コード例 #1
0
ファイル: bilat.c プロジェクト: boucman/darktable
int process_cl(struct dt_iop_module_t *self, dt_dev_pixelpipe_iop_t *piece, cl_mem dev_in, cl_mem dev_out,
               const dt_iop_roi_t *roi_in, const dt_iop_roi_t *roi_out)
{
  dt_iop_bilat_data_t *d = (dt_iop_bilat_data_t *)piece->data;
  // the total scale is composed of scale before input to the pipeline (iscale),
  // and the scale of the roi.
  const float scale = piece->iscale / roi_in->scale;
  const float sigma_r = d->sigma_r; // does not depend on scale
  const float sigma_s = d->sigma_s / scale;
  cl_int err = -666;

  dt_bilateral_cl_t *b
      = dt_bilateral_init_cl(piece->pipe->devid, roi_in->width, roi_in->height, sigma_s, sigma_r);
  if(!b) goto error;
  err = dt_bilateral_splat_cl(b, dev_in);
  if(err != CL_SUCCESS) goto error;
  err = dt_bilateral_blur_cl(b);
  if(err != CL_SUCCESS) goto error;
  err = dt_bilateral_slice_cl(b, dev_in, dev_out, d->detail);
  if(err != CL_SUCCESS) goto error;
  dt_bilateral_free_cl(b);
  return TRUE;
error:
  dt_bilateral_free_cl(b);
  dt_print(DT_DEBUG_OPENCL, "[opencl_bilateral] couldn't enqueue kernel! %d\n", err);
  return FALSE;
}
コード例 #2
0
int
process_cl (struct dt_iop_module_t *self, dt_dev_pixelpipe_iop_t *piece, cl_mem dev_in, cl_mem dev_out, const dt_iop_roi_t *roi_in, const dt_iop_roi_t *roi_out)
{
  dt_iop_monochrome_data_t *d = (dt_iop_monochrome_data_t *)piece->data;
  dt_iop_monochrome_global_data_t *gd = (dt_iop_monochrome_global_data_t *)self->data;

  cl_int err = -999;
  const int devid = piece->pipe->devid;

  const int width = roi_out->width;
  const int height = roi_out->height;
  const float sigma2 = (d->size*128.0)*(d->size*128.0f);

  // TODO: alloc new buffer, bilat filter, and go on with that
  const float scale = piece->iscale/roi_in->scale;
  const float sigma_r = 250.0f; // does not depend on scale
  const float sigma_s = 20.0f / scale;
  const float detail = -1.0f; // bilateral base layer

  cl_mem dev_tmp = NULL;
  dev_tmp = dt_opencl_alloc_device(devid, roi_in->width, roi_in->height, 4*sizeof(float));

  dt_bilateral_cl_t *b = dt_bilateral_init_cl(devid, roi_in->width, roi_in->height, sigma_s, sigma_r);
  if(!b) goto error;

  size_t sizes[2] = { ROUNDUPWD(width), ROUNDUPHT(height) };
  dt_opencl_set_kernel_arg(devid, gd->kernel_monochrome_filter, 0, sizeof(cl_mem), &dev_in);
  dt_opencl_set_kernel_arg(devid, gd->kernel_monochrome_filter, 1, sizeof(cl_mem), &dev_tmp);
  dt_opencl_set_kernel_arg(devid, gd->kernel_monochrome_filter, 2, sizeof(int), &width);
  dt_opencl_set_kernel_arg(devid, gd->kernel_monochrome_filter, 3, sizeof(int), &height);
  dt_opencl_set_kernel_arg(devid, gd->kernel_monochrome_filter, 4, sizeof(float), &d->a);
  dt_opencl_set_kernel_arg(devid, gd->kernel_monochrome_filter, 5, sizeof(float), &d->b);
  dt_opencl_set_kernel_arg(devid, gd->kernel_monochrome_filter, 6, sizeof(float), &sigma2);
  err = dt_opencl_enqueue_kernel_2d(devid, gd->kernel_monochrome_filter, sizes);
  if(err != CL_SUCCESS) goto error;

  err = dt_bilateral_splat_cl(b, dev_tmp);
  if (err != CL_SUCCESS) goto error;
  err = dt_bilateral_blur_cl(b);
  if (err != CL_SUCCESS) goto error;
  err = dt_bilateral_slice_cl(b, dev_tmp, dev_tmp, detail);
  if (err != CL_SUCCESS) goto error;
  dt_bilateral_free_cl(b);
  b = NULL; // make sure we don't do double cleanup in case the next few lines err out

  dt_opencl_set_kernel_arg(devid, gd->kernel_monochrome, 0, sizeof(cl_mem), &dev_in);
  dt_opencl_set_kernel_arg(devid, gd->kernel_monochrome, 1, sizeof(cl_mem), &dev_tmp);
  dt_opencl_set_kernel_arg(devid, gd->kernel_monochrome, 2, sizeof(cl_mem), &dev_out);
  dt_opencl_set_kernel_arg(devid, gd->kernel_monochrome, 3, sizeof(int), &width);
  dt_opencl_set_kernel_arg(devid, gd->kernel_monochrome, 4, sizeof(int), &height);
  dt_opencl_set_kernel_arg(devid, gd->kernel_monochrome, 5, sizeof(float), &d->a);
  dt_opencl_set_kernel_arg(devid, gd->kernel_monochrome, 6, sizeof(float), &d->b);
  dt_opencl_set_kernel_arg(devid, gd->kernel_monochrome, 7, sizeof(float), &sigma2);
  dt_opencl_set_kernel_arg(devid, gd->kernel_monochrome, 8, sizeof(float), &d->highlights);
  err = dt_opencl_enqueue_kernel_2d(devid, gd->kernel_monochrome, sizes);
  if(err != CL_SUCCESS) goto error;

