コード例 #1
0
ファイル: fblaswr.c プロジェクト: CIBC-Internal/clapack
int
f2c_dtbmv(char* uplo, char* trans, char* diag, integer* N, integer* K,
          doublereal* A, integer* lda,
          doublereal* X, integer* incX)
{
    dtbmv_(uplo, trans, diag,
           N, K, A, lda, X, incX);
    return 0;
}
コード例 #2
0
/* ************************************************************
   TIME-CRITICAL PROCEDURE -- realHadamard
   Computes  r = x .* y  using loop-unrolling.
   ************************************************************ */
void realHadamard(double * r, const double *x, const double *y, const mwIndex n)
{
    int one=1;
    double zero=0.0;
#ifdef PC
    dcopy(&n,y,&one,r,&one);
    dtbmv('u','n','n',&n,&zero,x,&one,r,&one);
    #endif
    #ifdef UNIX
    dcopy_(&n,y,&one,r,&one);
    dtbmv_('u','n','n',&n,&zero,x,&one,r,&one);
    #endif
    return;
}
コード例 #3
0
/* Subroutine */ int dtbrfs_(char *uplo, char *trans, char *diag, integer *n, 
	integer *kd, integer *nrhs, doublereal *ab, integer *ldab, doublereal 
	*b, integer *ldb, doublereal *x, integer *ldx, doublereal *ferr, 
	doublereal *berr, doublereal *work, integer *iwork, integer *info)
{
    /* System generated locals */
    integer ab_dim1, ab_offset, b_dim1, b_offset, x_dim1, x_offset, i__1, 
	    i__2, i__3, i__4, i__5;
    doublereal d__1, d__2, d__3;

    /* Local variables */
    integer i__, j, k;
    doublereal s, xk;
    integer nz;
    doublereal eps;
    integer kase;
    doublereal safe1, safe2;
    integer isave[3];
    logical upper;
    doublereal safmin;
    logical notran;
    char transt[1];
    logical nounit;
    doublereal lstres;

/*  -- LAPACK routine (version 3.2) -- */
/*     November 2006 */

/*     Modified to call DLACN2 in place of DLACON, 5 Feb 03, SJH. */

/*  Purpose */
/*  ======= */

/*  DTBRFS provides error bounds and backward error estimates for the */
/*  solution to a system of linear equations with a triangular band */
/*  coefficient matrix. */

/*  The solution matrix X must be computed by DTBTRS or some other */
/*  means before entering this routine.  DTBRFS does not do iterative */
/*  refinement because doing so cannot improve the backward error. */

/*  Arguments */
/*  ========= */

/*  UPLO    (input) CHARACTER*1 */
/*          = 'U':  A is upper triangular; */
/*          = 'L':  A is lower triangular. */

/*  TRANS   (input) CHARACTER*1 */
/*          Specifies the form of the system of equations: */
/*          = 'N':  A * X = B  (No transpose) */
/*          = 'T':  A**T * X = B  (Transpose) */
/*          = 'C':  A**H * X = B  (Conjugate transpose = Transpose) */

/*  DIAG    (input) CHARACTER*1 */
/*          = 'N':  A is non-unit triangular; */
/*          = 'U':  A is unit triangular. */

/*  N       (input) INTEGER */
/*          The order of the matrix A.  N >= 0. */

/*  KD      (input) INTEGER */
/*          The number of superdiagonals or subdiagonals of the */
/*          triangular band matrix A.  KD >= 0. */

/*  NRHS    (input) INTEGER */
/*          The number of right hand sides, i.e., the number of columns */
/*          of the matrices B and X.  NRHS >= 0. */

/*  AB      (input) DOUBLE PRECISION array, dimension (LDAB,N) */
/*          The upper or lower triangular band matrix A, stored in the */
/*          first kd+1 rows of the array. The j-th column of A is stored */
/*          in the j-th column of the array AB as follows: */
/*          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; */
/*          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd). */
/*          If DIAG = 'U', the diagonal elements of A are not referenced */
/*          and are assumed to be 1. */

/*  LDAB    (input) INTEGER */
/*          The leading dimension of the array AB.  LDAB >= KD+1. */

/*  B       (input) DOUBLE PRECISION array, dimension (LDB,NRHS) */
/*          The right hand side matrix B. */

/*  LDB     (input) INTEGER */
/*          The leading dimension of the array B.  LDB >= max(1,N). */

/*  X       (input) DOUBLE PRECISION array, dimension (LDX,NRHS) */
/*          The solution matrix X. */

/*  LDX     (input) INTEGER */
/*          The leading dimension of the array X.  LDX >= max(1,N). */

/*  FERR    (output) DOUBLE PRECISION array, dimension (NRHS) */
/*          The estimated forward error bound for each solution vector */
/*          X(j) (the j-th column of the solution matrix X). */
/*          If XTRUE is the true solution corresponding to X(j), FERR(j) */
/*          is an estimated upper bound for the magnitude of the largest */
/*          element in (X(j) - XTRUE) divided by the magnitude of the */
/*          largest element in X(j).  The estimate is as reliable as */
/*          the estimate for RCOND, and is almost always a slight */
/*          overestimate of the true error. */

/*  BERR    (output) DOUBLE PRECISION array, dimension (NRHS) */
/*          The componentwise relative backward error of each solution */
/*          vector X(j) (i.e., the smallest relative change in */
/*          any element of A or B that makes X(j) an exact solution). */

/*  WORK    (workspace) DOUBLE PRECISION array, dimension (3*N) */

/*  IWORK   (workspace) INTEGER array, dimension (N) */

/*  INFO    (output) INTEGER */
/*          = 0:  successful exit */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value */

/*  ===================================================================== */

/*     Test the input parameters. */

    /* Parameter adjustments */
    ab_dim1 = *ldab;
    ab_offset = 1 + ab_dim1;
    ab -= ab_offset;
    b_dim1 = *ldb;
    b_offset = 1 + b_dim1;
    b -= b_offset;
    x_dim1 = *ldx;
    x_offset = 1 + x_dim1;
    x -= x_offset;
    --ferr;
    --berr;
    --work;
    --iwork;

    /* Function Body */
    *info = 0;
    upper = lsame_(uplo, "U");
    notran = lsame_(trans, "N");
    nounit = lsame_(diag, "N");

    if (! upper && ! lsame_(uplo, "L")) {
	*info = -1;
    } else if (! notran && ! lsame_(trans, "T") && ! 
	    lsame_(trans, "C")) {
	*info = -2;
    } else if (! nounit && ! lsame_(diag, "U")) {
	*info = -3;
    } else if (*n < 0) {
	*info = -4;
    } else if (*kd < 0) {
	*info = -5;
    } else if (*nrhs < 0) {
	*info = -6;
    } else if (*ldab < *kd + 1) {
	*info = -8;
    } else if (*ldb < max(1,*n)) {
	*info = -10;
    } else if (*ldx < max(1,*n)) {
	*info = -12;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("DTBRFS", &i__1);
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0 || *nrhs == 0) {
	i__1 = *nrhs;
	for (j = 1; j <= i__1; ++j) {
	    ferr[j] = 0.;
	    berr[j] = 0.;
	}
	return 0;
    }

    if (notran) {
	*(unsigned char *)transt = 'T';
    } else {
	*(unsigned char *)transt = 'N';
    }

/*     NZ = maximum number of nonzero elements in each row of A, plus 1 */

    nz = *kd + 2;
    eps = dlamch_("Epsilon");
    safmin = dlamch_("Safe minimum");
    safe1 = nz * safmin;
    safe2 = safe1 / eps;

/*     Do for each right hand side */

    i__1 = *nrhs;
    for (j = 1; j <= i__1; ++j) {

/*        Compute residual R = B - op(A) * X, */
/*        where op(A) = A or A', depending on TRANS. */

	dcopy_(n, &x[j * x_dim1 + 1], &c__1, &work[*n + 1], &c__1);
	dtbmv_(uplo, trans, diag, n, kd, &ab[ab_offset], ldab, &work[*n + 1], 
		&c__1);
	daxpy_(n, &c_b19, &b[j * b_dim1 + 1], &c__1, &work[*n + 1], &c__1);

