コード例 #1
0
  ESymSolverStatus MumpsSolverInterface::SymbolicFactorization()
  {
    DBG_START_METH("MumpsSolverInterface::SymbolicFactorization",
                   dbg_verbosity);
    DMUMPS_STRUC_C* mumps_data = (DMUMPS_STRUC_C*)mumps_ptr_;

    if (HaveIpData()) {
      IpData().TimingStats().LinearSystemSymbolicFactorization().Start();
    }

    mumps_data->job = 1;//symbolic ordering pass

    //mumps_data->icntl[1] = 6;
    //mumps_data->icntl[2] = 6;//QUIETLY!
    //mumps_data->icntl[3] = 4;

    mumps_data->icntl[5] = mumps_permuting_scaling_;
    mumps_data->icntl[6] = mumps_pivot_order_;
    mumps_data->icntl[7] = mumps_scaling_;
    mumps_data->icntl[9] = 0;//no iterative refinement iterations


    mumps_data->icntl[12] = 1;//avoid lapack bug, ensures proper inertia
    mumps_data->icntl[13] = mem_percent_; //% memory to allocate over expected
    mumps_data->cntl[0] = pivtol_;  // Set pivot tolerance

    dump_matrix(mumps_data);

    Jnlst().Printf(J_MOREDETAILED, J_LINEAR_ALGEBRA,
                   "Calling MUMPS-1 for symbolic factorization at cpu time %10.3f (wall %10.3f).\n", CpuTime(), WallclockTime());
    dmumps_c(mumps_data);
    Jnlst().Printf(J_MOREDETAILED, J_LINEAR_ALGEBRA,
                   "Done with MUMPS-1 for symbolic factorization at cpu time %10.3f (wall %10.3f).\n", CpuTime(), WallclockTime());
    int error = mumps_data->info[0];
    const int& mumps_permuting_scaling_used = mumps_data->infog[22];
    const int& mumps_pivot_order_used = mumps_data->infog[6];
    Jnlst().Printf(J_DETAILED, J_LINEAR_ALGEBRA,
                   "MUMPS used permuting_scaling %d and pivot_order %d.\n",
                   mumps_permuting_scaling_used, mumps_pivot_order_used);
    Jnlst().Printf(J_DETAILED, J_LINEAR_ALGEBRA,
                   "           scaling will be %d.\n",
                   mumps_data->icntl[7]);

    if (HaveIpData()) {
      IpData().TimingStats().LinearSystemSymbolicFactorization().End();
    }

    //return appropriat value
    if (error == -6) {//system is singular
      Jnlst().Printf(J_DETAILED, J_LINEAR_ALGEBRA,
                     "MUMPS returned INFO(1) = %d matrix is singular.\n",error);
      return SYMSOLVER_SINGULAR;
    }
    if (error < 0) {
      Jnlst().Printf(J_ERROR, J_LINEAR_ALGEBRA,
                     "Error=%d returned from MUMPS in Factorization.\n",
                     error);
      return SYMSOLVER_FATAL_ERROR;
    }

    return SYMSOLVER_SUCCESS;
  }
コード例 #2
0
  ESymSolverStatus MumpsSolverInterface::Factorization(
    bool check_NegEVals, Index numberOfNegEVals)
  {
    DBG_START_METH("MumpsSolverInterface::Factorization", dbg_verbosity);
    DMUMPS_STRUC_C* mumps_data = (DMUMPS_STRUC_C*)mumps_ptr_;

    mumps_data->job = 2;//numerical factorization

    dump_matrix(mumps_data);
    Jnlst().Printf(J_MOREDETAILED, J_LINEAR_ALGEBRA,
                   "Calling MUMPS-2 for numerical factorization at cpu time %10.3f (wall %10.3f).\n", CpuTime(), WallclockTime());
    dmumps_c(mumps_data);
    Jnlst().Printf(J_MOREDETAILED, J_LINEAR_ALGEBRA,
                   "Done with MUMPS-2 for numerical factorization at cpu time %10.3f (wall %10.3f).\n", CpuTime(), WallclockTime());
    int error = mumps_data->info[0];

    //Check for errors
    if (error == -8 || error == -9) {//not enough memory
      const Index trycount_max = 20;
      for (int trycount=0; trycount<trycount_max; trycount++) {
        Jnlst().Printf(J_WARNING, J_LINEAR_ALGEBRA,
                       "MUMPS returned INFO(1) = %d and requires more memory, reallocating.  Attempt %d\n",
                       error,trycount+1);
        Jnlst().Printf(J_WARNING, J_LINEAR_ALGEBRA,
                       "  Increasing icntl[13] from %d to ", mumps_data->icntl[13]);
        double mem_percent = mumps_data->icntl[13];
        mumps_data->icntl[13] = (Index)(2.0 * mem_percent);
        Jnlst().Printf(J_WARNING, J_LINEAR_ALGEBRA, "%d.\n", mumps_data->icntl[13]);

        dump_matrix(mumps_data);
        Jnlst().Printf(J_MOREDETAILED, J_LINEAR_ALGEBRA,
                       "Calling MUMPS-2 (repeated) for numerical factorization at cpu time %10.3f (wall %10.3f).\n", CpuTime(), WallclockTime());
        dmumps_c(mumps_data);
        Jnlst().Printf(J_MOREDETAILED, J_LINEAR_ALGEBRA,
                       "Done with MUMPS-2 (repeated) for numerical factorization at cpu time %10.3f (wall %10.3f).\n", CpuTime(), WallclockTime());
        error = mumps_data->info[0];
        if (error != -8 && error != -9)
          break;
      }
      if (error == -8 || error == -9) {
        Jnlst().Printf(J_ERROR, J_LINEAR_ALGEBRA,
                       "MUMPS was not able to obtain enough memory.\n");
        return SYMSOLVER_FATAL_ERROR;
      }
    }

    Jnlst().Printf(J_DETAILED, J_LINEAR_ALGEBRA,
                   "Number of doubles for MUMPS to hold factorization (INFO(9)) = %d\n",
                   mumps_data->info[8]);
    Jnlst().Printf(J_DETAILED, J_LINEAR_ALGEBRA,
                   "Number of integers for MUMPS to hold factorization (INFO(10)) = %d\n",
                   mumps_data->info[9]);

    if (error == -10) {//system is singular
      Jnlst().Printf(J_DETAILED, J_LINEAR_ALGEBRA,
                     "MUMPS returned INFO(1) = %d matrix is singular.\n",error);
      return SYMSOLVER_SINGULAR;
    }

    negevals_ = mumps_data->infog[11];

    if (error == -13) {
      Jnlst().Printf(J_ERROR, J_LINEAR_ALGEBRA,
                     "MUMPS returned INFO(1) =%d - out of memory when trying to allocate %d %s.\nIn some cases it helps to decrease the value of the option \"mumps_mem_percent\".\n",
                     error, mumps_data->info[1] < 0 ? -mumps_data->info[1] : mumps_data->info[1], mumps_data->info[1] < 0 ? "MB" : "bytes");
      return SYMSOLVER_FATAL_ERROR;
    }
    if (error < 0) {//some other error
      Jnlst().Printf(J_ERROR, J_LINEAR_ALGEBRA,
                     "MUMPS returned INFO(1) =%d MUMPS failure.\n",
                     error);
      return SYMSOLVER_FATAL_ERROR;
    }

    if (check_NegEVals && (numberOfNegEVals!=negevals_)) {
      Jnlst().Printf(J_DETAILED, J_LINEAR_ALGEBRA,
                     "In MumpsSolverInterface::Factorization: negevals_ = %d, but numberOfNegEVals = %d\n",
                     negevals_, numberOfNegEVals);
      return SYMSOLVER_WRONG_INERTIA;
    }

    return SYMSOLVER_SUCCESS;
  }
コード例 #3
0
int main(int argc, char *argv[])
{
	int i, j, rtest, srcs, m, k, nerrs, r, err;
	void *buf;
	u8 g[TEST_SOURCES], g_tbls[TEST_SOURCES*32], src_in_err[TEST_SOURCES];
	u8 *dest, *dest_ref, *temp_buff, *buffs[TEST_SOURCES];
	u8 a[MMAX*KMAX], b[MMAX*KMAX], d[MMAX*KMAX];
	u8  src_err_list[TEST_SOURCES], *recov[TEST_SOURCES];

	int align, size;
	unsigned char *efence_buffs[TEST_SOURCES];
	unsigned int offset;
	u8 *ubuffs[TEST_SOURCES];
	u8 *udest_ptr;

	printf("gf_vect_dot_prod_sse: %dx%d ", TEST_SOURCES, TEST_LEN);

	mk_gf_field();


	// Allocate the arrays
	for(i=0; i<TEST_SOURCES; i++){
		if (posix_memalign(&buf, 64, TEST_LEN)) {
			printf("alloc error: Fail");
			return -1;
		}
		buffs[i] = buf;
	}

	if (posix_memalign(&buf, 64, TEST_LEN)) {
		printf("alloc error: Fail");
		return -1;
	}
	dest = buf;

	if (posix_memalign(&buf, 64, TEST_LEN)) {
		printf("alloc error: Fail");
		return -1;
	}
	dest_ref = buf;
	
	if (posix_memalign(&buf, 64, TEST_LEN)) {
		printf("alloc error: Fail");
		return -1;
	}
	temp_buff = buf;


	// Test of all zeros
	for(i=0; i<TEST_SOURCES; i++)
		memset(buffs[i], 0, TEST_LEN);

	memset(dest, 0, TEST_LEN);
	memset(temp_buff, 0, TEST_LEN);
	memset(dest_ref, 0, TEST_LEN);
	memset(g, 0, TEST_SOURCES);


	for(i=0; i<TEST_SOURCES; i++)
		gf_vect_mul_init(g[i], &g_tbls[i*32]);

	gf_vect_dot_prod_base(TEST_LEN, TEST_SOURCES, &g_tbls[0], buffs, dest_ref);

	gf_vect_dot_prod_sse(TEST_LEN, TEST_SOURCES, g_tbls, buffs, dest);

	if (0 != memcmp(dest_ref, dest, TEST_LEN)){
		printf("Fail zero vect_dot_prod_sse test\n");
		dump_matrix(buffs, 5, TEST_SOURCES);
		printf("dprod_base:"); 
		dump(dest_ref, 25);
		printf("dprod_sse:"); 
		dump(dest, 25);;
		return -1;
	}
	else
		putchar('.');