  if (dev_tmp != NULL) dt_opencl_release_mem_object(dev_tmp);
  return TRUE;

error:
  if (dev_tmp != NULL) dt_opencl_release_mem_object(dev_tmp);
  dt_bilateral_free_cl(b);
  dt_print(DT_DEBUG_OPENCL, "[opencl_monochrome] couldn't enqueue kernel! %d\n", err);
  return FALSE;
}
コード例 #3
0
ファイル: lowpass.c プロジェクト: jmarca/darktable
int
process_cl (struct dt_iop_module_t *self, dt_dev_pixelpipe_iop_t *piece, cl_mem dev_in, cl_mem dev_out, const dt_iop_roi_t *roi_in, const dt_iop_roi_t *roi_out)
{
  dt_iop_lowpass_data_t *d = (dt_iop_lowpass_data_t *)piece->data;
  dt_iop_lowpass_global_data_t *gd = (dt_iop_lowpass_global_data_t *)self->data;

  cl_int err = -999;
  const int devid = piece->pipe->devid;

  const int width = roi_in->width;
  const int height = roi_in->height;
  const int channels = piece->colors;

  const float Labmax[] = { 100.0f, 128.0f, 128.0f, 1.0f };
  const float Labmin[] = { 0.0f, -128.0f, -128.0f, 0.0f };

  const int   use_bilateral = d->radius < 0 ? 1 : 0;
  const float radius = fmax(0.1f, fabs(d->radius));
  const float sigma = radius * roi_in->scale / piece ->iscale;
  const float saturation = d->saturation;
  const int order = d->order;

  size_t sizes[3];

  cl_mem dev_m = NULL;
  cl_mem dev_coeffs = NULL;

  dt_gaussian_cl_t *g = NULL;
  dt_bilateral_cl_t *b = NULL;

  if(!use_bilateral)
  {
    g = dt_gaussian_init_cl(devid, width, height, channels, Labmax, Labmin, sigma, order);
    if(!g) goto error;
    err = dt_gaussian_blur_cl(g, dev_in, dev_out);
    if(err != CL_SUCCESS) goto error;
    dt_gaussian_free_cl(g);
    g = NULL;
  }
  else
  {
    const float sigma_r = 100.0f; // does not depend on scale
    const float sigma_s = sigma;
    const float detail = -1.0f; // we want the bilateral base layer

    b = dt_bilateral_init_cl(devid, width, height, sigma_s, sigma_r);
    if(!b) goto error;
    err = dt_bilateral_splat_cl(b, dev_in);
    if (err != CL_SUCCESS) goto error;
    err = dt_bilateral_blur_cl(b);
    if (err != CL_SUCCESS) goto error;
    err = dt_bilateral_slice_cl(b, dev_in, dev_out, detail);
    if (err != CL_SUCCESS) goto error;
    dt_bilateral_free_cl(b);
    b = NULL; // make sure we don't clean it up twice
  }

  dev_m = dt_opencl_copy_host_to_device(devid, d->table, 256, 256, sizeof(float));
  if(dev_m == NULL) goto error;
  dev_coeffs = dt_opencl_copy_host_to_device_constant(devid, sizeof(float)*3, d->unbounded_coeffs);
  if(dev_coeffs == NULL) goto error;

  sizes[0] = ROUNDUPWD(width);
  sizes[1] = ROUNDUPWD(height);
  sizes[2] = 1;
  dt_opencl_set_kernel_arg(devid, gd->kernel_lowpass_mix, 0, sizeof(cl_mem), (void *)&dev_out);
  dt_opencl_set_kernel_arg(devid, gd->kernel_lowpass_mix, 1, sizeof(cl_mem), (void *)&dev_out);
  dt_opencl_set_kernel_arg(devid, gd->kernel_lowpass_mix, 2, sizeof(int), (void *)&width);
  dt_opencl_set_kernel_arg(devid, gd->kernel_lowpass_mix, 3, sizeof(int), (void *)&height);
  dt_opencl_set_kernel_arg(devid, gd->kernel_lowpass_mix, 4, sizeof(float), (void *)&saturation);
  dt_opencl_set_kernel_arg(devid, gd->kernel_lowpass_mix, 5, sizeof(cl_mem), (void *)&dev_m);
  dt_opencl_set_kernel_arg(devid, gd->kernel_lowpass_mix, 6, sizeof(cl_mem), (void *)&dev_coeffs);
  err = dt_opencl_enqueue_kernel_2d(devid, gd->kernel_lowpass_mix, sizes);
  if(err != CL_SUCCESS) goto error;

  if (dev_coeffs != NULL) dt_opencl_release_mem_object(dev_coeffs);
  if (dev_m != NULL) dt_opencl_release_mem_object(dev_m);

  return TRUE;

error:
  if (g) dt_gaussian_free_cl(g);
  if (b) dt_bilateral_free_cl(b);
  if (dev_coeffs != NULL) dt_opencl_release_mem_object(dev_coeffs);
  if (dev_m != NULL) dt_opencl_release_mem_object(dev_m);
  dt_print(DT_DEBUG_OPENCL, "[opencl_lowpass] couldn't enqueue kernel! %d\n", err);
  return FALSE;
}