/*        Compute componentwise relative backward error from formula */

/*        max(i) ( abs(R(i)) / ( abs(op(A))*abs(X) + abs(B) )(i) ) */

/*        where abs(Z) is the componentwise absolute value of the matrix */
/*        or vector Z.  If the i-th component of the denominator is less */
/*        than SAFE2, then SAFE1 is added to the i-th components of the */
/*        numerator and denominator before dividing. */

	i__2 = *n;
	for (i__ = 1; i__ <= i__2; ++i__) {
	    work[i__] = (d__1 = b[i__ + j * b_dim1], abs(d__1));
	}

	if (notran) {

/*           Compute abs(A)*abs(X) + abs(B). */

	    if (upper) {
		if (nounit) {
		    i__2 = *n;
		    for (k = 1; k <= i__2; ++k) {
			xk = (d__1 = x[k + j * x_dim1], abs(d__1));
/* Computing MAX */
			i__3 = 1, i__4 = k - *kd;
			i__5 = k;
			for (i__ = max(i__3,i__4); i__ <= i__5; ++i__) {
			    work[i__] += (d__1 = ab[*kd + 1 + i__ - k + k * 
				    ab_dim1], abs(d__1)) * xk;
			}
		    }
		} else {
		    i__2 = *n;
		    for (k = 1; k <= i__2; ++k) {
			xk = (d__1 = x[k + j * x_dim1], abs(d__1));
/* Computing MAX */
			i__5 = 1, i__3 = k - *kd;
			i__4 = k - 1;
			for (i__ = max(i__5,i__3); i__ <= i__4; ++i__) {
			    work[i__] += (d__1 = ab[*kd + 1 + i__ - k + k * 
				    ab_dim1], abs(d__1)) * xk;
			}
			work[k] += xk;
		    }
		}
	    } else {
		if (nounit) {
		    i__2 = *n;
		    for (k = 1; k <= i__2; ++k) {
			xk = (d__1 = x[k + j * x_dim1], abs(d__1));
/* Computing MIN */
			i__5 = *n, i__3 = k + *kd;
			i__4 = min(i__5,i__3);
			for (i__ = k; i__ <= i__4; ++i__) {
			    work[i__] += (d__1 = ab[i__ + 1 - k + k * ab_dim1]
				    , abs(d__1)) * xk;
			}
		    }
		} else {
		    i__2 = *n;
		    for (k = 1; k <= i__2; ++k) {
			xk = (d__1 = x[k + j * x_dim1], abs(d__1));
/* Computing MIN */
			i__5 = *n, i__3 = k + *kd;
			i__4 = min(i__5,i__3);
			for (i__ = k + 1; i__ <= i__4; ++i__) {
			    work[i__] += (d__1 = ab[i__ + 1 - k + k * ab_dim1]
				    , abs(d__1)) * xk;
			}
			work[k] += xk;
		    }
		}
	    }
	} else {

/*           Compute abs(A')*abs(X) + abs(B). */

	    if (upper) {
		if (nounit) {
		    i__2 = *n;
		    for (k = 1; k <= i__2; ++k) {
			s = 0.;
/* Computing MAX */
			i__4 = 1, i__5 = k - *kd;
			i__3 = k;
			for (i__ = max(i__4,i__5); i__ <= i__3; ++i__) {
			    s += (d__1 = ab[*kd + 1 + i__ - k + k * ab_dim1], 
				    abs(d__1)) * (d__2 = x[i__ + j * x_dim1], 
				    abs(d__2));
			}
			work[k] += s;
		    }
		} else {
		    i__2 = *n;
		    for (k = 1; k <= i__2; ++k) {
			s = (d__1 = x[k + j * x_dim1], abs(d__1));
/* Computing MAX */
			i__3 = 1, i__4 = k - *kd;
			i__5 = k - 1;
			for (i__ = max(i__3,i__4); i__ <= i__5; ++i__) {
			    s += (d__1 = ab[*kd + 1 + i__ - k + k * ab_dim1], 
				    abs(d__1)) * (d__2 = x[i__ + j * x_dim1], 
				    abs(d__2));
			}
			work[k] += s;
		    }
		}
	    } else {
		if (nounit) {
		    i__2 = *n;
		    for (k = 1; k <= i__2; ++k) {
			s = 0.;
/* Computing MIN */
			i__3 = *n, i__4 = k + *kd;
			i__5 = min(i__3,i__4);
			for (i__ = k; i__ <= i__5; ++i__) {
			    s += (d__1 = ab[i__ + 1 - k + k * ab_dim1], abs(
				    d__1)) * (d__2 = x[i__ + j * x_dim1], abs(
				    d__2));
			}
			work[k] += s;
		    }
		} else {
		    i__2 = *n;
		    for (k = 1; k <= i__2; ++k) {
			s = (d__1 = x[k + j * x_dim1], abs(d__1));
/* Computing MIN */
			i__3 = *n, i__4 = k + *kd;
			i__5 = min(i__3,i__4);
			for (i__ = k + 1; i__ <= i__5; ++i__) {
			    s += (d__1 = ab[i__ + 1 - k + k * ab_dim1], abs(
				    d__1)) * (d__2 = x[i__ + j * x_dim1], abs(
				    d__2));
			}
			work[k] += s;
		    }
		}
	    }
	}
	s = 0.;
	i__2 = *n;
	for (i__ = 1; i__ <= i__2; ++i__) {
	    if (work[i__] > safe2) {
/* Computing MAX */
		d__2 = s, d__3 = (d__1 = work[*n + i__], abs(d__1)) / work[
			i__];
		s = max(d__2,d__3);
	    } else {
/* Computing MAX */
		d__2 = s, d__3 = ((d__1 = work[*n + i__], abs(d__1)) + safe1) 
			/ (work[i__] + safe1);
		s = max(d__2,d__3);
	    }
	}
	berr[j] = s;

/*        Bound error from formula */

/*        norm(X - XTRUE) / norm(X) .le. FERR = */
/*        norm( abs(inv(op(A)))* */
/*           ( abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) ))) / norm(X) */

/*        where */
/*          norm(Z) is the magnitude of the largest component of Z */
/*          inv(op(A)) is the inverse of op(A) */
/*          abs(Z) is the componentwise absolute value of the matrix or */
/*             vector Z */
/*          NZ is the maximum number of nonzeros in any row of A, plus 1 */
/*          EPS is machine epsilon */

/*        The i-th component of abs(R)+NZ*EPS*(abs(op(A))*abs(X)+abs(B)) */
/*        is incremented by SAFE1 if the i-th component of */
/*        abs(op(A))*abs(X) + abs(B) is less than SAFE2. */

/*        Use DLACN2 to estimate the infinity-norm of the matrix */
/*           inv(op(A)) * diag(W), */
/*        where W = abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) ))) */

	i__2 = *n;
	for (i__ = 1; i__ <= i__2; ++i__) {
	    if (work[i__] > safe2) {
		work[i__] = (d__1 = work[*n + i__], abs(d__1)) + nz * eps * 
			work[i__];
	    } else {
		work[i__] = (d__1 = work[*n + i__], abs(d__1)) + nz * eps * 
			work[i__] + safe1;
	    }
	}

	kase = 0;
L210:
	dlacn2_(n, &work[(*n << 1) + 1], &work[*n + 1], &iwork[1], &ferr[j], &
		kase, isave);
	if (kase != 0) {
	    if (kase == 1) {

/*              Multiply by diag(W)*inv(op(A)'). */

		dtbsv_(uplo, transt, diag, n, kd, &ab[ab_offset], ldab, &work[
			*n + 1], &c__1);
		i__2 = *n;
		for (i__ = 1; i__ <= i__2; ++i__) {
		    work[*n + i__] = work[i__] * work[*n + i__];
		}
	    } else {

/*              Multiply by inv(op(A))*diag(W). */

		i__2 = *n;
		for (i__ = 1; i__ <= i__2; ++i__) {
		    work[*n + i__] = work[i__] * work[*n + i__];
		}
		dtbsv_(uplo, trans, diag, n, kd, &ab[ab_offset], ldab, &work[*
			n + 1], &c__1);
	    }
	    goto L210;
	}

/*        Normalize error. */

	lstres = 0.;
	i__2 = *n;
	for (i__ = 1; i__ <= i__2; ++i__) {
/* Computing MAX */
	    d__2 = lstres, d__3 = (d__1 = x[i__ + j * x_dim1], abs(d__1));
	    lstres = max(d__2,d__3);
	}
	if (lstres != 0.) {
	    ferr[j] /= lstres;
	}

    }

    return 0;