	// Rand data test
	for(rtest=0; rtest<RANDOMS; rtest++){
		for(i=0; i<TEST_SOURCES; i++)
			for(j=0; j<TEST_LEN; j++)
				buffs[i][j] = rand();

		for (i=0; i<TEST_SOURCES; i++)
			g[i] = rand();

		for(i=0; i<TEST_SOURCES; i++)
			gf_vect_mul_init(g[i], &g_tbls[i*32]);

		gf_vect_dot_prod_base(TEST_LEN, TEST_SOURCES, &g_tbls[0], buffs, dest_ref);
		gf_vect_dot_prod_sse(TEST_LEN, TEST_SOURCES, g_tbls, buffs, dest);

		if (0 != memcmp(dest_ref, dest, TEST_LEN)){
			printf("Fail rand vect_dot_prod_sse test 1\n");
			dump_matrix(buffs, 5, TEST_SOURCES);
			printf("dprod_base:"); 
			dump(dest_ref, 25);
			printf("dprod_sse:"); 
			dump(dest, 25);
			return -1;
		}

		putchar('.');
	}

	// Rand data test with varied parameters
	for(rtest=0; rtest < RANDOMS; rtest++){
		for (srcs = TEST_SOURCES; srcs > 0; srcs--){
			for(i=0; i<srcs; i++)
				for(j=0; j<TEST_LEN; j++)
					buffs[i][j] = rand();

			for (i=0; i<srcs; i++)
				g[i] = rand();

			for(i=0; i<srcs; i++)
				gf_vect_mul_init(g[i], &g_tbls[i*32]);

			gf_vect_dot_prod_base(TEST_LEN, srcs, &g_tbls[0], buffs, dest_ref);
			gf_vect_dot_prod_sse(TEST_LEN, srcs, g_tbls, buffs, dest);

			if (0 != memcmp(dest_ref, dest, TEST_LEN)){
				printf("Fail rand vect_dot_prod_sse test 2\n");
				dump_matrix(buffs, 5, srcs);
				printf("dprod_base:"); 
				dump(dest_ref, 5);
				printf("dprod_sse:"); 
				dump(dest, 5);
				return -1;
			}

			putchar('.');
		}
	}




	// Test erasure code using gf_vect_dot_prod

	// Pick a first test
	m = 9;
	k = 5;
	if (m > MMAX || k > KMAX)
		return -1;

	gf_gen_rs_matrix(a, m, k);

	// Make random data
	for(i=0; i<k; i++)
		for(j=0; j<TEST_LEN; j++)
			buffs[i][j] = rand();

	// Make parity vects
	for (i=k; i<m; i++) {
		for (j=0; j<k; j++)
			gf_vect_mul_init(a[k*i+j], &g_tbls[j*32]);
#ifndef USEREF
		gf_vect_dot_prod_sse(TEST_LEN,
				k, g_tbls, buffs, buffs[i]);
#else
		gf_vect_dot_prod_base(TEST_LEN,
				k, &g_tbls[0], buffs, buffs[i]);
#endif
	}


	// Random buffers in erasure
	memset(src_in_err, 0, TEST_SOURCES);
	for (i=0, nerrs=0; i<k && nerrs<m-k; i++){
		err = 1 & rand();
		src_in_err[i] = err;
		if (err)
			src_err_list[nerrs++] = i;
	}

	// construct b by removing error rows
	for(i=0, r=0; i<k; i++, r++){
		while (src_in_err[r]) {
			r++; 
			continue;
		}
		for(j=0; j<k; j++)
			b[k*i+j] = a[k*r+j];
	}

	if (gf_invert_matrix((u8*)b, (u8*)d, k) < 0)
		printf("BAD MATRIX\n");
	

	for(i=0, r=0; i<k; i++, r++){
		while (src_in_err[r]) {
			r++; 
			continue;
		}
		recov[i] = buffs[r];
	}

	// Recover data
	for(i=0; i<nerrs; i++){
		for (j=0; j<k; j++)
			gf_vect_mul_init(d[k*src_err_list[i]+j], &g_tbls[j*32]);
#ifndef USEREF
		gf_vect_dot_prod_sse(TEST_LEN,
				k, g_tbls, recov, temp_buff);
#else
		gf_vect_dot_prod_base(TEST_LEN,
				k, &g_tbls[0], recov, temp_buff);
#endif

		if (0 != memcmp(temp_buff, buffs[src_err_list[i]],
					TEST_LEN)){
			printf("Fail error recovery (%d, %d, %d)\n", m, k, nerrs);
			printf("recov %d:",src_err_list[i]); 
			dump(temp_buff, 25);
			printf("orig   :");     
			dump(buffs[src_err_list[i]],25);
			return -1;
		}
	}


	// Do more random tests

	for (rtest = 0; rtest < RANDOMS; rtest++){
		while ((m = (rand() % MMAX)) < 2);
		while ((k = (rand() % KMAX)) >= m || k < 1);

		if (m>MMAX || k>KMAX)
			continue;

		gf_gen_rs_matrix(a, m, k);

		// Make random data
		for(i=0; i<k; i++)
			for(j=0; j<TEST_LEN; j++)
				buffs[i][j] = rand();

		// Make parity vects
		for (i=k; i<m; i++) {
			for (j=0; j<k; j++)
				gf_vect_mul_init(a[k*i+j], &g_tbls[j*32]);
#ifndef USEREF
			gf_vect_dot_prod_sse(TEST_LEN, k, g_tbls, buffs, buffs[i]);
#else
			gf_vect_dot_prod_base(TEST_LEN, k, &g_tbls[0], buffs, buffs[i]);
#endif
		}

		// Random errors
		memset(src_in_err, 0, TEST_SOURCES);
		for (i=0, nerrs=0; i<k && nerrs<m-k; i++){
			err = 1 & rand();
			src_in_err[i] = err;
			if (err)
				src_err_list[nerrs++] = i;
		}
		if (nerrs == 0){  // should have at least one error
			while ((err = (rand() % KMAX)) >= k) ;
			src_err_list[nerrs++] = err;
			src_in_err[err] = 1;
		}

		// construct b by removing error rows
		for(i=0, r=0; i<k; i++, r++){
			while (src_in_err[r]) {
				r++; 
				continue;
			}
			for(j=0; j<k; j++)
				b[k*i+j] = a[k*r+j];
		}

		if (gf_invert_matrix((u8*)b, (u8*)d, k) < 0)
			printf("BAD MATRIX\n");
	
		for(i=0, r=0; i<k; i++, r++){
			while (src_in_err[r]) {
				r++; 
				continue;
			}
			recov[i] = buffs[r];
		}

		// Recover data
		for(i=0; i<nerrs; i++){
			for (j=0; j<k; j++)
				gf_vect_mul_init(d[k*src_err_list[i]+j], &g_tbls[j*32]);
#ifndef USEREF
			gf_vect_dot_prod_sse(TEST_LEN, k, g_tbls, recov, temp_buff);
#else
			gf_vect_dot_prod_base(TEST_LEN, k, &g_tbls[0], recov, temp_buff);
#endif
			if (0 != memcmp(temp_buff, buffs[src_err_list[i]],
						TEST_LEN)){
				printf("Fail error recovery (%d, %d, %d) - ", m, k, nerrs);
				printf(" - erase list = ");
				for (i=0; i<nerrs; i++)
					printf(" %d", src_err_list[i]);
				printf("\na:\n"); 
				dump_u8xu8((u8*)a, m, k);
				printf("inv b:\n");   
				dump_u8xu8((u8*)d, k, k);
				printf("orig data:\n"); 
				dump_matrix(buffs, m, 25);
				printf("orig   :");     
				dump(buffs[src_err_list[i]],25);
				printf("recov %d:",src_err_list[i]); 
				dump(temp_buff, 25);
				return -1;
			}
		}
		putchar('.');
	}

	// Run tests at end of buffer for Electric Fence
	align = (LEN_ALIGN_CHK_B != 0) ? 1 : 16;
	for(size=EFENCE_TEST_MIN_SIZE; size<=TEST_SIZE; size+=align){
		for(i=0; i<TEST_SOURCES; i++)
			for(j=0; j<TEST_LEN; j++)
				buffs[i][j] = rand();

		for(i=0; i<TEST_SOURCES; i++) // Line up TEST_SIZE from end
			efence_buffs[i] = buffs[i] + TEST_LEN - size;

		for (i=0; i<TEST_SOURCES; i++)
			g[i] = rand();

		for(i=0; i<TEST_SOURCES; i++)
			gf_vect_mul_init(g[i], &g_tbls[i*32]);

		gf_vect_dot_prod_base(size, TEST_SOURCES, &g_tbls[0], efence_buffs, dest_ref);
		gf_vect_dot_prod_sse(size, TEST_SOURCES, g_tbls, efence_buffs, dest);

		if (0 != memcmp(dest_ref, dest, size)){
			printf("Fail rand vect_dot_prod_sse test 3\n");
			dump_matrix(efence_buffs, 5, TEST_SOURCES);
			printf("dprod_base:");
			dump(dest_ref, align);
			printf("dprod_sse:");
			dump(dest, align);
			return -1;
		}

		putchar('.');
	}

	// Test rand ptr alignment if available

	for(rtest=0; rtest<RANDOMS; rtest++){
		size = (TEST_LEN - PTR_ALIGN_CHK_B) & ~15;
		srcs = rand() % TEST_SOURCES;
		if (srcs == 0)
			continue;

		offset = (PTR_ALIGN_CHK_B != 0) ? 1 : PTR_ALIGN_CHK_B;
		// Add random offsets
		for(i=0; i<srcs; i++)
			ubuffs[i] = buffs[i] + (rand() & (PTR_ALIGN_CHK_B - offset));

		udest_ptr = dest + (rand() & (PTR_ALIGN_CHK_B - offset));

		memset(dest, 0, TEST_LEN);  // zero pad to check write-over

		for(i=0; i<srcs; i++)
			for(j=0; j<size; j++)
				ubuffs[i][j] = rand();

		for (i=0; i<srcs; i++)
			g[i] = rand();

		for(i=0; i<srcs; i++)
			gf_vect_mul_init(g[i], &g_tbls[i*32]);

		gf_vect_dot_prod_base(size, srcs, &g_tbls[0], ubuffs, dest_ref);

		gf_vect_dot_prod_sse(size, srcs, g_tbls, ubuffs, udest_ptr);

		if (memcmp(dest_ref, udest_ptr, size)){
			printf("Fail rand vect_dot_prod_sse test ualign srcs=%d\n", srcs);
			dump_matrix(ubuffs, 5, TEST_SOURCES);
			printf("dprod_base:"); 
			dump(dest_ref, 25);
			printf("dprod_sse:"); 
			dump(udest_ptr, 25);
			return -1;
		}

