda * x))/4); if (imax < 0) imax = 0; dfmid = df + 2 * imax; mid = dpois_raw(imax, lambda2, FALSE) * dchisq(x, dfmid, FALSE); sum = mid; /* upper tail */ term = mid; i = imax; df = dfmid; do { i++; q = x * lambda2 / i / df; df += 2; term = q * term; sum += term; errorbound = term * q / (1-q); } while (errorbound > eps || q >= 1); /* lower tail */ term = mid; df = dfmid; i = imax; while ( i ){ df -= 2; q = i * df / x / lambda2; i--; term = q * term; sum += term; errorbound = term * q / (1-q); if (errorbound <= eps && q < 1) break; } return R_D_val(sum); }
/* * Abramowitz and Stegun 6.5.29 [right] */ static double pgamma_smallx (double x, double alph, int lower_tail, int log_p) { double sum = 0, c = alph, n = 0, term; #ifdef DEBUG_p REprintf (" pg_smallx(x=%.12g, alph=%.12g): ", x, alph); #endif /* * Relative to 6.5.29 all terms have been multiplied by alph * and the first, thus being 1, is omitted. */ do { n++; c *= -x / n; term = c / (alph + n); sum += term; } while (fabs (term) > DBL_EPSILON * fabs (sum)); #ifdef DEBUG_p REprintf ("%5.0f terms --> conv.sum=%g;", n, sum); #endif if (lower_tail) { double f1 = log_p ? log1p (sum) : 1 + sum; double f2; if (alph > 1) { f2 = dpois_raw (alph, x, log_p); f2 = log_p ? f2 + x : f2 * exp (x); } else if (log_p) f2 = alph * log (x) - lgamma1p (alph); else f2 = pow (x, alph) / exp (lgamma1p (alph)); #ifdef DEBUG_p REprintf (" (f1,f2)= (%g,%g)\n", f1,f2); #endif return log_p ? f1 + f2 : f1 * f2; } else { double lf2 = alph * log (x) - lgamma1p (alph); #ifdef DEBUG_p REprintf (" 1:%.14g 2:%.14g\n", alph * log (x), lgamma1p (alph)); REprintf (" sum=%.14g log(1+sum)=%.14g lf2=%.14g\n", sum, log1p (sum), lf2); #endif if (log_p) return R_Log1_Exp (log1p (sum) + lf2); else { double f1m1 = sum; double f2m1 = expm1 (lf2); return -(f1m1 + f2m1 + f1m1 * f2m1); } } } /* pgamma_smallx() */
double dgamma(double x, double shape, double scale, int give_log) { #ifndef D_non_pois double pr; #endif #ifdef IEEE_754 if (ISNAN(x) || ISNAN(shape) || ISNAN(scale)) return x + shape + scale; #endif if (shape <= 0 || scale <= 0) ML_ERR_return_NAN; if (x < 0) return R_D__0; if (x == 0) { // if (shape < 1) ML_ERR_return_NAN; if(shape < 1) return BOOM::infinity(); if(shape > 1) return R_D__0; /* else */ return give_log ? -log(scale) : 1 / scale; } #ifdef D_non_pois x /= scale; return give_log ? ((shape - 1) * log(x) - lgammafn(shape) - x) - log(scale) : exp((shape - 1) * log(x) - lgammafn(shape) - x) / scale; #else /* new dpois() based code */ if (shape < 1) { pr = dpois_raw(shape, x/scale, give_log); return give_log ? pr + log(shape/x) : pr*shape/x; } /* else shape >= 1 */ pr = dpois_raw(shape-1, x/scale, give_log); return give_log ? pr - log(scale) : pr/scale; #endif }
/* dpois_wrap (x_P_1, lambda, g_log) == * dpois (x_P_1 - 1, lambda, g_log) := exp(-L) L^k / gamma(k+1) , k := x_P_1 - 1 */ static double dpois_wrap (double x_plus_1, double lambda, int give_log) { #ifdef DEBUG_p REprintf (" dpois_wrap(x+1=%.14g, lambda=%.14g, log=%d)\n", x_plus_1, lambda, give_log); #endif if (!R_FINITE(lambda)) return R_D__0; if (x_plus_1 > 1) return dpois_raw (x_plus_1 - 1, lambda, give_log); if (lambda > fabs(x_plus_1 - 1) * M_cutoff) return R_D_exp(-lambda - lgammafn(x_plus_1)); else { double d = dpois_raw (x_plus_1, lambda, give_log); #ifdef DEBUG_p REprintf (" -> d=dpois_raw(..)=%.14g\n", d); #endif return give_log ? d + log (x_plus_1 / lambda) : d * (x_plus_1 / lambda); } }