/*     End of DTBRFS */

} /* dtbrfs_ */
コード例 #4
0
ファイル: dtbrfs.c プロジェクト: csapng/libflame
/* Subroutine */
int dtbrfs_(char *uplo, char *trans, char *diag, integer *n, integer *kd, integer *nrhs, doublereal *ab, integer *ldab, doublereal *b, integer *ldb, doublereal *x, integer *ldx, doublereal *ferr, doublereal *berr, doublereal *work, integer *iwork, integer *info)
{
    /* System generated locals */
    integer ab_dim1, ab_offset, b_dim1, b_offset, x_dim1, x_offset, i__1, i__2, i__3, i__4, i__5;
    doublereal d__1, d__2, d__3;
    /* Local variables */
    integer i__, j, k;
    doublereal s, xk;
    integer nz;
    doublereal eps;
    integer kase;
    doublereal safe1, safe2;
    extern logical lsame_(char *, char *);
    integer isave[3];
    extern /* Subroutine */
    int dtbmv_(char *, char *, char *, integer *, integer *, doublereal *, integer *, doublereal *, integer *), dcopy_(integer *, doublereal *, integer * , doublereal *, integer *), dtbsv_(char *, char *, char *, integer *, integer *, doublereal *, integer *, doublereal *, integer *), daxpy_(integer *, doublereal * , doublereal *, integer *, doublereal *, integer *);
    logical upper;
    extern /* Subroutine */
    int dlacn2_(integer *, doublereal *, doublereal *, integer *, doublereal *, integer *, integer *);
    extern doublereal dlamch_(char *);
    doublereal safmin;
    extern /* Subroutine */
    int xerbla_(char *, integer *);
    logical notran;
    char transt[1];
    logical nounit;
    doublereal lstres;
    /* -- LAPACK computational routine (version 3.4.0) -- */
    /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
    /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
    /* November 2011 */
    /* .. Scalar Arguments .. */
    /* .. */
    /* .. Array Arguments .. */
    /* .. */
    /* ===================================================================== */
    /* .. Parameters .. */
    /* .. */
    /* .. Local Scalars .. */
    /* .. */
    /* .. Local Arrays .. */
    /* .. */
    /* .. External Subroutines .. */
    /* .. */
    /* .. Intrinsic Functions .. */
    /* .. */
    /* .. External Functions .. */
    /* .. */
    /* .. Executable Statements .. */
    /* Test the input parameters. */
    /* Parameter adjustments */
    ab_dim1 = *ldab;
    ab_offset = 1 + ab_dim1;
    ab -= ab_offset;
    b_dim1 = *ldb;
    b_offset = 1 + b_dim1;
    b -= b_offset;
    x_dim1 = *ldx;
    x_offset = 1 + x_dim1;
    x -= x_offset;
    --ferr;
    --berr;
    --work;
    --iwork;
    /* Function Body */
    *info = 0;
    upper = lsame_(uplo, "U");
    notran = lsame_(trans, "N");
    nounit = lsame_(diag, "N");
    if (! upper && ! lsame_(uplo, "L"))
    {
        *info = -1;
    }
    else if (! notran && ! lsame_(trans, "T") && ! lsame_(trans, "C"))
    {
        *info = -2;
    }
    else if (! nounit && ! lsame_(diag, "U"))
    {
        *info = -3;
    }
    else if (*n < 0)
    {
        *info = -4;
    }
    else if (*kd < 0)
    {
        *info = -5;
    }
    else if (*nrhs < 0)
    {
        *info = -6;
    }
    else if (*ldab < *kd + 1)
    {
        *info = -8;
    }
    else if (*ldb < max(1,*n))
    {
        *info = -10;
    }
    else if (*ldx < max(1,*n))
    {
        *info = -12;
    }
    if (*info != 0)
    {
        i__1 = -(*info);
        xerbla_("DTBRFS", &i__1);
        return 0;
    }
    /* Quick return if possible */
    if (*n == 0 || *nrhs == 0)
    {
        i__1 = *nrhs;
        for (j = 1;
                j <= i__1;
                ++j)
        {
            ferr[j] = 0.;
            berr[j] = 0.;
            /* L10: */
        }
        return 0;
    }
    if (notran)
    {
        *(unsigned char *)transt = 'T';
    }
    else
    {
        *(unsigned char *)transt = 'N';
    }
    /* NZ = maximum number of nonzero elements in each row of A, plus 1 */
    nz = *kd + 2;
    eps = dlamch_("Epsilon");
    safmin = dlamch_("Safe minimum");
    safe1 = nz * safmin;
    safe2 = safe1 / eps;
    /* Do for each right hand side */
    i__1 = *nrhs;
    for (j = 1;
            j <= i__1;
            ++j)
    {
        /* Compute residual R = B - op(A) * X, */
        /* where op(A) = A or A**T, depending on TRANS. */
        dcopy_(n, &x[j * x_dim1 + 1], &c__1, &work[*n + 1], &c__1);
        dtbmv_(uplo, trans, diag, n, kd, &ab[ab_offset], ldab, &work[*n + 1], &c__1);
        daxpy_(n, &c_b19, &b[j * b_dim1 + 1], &c__1, &work[*n + 1], &c__1);
        /* Compute componentwise relative backward error from formula */
        /* max(i) ( abs(R(i)) / ( abs(op(A))*abs(X) + abs(B) )(i) ) */
        /* where abs(Z) is the componentwise absolute value of the matrix */
        /* or vector Z. If the i-th component of the denominator is less */
        /* than SAFE2, then SAFE1 is added to the i-th components of the */
        /* numerator and denominator before dividing. */
        i__2 = *n;
        for (i__ = 1;
                i__ <= i__2;
                ++i__)
        {
            work[i__] = (d__1 = b[i__ + j * b_dim1], abs(d__1));
            /* L20: */
        }
        if (notran)
        {
            /* Compute abs(A)*abs(X) + abs(B). */
            if (upper)
            {
                if (nounit)
                {
                    i__2 = *n;
                    for (k = 1;
                            k <= i__2;
                            ++k)
                    {
                        xk = (d__1 = x[k + j * x_dim1], abs(d__1));
                        /* Computing MAX */
                        i__3 = 1;
                        i__4 = k - *kd; // , expr subst
                        i__5 = k;
                        for (i__ = max(i__3,i__4);
                                i__ <= i__5;
                                ++i__)
                        {
                            work[i__] += (d__1 = ab[*kd + 1 + i__ - k + k * ab_dim1], abs(d__1)) * xk;
                            /* L30: */
                        }
                        /* L40: */
                    }
                }
                else
                {
                    i__2 = *n;
                    for (k = 1;
                            k <= i__2;
                            ++k)
                    {
                        xk = (d__1 = x[k + j * x_dim1], abs(d__1));
                        /* Computing MAX */
                        i__5 = 1;
                        i__3 = k - *kd; // , expr subst
                        i__4 = k - 1;
                        for (i__ = max(i__5,i__3);
                                i__ <= i__4;
                                ++i__)
                        {
                            work[i__] += (d__1 = ab[*kd + 1 + i__ - k + k * ab_dim1], abs(d__1)) * xk;
                            /* L50: */
                        }
                        work[k] += xk;
                        /* L60: */
                    }
                }
            }
            else
            {
                if (nounit)
                {
                    i__2 = *n;
                    for (k = 1;
                            k <= i__2;
                            ++k)
                    {
                        xk = (d__1 = x[k + j * x_dim1], abs(d__1));
                        /* Computing MIN */
                        i__5 = *n;
                        i__3 = k + *kd; // , expr subst
                        i__4 = min(i__5,i__3);
                        for (i__ = k;
                                i__ <= i__4;
                                ++i__)
                        {
                            work[i__] += (d__1 = ab[i__ + 1 - k + k * ab_dim1] , abs(d__1)) * xk;
                            /* L70: */
                        }
                        /* L80: */
                    }
                }
                else
                {
                    i__2 = *n;
                    for (k = 1;
                            k <= i__2;
                            ++k)
                    {
                        xk = (d__1 = x[k + j * x_dim1], abs(d__1));
                        /* Computing MIN */
                        i__5 = *n;
                        i__3 = k + *kd; // , expr subst
                        i__4 = min(i__5,i__3);
                        for (i__ = k + 1;
                                i__ <= i__4;
                                ++i__)
                        {
                            work[i__] += (d__1 = ab[i__ + 1 - k + k * ab_dim1] , abs(d__1)) * xk;
                            /* L90: */
                        }
                        work[k] += xk;
                        /* L100: */
                    }
                }
            }
        }
        else
        {
            /* Compute abs(A**T)*abs(X) + abs(B). */
            if (upper)
            {
                if (nounit)
                {
                    i__2 = *n;
                    for (k = 1;
                            k <= i__2;
                            ++k)
                    {
                        s = 0.;
                        /* Computing MAX */
                        i__4 = 1;
                        i__5 = k - *kd; // , expr subst
                        i__3 = k;
                        for (i__ = max(i__4,i__5);
                                i__ <= i__3;
                                ++i__)
                        {
                            s += (d__1 = ab[*kd + 1 + i__ - k + k * ab_dim1], abs(d__1)) * (d__2 = x[i__ + j * x_dim1], abs(d__2));
                            /* L110: */
                        }
                        work[k] += s;
                        /* L120: */
                    }
                }
                else
                {
                    i__2 = *n;
                    for (k = 1;
                            k <= i__2;
                            ++k)
                    {
                        s = (d__1 = x[k + j * x_dim1], abs(d__1));
                        /* Computing MAX */
                        i__3 = 1;
                        i__4 = k - *kd; // , expr subst
                        i__5 = k - 1;
                        for (i__ = max(i__3,i__4);
                                i__ <= i__5;
                                ++i__)
                        {
                            s += (d__1 = ab[*kd + 1 + i__ - k + k * ab_dim1], abs(d__1)) * (d__2 = x[i__ + j * x_dim1], abs(d__2));
                            /* L130: */
                        }
                        work[k] += s;
                        /* L140: */
                    }
                }
            }
            else
            {
                if (nounit)
                {
                    i__2 = *n;
                    for (k = 1;
                            k <= i__2;
                            ++k)
                    {
                        s = 0.;
                        /* Computing MIN */
                        i__3 = *n;
                        i__4 = k + *kd; // , expr subst
                        i__5 = min(i__3,i__4);
                        for (i__ = k;
                                i__ <= i__5;
                                ++i__)
                        {
                            s += (d__1 = ab[i__ + 1 - k + k * ab_dim1], abs( d__1)) * (d__2 = x[i__ + j * x_dim1], abs( d__2));
                            /* L150: */
                        }
                        work[k] += s;
                        /* L160: */
                    }
                }
                else
                {
                    i__2 = *n;
                    for (k = 1;
                            k <= i__2;
                            ++k)
                    {
                        s = (d__1 = x[k + j * x_dim1], abs(d__1));
                        /* Computing MIN */
                        i__3 = *n;
                        i__4 = k + *kd; // , expr subst
                        i__5 = min(i__3,i__4);
                        for (i__ = k + 1;
                                i__ <= i__5;
                                ++i__)
                        {
                            s += (d__1 = ab[i__ + 1 - k + k * ab_dim1], abs( d__1)) * (d__2 = x[i__ + j * x_dim1], abs( d__2));
                            /* L170: */
                        }
                        work[k] += s;
                        /* L180: */
                    }
                }
            }
        }
        s = 0.;
        i__2 = *n;
        for (i__ = 1;
                i__ <= i__2;
                ++i__)
        {
            if (work[i__] > safe2)
            {
                /* Computing MAX */
                d__2 = s;
                d__3 = (d__1 = work[*n + i__], abs(d__1)) / work[ i__]; // , expr subst
                s = max(d__2,d__3);
            }
            else
            {
                /* Computing MAX */
                d__2 = s;
                d__3 = ((d__1 = work[*n + i__], abs(d__1)) + safe1) / (work[i__] + safe1); // , expr subst
                s = max(d__2,d__3);
            }
            /* L190: */
        }
        berr[j] = s;
        /* Bound error from formula */
        /* norm(X - XTRUE) / norm(X) .le. FERR = */
        /* norm( abs(inv(op(A)))* */
        /* ( abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) ))) / norm(X) */
        /* where */
        /* norm(Z) is the magnitude of the largest component of Z */
        /* inv(op(A)) is the inverse of op(A) */
        /* abs(Z) is the componentwise absolute value of the matrix or */
        /* vector Z */
        /* NZ is the maximum number of nonzeros in any row of A, plus 1 */
        /* EPS is machine epsilon */
        /* The i-th component of abs(R)+NZ*EPS*(abs(op(A))*abs(X)+abs(B)) */
        /* is incremented by SAFE1 if the i-th component of */
        /* abs(op(A))*abs(X) + abs(B) is less than SAFE2. */
        /* Use DLACN2 to estimate the infinity-norm of the matrix */
        /* inv(op(A)) * diag(W), */
        /* where W = abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) ))) */
        i__2 = *n;
        for (i__ = 1;
                i__ <= i__2;
                ++i__)
        {
            if (work[i__] > safe2)
            {
                work[i__] = (d__1 = work[*n + i__], abs(d__1)) + nz * eps * work[i__];
            }
            else
            {
                work[i__] = (d__1 = work[*n + i__], abs(d__1)) + nz * eps * work[i__] + safe1;
            }
            /* L200: */
        }
        kase = 0;
L210:
        dlacn2_(n, &work[(*n << 1) + 1], &work[*n + 1], &iwork[1], &ferr[j], & kase, isave);
        if (kase != 0)
        {
            if (kase == 1)
            {
                /* Multiply by diag(W)*inv(op(A)**T). */
                dtbsv_(uplo, transt, diag, n, kd, &ab[ab_offset], ldab, &work[ *n + 1], &c__1);
                i__2 = *n;
                for (i__ = 1;
                        i__ <= i__2;
                        ++i__)
                {
                    work[*n + i__] = work[i__] * work[*n + i__];
                    /* L220: */
                }
            }
            else
            {
                /* Multiply by inv(op(A))*diag(W). */
                i__2 = *n;
                for (i__ = 1;
                        i__ <= i__2;
                        ++i__)
                {
                    work[*n + i__] = work[i__] * work[*n + i__];
                    /* L230: */
                }
                dtbsv_(uplo, trans, diag, n, kd, &ab[ab_offset], ldab, &work[* n + 1], &c__1);
            }
            goto L210;
        }
        /* Normalize error. */
        lstres = 0.;
        i__2 = *n;
        for (i__ = 1;
                i__ <= i__2;
                ++i__)
        {
            /* Computing MAX */
            d__2 = lstres;
            d__3 = (d__1 = x[i__ + j * x_dim1], abs(d__1)); // , expr subst
            lstres = max(d__2,d__3);
            /* L240: */
        }
        if (lstres != 0.)
        {
            ferr[j] /= lstres;
        }
        /* L250: */
    }
    return 0;
    /* End of DTBRFS */
}
コード例 #5
0
/* Subroutine */ int dtbt02_(char *uplo, char *trans, char *diag, integer *n, 
	integer *kd, integer *nrhs, doublereal *ab, integer *ldab, doublereal 
	*x, integer *ldx, doublereal *b, integer *ldb, doublereal *work, 
	doublereal *resid)
{
    /* System generated locals */
    integer ab_dim1, ab_offset, b_dim1, b_offset, x_dim1, x_offset, i__1;
    doublereal d__1, d__2;