		// Confirm that padding around dests is unchanged
		memset(dest_ref, 0, PTR_ALIGN_CHK_B);  // Make reference zero buff
		offset = udest_ptr - dest;

		if (memcmp(dest, dest_ref, offset)){
			printf("Fail rand ualign pad start\n");
			return -1;
		}
		if (memcmp(dest + offset + size, dest_ref, PTR_ALIGN_CHK_B - offset)){
			printf("Fail rand ualign pad end\n");
			return -1;
		}

		putchar('.');
	}


	// Test all size alignment
	align = (LEN_ALIGN_CHK_B != 0) ? 1 : 16;

	for(size=TEST_LEN; size>15; size-=align){
		srcs = TEST_SOURCES;

		for(i=0; i<srcs; i++)
			for(j=0; j<size; j++)
				buffs[i][j] = rand();

		for (i=0; i<srcs; i++)
			g[i] = rand();

		for(i=0; i<srcs; i++)
			gf_vect_mul_init(g[i], &g_tbls[i*32]);

		gf_vect_dot_prod_base(size, srcs, &g_tbls[0], buffs, dest_ref);

		gf_vect_dot_prod_sse(size, srcs, g_tbls, buffs, dest);

		if (memcmp(dest_ref, dest, size)){
			printf("Fail rand vect_dot_prod_sse test ualign len=%d\n", size);
			dump_matrix(buffs, 5, TEST_SOURCES);
			printf("dprod_base:"); 
			dump(dest_ref, 25);
			printf("dprod_sse:"); 
			dump(dest, 25);
			return -1;
		}
	}

	printf("done all: Pass\n");
	return 0;
}
コード例 #4
0
int main(int argc, char *argv[])
{
	int i, j;
	void *buf;
	u8 g1[TEST_SOURCES], g2[TEST_SOURCES], g3[TEST_SOURCES];
	u8 g_tbls[3 * TEST_SOURCES * 32], *dest_ptrs[3], *buffs[TEST_SOURCES];
	u8 *dest1, *dest2, *dest3, *dest_ref1, *dest_ref2, *dest_ref3;
	struct perf start, stop;

	printf(xstr(FUNCTION_UNDER_TEST) ": %dx%d\n", TEST_SOURCES, TEST_LEN);

	// Allocate the arrays
	for (i = 0; i < TEST_SOURCES; i++) {
		if (posix_memalign(&buf, 64, TEST_LEN)) {
			printf("alloc error: Fail");
			return -1;
		}
		buffs[i] = buf;
	}

	if (posix_memalign(&buf, 64, TEST_LEN)) {
		printf("alloc error: Fail");
		return -1;
	}
	dest1 = buf;

	if (posix_memalign(&buf, 64, TEST_LEN)) {
		printf("alloc error: Fail");
		return -1;
	}
	dest2 = buf;

	if (posix_memalign(&buf, 64, TEST_LEN)) {
		printf("alloc error: Fail");
		return -1;
	}
	dest3 = buf;

	if (posix_memalign(&buf, 64, TEST_LEN)) {
		printf("alloc error: Fail");
		return -1;
	}
	dest_ref1 = buf;

	if (posix_memalign(&buf, 64, TEST_LEN)) {
		printf("alloc error: Fail");
		return -1;
	}
	dest_ref2 = buf;

	if (posix_memalign(&buf, 64, TEST_LEN)) {
		printf("alloc error: Fail");
		return -1;
	}
	dest_ref3 = buf;

	dest_ptrs[0] = dest1;
	dest_ptrs[1] = dest2;
	dest_ptrs[2] = dest3;

	// Performance test
	for (i = 0; i < TEST_SOURCES; i++)
		for (j = 0; j < TEST_LEN; j++)
			buffs[i][j] = rand();

	memset(dest1, 0, TEST_LEN);
	memset(dest2, 0, TEST_LEN);
	memset(dest_ref1, 0, TEST_LEN);
	memset(dest_ref2, 0, TEST_LEN);

	for (i = 0; i < TEST_SOURCES; i++) {
		g1[i] = rand();
		g2[i] = rand();
		g3[i] = rand();
	}

	for (j = 0; j < TEST_SOURCES; j++) {
		gf_vect_mul_init(g1[j], &g_tbls[j * 32]);
		gf_vect_mul_init(g2[j], &g_tbls[(32 * TEST_SOURCES) + (j * 32)]);
		gf_vect_mul_init(g3[j], &g_tbls[(64 * TEST_SOURCES) + (j * 32)]);
	}

	gf_vect_dot_prod_base(TEST_LEN, TEST_SOURCES, &g_tbls[0], buffs, dest_ref1);
	gf_vect_dot_prod_base(TEST_LEN, TEST_SOURCES, &g_tbls[32 * TEST_SOURCES], buffs,
			      dest_ref2);
	gf_vect_dot_prod_base(TEST_LEN, TEST_SOURCES, &g_tbls[64 * TEST_SOURCES], buffs,
			      dest_ref3);

#ifdef DO_REF_PERF
	perf_start(&start);
	for (i = 0; i < TEST_LOOPS / 100; i++) {
		for (j = 0; j < TEST_SOURCES; j++) {
			gf_vect_mul_init(g1[j], &g_tbls[j * 32]);
			gf_vect_mul_init(g2[j], &g_tbls[(32 * TEST_SOURCES) + (j * 32)]);
			gf_vect_mul_init(g3[j], &g_tbls[(64 * TEST_SOURCES) + (j * 32)]);
		}

		gf_vect_dot_prod_base(TEST_LEN, TEST_SOURCES, &g_tbls[0], buffs, dest_ref1);
		gf_vect_dot_prod_base(TEST_LEN, TEST_SOURCES, &g_tbls[32 * TEST_SOURCES],
				      buffs, dest_ref2);
		gf_vect_dot_prod_base(TEST_LEN, TEST_SOURCES, &g_tbls[64 * TEST_SOURCES],
				      buffs, dest_ref3);
	}
	perf_stop(&stop);
	printf("gf_3vect_dot_prod_base" TEST_TYPE_STR ": ");
	perf_print(stop, start, (long long)TEST_LEN * (TEST_SOURCES + 3) * i);
#endif

	FUNCTION_UNDER_TEST(TEST_LEN, TEST_SOURCES, g_tbls, buffs, dest_ptrs);

	perf_start(&start);
	for (i = 0; i < TEST_LOOPS; i++) {
		for (j = 0; j < TEST_SOURCES; j++) {
			gf_vect_mul_init(g1[j], &g_tbls[j * 32]);
			gf_vect_mul_init(g2[j], &g_tbls[(32 * TEST_SOURCES) + (j * 32)]);
			gf_vect_mul_init(g3[j], &g_tbls[(64 * TEST_SOURCES) + (j * 32)]);
		}

		FUNCTION_UNDER_TEST(TEST_LEN, TEST_SOURCES, g_tbls, buffs, dest_ptrs);
	}
	perf_stop(&stop);
	printf(xstr(FUNCTION_UNDER_TEST) TEST_TYPE_STR ": ");
	perf_print(stop, start, (long long)TEST_LEN * (TEST_SOURCES + 3) * i);

	if (0 != memcmp(dest_ref1, dest1, TEST_LEN)) {
		printf("Fail perf " xstr(FUNCTION_UNDER_TEST) " test1\n");
		dump_matrix(buffs, 5, TEST_SOURCES);
		printf("dprod_base:");
		dump(dest_ref1, 25);
		printf("dprod_dut:");
		dump(dest1, 25);
		return -1;
	}
	if (0 != memcmp(dest_ref2, dest2, TEST_LEN)) {
		printf("Fail perf " xstr(FUNCTION_UNDER_TEST) " test2\n");
		dump_matrix(buffs, 5, TEST_SOURCES);
		printf("dprod_base:");
		dump(dest_ref2, 25);
		printf("dprod_dut:");
		dump(dest2, 25);
		return -1;
	}
	if (0 != memcmp(dest_ref3, dest3, TEST_LEN)) {
		printf("Fail perf " xstr(FUNCTION_UNDER_TEST) " test3\n");
		dump_matrix(buffs, 5, TEST_SOURCES);
		printf("dprod_base:");
		dump(dest_ref3, 25);
		printf("dprod_dut:");
		dump(dest3, 25);
		return -1;
	}

	printf("pass perf check\n");
	return 0;

}
コード例 #5
0
ファイル: matrix.c プロジェクト: Jingtian1989/matrix
int main(int argc, char *argv[])
{
	struct thread_data *threads;
	struct thread_data *thread;
	int i, ret, ch;

	if (argc > 1)
	{
		if (strcmp(argv[1], "--help") == 0)
		{
			usage_error(argv[0]);
		}
		init_program_parameter(argc, argv);
	}

	program_parameter(argv[0]);

	create_matrix(&matrix_a);
	create_matrix(&matrix_b);
	create_matrix(&matrix_c);
	create_matrix(&matrix_d);
	random_matrix(matrix_a);
	random_matrix(matrix_b);

	nonmal_matrix_multipy(matrix_a, matrix_b, matrix_d);

	threads = (struct thread_data *)malloc(pthread_max * sizeof(struct thread_data));
	if (threads == NULL)
	{
		unix_error("malloc threads failed");
	}

	cpu_online = sysconf(_SC_NPROCESSORS_CONF);

	for(i = 0; i < pthread_max; i++)
	{
		thread = threads + i;
		thread->index = i;
		if ((ret = pthread_create(&thread->thread_id, NULL, thread_func, thread)) != 0)
		{
			posix_error(ret, "pthread_create failed");
		}
	}

	for(i = 0; i < pthread_max; i++)
	{
		thread = threads + i;
		if ((ret = pthread_join(thread->thread_id, NULL)) != 0)
		{
			posix_error(ret, "pthread_join failed");
		}
	}

	if (matrix_equal(matrix_c, matrix_d) == 0)
	{
		unix_error("runtime error");
	}
	if (dump)
	{
		dump_matrix("matrix A", matrix_a);
		dump_matrix("matrix B", matrix_b);
		dump_matrix("matrix C", matrix_c);
		dump_matrix("matrix D", matrix_d);
	}
	statistics(threads);

	free_matrix(matrix_a);
	free_matrix(matrix_b);
	free_matrix(matrix_c);
	free_matrix(matrix_d);
	free(threads);
	return 0;
}
コード例 #6
0
int main(int argc, char *argv[])
{
	int i, j, rtest, srcs;
	void *buf;
	u8 g1[TEST_SOURCES], g2[TEST_SOURCES], g3[TEST_SOURCES];
	u8 g_tbls[3 * TEST_SOURCES * 32], *dest_ptrs[3], *buffs[TEST_SOURCES];
	u8 *dest1, *dest2, *dest3, *dest_ref1, *dest_ref2, *dest_ref3;

	int align, size;
	unsigned char *efence_buffs[TEST_SOURCES];
	unsigned int offset;
	u8 *ubuffs[TEST_SOURCES];
	u8 *udest_ptrs[3];
	printf(xstr(FUNCTION_UNDER_TEST) "_test: %dx%d ", TEST_SOURCES, TEST_LEN);