double dpois(NMATH_STATE *state, double x, double lambda, int give_log) { if(isnan(x) || isnan(lambda)) return x + lambda; if (lambda < 0) return NAN; R_D_nonint_check(x); if (x < 0 || !isfinite(x)) return R_D__0; x = R_D_forceint(x); return( dpois_raw(state, x,lambda,give_log) ); }
double dpois(double x, double lambda, int give_log) { #ifdef IEEE_754 if(ISNAN(x) || ISNAN(lambda)) return x + lambda; #endif if (lambda < 0) ML_ERR_return_NAN; R_D_nonint_check(x); if (x < 0 || !R_FINITE(x)) return R_D__0; x = R_D_forceint(x); return( dpois_raw(x,lambda,give_log) ); }
double dnbinom_mu(double x, double size, double mu, int give_log) { /* originally, just set prob := size / (size + mu) and called dbinom_raw(), * but that suffers from cancellation when mu << size */ #ifdef IEEE_754 if (ISNAN(x) || ISNAN(size) || ISNAN(mu)) return x + size + mu; #endif if (mu < 0 || size < 0) ML_ERR_return_NAN; R_D_nonint_check(x); if (x < 0 || !R_FINITE(x)) return R_D__0; /* limiting case as size approaches zero is point mass at zero, * even if mu is kept constant. limit distribution does not * have mean mu, though. */ if (x == 0 && size == 0) return R_D__1; x = R_forceint(x); if(!R_FINITE(size)) // limit case: Poisson return(dpois_raw(x, mu, give_log)); if(x == 0)/* be accurate, both for n << mu, and n >> mu :*/ return R_D_exp(size * (size < mu ? log(size/(size+mu)) : log1p(- mu/(size+mu)))); if(x < 1e-10 * size) { /* don't use dbinom_raw() but MM's formula: */ /* FIXME --- 1e-8 shows problem; rather use algdiv() from ./toms708.c */ double p = (size < mu ? log(size/(1 + size/mu)) : log(mu / (1 + mu/size))); return R_D_exp(x * p - mu - lgamma(x+1) + log1p(x*(x-1)/(2*size))); } else { /* no unnecessary cancellation inside dbinom_raw, when * x_ = size and n_ = x+size are so close that n_ - x_ loses accuracy */ double p = ((double)size)/(size+x), ans = dbinom_raw(size, x+size, size/(size+mu), mu/(size+mu), give_log); return((give_log) ? log(p) + ans : p * ans); } }
double dnchisq(double x, double df, double ncp, int give_log) { const static double eps = 5e-15; double i, ncp2, q, mid, dfmid, imax; LDOUBLE sum, term; #ifdef IEEE_754 if (ISNAN(x) || ISNAN(df) || ISNAN(ncp)) return x + df + ncp; #endif if (!R_FINITE(df) || !R_FINITE(ncp) || ncp < 0 || df < 0) ML_ERR_return_NAN; if(x < 0) return R_D__0; if(x == 0 && df < 2.) return ML_POSINF; if(ncp == 0) return (df > 0) ? dchisq(x, df, give_log) : R_D__0; if(x == ML_POSINF) return R_D__0; ncp2 = 0.5 * ncp; /* find max element of sum */ imax = ceil((-(2+df) +sqrt((2-df) * (2-df) + 4 * ncp * x))/4); if (imax < 0) imax = 0; if(R_FINITE(imax)) { dfmid = df + 2 * imax; mid = dpois_raw(imax, ncp2, FALSE) * dchisq(x, dfmid, FALSE); } else /* imax = Inf */ mid = 0; if(mid == 0) { /* underflow to 0 -- maybe numerically correct; maybe can be more accurate, * particularly when give_log = TRUE */ /* Use central-chisq approximation formula when appropriate; * ((FIXME: the optimal cutoff also depends on (x,df); use always here? )) */ if(give_log || ncp > 1000.) { double nl = df + ncp, ic = nl/(nl + ncp);/* = "1/(1+b)" Abramowitz & St.*/ return dchisq(x*ic, nl*ic, give_log); } else return R_D__0; } sum = mid; /* errorbound := term * q / (1-q) now subsumed in while() / if() below: */ /* upper tail */ term = mid; df = dfmid; i = imax; double x2 = x * ncp2; do { i++; q = x2 / i / df; df += 2; term *= q; sum += term; } while (q >= 1 || term * q > (1-q)*eps || term > 1e-10*sum); /* lower tail */ term = mid; df = dfmid; i = imax; while (i != 0) { df -= 2; q = i * df / x2; i--; term *= q; sum += term; if (q < 1 && term * q <= (1-q)*eps) break; } return R_D_val((double) sum); }