    /* Local variables */
    integer j;
    doublereal eps;
    doublereal anorm, bnorm;
    doublereal xnorm;


/*  -- LAPACK test routine (version 3.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  DTBT02 computes the residual for the computed solution to a */
/*  triangular system of linear equations  A*x = b  or  A' *x = b when */
/*  A is a triangular band matrix.  Here A' is the transpose of A and */
/*  x and b are N by NRHS matrices.  The test ratio is the maximum over */
/*  the number of right hand sides of */
/*     norm(b - op(A)*x) / ( norm(op(A)) * norm(x) * EPS ), */
/*  where op(A) denotes A or A' and EPS is the machine epsilon. */

/*  Arguments */
/*  ========= */

/*  UPLO    (input) CHARACTER*1 */
/*          Specifies whether the matrix A is upper or lower triangular. */
/*          = 'U':  Upper triangular */
/*          = 'L':  Lower triangular */

/*  TRANS   (input) CHARACTER*1 */
/*          Specifies the operation applied to A. */
/*          = 'N':  A *x = b  (No transpose) */
/*          = 'T':  A'*x = b  (Transpose) */
/*          = 'C':  A'*x = b  (Conjugate transpose = Transpose) */

/*  DIAG    (input) CHARACTER*1 */
/*          Specifies whether or not the matrix A is unit triangular. */
/*          = 'N':  Non-unit triangular */
/*          = 'U':  Unit triangular */

/*  N       (input) INTEGER */
/*          The order of the matrix A.  N >= 0. */

/*  KD      (input) INTEGER */
/*          The number of superdiagonals or subdiagonals of the */
/*          triangular band matrix A.  KD >= 0. */

/*  NRHS    (input) INTEGER */
/*          The number of right hand sides, i.e., the number of columns */
/*          of the matrices X and B.  NRHS >= 0. */

/*  AB      (input) DOUBLE PRECISION array, dimension (LDAB,N) */
/*          The upper or lower triangular band matrix A, stored in the */
/*          first kd+1 rows of the array. The j-th column of A is stored */
/*          in the j-th column of the array AB as follows: */
/*          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; */
/*          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd). */

/*  LDAB    (input) INTEGER */
/*          The leading dimension of the array AB.  LDAB >= KD+1. */

/*  X       (input) DOUBLE PRECISION array, dimension (LDX,NRHS) */
/*          The computed solution vectors for the system of linear */
/*          equations. */

/*  LDX     (input) INTEGER */
/*          The leading dimension of the array X.  LDX >= max(1,N). */

/*  B       (input) DOUBLE PRECISION array, dimension (LDB,NRHS) */
/*          The right hand side vectors for the system of linear */
/*          equations. */

/*  LDB     (input) INTEGER */
/*          The leading dimension of the array B.  LDB >= max(1,N). */

/*  WORK    (workspace) DOUBLE PRECISION array, dimension (N) */

/*  RESID   (output) DOUBLE PRECISION */
/*          The maximum over the number of right hand sides of */
/*          norm(op(A)*x - b) / ( norm(op(A)) * norm(x) * EPS ). */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Quick exit if N = 0 or NRHS = 0 */

    /* Parameter adjustments */
    ab_dim1 = *ldab;
    ab_offset = 1 + ab_dim1;
    ab -= ab_offset;
    x_dim1 = *ldx;
    x_offset = 1 + x_dim1;
    x -= x_offset;
    b_dim1 = *ldb;
    b_offset = 1 + b_dim1;
    b -= b_offset;
    --work;

    /* Function Body */
    if (*n <= 0 || *nrhs <= 0) {
	*resid = 0.;
	return 0;
    }

/*     Compute the 1-norm of A or A'. */

    if (lsame_(trans, "N")) {
	anorm = dlantb_("1", uplo, diag, n, kd, &ab[ab_offset], ldab, &work[1]
);
    } else {
	anorm = dlantb_("I", uplo, diag, n, kd, &ab[ab_offset], ldab, &work[1]
);
    }

/*     Exit with RESID = 1/EPS if ANORM = 0. */

    eps = dlamch_("Epsilon");
    if (anorm <= 0.) {
	*resid = 1. / eps;
	return 0;
    }

/*     Compute the maximum over the number of right hand sides of */
/*        norm(op(A)*x - b) / ( norm(op(A)) * norm(x) * EPS ). */

    *resid = 0.;
    i__1 = *nrhs;
    for (j = 1; j <= i__1; ++j) {
	dcopy_(n, &x[j * x_dim1 + 1], &c__1, &work[1], &c__1);
	dtbmv_(uplo, trans, diag, n, kd, &ab[ab_offset], ldab, &work[1], &
		c__1);
	daxpy_(n, &c_b10, &b[j * b_dim1 + 1], &c__1, &work[1], &c__1);
	bnorm = dasum_(n, &work[1], &c__1);
	xnorm = dasum_(n, &x[j * x_dim1 + 1], &c__1);
	if (xnorm <= 0.) {
	    *resid = 1. / eps;
	} else {
/* Computing MAX */
	    d__1 = *resid, d__2 = bnorm / anorm / xnorm / eps;
	    *resid = max(d__1,d__2);
	}
/* L10: */
    }

    return 0;