	// Allocate the arrays
	for (i = 0; i < TEST_SOURCES; i++) {
		if (posix_memalign(&buf, 64, TEST_LEN)) {
			printf("alloc error: Fail");
			return -1;
		}
		buffs[i] = buf;
	}

	if (posix_memalign(&buf, 64, TEST_LEN)) {
		printf("alloc error: Fail");
		return -1;
	}
	dest1 = buf;

	if (posix_memalign(&buf, 64, TEST_LEN)) {
		printf("alloc error: Fail");
		return -1;
	}
	dest2 = buf;

	if (posix_memalign(&buf, 64, TEST_LEN)) {
		printf("alloc error: Fail");
		return -1;
	}
	dest3 = buf;

	if (posix_memalign(&buf, 64, TEST_LEN)) {
		printf("alloc error: Fail");
		return -1;
	}
	dest_ref1 = buf;

	if (posix_memalign(&buf, 64, TEST_LEN)) {
		printf("alloc error: Fail");;
		return -1;
	}
	dest_ref2 = buf;

	if (posix_memalign(&buf, 64, TEST_LEN)) {
		printf("alloc error: Fail");
		return -1;
	}
	dest_ref3 = buf;

	dest_ptrs[0] = dest1;
	dest_ptrs[1] = dest2;
	dest_ptrs[2] = dest3;

	// Test of all zeros
	for (i = 0; i < TEST_SOURCES; i++)
		memset(buffs[i], 0, TEST_LEN);

	memset(dest1, 0, TEST_LEN);
	memset(dest2, 0, TEST_LEN);
	memset(dest3, 0, TEST_LEN);
	memset(dest_ref1, 0, TEST_LEN);
	memset(dest_ref2, 0, TEST_LEN);
	memset(dest_ref3, 0, TEST_LEN);
	memset(g1, 2, TEST_SOURCES);
	memset(g2, 1, TEST_SOURCES);
	memset(g3, 7, TEST_SOURCES);

	for (i = 0; i < TEST_SOURCES; i++) {
		gf_vect_mul_init(g1[i], &g_tbls[i * 32]);
		gf_vect_mul_init(g2[i], &g_tbls[32 * TEST_SOURCES + i * 32]);
		gf_vect_mul_init(g3[i], &g_tbls[64 * TEST_SOURCES + i * 32]);
	}

	gf_vect_dot_prod_base(TEST_LEN, TEST_SOURCES, &g_tbls[0], buffs, dest_ref1);
	gf_vect_dot_prod_base(TEST_LEN, TEST_SOURCES, &g_tbls[32 * TEST_SOURCES], buffs,
			      dest_ref2);
	gf_vect_dot_prod_base(TEST_LEN, TEST_SOURCES, &g_tbls[64 * TEST_SOURCES], buffs,
			      dest_ref3);

	FUNCTION_UNDER_TEST(TEST_LEN, TEST_SOURCES, g_tbls, buffs, dest_ptrs);

	if (0 != memcmp(dest_ref1, dest1, TEST_LEN)) {
		printf("Fail zero" xstr(FUNCTION_UNDER_TEST) " test1\n");
		dump_matrix(buffs, 5, TEST_SOURCES);
		printf("dprod_base:");
		dump(dest_ref1, 25);
		printf("dprod_dut:");
		dump(dest1, 25);
		return -1;
	}
	if (0 != memcmp(dest_ref2, dest2, TEST_LEN)) {
		printf("Fail zero " xstr(FUNCTION_UNDER_TEST) " test2\n");
		dump_matrix(buffs, 5, TEST_SOURCES);
		printf("dprod_base:");
		dump(dest_ref2, 25);
		printf("dprod_dut:");
		dump(dest2, 25);
		return -1;
	}
	if (0 != memcmp(dest_ref3, dest3, TEST_LEN)) {
		printf("Fail zero " xstr(FUNCTION_UNDER_TEST) " test3\n");
		dump_matrix(buffs, 5, TEST_SOURCES);
		printf("dprod_base:");
		dump(dest_ref3, 25);
		printf("dprod_dut:");
		dump(dest3, 25);
		return -1;
	}

	putchar('.');

	// Rand data test

	for (rtest = 0; rtest < RANDOMS; rtest++) {
		for (i = 0; i < TEST_SOURCES; i++)
			for (j = 0; j < TEST_LEN; j++)
				buffs[i][j] = rand();

		for (i = 0; i < TEST_SOURCES; i++) {
			g1[i] = rand();
			g2[i] = rand();
			g3[i] = rand();
		}

		for (i = 0; i < TEST_SOURCES; i++) {
			gf_vect_mul_init(g1[i], &g_tbls[i * 32]);
			gf_vect_mul_init(g2[i], &g_tbls[(32 * TEST_SOURCES) + (i * 32)]);
			gf_vect_mul_init(g3[i], &g_tbls[(64 * TEST_SOURCES) + (i * 32)]);
		}

		gf_vect_dot_prod_base(TEST_LEN, TEST_SOURCES, &g_tbls[0], buffs, dest_ref1);
		gf_vect_dot_prod_base(TEST_LEN, TEST_SOURCES, &g_tbls[32 * TEST_SOURCES],
				      buffs, dest_ref2);
		gf_vect_dot_prod_base(TEST_LEN, TEST_SOURCES, &g_tbls[64 * TEST_SOURCES],
				      buffs, dest_ref3);

		FUNCTION_UNDER_TEST(TEST_LEN, TEST_SOURCES, g_tbls, buffs, dest_ptrs);

		if (0 != memcmp(dest_ref1, dest1, TEST_LEN)) {
			printf("Fail rand " xstr(FUNCTION_UNDER_TEST) " test1 %d\n", rtest);
			dump_matrix(buffs, 5, TEST_SOURCES);
			printf("dprod_base:");
			dump(dest_ref1, 25);
			printf("dprod_dut:");
			dump(dest1, 25);
			return -1;
		}
		if (0 != memcmp(dest_ref2, dest2, TEST_LEN)) {
			printf("Fail rand " xstr(FUNCTION_UNDER_TEST) " test2 %d\n", rtest);
			dump_matrix(buffs, 5, TEST_SOURCES);
			printf("dprod_base:");
			dump(dest_ref2, 25);
			printf("dprod_dut:");
			dump(dest2, 25);
			return -1;
		}
		if (0 != memcmp(dest_ref3, dest3, TEST_LEN)) {
			printf("Fail rand " xstr(FUNCTION_UNDER_TEST) " test3 %d\n", rtest);
			dump_matrix(buffs, 5, TEST_SOURCES);
			printf("dprod_base:");
			dump(dest_ref3, 25);
			printf("dprod_dut:");
			dump(dest3, 25);
			return -1;
		}

		putchar('.');
	}

	// Rand data test with varied parameters
	for (rtest = 0; rtest < RANDOMS; rtest++) {
		for (srcs = TEST_SOURCES; srcs > 0; srcs--) {
			for (i = 0; i < srcs; i++)
				for (j = 0; j < TEST_LEN; j++)
					buffs[i][j] = rand();

			for (i = 0; i < srcs; i++) {
				g1[i] = rand();
				g2[i] = rand();
				g3[i] = rand();
			}

			for (i = 0; i < srcs; i++) {
				gf_vect_mul_init(g1[i], &g_tbls[i * 32]);
				gf_vect_mul_init(g2[i], &g_tbls[(32 * srcs) + (i * 32)]);
				gf_vect_mul_init(g3[i], &g_tbls[(64 * srcs) + (i * 32)]);
			}

			gf_vect_dot_prod_base(TEST_LEN, srcs, &g_tbls[0], buffs, dest_ref1);
			gf_vect_dot_prod_base(TEST_LEN, srcs, &g_tbls[32 * srcs], buffs,
					      dest_ref2);
			gf_vect_dot_prod_base(TEST_LEN, srcs, &g_tbls[64 * srcs], buffs,
					      dest_ref3);

			FUNCTION_UNDER_TEST(TEST_LEN, srcs, g_tbls, buffs, dest_ptrs);

			if (0 != memcmp(dest_ref1, dest1, TEST_LEN)) {
				printf("Fail rand " xstr(FUNCTION_UNDER_TEST)
				       " test1 srcs=%d\n", srcs);
				dump_matrix(buffs, 5, TEST_SOURCES);
				printf("dprod_base:");
				dump(dest_ref1, 25);
				printf("dprod_dut:");
				dump(dest1, 25);
				return -1;
			}
			if (0 != memcmp(dest_ref2, dest2, TEST_LEN)) {
				printf("Fail rand " xstr(FUNCTION_UNDER_TEST)
				       " test2 srcs=%d\n", srcs);
				dump_matrix(buffs, 5, TEST_SOURCES);
				printf("dprod_base:");
				dump(dest_ref2, 25);
				printf("dprod_dut:");
				dump(dest2, 25);
				return -1;
			}
			if (0 != memcmp(dest_ref3, dest3, TEST_LEN)) {
				printf("Fail rand " xstr(FUNCTION_UNDER_TEST)
				       " test3 srcs=%d\n", srcs);
				dump_matrix(buffs, 5, TEST_SOURCES);
				printf("dprod_base:");
				dump(dest_ref3, 25);
				printf("dprod_dut:");
				dump(dest3, 25);
				return -1;
			}

			putchar('.');
		}
	}

	// Run tests at end of buffer for Electric Fence
	align = (LEN_ALIGN_CHK_B != 0) ? 1 : 16;
	for (size = TEST_MIN_SIZE; size <= TEST_SIZE; size += align) {
		for (i = 0; i < TEST_SOURCES; i++)
			for (j = 0; j < TEST_LEN; j++)
				buffs[i][j] = rand();

		for (i = 0; i < TEST_SOURCES; i++)	// Line up TEST_SIZE from end
			efence_buffs[i] = buffs[i] + TEST_LEN - size;

		for (i = 0; i < TEST_SOURCES; i++) {
			g1[i] = rand();
			g2[i] = rand();
			g3[i] = rand();
		}

		for (i = 0; i < TEST_SOURCES; i++) {
			gf_vect_mul_init(g1[i], &g_tbls[i * 32]);
			gf_vect_mul_init(g2[i], &g_tbls[(32 * TEST_SOURCES) + (i * 32)]);
			gf_vect_mul_init(g3[i], &g_tbls[(64 * TEST_SOURCES) + (i * 32)]);
		}

		gf_vect_dot_prod_base(size, TEST_SOURCES, &g_tbls[0], efence_buffs, dest_ref1);
		gf_vect_dot_prod_base(size, TEST_SOURCES, &g_tbls[32 * TEST_SOURCES],
				      efence_buffs, dest_ref2);
		gf_vect_dot_prod_base(size, TEST_SOURCES, &g_tbls[64 * TEST_SOURCES],
				      efence_buffs, dest_ref3);