/*     End of DTBT02 */

} /* dtbt02_ */
コード例 #6
0
ファイル: blas-lapack.c プロジェクト: BenjaminCoquelle/clBLAS
void
dtbmv(char uplo, char trans, char diag, int n, int k, double *a, int lda, double *x, int incx )
{
   dtbmv_( &uplo, &trans, &diag, &n, &k, a, &lda, x, &incx );
}
コード例 #7
0
ファイル: dlarhs.c プロジェクト: zangel/uquad
/* Subroutine */ int dlarhs_(char *path, char *xtype, char *uplo, char *trans,
	 integer *m, integer *n, integer *kl, integer *ku, integer *nrhs, 
	doublereal *a, integer *lda, doublereal *x, integer *ldx, doublereal *
	b, integer *ldb, integer *iseed, integer *info)
{
    /* System generated locals */
    integer a_dim1, a_offset, b_dim1, b_offset, x_dim1, x_offset, i__1;

    /* Builtin functions   
       Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen);

    /* Local variables */
    static logical band;
    static char diag[1];
    static logical tran;
    static integer j;
    extern /* Subroutine */ int dgemm_(char *, char *, integer *, integer *, 
	    integer *, doublereal *, doublereal *, integer *, doublereal *, 
	    integer *, doublereal *, doublereal *, integer *),
	     dgbmv_(char *, integer *, integer *, integer *, integer *, 
	    doublereal *, doublereal *, integer *, doublereal *, integer *, 
	    doublereal *, doublereal *, integer *);
    extern logical lsame_(char *, char *);
    extern /* Subroutine */ int dsbmv_(char *, integer *, integer *, 
	    doublereal *, doublereal *, integer *, doublereal *, integer *, 
	    doublereal *, doublereal *, integer *), dtbmv_(char *, 
	    char *, char *, integer *, integer *, doublereal *, integer *, 
	    doublereal *, integer *), dtrmm_(char *, 
	    char *, char *, char *, integer *, integer *, doublereal *, 
	    doublereal *, integer *, doublereal *, integer *);
    static char c1[1], c2[2];
    extern /* Subroutine */ int dspmv_(char *, integer *, doublereal *, 
	    doublereal *, doublereal *, integer *, doublereal *, doublereal *,
	     integer *), dsymm_(char *, char *, integer *, integer *, 
	    doublereal *, doublereal *, integer *, doublereal *, integer *, 
	    doublereal *, doublereal *, integer *), dtpmv_(
	    char *, char *, char *, integer *, doublereal *, doublereal *, 
	    integer *);
    static integer mb, nx;
    extern /* Subroutine */ int dlacpy_(char *, integer *, integer *, 
	    doublereal *, integer *, doublereal *, integer *), 
	    xerbla_(char *, integer *);
    extern logical lsamen_(integer *, char *, char *);
    extern /* Subroutine */ int dlarnv_(integer *, integer *, integer *, 
	    doublereal *);
    static logical notran, gen, tri, qrs, sym;


#define b_ref(a_1,a_2) b[(a_2)*b_dim1 + a_1]
#define x_ref(a_1,a_2) x[(a_2)*x_dim1 + a_1]


/*  -- LAPACK test routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       February 29, 1992   


    Purpose   
    =======   

    DLARHS chooses a set of NRHS random solution vectors and sets   
    up the right hand sides for the linear system   
       op( A ) * X = B,   
    where op( A ) may be A or A' (transpose of A).   

    Arguments   
    =========   

    PATH    (input) CHARACTER*3   
            The type of the real matrix A.  PATH may be given in any   
            combination of upper and lower case.  Valid types include   
               xGE:  General m x n matrix   
               xGB:  General banded matrix   
               xPO:  Symmetric positive definite, 2-D storage   
               xPP:  Symmetric positive definite packed   
               xPB:  Symmetric positive definite banded   
               xSY:  Symmetric indefinite, 2-D storage   
               xSP:  Symmetric indefinite packed   
               xSB:  Symmetric indefinite banded   
               xTR:  Triangular   
               xTP:  Triangular packed   
               xTB:  Triangular banded   
               xQR:  General m x n matrix   
               xLQ:  General m x n matrix   
               xQL:  General m x n matrix   
               xRQ:  General m x n matrix   
            where the leading character indicates the precision.   

    XTYPE   (input) CHARACTER*1   
            Specifies how the exact solution X will be determined:   
            = 'N':  New solution; generate a random X.   
            = 'C':  Computed; use value of X on entry.   

    UPLO    (input) CHARACTER*1   
            Specifies whether the upper or lower triangular part of the   
            matrix A is stored, if A is symmetric.   
            = 'U':  Upper triangular   
            = 'L':  Lower triangular   

    TRANS   (input) CHARACTER*1   
            Specifies the operation applied to the matrix A.   
            = 'N':  System is  A * x = b   
            = 'T':  System is  A'* x = b   
            = 'C':  System is  A'* x = b   

    M       (input) INTEGER   
            The number or rows of the matrix A.  M >= 0.   

    N       (input) INTEGER   
            The number of columns of the matrix A.  N >= 0.   

    KL      (input) INTEGER   
            Used only if A is a band matrix; specifies the number of   
            subdiagonals of A if A is a general band matrix or if A is   
            symmetric or triangular and UPLO = 'L'; specifies the number   
            of superdiagonals of A if A is symmetric or triangular and   
            UPLO = 'U'.  0 <= KL <= M-1.   

    KU      (input) INTEGER   
            Used only if A is a general band matrix or if A is   
            triangular.   

            If PATH = xGB, specifies the number of superdiagonals of A,   
            and 0 <= KU <= N-1.   

            If PATH = xTR, xTP, or xTB, specifies whether or not the   
            matrix has unit diagonal:   
            = 1:  matrix has non-unit diagonal (default)   
            = 2:  matrix has unit diagonal   

    NRHS    (input) INTEGER   
            The number of right hand side vectors in the system A*X = B.   

    A       (input) DOUBLE PRECISION array, dimension (LDA,N)   
            The test matrix whose type is given by PATH.   

    LDA     (input) INTEGER   
            The leading dimension of the array A.   
            If PATH = xGB, LDA >= KL+KU+1.   
            If PATH = xPB, xSB, xHB, or xTB, LDA >= KL+1.   
            Otherwise, LDA >= max(1,M).   

    X       (input or output) DOUBLE PRECISION array, dimension(LDX,NRHS)   
            On entry, if XTYPE = 'C' (for 'Computed'), then X contains   
            the exact solution to the system of linear equations.   
            On exit, if XTYPE = 'N' (for 'New'), then X is initialized   
            with random values.   

    LDX     (input) INTEGER   
            The leading dimension of the array X.  If TRANS = 'N',   
            LDX >= max(1,N); if TRANS = 'T', LDX >= max(1,M).   

    B       (output) DOUBLE PRECISION array, dimension (LDB,NRHS)   
            The right hand side vector(s) for the system of equations,   
            computed from B = op(A) * X, where op(A) is determined by   
            TRANS.   

    LDB     (input) INTEGER   
            The leading dimension of the array B.  If TRANS = 'N',   
            LDB >= max(1,M); if TRANS = 'T', LDB >= max(1,N).   

    ISEED   (input/output) INTEGER array, dimension (4)   
            The seed vector for the random number generator (used in   
            DLATMS).  Modified on exit.   

    INFO    (output) INTEGER   
            = 0: successful exit   
            < 0: if INFO = -i, the i-th argument had an illegal value   

    =====================================================================   


       Test the input parameters.   

       Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1 * 1;
    a -= a_offset;
    x_dim1 = *ldx;
    x_offset = 1 + x_dim1 * 1;
    x -= x_offset;
    b_dim1 = *ldb;
    b_offset = 1 + b_dim1 * 1;
    b -= b_offset;
    --iseed;

    /* Function Body */
    *info = 0;
    *(unsigned char *)c1 = *(unsigned char *)path;
    s_copy(c2, path + 1, (ftnlen)2, (ftnlen)2);
    tran = lsame_(trans, "T") || lsame_(trans, "C");
    notran = ! tran;
    gen = lsame_(path + 1, "G");
    qrs = lsame_(path + 1, "Q") || lsame_(path + 2, 
	    "Q");
    sym = lsame_(path + 1, "P") || lsame_(path + 1, 
	    "S");
    tri = lsame_(path + 1, "T");
    band = lsame_(path + 2, "B");
    if (! lsame_(c1, "Double precision")) {
	*info = -1;
    } else if (! (lsame_(xtype, "N") || lsame_(xtype, 
	    "C"))) {
	*info = -2;
    } else if ((sym || tri) && ! (lsame_(uplo, "U") || 
	    lsame_(uplo, "L"))) {
	*info = -3;
    } else if ((gen || qrs) && ! (tran || lsame_(trans, "N"))) {
	*info = -4;
    } else if (*m < 0) {
	*info = -5;
    } else if (*n < 0) {
	*info = -6;
    } else if (band && *kl < 0) {
	*info = -7;
    } else if (band && *ku < 0) {
	*info = -8;
    } else if (*nrhs < 0) {
	*info = -9;
    } else if (! band && *lda < max(1,*m) || band && (sym || tri) && *lda < *
	    kl + 1 || band && gen && *lda < *kl + *ku + 1) {
	*info = -11;
    } else if (notran && *ldx < max(1,*n) || tran && *ldx < max(1,*m)) {
	*info = -13;
    } else if (notran && *ldb < max(1,*m) || tran && *ldb < max(1,*n)) {
	*info = -15;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("DLARHS", &i__1);
	return 0;
    }

/*     Initialize X to NRHS random vectors unless XTYPE = 'C'. */

    if (tran) {
	nx = *m;
	mb = *n;
    } else {
	nx = *n;
	mb = *m;
    }
    if (! lsame_(xtype, "C")) {
	i__1 = *nrhs;
	for (j = 1; j <= i__1; ++j) {
	    dlarnv_(&c__2, &iseed[1], n, &x_ref(1, j));
/* L10: */
	}
    }

/*     Multiply X by op( A ) using an appropriate   
       matrix multiply routine. */

    if (lsamen_(&c__2, c2, "GE") || lsamen_(&c__2, c2, 
	    "QR") || lsamen_(&c__2, c2, "LQ") || lsamen_(&c__2, c2, "QL") || 
	    lsamen_(&c__2, c2, "RQ")) {

/*        General matrix */

	dgemm_(trans, "N", &mb, nrhs, &nx, &c_b32, &a[a_offset], lda, &x[
		x_offset], ldx, &c_b33, &b[b_offset], ldb);

    } else if (lsamen_(&c__2, c2, "PO") || lsamen_(&
	    c__2, c2, "SY")) {

/*        Symmetric matrix, 2-D storage */

	dsymm_("Left", uplo, n, nrhs, &c_b32, &a[a_offset], lda, &x[x_offset],
		 ldx, &c_b33, &b[b_offset], ldb);

    } else if (lsamen_(&c__2, c2, "GB")) {

/*        General matrix, band storage */

	i__1 = *nrhs;
	for (j = 1; j <= i__1; ++j) {
	    dgbmv_(trans, &mb, &nx, kl, ku, &c_b32, &a[a_offset], lda, &x_ref(
		    1, j), &c__1, &c_b33, &b_ref(1, j), &c__1);
/* L20: */
	}

    } else if (lsamen_(&c__2, c2, "PB")) {

/*        Symmetric matrix, band storage */

	i__1 = *nrhs;
	for (j = 1; j <= i__1; ++j) {
	    dsbmv_(uplo, n, kl, &c_b32, &a[a_offset], lda, &x_ref(1, j), &
		    c__1, &c_b33, &b_ref(1, j), &c__1);
/* L30: */
	}

    } else if (lsamen_(&c__2, c2, "PP") || lsamen_(&
	    c__2, c2, "SP")) {

/*        Symmetric matrix, packed storage */

	i__1 = *nrhs;
	for (j = 1; j <= i__1; ++j) {
	    dspmv_(uplo, n, &c_b32, &a[a_offset], &x_ref(1, j), &c__1, &c_b33,
		     &b_ref(1, j), &c__1);
/* L40: */
	}

    } else if (lsamen_(&c__2, c2, "TR")) {

/*        Triangular matrix.  Note that for triangular matrices,   
             KU = 1 => non-unit triangular   
             KU = 2 => unit triangular */

	dlacpy_("Full", n, nrhs, &x[x_offset], ldx, &b[b_offset], ldb);
	if (*ku == 2) {
	    *(unsigned char *)diag = 'U';
	} else {
	    *(unsigned char *)diag = 'N';
	}
	dtrmm_("Left", uplo, trans, diag, n, nrhs, &c_b32, &a[a_offset], lda, 
		&b[b_offset], ldb)
		;

    } else if (lsamen_(&c__2, c2, "TP")) {

/*        Triangular matrix, packed storage */

	dlacpy_("Full", n, nrhs, &x[x_offset], ldx, &b[b_offset], ldb);
	if (*ku == 2) {
	    *(unsigned char *)diag = 'U';
	} else {
	    *(unsigned char *)diag = 'N';
	}
	i__1 = *nrhs;
	for (j = 1; j <= i__1; ++j) {
	    dtpmv_(uplo, trans, diag, n, &a[a_offset], &b_ref(1, j), &c__1);
/* L50: */
	}

    } else if (lsamen_(&c__2, c2, "TB")) {

/*        Triangular matrix, banded storage */

	dlacpy_("Full", n, nrhs, &x[x_offset], ldx, &b[b_offset], ldb);
	if (*ku == 2) {
	    *(unsigned char *)diag = 'U';
	} else {
	    *(unsigned char *)diag = 'N';
	}
	i__1 = *nrhs;
	for (j = 1; j <= i__1; ++j) {
	    dtbmv_(uplo, trans, diag, n, kl, &a[a_offset], lda, &b_ref(1, j), 
		    &c__1);
/* L60: */
	}

    } else {

/*        If PATH is none of the above, return with an error code. */

	*info = -1;
	i__1 = -(*info);
	xerbla_("DLARHS", &i__1);
    }

    return 0;

/*     End of DLARHS */

} /* dlarhs_ */
コード例 #8
0
ファイル: dtbrfs.c プロジェクト: MichaelH13/sdkpub
/* Subroutine */ int dtbrfs_(char *uplo, char *trans, char *diag, integer *n, 
	integer *kd, integer *nrhs, doublereal *ab, integer *ldab, doublereal 
	*b, integer *ldb, doublereal *x, integer *ldx, doublereal *ferr, 
	doublereal *berr, doublereal *work, integer *iwork, integer *info)
{
/*  -- LAPACK routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       September 30, 1994   


    Purpose   
    =======   

    DTBRFS provides error bounds and backward error estimates for the   
    solution to a system of linear equations with a triangular band   
    coefficient matrix.   

    The solution matrix X must be computed by DTBTRS or some other   
    means before entering this routine.  DTBRFS does not do iterative   
    refinement because doing so cannot improve the backward error.   

    Arguments   
    =========   

    UPLO    (input) CHARACTER*1   
            = 'U':  A is upper triangular;   
            = 'L':  A is lower triangular.   

    TRANS   (input) CHARACTER*1   
            Specifies the form of the system of equations:   
            = 'N':  A * X = B  (No transpose)   
            = 'T':  A**T * X = B  (Transpose)   
            = 'C':  A**H * X = B  (Conjugate transpose = Transpose)   

    DIAG    (input) CHARACTER*1   
            = 'N':  A is non-unit triangular;   
            = 'U':  A is unit triangular.   

    N       (input) INTEGER   
            The order of the matrix A.  N >= 0.   

    KD      (input) INTEGER   
            The number of superdiagonals or subdiagonals of the   
            triangular band matrix A.  KD >= 0.   

    NRHS    (input) INTEGER   
            The number of right hand sides, i.e., the number of columns   
            of the matrices B and X.  NRHS >= 0.   

    AB      (input) DOUBLE PRECISION array, dimension (LDAB,N)   
            The upper or lower triangular band matrix A, stored in the   
            first kd+1 rows of the array. The j-th column of A is stored   
            in the j-th column of the array AB as follows:   
            if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;   
            if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).   
            If DIAG = 'U', the diagonal elements of A are not referenced   
            and are assumed to be 1.   

    LDAB    (input) INTEGER   
            The leading dimension of the array AB.  LDAB >= KD+1.   

    B       (input) DOUBLE PRECISION array, dimension (LDB,NRHS)   
            The right hand side matrix B.   

    LDB     (input) INTEGER   
            The leading dimension of the array B.  LDB >= max(1,N).   

    X       (input) DOUBLE PRECISION array, dimension (LDX,NRHS)   
            The solution matrix X.   

    LDX     (input) INTEGER   
            The leading dimension of the array X.  LDX >= max(1,N).   

    FERR    (output) DOUBLE PRECISION array, dimension (NRHS)   
            The estimated forward error bound for each solution vector   
            X(j) (the j-th column of the solution matrix X).   
            If XTRUE is the true solution corresponding to X(j), FERR(j)   
            is an estimated upper bound for the magnitude of the largest   
            element in (X(j) - XTRUE) divided by the magnitude of the   
            largest element in X(j).  The estimate is as reliable as   
            the estimate for RCOND, and is almost always a slight   
            overestimate of the true error.   

    BERR    (output) DOUBLE PRECISION array, dimension (NRHS)   
            The componentwise relative backward error of each solution   
            vector X(j) (i.e., the smallest relative change in   
            any element of A or B that makes X(j) an exact solution).   

    WORK    (workspace) DOUBLE PRECISION array, dimension (3*N)   

    IWORK   (workspace) INTEGER array, dimension (N)   

    INFO    (output) INTEGER   
            = 0:  successful exit   
            < 0:  if INFO = -i, the i-th argument had an illegal value   

    =====================================================================   


       Test the input parameters.   