		FUNCTION_UNDER_TEST(size, TEST_SOURCES, g_tbls, efence_buffs, dest_ptrs);

		if (0 != memcmp(dest_ref1, dest1, size)) {
			printf("Fail rand " xstr(FUNCTION_UNDER_TEST) " test1 %d\n", rtest);
			dump_matrix(efence_buffs, 5, TEST_SOURCES);
			printf("dprod_base:");
			dump(dest_ref1, align);
			printf("dprod_dut:");
			dump(dest1, align);
			return -1;
		}

		if (0 != memcmp(dest_ref2, dest2, size)) {
			printf("Fail rand " xstr(FUNCTION_UNDER_TEST) " test2 %d\n", rtest);
			dump_matrix(efence_buffs, 5, TEST_SOURCES);
			printf("dprod_base:");
			dump(dest_ref2, align);
			printf("dprod_dut:");
			dump(dest2, align);
			return -1;
		}

		if (0 != memcmp(dest_ref3, dest3, size)) {
			printf("Fail rand " xstr(FUNCTION_UNDER_TEST) " test3 %d\n", rtest);
			dump_matrix(efence_buffs, 5, TEST_SOURCES);
			printf("dprod_base:");
			dump(dest_ref3, align);
			printf("dprod_dut:");
			dump(dest3, align);
			return -1;
		}

		putchar('.');
	}

	// Test rand ptr alignment if available

	for (rtest = 0; rtest < RANDOMS; rtest++) {
		size = (TEST_LEN - PTR_ALIGN_CHK_B) & ~(TEST_MIN_SIZE - 1);
		srcs = rand() % TEST_SOURCES;
		if (srcs == 0)
			continue;

		offset = (PTR_ALIGN_CHK_B != 0) ? 1 : PTR_ALIGN_CHK_B;
		// Add random offsets
		for (i = 0; i < srcs; i++)
			ubuffs[i] = buffs[i] + (rand() & (PTR_ALIGN_CHK_B - offset));

		udest_ptrs[0] = dest1 + (rand() & (PTR_ALIGN_CHK_B - offset));
		udest_ptrs[1] = dest2 + (rand() & (PTR_ALIGN_CHK_B - offset));
		udest_ptrs[2] = dest3 + (rand() & (PTR_ALIGN_CHK_B - offset));

		memset(dest1, 0, TEST_LEN);	// zero pad to check write-over
		memset(dest2, 0, TEST_LEN);
		memset(dest3, 0, TEST_LEN);

		for (i = 0; i < srcs; i++)
			for (j = 0; j < size; j++)
				ubuffs[i][j] = rand();

		for (i = 0; i < srcs; i++) {
			g1[i] = rand();
			g2[i] = rand();
			g3[i] = rand();
		}

		for (i = 0; i < srcs; i++) {
			gf_vect_mul_init(g1[i], &g_tbls[i * 32]);
			gf_vect_mul_init(g2[i], &g_tbls[(32 * srcs) + (i * 32)]);
			gf_vect_mul_init(g3[i], &g_tbls[(64 * srcs) + (i * 32)]);
		}

		gf_vect_dot_prod_base(size, srcs, &g_tbls[0], ubuffs, dest_ref1);
		gf_vect_dot_prod_base(size, srcs, &g_tbls[32 * srcs], ubuffs, dest_ref2);
		gf_vect_dot_prod_base(size, srcs, &g_tbls[64 * srcs], ubuffs, dest_ref3);

		FUNCTION_UNDER_TEST(size, srcs, g_tbls, ubuffs, udest_ptrs);

		if (memcmp(dest_ref1, udest_ptrs[0], size)) {
			printf("Fail rand " xstr(FUNCTION_UNDER_TEST) " test ualign srcs=%d\n",
			       srcs);
			dump_matrix(ubuffs, 5, TEST_SOURCES);
			printf("dprod_base:");
			dump(dest_ref1, 25);
			printf("dprod_dut:");
			dump(udest_ptrs[0], 25);
			return -1;
		}
		if (memcmp(dest_ref2, udest_ptrs[1], size)) {
			printf("Fail rand " xstr(FUNCTION_UNDER_TEST) " test ualign srcs=%d\n",
			       srcs);
			dump_matrix(ubuffs, 5, TEST_SOURCES);
			printf("dprod_base:");
			dump(dest_ref2, 25);
			printf("dprod_dut:");
			dump(udest_ptrs[1], 25);
			return -1;
		}
		if (memcmp(dest_ref3, udest_ptrs[2], size)) {
			printf("Fail rand " xstr(FUNCTION_UNDER_TEST) " test ualign srcs=%d\n",
			       srcs);
			dump_matrix(ubuffs, 5, TEST_SOURCES);
			printf("dprod_base:");
			dump(dest_ref3, 25);
			printf("dprod_dut:");
			dump(udest_ptrs[2], 25);
			return -1;
		}
		// Confirm that padding around dests is unchanged
		memset(dest_ref1, 0, PTR_ALIGN_CHK_B);	// Make reference zero buff
		offset = udest_ptrs[0] - dest1;

		if (memcmp(dest1, dest_ref1, offset)) {
			printf("Fail rand ualign pad1 start\n");
			return -1;
		}
		if (memcmp(dest1 + offset + size, dest_ref1, PTR_ALIGN_CHK_B - offset)) {
			printf("Fail rand ualign pad1 end\n");
			return -1;
		}

		offset = udest_ptrs[1] - dest2;
		if (memcmp(dest2, dest_ref1, offset)) {
			printf("Fail rand ualign pad2 start\n");
			return -1;
		}
		if (memcmp(dest2 + offset + size, dest_ref1, PTR_ALIGN_CHK_B - offset)) {
			printf("Fail rand ualign pad2 end\n");
			return -1;
		}

		offset = udest_ptrs[2] - dest3;
		if (memcmp(dest3, dest_ref1, offset)) {
			printf("Fail rand ualign pad3 start\n");
			return -1;
		}
		if (memcmp(dest3 + offset + size, dest_ref1, PTR_ALIGN_CHK_B - offset)) {
			printf("Fail rand ualign pad3 end\n");;
			return -1;
		}

		putchar('.');
	}

	// Test all size alignment
	align = (LEN_ALIGN_CHK_B != 0) ? 1 : 16;

	for (size = TEST_LEN; size >= TEST_MIN_SIZE; size -= align) {
		srcs = TEST_SOURCES;

		for (i = 0; i < srcs; i++)
			for (j = 0; j < size; j++)
				buffs[i][j] = rand();

		for (i = 0; i < srcs; i++) {
			g1[i] = rand();
			g2[i] = rand();
			g3[i] = rand();
		}

		for (i = 0; i < srcs; i++) {
			gf_vect_mul_init(g1[i], &g_tbls[i * 32]);
			gf_vect_mul_init(g2[i], &g_tbls[(32 * srcs) + (i * 32)]);
			gf_vect_mul_init(g3[i], &g_tbls[(64 * srcs) + (i * 32)]);
		}

		gf_vect_dot_prod_base(size, srcs, &g_tbls[0], buffs, dest_ref1);
		gf_vect_dot_prod_base(size, srcs, &g_tbls[32 * srcs], buffs, dest_ref2);
		gf_vect_dot_prod_base(size, srcs, &g_tbls[64 * srcs], buffs, dest_ref3);

		FUNCTION_UNDER_TEST(size, srcs, g_tbls, buffs, dest_ptrs);

		if (memcmp(dest_ref1, dest_ptrs[0], size)) {
			printf("Fail rand " xstr(FUNCTION_UNDER_TEST) " test ualign len=%d\n",
			       size);
			dump_matrix(buffs, 5, TEST_SOURCES);
			printf("dprod_base:");
			dump(dest_ref1, 25);
			printf("dprod_dut:");
			dump(dest_ptrs[0], 25);
			return -1;
		}
		if (memcmp(dest_ref2, dest_ptrs[1], size)) {
			printf("Fail rand " xstr(FUNCTION_UNDER_TEST) " test ualign len=%d\n",
			       size);
			dump_matrix(buffs, 5, TEST_SOURCES);
			printf("dprod_base:");
			dump(dest_ref2, 25);
			printf("dprod_dut:");
			dump(dest_ptrs[1], 25);
			return -1;
		}
		if (memcmp(dest_ref3, dest_ptrs[2], size)) {
			printf("Fail rand " xstr(FUNCTION_UNDER_TEST) " test ualign len=%d\n",
			       size);
			dump_matrix(buffs, 5, TEST_SOURCES);
			printf("dprod_base:");
			dump(dest_ref3, 25);
			printf("dprod_dut:");
			dump(dest_ptrs[2], 25);
			return -1;
		}
	}

	printf("Pass\n");
	return 0;

}
コード例 #7
0
void mexFunction
(
    /* === Parameters ======================================================= */

    int nlhs,			/* number of left-hand sides */
    mxArray *plhs [],		/* left-hand side matrices */
    int nrhs,			/* number of right--hand sides */
    const mxArray *prhs []	/* right-hand side matrices */
)
{
    /* === Local variables ================================================== */

    Long *perm ;                /* column ordering of M and ordering of A */
    Long *A ;                   /* row indices of input matrix A */
    Long *p ;                   /* column pointers of input matrix A */
    Long n_col ;                /* number of columns of A */
    Long n_row ;                /* number of rows of A */
    Long full ;                 /* TRUE if input matrix full, FALSE if sparse */
    double knobs [COLAMD_KNOBS] ; /* colamd user-controllable parameters */
    double *out_perm ;          /* output permutation vector */
    double *out_stats ;         /* output stats vector */
    double *in_knobs ;          /* input knobs vector */
    Long i ;                    /* loop counter */
    mxArray *Ainput ;           /* input matrix handle */
    Long spumoni ;              /* verbosity variable */
    Long stats2 [COLAMD_STATS] ;/* stats for symamd */

    Long *cp, *cp_end, result, nnz, col, length ;
    Long *stats ;
    stats = stats2 ;

    /* === Check inputs ===================================================== */

    if (nrhs < 1 || nrhs > 2 || nlhs < 0 || nlhs > 2)
    {
	mexErrMsgTxt (
	"symamd: incorrect number of input and/or output arguments.") ;
    }

    if (nrhs != 2)
    {
	mexErrMsgTxt ("symamdtest: knobs are required") ;
    }
    /* for testing we require all 3 knobs */
    if (mxGetNumberOfElements (prhs [1]) != 3)
    {
	mexErrMsgTxt ("symamdtest: must have all 3 knobs for testing") ;
    }

    /* === Get knobs ======================================================== */

    colamd_l_set_defaults (knobs) ;
    spumoni = 0 ;