       Parameter adjustments */
    /* Table of constant values */
    static integer c__1 = 1;
    static doublereal c_b19 = -1.;
    
    /* System generated locals */
    integer ab_dim1, ab_offset, b_dim1, b_offset, x_dim1, x_offset, i__1, 
	    i__2, i__3, i__4, i__5;
    doublereal d__1, d__2, d__3;
    /* Local variables */
    static integer kase;
    static doublereal safe1, safe2;
    static integer i__, j, k;
    static doublereal s;
    extern logical lsame_(char *, char *);
    extern /* Subroutine */ int dtbmv_(char *, char *, char *, integer *, 
	    integer *, doublereal *, integer *, doublereal *, integer *), dcopy_(integer *, doublereal *, integer *
	    , doublereal *, integer *), dtbsv_(char *, char *, char *, 
	    integer *, integer *, doublereal *, integer *, doublereal *, 
	    integer *), daxpy_(integer *, doublereal *
	    , doublereal *, integer *, doublereal *, integer *);
    static logical upper;
    extern doublereal dlamch_(char *);
    extern /* Subroutine */ int dlacon_(integer *, doublereal *, doublereal *,
	     integer *, doublereal *, integer *);
    static doublereal xk;
    static integer nz;
    static doublereal safmin;
    extern /* Subroutine */ int xerbla_(char *, integer *);
    static logical notran;
    static char transt[1];
    static logical nounit;
    static doublereal lstres, eps;
#define b_ref(a_1,a_2) b[(a_2)*b_dim1 + a_1]
#define x_ref(a_1,a_2) x[(a_2)*x_dim1 + a_1]
#define ab_ref(a_1,a_2) ab[(a_2)*ab_dim1 + a_1]


    ab_dim1 = *ldab;
    ab_offset = 1 + ab_dim1 * 1;
    ab -= ab_offset;
    b_dim1 = *ldb;
    b_offset = 1 + b_dim1 * 1;
    b -= b_offset;
    x_dim1 = *ldx;
    x_offset = 1 + x_dim1 * 1;
    x -= x_offset;
    --ferr;
    --berr;
    --work;
    --iwork;

    /* Function Body */
    *info = 0;
    upper = lsame_(uplo, "U");
    notran = lsame_(trans, "N");
    nounit = lsame_(diag, "N");

    if (! upper && ! lsame_(uplo, "L")) {
	*info = -1;
    } else if (! notran && ! lsame_(trans, "T") && ! 
	    lsame_(trans, "C")) {
	*info = -2;
    } else if (! nounit && ! lsame_(diag, "U")) {
	*info = -3;
    } else if (*n < 0) {
	*info = -4;
    } else if (*kd < 0) {
	*info = -5;
    } else if (*nrhs < 0) {
	*info = -6;
    } else if (*ldab < *kd + 1) {
	*info = -8;
    } else if (*ldb < max(1,*n)) {
	*info = -10;
    } else if (*ldx < max(1,*n)) {
	*info = -12;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("DTBRFS", &i__1);
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0 || *nrhs == 0) {
	i__1 = *nrhs;
	for (j = 1; j <= i__1; ++j) {
	    ferr[j] = 0.;
	    berr[j] = 0.;
/* L10: */
	}
	return 0;
    }

    if (notran) {
	*(unsigned char *)transt = 'T';
    } else {
	*(unsigned char *)transt = 'N';
    }

/*     NZ = maximum number of nonzero elements in each row of A, plus 1 */

    nz = *kd + 2;
    eps = dlamch_("Epsilon");
    safmin = dlamch_("Safe minimum");
    safe1 = nz * safmin;
    safe2 = safe1 / eps;

/*     Do for each right hand side */

    i__1 = *nrhs;
    for (j = 1; j <= i__1; ++j) {

/*        Compute residual R = B - op(A) * X,   
          where op(A) = A or A', depending on TRANS. */

	dcopy_(n, &x_ref(1, j), &c__1, &work[*n + 1], &c__1);
	dtbmv_(uplo, trans, diag, n, kd, &ab[ab_offset], ldab, &work[*n + 1], 
		&c__1);
	daxpy_(n, &c_b19, &b_ref(1, j), &c__1, &work[*n + 1], &c__1);

/*        Compute componentwise relative backward error from formula   

          max(i) ( abs(R(i)) / ( abs(op(A))*abs(X) + abs(B) )(i) )   

          where abs(Z) is the componentwise absolute value of the matrix   
          or vector Z.  If the i-th component of the denominator is less   
          than SAFE2, then SAFE1 is added to the i-th components of the   
          numerator and denominator before dividing. */

	i__2 = *n;
	for (i__ = 1; i__ <= i__2; ++i__) {
	    work[i__] = (d__1 = b_ref(i__, j), abs(d__1));
/* L20: */
	}

	if (notran) {

/*           Compute abs(A)*abs(X) + abs(B). */

	    if (upper) {
		if (nounit) {
		    i__2 = *n;
		    for (k = 1; k <= i__2; ++k) {
			xk = (d__1 = x_ref(k, j), abs(d__1));
/* Computing MAX */
			i__3 = 1, i__4 = k - *kd;
			i__5 = k;
			for (i__ = max(i__3,i__4); i__ <= i__5; ++i__) {
			    work[i__] += (d__1 = ab_ref(*kd + 1 + i__ - k, k),
				     abs(d__1)) * xk;
/* L30: */
			}
/* L40: */
		    }
		} else {
		    i__2 = *n;
		    for (k = 1; k <= i__2; ++k) {
			xk = (d__1 = x_ref(k, j), abs(d__1));
/* Computing MAX */
			i__5 = 1, i__3 = k - *kd;
			i__4 = k - 1;
			for (i__ = max(i__5,i__3); i__ <= i__4; ++i__) {
			    work[i__] += (d__1 = ab_ref(*kd + 1 + i__ - k, k),
				     abs(d__1)) * xk;
/* L50: */
			}
			work[k] += xk;
/* L60: */
		    }
		}
	    } else {
		if (nounit) {
		    i__2 = *n;
		    for (k = 1; k <= i__2; ++k) {
			xk = (d__1 = x_ref(k, j), abs(d__1));
/* Computing MIN */
			i__5 = *n, i__3 = k + *kd;
			i__4 = min(i__5,i__3);
			for (i__ = k; i__ <= i__4; ++i__) {
			    work[i__] += (d__1 = ab_ref(i__ + 1 - k, k), abs(
				    d__1)) * xk;
/* L70: */
			}
/* L80: */
		    }
		} else {
		    i__2 = *n;
		    for (k = 1; k <= i__2; ++k) {
			xk = (d__1 = x_ref(k, j), abs(d__1));
/* Computing MIN */
			i__5 = *n, i__3 = k + *kd;
			i__4 = min(i__5,i__3);
			for (i__ = k + 1; i__ <= i__4; ++i__) {
			    work[i__] += (d__1 = ab_ref(i__ + 1 - k, k), abs(
				    d__1)) * xk;
/* L90: */
			}
			work[k] += xk;
/* L100: */
		    }
		}
	    }
	} else {

/*           Compute abs(A')*abs(X) + abs(B). */

	    if (upper) {
		if (nounit) {
		    i__2 = *n;
		    for (k = 1; k <= i__2; ++k) {
			s = 0.;
/* Computing MAX */
			i__4 = 1, i__5 = k - *kd;
			i__3 = k;
			for (i__ = max(i__4,i__5); i__ <= i__3; ++i__) {
			    s += (d__1 = ab_ref(*kd + 1 + i__ - k, k), abs(
				    d__1)) * (d__2 = x_ref(i__, j), abs(d__2))
				    ;
/* L110: */
			}
			work[k] += s;
/* L120: */
		    }
		} else {
		    i__2 = *n;
		    for (k = 1; k <= i__2; ++k) {
			s = (d__1 = x_ref(k, j), abs(d__1));
/* Computing MAX */
			i__3 = 1, i__4 = k - *kd;
			i__5 = k - 1;
			for (i__ = max(i__3,i__4); i__ <= i__5; ++i__) {
			    s += (d__1 = ab_ref(*kd + 1 + i__ - k, k), abs(
				    d__1)) * (d__2 = x_ref(i__, j), abs(d__2))
				    ;
/* L130: */
			}
			work[k] += s;
/* L140: */
		    }
		}
	    } else {
		if (nounit) {
		    i__2 = *n;
		    for (k = 1; k <= i__2; ++k) {
			s = 0.;
/* Computing MIN */
			i__3 = *n, i__4 = k + *kd;
			i__5 = min(i__3,i__4);
			for (i__ = k; i__ <= i__5; ++i__) {
			    s += (d__1 = ab_ref(i__ + 1 - k, k), abs(d__1)) * 
				    (d__2 = x_ref(i__, j), abs(d__2));
/* L150: */
			}
			work[k] += s;
/* L160: */
		    }
		} else {
		    i__2 = *n;
		    for (k = 1; k <= i__2; ++k) {
			s = (d__1 = x_ref(k, j), abs(d__1));
/* Computing MIN */
			i__3 = *n, i__4 = k + *kd;
			i__5 = min(i__3,i__4);
			for (i__ = k + 1; i__ <= i__5; ++i__) {
			    s += (d__1 = ab_ref(i__ + 1 - k, k), abs(d__1)) * 
				    (d__2 = x_ref(i__, j), abs(d__2));
/* L170: */
			}
			work[k] += s;
/* L180: */
		    }
		}
	    }
	}
	s = 0.;
	i__2 = *n;
	for (i__ = 1; i__ <= i__2; ++i__) {
	    if (work[i__] > safe2) {
/* Computing MAX */
		d__2 = s, d__3 = (d__1 = work[*n + i__], abs(d__1)) / work[
			i__];
		s = max(d__2,d__3);
	    } else {
/* Computing MAX */
		d__2 = s, d__3 = ((d__1 = work[*n + i__], abs(d__1)) + safe1) 
			/ (work[i__] + safe1);
		s = max(d__2,d__3);
	    }
/* L190: */
	}
	berr[j] = s;

/*        Bound error from formula   

          norm(X - XTRUE) / norm(X) .le. FERR =   
          norm( abs(inv(op(A)))*   
             ( abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) ))) / norm(X)   

          where   
            norm(Z) is the magnitude of the largest component of Z   
            inv(op(A)) is the inverse of op(A)   
            abs(Z) is the componentwise absolute value of the matrix or   
               vector Z   
            NZ is the maximum number of nonzeros in any row of A, plus 1   
            EPS is machine epsilon   

          The i-th component of abs(R)+NZ*EPS*(abs(op(A))*abs(X)+abs(B))   
          is incremented by SAFE1 if the i-th component of   
          abs(op(A))*abs(X) + abs(B) is less than SAFE2.   