    /* check for user-passed knobs */
    if (nrhs == 2)
    {
	in_knobs = mxGetPr (prhs [1]) ;
	i = mxGetNumberOfElements (prhs [1]) ;
	if (i > 0) knobs [COLAMD_DENSE_ROW] = in_knobs [0] ;
	if (i > 1) spumoni = (Long) in_knobs [1] ;
    }

    /* print knob settings if spumoni is set */
    if (spumoni)
    {
	mexPrintf ("\nsymamd version %d.%d, %s:\n",
	    COLAMD_MAIN_VERSION, COLAMD_SUB_VERSION, COLAMD_DATE) ;
	if (knobs [COLAMD_DENSE_ROW] >= 0)
	{
	    mexPrintf ("knobs(1): %g, rows/cols with > "
		"max(16,%g*sqrt(size(A,2))) entries removed\n",
		in_knobs [0], knobs [COLAMD_DENSE_ROW]) ;
	}
	else
	{
	    mexPrintf ("knobs(1): %g, no dense rows removed\n", in_knobs [0]) ;
	}
	mexPrintf ("knobs(2): %g, statistics and knobs printed\n",
	    in_knobs [1]) ;
	mexPrintf ("Testing %d\n", in_knobs [2]) ;
    }

    /* === If A is full, convert to a sparse matrix ========================= */

    Ainput = (mxArray *) prhs [0] ;
    if (mxGetNumberOfDimensions (Ainput) != 2)
    {
	mexErrMsgTxt ("symamd: input matrix must be 2-dimensional.") ;
    }
    full = !mxIsSparse (Ainput) ;
    if (full)
    {
	mexCallMATLAB (1, &Ainput, 1, (mxArray **) prhs, "sparse") ;
    }

    /* === Allocate workspace for symamd ==================================== */

    /* get size of matrix */
    n_row = mxGetM (Ainput) ;
    n_col = mxGetN (Ainput) ;
    if (n_col != n_row)
    {
	mexErrMsgTxt ("symamd: matrix must be square.") ;
    }

    /* p = mxGetJc (Ainput) ; */
    p = (Long *) mxCalloc (n_col+1, sizeof (Long)) ;
    (void) memcpy (p, mxGetJc (Ainput), (n_col+1)*sizeof (Long)) ;

    nnz = p [n_col] ;
    if (spumoni > 0)
    {
	mexPrintf ("symamdtest: nnz %d\n", nnz) ;
    }

    /* A = mxGetIr (Ainput) ; */
    A = (Long *) mxCalloc (nnz+1, sizeof (Long)) ;
    (void) memcpy (A, mxGetIr (Ainput), nnz*sizeof (Long)) ;

    perm = (Long *) mxCalloc (n_col+1, sizeof (Long)) ;

/* === Jumble matrix ======================================================== */


/*
	knobs [2]	FOR TESTING ONLY: Specifies how to jumble matrix
			0 : No jumbling
			1 : (no errors)
			2 : Make first pointer non-zero
			3 : Make column pointers not non-decreasing
			4 : (no errors)
			5 : Make row indices not strictly increasing
			6 : Make a row index greater or equal to n_row
			7 : Set A = NULL
			8 : Set p = NULL
			9 : Repeat row index
			10: make row indices not sorted
			11: jumble columns massively (note this changes
				the pattern of the matrix A.)
			12: Set stats = NULL
			13: Make n_col less than zero
*/

    /* jumble appropriately */
    switch ((Long) in_knobs [2])
    {

	case 0 :
	    if (spumoni > 0)
	    {
		mexPrintf ("symamdtest: no errors expected\n") ;
	    }
	    result = 1 ;		/* no errors */
	    break ;

	case 1 :
	    if (spumoni > 0)
	    {
		mexPrintf ("symamdtest: no errors expected (1)\n") ;
	    }
	    result = 1 ;
	    break ;

	case 2 :
	    if (spumoni > 0)
	    {
		mexPrintf ("symamdtest: p [0] nonzero\n") ;
	    }
	    result = 0 ;		/* p [0] must be zero */
	    p [0] = 1 ;
	    break ;

	case 3 :
	    if (spumoni > 0)
	    {
		mexPrintf ("symamdtest: negative length last column\n") ;
	    }
	    result = (n_col == 0) ;	/* p must be monotonically inc. */
	    p [n_col] = p [0] ;
	    break ;

	case 4 :
	    if (spumoni > 0)
	    {
		mexPrintf ("symamdtest: no errors expected (4)\n") ;
	    }
	    result = 1 ;
	    break ;

	case 5 :
	    if (spumoni > 0)
	    {
		mexPrintf ("symamdtest: row index out of range (-1)\n") ;
	    }
	    if (nnz > 0)		/* row index out of range */
	    {
		result = 0 ;
		A [nnz-1] = -1 ;
	    }
	    else
	    {
	        if (spumoni > 0)
		{
		    mexPrintf ("Note: no row indices to put out of range\n") ;
		}
		result = 1 ;
	    }
	    break ;

	case 6 :
	    if (spumoni > 0)
	    {
		mexPrintf ("symamdtest: row index out of range (ncol)\n") ;
	    }
	    if (nnz > 0)		/* row index out of range */
	    {
		result = 0 ;
		A [nnz-1] = n_col ;
	    }
	    else
	    {
	        if (spumoni > 0)
		{
		    mexPrintf ("Note: no row indices to put out of range\n") ;
		}
		result = 1 ;
	    }
	    break ;

	case 7 :
	    if (spumoni > 0)
	    {
		mexPrintf ("symamdtest: A not present\n") ;
	    }
	    result = 0 ;		/* A not present */
	    A = (Long *) NULL ;
	    break ;

	case 8 :
	    if (spumoni > 0)
	    {
		mexPrintf ("symamdtest: p not present\n") ;
	    }
	    result = 0 ;		/* p not present */
	    p = (Long *) NULL ;
	    break ;

	case 9 :
	    if (spumoni > 0)
	    {
		mexPrintf ("symamdtest: duplicate row index\n") ;
	    }
	    result = 1 ;		/* duplicate row index */

	    for (col = 0 ; col < n_col ; col++)
	    {
		length = p [col+1] - p [col] ;
	    	if (length > 1)
		{
		    A [p [col+1]-2] = A [p [col+1] - 1] ;
		    if (spumoni > 0)
		    {
			mexPrintf ("Made duplicate row %d in col %d\n",
		    	 A [p [col+1] - 1], col) ;
		    }
		    break ;
		}
	    }

	    if (spumoni > 1)
	    {
		dump_matrix (A, p, n_row, n_col, nnz, col+2) ;
	    }
	    break ;

	case 10 :
	    if (spumoni > 0)
	    {
		mexPrintf ("symamdtest: unsorted column\n") ;
	    }
	    result = 1 ;		/* jumbled columns */

	    for (col = 0 ; col < n_col ; col++)
	    {
		length = p [col+1] - p [col] ;
	    	if (length > 1)
		{
		    i = A[p [col]] ;
		    A [p [col]] = A[p [col] + 1] ;
		    A [p [col] + 1] = i ;
		    if (spumoni > 0)
		    {
			mexPrintf ("Unsorted column %d \n", col) ;
		    }
		    break ;
		}
	    }

	    if (spumoni > 1)
	    {
		dump_matrix (A, p, n_row, n_col, nnz, col+2) ;
	    }
	    break ;

	case 11 :
	    if (spumoni > 0)
	    {
		mexPrintf ("symamdtest: massive jumbling\n") ;
	    }
	    result = 1 ;		/* massive jumbling, but no errors */
	    srand (1) ;
	    for (i = 0 ; i < n_col ; i++)
	    {
		cp = &A [p [i]] ;
		cp_end = &A [p [i+1]] ;
		while (cp < cp_end)
		{
		    *cp++ = rand() % n_row ;
		}
	    }
	    if (spumoni > 1)
	    {
		dump_matrix (A, p, n_row, n_col, nnz, n_col) ;
	    }
	    break ;

	case 12 :
	    if (spumoni > 0)
	    {
		mexPrintf ("symamdtest: stats not present\n") ;
	    }
	    result = 0 ;		/* stats not present */
	    stats = (Long *) NULL ;
	    break ;

	case 13 :
	    if (spumoni > 0)
	    {
		mexPrintf ("symamdtest: ncol out of range\n") ;
	    }
	    result = 0 ;		/* ncol out of range */
	    n_col = -1 ;
	    break ;

    }

    /* === Order the rows and columns of A (does not destroy A) ============= */

    if (!symamd_l (n_col, A, p, perm, knobs, stats, &mxCalloc, &mxFree))
    {

	/* return p = -1 if colamd failed */
	plhs [0] = mxCreateDoubleMatrix (1, 1, mxREAL) ;
	out_perm = mxGetPr (plhs [0]) ;
	out_perm [0] = -1 ;
	mxFree (p) ;
	mxFree (A) ;

	if (spumoni > 0 || result)
	{
	    symamd_l_report (stats) ;
	}

	if (result)
	{
	    mexErrMsgTxt ("symamd should have returned TRUE\n") ;
	}

	return ;
	/* mexErrMsgTxt ("symamd error!") ; */
    }

    if (!result)
    {
	symamd_l_report (stats) ;
	mexErrMsgTxt ("symamd should have returned FALSE\n") ;
    }

    if (full)
    {
	mxDestroyArray (Ainput) ;
    }

    /* === Return the permutation vector ==================================== */

    plhs [0] = mxCreateDoubleMatrix (1, n_col, mxREAL) ;
    out_perm = mxGetPr (plhs [0]) ;
    for (i = 0 ; i < n_col ; i++)
    {
	/* symamd is 0-based, but MATLAB expects this to be 1-based */
	out_perm [i] = perm [i] + 1 ;
    }
    mxFree (perm) ;

    /* === Return the stats vector ========================================== */

    /* print stats if spumoni > 0 */
    if (spumoni > 0)
    {
	symamd_l_report (stats) ;
    }

    if (nlhs == 2)
    {
	plhs [1] = mxCreateDoubleMatrix (1, COLAMD_STATS, mxREAL) ;
	out_stats = mxGetPr (plhs [1]) ;
	for (i = 0 ; i < COLAMD_STATS ; i++)
	{
	    out_stats [i] = stats [i] ;
	}

	/* fix stats (5) and (6), for 1-based information on jumbled matrix. */
	/* note that this correction doesn't occur if symamd returns FALSE */
	out_stats [COLAMD_INFO1] ++ ; 
	out_stats [COLAMD_INFO2] ++ ; 
    }
}
コード例 #8
0
ファイル: interp_matrix.c プロジェクト: foxydude/qc
/*
  Compute the pseudoinverse of A and store it in A_plus

  A+ = VS+U*
  A m x n
  V m x m
  S n x n
  U m x n
 */
int pseudoinverse(gsl_matrix *A, gsl_matrix *A_plus) {
  int rc;
  double temp;
  int m = (int)(A->size1);
  int n = (int)(A->size2);
  gsl_vector *workspace = gsl_vector_alloc(n);
  gsl_matrix *V = gsl_matrix_alloc(n, n);
  gsl_matrix *S = gsl_matrix_alloc(n, n);
  gsl_matrix *U_times_S_plus_trans = gsl_matrix_alloc(m, n);
  gsl_vector *singular_values = gsl_vector_alloc(n);
  int i;
  double tolerance = 0;


  rc = gsl_linalg_SV_decomp(A, V, singular_values, workspace); // NOTE: this does a thin SVD
  // Now A = U
  dump_matrix(A, "U.dat");
  dump_matrix(V, "V.dat");
  dump_vector(singular_values, "S.dat");

  if (rc) {
    // ERROR
    return rc;
  }
  
  // compute tolerace as MAX(SIZE(A)) * NORM(A) * EPS(class(A))
  // singular values within tolerance of 0 are considered to be 0
  tolerance = MAX(m,n) * gsl_vector_get(singular_values, 0) * DBL_EPSILON;
  //printf("tolerance = %g\n", tolerance);
  

  // compute S+
  // by taking reciprocal of nonzero entries
  for (i = 0 ; i < n ; i++) {
    temp = gsl_vector_get(singular_values, i);
    if (temp < tolerance) {
      break; // singular values are non-negative and form a non-increasing sequence
    }
    gsl_matrix_set(S, i, i, 1 / temp);
  }
  // now S = S+*

  // compute US+*
  rc = gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, A, S, 0.0, U_times_S_plus_trans);
  // now A = US+*

  if (rc) {
    // ERROR
    return rc;
  }

  // compute VS+U
  rc = gsl_blas_dgemm(CblasNoTrans, CblasTrans, 1.0, V, U_times_S_plus_trans, 0.0, A_plus);
  // now A_plus = VS+U
  if (rc) {
    // ERROR
    return rc;
  }


  // cleanup
  gsl_vector_free(workspace);
  gsl_matrix_free(V);
  gsl_matrix_free(S);
  gsl_matrix_free(U_times_S_plus_trans);
  gsl_vector_free(singular_values);

  return 0;
}
コード例 #9
0
ファイル: erasure_code_test.c プロジェクト: Cyaagain/isa-l
int main(int argc, char *argv[])
{
	int re = 0;
	int i, j, p, rtest, m, k;
	int nerrs, nsrcerrs;
	void *buf;
	unsigned int decode_index[MMAX];
	unsigned char *temp_buffs[TEST_SOURCES], *buffs[TEST_SOURCES];
	unsigned char *encode_matrix, *decode_matrix, *invert_matrix, *g_tbls;
	unsigned char src_in_err[TEST_SOURCES], src_err_list[TEST_SOURCES];
	unsigned char *recov[TEST_SOURCES];

	int rows, align, size;
	unsigned char *efence_buffs[TEST_SOURCES];
	unsigned int offset;
	u8 *ubuffs[TEST_SOURCES];
	u8 *temp_ubuffs[TEST_SOURCES];

	printf("erasure_code_test: %dx%d ", TEST_SOURCES, TEST_LEN);
	srand(TEST_SEED);

	// Allocate the arrays
	for (i = 0; i < TEST_SOURCES; i++) {
		if (posix_memalign(&buf, 64, TEST_LEN)) {
			printf("alloc error: Fail");
			return -1;
		}
		buffs[i] = buf;
	}

	for (i = 0; i < TEST_SOURCES; i++) {
		if (posix_memalign(&buf, 64, TEST_LEN)) {
			printf("alloc error: Fail");
			return -1;
		}
		temp_buffs[i] = buf;
	}

	// Test erasure code by encode and recovery

	encode_matrix = malloc(MMAX * KMAX);
	decode_matrix = malloc(MMAX * KMAX);
	invert_matrix = malloc(MMAX * KMAX);
	g_tbls = malloc(KMAX * TEST_SOURCES * 32);
	if (encode_matrix == NULL || decode_matrix == NULL
	    || invert_matrix == NULL || g_tbls == NULL) {
		printf("Test failure! Error with malloc\n");
		return -1;
	}
	// Pick a first test
	m = 9;
	k = 5;
	if (m > MMAX || k > KMAX)
		return -1;

	// Make random data
	for (i = 0; i < k; i++)
		for (j = 0; j < TEST_LEN; j++)
			buffs[i][j] = rand();

	// Generate encode matrix encode_matrix
	// The matrix generated by gf_gen_rs_matrix
	// is not always invertable.
	gf_gen_rs_matrix(encode_matrix, m, k);

	// Generate g_tbls from encode matrix encode_matrix
	ec_init_tables(k, m - k, &encode_matrix[k * k], g_tbls);

	// Perform matrix dot_prod for EC encoding
	// using g_tbls from encode matrix encode_matrix
	ec_encode_data(TEST_LEN, k, m - k, g_tbls, buffs, &buffs[k]);

	// Choose random buffers to be in erasure
	memset(src_in_err, 0, TEST_SOURCES);
	gen_err_list(src_err_list, src_in_err, &nerrs, &nsrcerrs, k, m);

	// Generate decode matrix
	re = gf_gen_decode_matrix(encode_matrix, decode_matrix,
				  invert_matrix, decode_index, src_err_list, src_in_err,
				  nerrs, nsrcerrs, k, m);
	if (re != 0) {
		printf("Fail to gf_gen_decode_matrix\n");
		return -1;
	}
	// Pack recovery array as list of valid sources
	// Its order must be the same as the order
	// to generate matrix b in gf_gen_decode_matrix
	for (i = 0; i < k; i++) {
		recov[i] = buffs[decode_index[i]];
	}

	// Recover data
	ec_init_tables(k, nerrs, decode_matrix, g_tbls);
	ec_encode_data(TEST_LEN, k, nerrs, g_tbls, recov, &temp_buffs[k]);
	for (i = 0; i < nerrs; i++) {

		if (0 != memcmp(temp_buffs[k + i], buffs[src_err_list[i]], TEST_LEN)) {
			printf("Fail error recovery (%d, %d, %d)\n", m, k, nerrs);
			printf(" - erase list = ");
			for (j = 0; j < nerrs; j++)
				printf(" %d", src_err_list[j]);
			printf(" - Index = ");
			for (p = 0; p < k; p++)
				printf(" %d", decode_index[p]);
			printf("\nencode_matrix:\n");
			dump_u8xu8((u8 *) encode_matrix, m, k);
			printf("inv b:\n");
			dump_u8xu8((u8 *) invert_matrix, k, k);
			printf("\ndecode_matrix:\n");
			dump_u8xu8((u8 *) decode_matrix, m, k);
			printf("recov %d:", src_err_list[i]);
			dump(temp_buffs[k + i], 25);
			printf("orig   :");
			dump(buffs[src_err_list[i]], 25);
			return -1;
		}
	}

	// Pick a first test
	m = 9;
	k = 5;
	if (m > MMAX || k > KMAX)
		return -1;

	// Make random data
	for (i = 0; i < k; i++)
		for (j = 0; j < TEST_LEN; j++)
			buffs[i][j] = rand();

	// The matrix generated by gf_gen_cauchy1_matrix
	// is always invertable.
	gf_gen_cauchy1_matrix(encode_matrix, m, k);

	// Generate g_tbls from encode matrix encode_matrix
	ec_init_tables(k, m - k, &encode_matrix[k * k], g_tbls);

	// Perform matrix dot_prod for EC encoding
	// using g_tbls from encode matrix encode_matrix
	ec_encode_data(TEST_LEN, k, m - k, g_tbls, buffs, &buffs[k]);

	// Choose random buffers to be in erasure
	memset(src_in_err, 0, TEST_SOURCES);
	gen_err_list(src_err_list, src_in_err, &nerrs, &nsrcerrs, k, m);

	// Generate decode matrix
	re = gf_gen_decode_matrix(encode_matrix, decode_matrix,
				  invert_matrix, decode_index, src_err_list, src_in_err,
				  nerrs, nsrcerrs, k, m);
	if (re != 0) {
		printf("Fail to gf_gen_decode_matrix\n");
		return -1;
	}
	// Pack recovery array as list of valid sources
	// Its order must be the same as the order
	// to generate matrix b in gf_gen_decode_matrix
	for (i = 0; i < k; i++) {
		recov[i] = buffs[decode_index[i]];
	}

	// Recover data
	ec_init_tables(k, nerrs, decode_matrix, g_tbls);
	ec_encode_data(TEST_LEN, k, nerrs, g_tbls, recov, &temp_buffs[k]);
	for (i = 0; i < nerrs; i++) {

		if (0 != memcmp(temp_buffs[k + i], buffs[src_err_list[i]], TEST_LEN)) {
			printf("Fail error recovery (%d, %d, %d)\n", m, k, nerrs);
			printf(" - erase list = ");
			for (j = 0; j < nerrs; j++)
				printf(" %d", src_err_list[j]);
			printf(" - Index = ");
			for (p = 0; p < k; p++)
				printf(" %d", decode_index[p]);
			printf("\nencode_matrix:\n");
			dump_u8xu8((u8 *) encode_matrix, m, k);
			printf("inv b:\n");
			dump_u8xu8((u8 *) invert_matrix, k, k);
			printf("\ndecode_matrix:\n");
			dump_u8xu8((u8 *) decode_matrix, m, k);
			printf("recov %d:", src_err_list[i]);
			dump(temp_buffs[k + i], 25);
			printf("orig   :");
			dump(buffs[src_err_list[i]], 25);
			return -1;
		}
	}

	// Do more random tests
	for (rtest = 0; rtest < RANDOMS; rtest++) {
		while ((m = (rand() % MMAX)) < 2) ;
		while ((k = (rand() % KMAX)) >= m || k < 1) ;

		if (m > MMAX || k > KMAX)
			continue;

		// Make random data
		for (i = 0; i < k; i++)
			for (j = 0; j < TEST_LEN; j++)
				buffs[i][j] = rand();

		// The matrix generated by gf_gen_cauchy1_matrix
		// is always invertable.
		gf_gen_cauchy1_matrix(encode_matrix, m, k);

		// Make parity vects
		// Generate g_tbls from encode matrix a
		ec_init_tables(k, m - k, &encode_matrix[k * k], g_tbls);
		// Perform matrix dot_prod for EC encoding
		// using g_tbls from encode matrix a
		ec_encode_data(TEST_LEN, k, m - k, g_tbls, buffs, &buffs[k]);

		// Random errors
		memset(src_in_err, 0, TEST_SOURCES);
		gen_err_list(src_err_list, src_in_err, &nerrs, &nsrcerrs, k, m);