          Use DLACON to estimate the infinity-norm of the matrix   
             inv(op(A)) * diag(W),   
          where W = abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) ))) */

	i__2 = *n;
	for (i__ = 1; i__ <= i__2; ++i__) {
	    if (work[i__] > safe2) {
		work[i__] = (d__1 = work[*n + i__], abs(d__1)) + nz * eps * 
			work[i__];
	    } else {
		work[i__] = (d__1 = work[*n + i__], abs(d__1)) + nz * eps * 
			work[i__] + safe1;
	    }
/* L200: */
	}

	kase = 0;
L210:
	dlacon_(n, &work[(*n << 1) + 1], &work[*n + 1], &iwork[1], &ferr[j], &
		kase);
	if (kase != 0) {
	    if (kase == 1) {

/*              Multiply by diag(W)*inv(op(A)'). */

		dtbsv_(uplo, transt, diag, n, kd, &ab[ab_offset], ldab, &work[
			*n + 1], &c__1);
		i__2 = *n;
		for (i__ = 1; i__ <= i__2; ++i__) {
		    work[*n + i__] = work[i__] * work[*n + i__];
/* L220: */
		}
	    } else {

/*              Multiply by inv(op(A))*diag(W). */

		i__2 = *n;
		for (i__ = 1; i__ <= i__2; ++i__) {
		    work[*n + i__] = work[i__] * work[*n + i__];
/* L230: */
		}
		dtbsv_(uplo, trans, diag, n, kd, &ab[ab_offset], ldab, &work[*
			n + 1], &c__1);
	    }
	    goto L210;
	}

/*        Normalize error. */

	lstres = 0.;
	i__2 = *n;
	for (i__ = 1; i__ <= i__2; ++i__) {
/* Computing MAX */
	    d__2 = lstres, d__3 = (d__1 = x_ref(i__, j), abs(d__1));
	    lstres = max(d__2,d__3);
/* L240: */
	}
	if (lstres != 0.) {
	    ferr[j] /= lstres;
	}

/* L250: */
    }

    return 0;

/*     End of DTBRFS */

} /* dtbrfs_ */
コード例 #9
0
ファイル: dtbt02.c プロジェクト: zangel/uquad
/* Subroutine */ int dtbt02_(char *uplo, char *trans, char *diag, integer *n, 
	integer *kd, integer *nrhs, doublereal *ab, integer *ldab, doublereal 
	*x, integer *ldx, doublereal *b, integer *ldb, doublereal *work, 
	doublereal *resid)
{
    /* System generated locals */
    integer ab_dim1, ab_offset, b_dim1, b_offset, x_dim1, x_offset, i__1;
    doublereal d__1, d__2;

    /* Local variables */
    static integer j;
    extern logical lsame_(char *, char *);
    extern doublereal dasum_(integer *, doublereal *, integer *);
    static doublereal anorm, bnorm;
    extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *, 
	    doublereal *, integer *), dtbmv_(char *, char *, char *, integer *
	    , integer *, doublereal *, integer *, doublereal *, integer *), daxpy_(integer *, doublereal *, 
	    doublereal *, integer *, doublereal *, integer *);
    static doublereal xnorm;
    extern doublereal dlamch_(char *), dlantb_(char *, char *, char *,
	     integer *, integer *, doublereal *, integer *, doublereal *);
    static doublereal eps;


#define b_ref(a_1,a_2) b[(a_2)*b_dim1 + a_1]
#define x_ref(a_1,a_2) x[(a_2)*x_dim1 + a_1]


/*  -- LAPACK test routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       February 29, 1992   


    Purpose   
    =======   

    DTBT02 computes the residual for the computed solution to a   
    triangular system of linear equations  A*x = b  or  A' *x = b when   
    A is a triangular band matrix.  Here A' is the transpose of A and   
    x and b are N by NRHS matrices.  The test ratio is the maximum over   
    the number of right hand sides of   
       norm(b - op(A)*x) / ( norm(op(A)) * norm(x) * EPS ),   
    where op(A) denotes A or A' and EPS is the machine epsilon.   

    Arguments   
    =========   

    UPLO    (input) CHARACTER*1   
            Specifies whether the matrix A is upper or lower triangular.   
            = 'U':  Upper triangular   
            = 'L':  Lower triangular   

    TRANS   (input) CHARACTER*1   
            Specifies the operation applied to A.   
            = 'N':  A *x = b  (No transpose)   
            = 'T':  A'*x = b  (Transpose)   
            = 'C':  A'*x = b  (Conjugate transpose = Transpose)   

    DIAG    (input) CHARACTER*1   
            Specifies whether or not the matrix A is unit triangular.   
            = 'N':  Non-unit triangular   
            = 'U':  Unit triangular   

    N       (input) INTEGER   
            The order of the matrix A.  N >= 0.   

    KD      (input) INTEGER   
            The number of superdiagonals or subdiagonals of the   
            triangular band matrix A.  KD >= 0.   

    NRHS    (input) INTEGER   
            The number of right hand sides, i.e., the number of columns   
            of the matrices X and B.  NRHS >= 0.   

    AB      (input) DOUBLE PRECISION array, dimension (LDAB,N)   
            The upper or lower triangular band matrix A, stored in the   
            first kd+1 rows of the array. The j-th column of A is stored   
            in the j-th column of the array AB as follows:   
            if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;   
            if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).   

    LDAB    (input) INTEGER   
            The leading dimension of the array AB.  LDAB >= KD+1.   

    X       (input) DOUBLE PRECISION array, dimension (LDX,NRHS)   
            The computed solution vectors for the system of linear   
            equations.   

    LDX     (input) INTEGER   
            The leading dimension of the array X.  LDX >= max(1,N).   

    B       (input) DOUBLE PRECISION array, dimension (LDB,NRHS)   
            The right hand side vectors for the system of linear   
            equations.   

    LDB     (input) INTEGER   
            The leading dimension of the array B.  LDB >= max(1,N).   

    WORK    (workspace) DOUBLE PRECISION array, dimension (N)   

    RESID   (output) DOUBLE PRECISION   
            The maximum over the number of right hand sides of   
            norm(op(A)*x - b) / ( norm(op(A)) * norm(x) * EPS ).   

    =====================================================================   


       Quick exit if N = 0 or NRHS = 0   

       Parameter adjustments */
    ab_dim1 = *ldab;
    ab_offset = 1 + ab_dim1 * 1;
    ab -= ab_offset;
    x_dim1 = *ldx;
    x_offset = 1 + x_dim1 * 1;
    x -= x_offset;
    b_dim1 = *ldb;
    b_offset = 1 + b_dim1 * 1;
    b -= b_offset;
    --work;

    /* Function Body */
    if (*n <= 0 || *nrhs <= 0) {
	*resid = 0.;
	return 0;
    }

/*     Compute the 1-norm of A or A'. */

    if (lsame_(trans, "N")) {
	anorm = dlantb_("1", uplo, diag, n, kd, &ab[ab_offset], ldab, &work[1]
		);
    } else {
	anorm = dlantb_("I", uplo, diag, n, kd, &ab[ab_offset], ldab, &work[1]
		);
    }

/*     Exit with RESID = 1/EPS if ANORM = 0. */

    eps = dlamch_("Epsilon");
    if (anorm <= 0.) {
	*resid = 1. / eps;
	return 0;
    }

/*     Compute the maximum over the number of right hand sides of   
          norm(op(A)*x - b) / ( norm(op(A)) * norm(x) * EPS ). */

    *resid = 0.;
    i__1 = *nrhs;
    for (j = 1; j <= i__1; ++j) {
	dcopy_(n, &x_ref(1, j), &c__1, &work[1], &c__1);
	dtbmv_(uplo, trans, diag, n, kd, &ab[ab_offset], ldab, &work[1], &
		c__1);
	daxpy_(n, &c_b10, &b_ref(1, j), &c__1, &work[1], &c__1);
	bnorm = dasum_(n, &work[1], &c__1);
	xnorm = dasum_(n, &x_ref(1, j), &c__1);
	if (xnorm <= 0.) {
	    *resid = 1. / eps;
	} else {
/* Computing MAX */
	    d__1 = *resid, d__2 = bnorm / anorm / xnorm / eps;
	    *resid = max(d__1,d__2);
	}
/* L10: */
    }

    return 0;

/*     End of DTBT02 */

} /* dtbt02_ */