		// Generate decode matrix
		re = gf_gen_decode_matrix(encode_matrix, decode_matrix,
					  invert_matrix, decode_index, src_err_list,
					  src_in_err, nerrs, nsrcerrs, k, m);
		if (re != 0) {
			printf("Fail to gf_gen_decode_matrix\n");
			return -1;
		}
		// Pack recovery array as list of valid sources
		// Its order must be the same as the order
		// to generate matrix b in gf_gen_decode_matrix
		for (i = 0; i < k; i++) {
			recov[i] = buffs[decode_index[i]];
		}

		// Recover data
		ec_init_tables(k, nerrs, decode_matrix, g_tbls);
		ec_encode_data(TEST_LEN, k, nerrs, g_tbls, recov, &temp_buffs[k]);

		for (i = 0; i < nerrs; i++) {

			if (0 != memcmp(temp_buffs[k + i], buffs[src_err_list[i]], TEST_LEN)) {
				printf("Fail error recovery (%d, %d, %d) - ", m, k, nerrs);
				printf(" - erase list = ");
				for (j = 0; j < nerrs; j++)
					printf(" %d", src_err_list[j]);
				printf(" - Index = ");
				for (p = 0; p < k; p++)
					printf(" %d", decode_index[p]);
				printf("\nencode_matrix:\n");
				dump_u8xu8((u8 *) encode_matrix, m, k);
				printf("inv b:\n");
				dump_u8xu8((u8 *) invert_matrix, k, k);
				printf("\ndecode_matrix:\n");
				dump_u8xu8((u8 *) decode_matrix, m, k);
				printf("orig data:\n");
				dump_matrix(buffs, m, 25);
				printf("orig   :");
				dump(buffs[src_err_list[i]], 25);
				printf("recov %d:", src_err_list[i]);
				dump(temp_buffs[k + i], 25);
				return -1;
			}
		}
		putchar('.');
	}

	// Run tests at end of buffer for Electric Fence
	k = 16;
	align = (LEN_ALIGN_CHK_B != 0) ? 1 : 16;
	if (k > KMAX)
		return -1;

	for (rows = 1; rows <= 16; rows++) {
		m = k + rows;
		if (m > MMAX)
			return -1;

		// Make random data
		for (i = 0; i < k; i++)
			for (j = 0; j < TEST_LEN; j++)
				buffs[i][j] = rand();

		for (size = EFENCE_TEST_MIN_SIZE; size <= TEST_SIZE; size += align) {
			for (i = 0; i < m; i++) {	// Line up TEST_SIZE from end
				efence_buffs[i] = buffs[i] + TEST_LEN - size;
			}

			// The matrix generated by gf_gen_cauchy1_matrix
			// is always invertable.
			gf_gen_cauchy1_matrix(encode_matrix, m, k);

			// Make parity vects
			// Generate g_tbls from encode matrix a
			ec_init_tables(k, m - k, &encode_matrix[k * k], g_tbls);
			// Perform matrix dot_prod for EC encoding
			// using g_tbls from encode matrix a
			ec_encode_data(size, k, m - k, g_tbls, efence_buffs, &efence_buffs[k]);

			// Random errors
			memset(src_in_err, 0, TEST_SOURCES);
			gen_err_list(src_err_list, src_in_err, &nerrs, &nsrcerrs, k, m);

			// Generate decode matrix
			re = gf_gen_decode_matrix(encode_matrix, decode_matrix,
						  invert_matrix, decode_index, src_err_list,
						  src_in_err, nerrs, nsrcerrs, k, m);
			if (re != 0) {
				printf("Fail to gf_gen_decode_matrix\n");
				return -1;
			}
			// Pack recovery array as list of valid sources
			// Its order must be the same as the order
			// to generate matrix b in gf_gen_decode_matrix
			for (i = 0; i < k; i++) {
				recov[i] = efence_buffs[decode_index[i]];
			}

			// Recover data
			ec_init_tables(k, nerrs, decode_matrix, g_tbls);
			ec_encode_data(size, k, nerrs, g_tbls, recov, &temp_buffs[k]);

			for (i = 0; i < nerrs; i++) {

				if (0 !=
				    memcmp(temp_buffs[k + i], efence_buffs[src_err_list[i]],
					   size)) {
					printf("Efence: Fail error recovery (%d, %d, %d)\n", m,
					       k, nerrs);

					printf("size = %d\n", size);

					printf("Test erase list = ");
					for (j = 0; j < nerrs; j++)
						printf(" %d", src_err_list[j]);
					printf(" - Index = ");
					for (p = 0; p < k; p++)
						printf(" %d", decode_index[p]);
					printf("\nencode_matrix:\n");
					dump_u8xu8((u8 *) encode_matrix, m, k);
					printf("inv b:\n");
					dump_u8xu8((u8 *) invert_matrix, k, k);
					printf("\ndecode_matrix:\n");
					dump_u8xu8((u8 *) decode_matrix, m, k);

					printf("recov %d:", src_err_list[i]);
					dump(temp_buffs[k + i], align);
					printf("orig   :");
					dump(efence_buffs[src_err_list[i]], align);
					return -1;
				}
			}
		}

	}

	// Test rand ptr alignment if available

	for (rtest = 0; rtest < RANDOMS; rtest++) {
		while ((m = (rand() % MMAX)) < 2) ;
		while ((k = (rand() % KMAX)) >= m || k < 1) ;

		if (m > MMAX || k > KMAX)
			continue;

		size = (TEST_LEN - PTR_ALIGN_CHK_B) & ~15;

		offset = (PTR_ALIGN_CHK_B != 0) ? 1 : PTR_ALIGN_CHK_B;
		// Add random offsets
		for (i = 0; i < m; i++) {
			memset(buffs[i], 0, TEST_LEN);	// zero pad to check write-over
			memset(temp_buffs[i], 0, TEST_LEN);	// zero pad to check write-over
			ubuffs[i] = buffs[i] + (rand() & (PTR_ALIGN_CHK_B - offset));
			temp_ubuffs[i] = temp_buffs[i] + (rand() & (PTR_ALIGN_CHK_B - offset));
		}

		for (i = 0; i < k; i++)
			for (j = 0; j < size; j++)
				ubuffs[i][j] = rand();

		// The matrix generated by gf_gen_cauchy1_matrix
		// is always invertable.
		gf_gen_cauchy1_matrix(encode_matrix, m, k);

		// Make parity vects
		// Generate g_tbls from encode matrix a
		ec_init_tables(k, m - k, &encode_matrix[k * k], g_tbls);
		// Perform matrix dot_prod for EC encoding
		// using g_tbls from encode matrix a
		ec_encode_data(size, k, m - k, g_tbls, ubuffs, &ubuffs[k]);

		// Random errors
		memset(src_in_err, 0, TEST_SOURCES);
		gen_err_list(src_err_list, src_in_err, &nerrs, &nsrcerrs, k, m);

		// Generate decode matrix
		re = gf_gen_decode_matrix(encode_matrix, decode_matrix,
					  invert_matrix, decode_index, src_err_list,
					  src_in_err, nerrs, nsrcerrs, k, m);
		if (re != 0) {
			printf("Fail to gf_gen_decode_matrix\n");
			return -1;
		}
		// Pack recovery array as list of valid sources
		// Its order must be the same as the order
		// to generate matrix b in gf_gen_decode_matrix
		for (i = 0; i < k; i++) {
			recov[i] = ubuffs[decode_index[i]];
		}

		// Recover data
		ec_init_tables(k, nerrs, decode_matrix, g_tbls);
		ec_encode_data(size, k, nerrs, g_tbls, recov, &temp_ubuffs[k]);

		for (i = 0; i < nerrs; i++) {

			if (0 != memcmp(temp_ubuffs[k + i], ubuffs[src_err_list[i]], size)) {
				printf("Fail error recovery (%d, %d, %d) - ", m, k, nerrs);
				printf(" - erase list = ");
				for (j = 0; j < nerrs; j++)
					printf(" %d", src_err_list[j]);
				printf(" - Index = ");
				for (p = 0; p < k; p++)
					printf(" %d", decode_index[p]);
				printf("\nencode_matrix:\n");
				dump_u8xu8((unsigned char *)encode_matrix, m, k);
				printf("inv b:\n");
				dump_u8xu8((unsigned char *)invert_matrix, k, k);
				printf("\ndecode_matrix:\n");
				dump_u8xu8((unsigned char *)decode_matrix, m, k);
				printf("orig data:\n");
				dump_matrix(ubuffs, m, 25);
				printf("orig   :");
				dump(ubuffs[src_err_list[i]], 25);
				printf("recov %d:", src_err_list[i]);
				dump(temp_ubuffs[k + i], 25);
				return -1;
			}
		}

		// Confirm that padding around dests is unchanged
		memset(temp_buffs[0], 0, PTR_ALIGN_CHK_B);	// Make reference zero buff

		for (i = 0; i < m; i++) {

			offset = ubuffs[i] - buffs[i];

			if (memcmp(buffs[i], temp_buffs[0], offset)) {
				printf("Fail rand ualign encode pad start\n");
				return -1;
			}
			if (memcmp
			    (buffs[i] + offset + size, temp_buffs[0],
			     PTR_ALIGN_CHK_B - offset)) {
				printf("Fail rand ualign encode pad end\n");
				return -1;
			}
		}

		for (i = 0; i < nerrs; i++) {

			offset = temp_ubuffs[k + i] - temp_buffs[k + i];
			if (memcmp(temp_buffs[k + i], temp_buffs[0], offset)) {
				printf("Fail rand ualign decode pad start\n");
				return -1;
			}
			if (memcmp
			    (temp_buffs[k + i] + offset + size, temp_buffs[0],
			     PTR_ALIGN_CHK_B - offset)) {
				printf("Fail rand ualign decode pad end\n");
				return -1;
			}
		}

		putchar('.');
	}

	// Test size alignment

	align = (LEN_ALIGN_CHK_B != 0) ? 13 : 16;

	for (size = TEST_LEN; size > 0; size -= align) {
		while ((m = (rand() % MMAX)) < 2) ;
		while ((k = (rand() % KMAX)) >= m || k < 1) ;

		if (m > MMAX || k > KMAX)
			continue;

		for (i = 0; i < k; i++)
			for (j = 0; j < size; j++)
				buffs[i][j] = rand();

		// The matrix generated by gf_gen_cauchy1_matrix
		// is always invertable.
		gf_gen_cauchy1_matrix(encode_matrix, m, k);

		// Make parity vects
		// Generate g_tbls from encode matrix a
		ec_init_tables(k, m - k, &encode_matrix[k * k], g_tbls);
		// Perform matrix dot_prod for EC encoding
		// using g_tbls from encode matrix a
		ec_encode_data(size, k, m - k, g_tbls, buffs, &buffs[k]);

		// Random errors
		memset(src_in_err, 0, TEST_SOURCES);
		gen_err_list(src_err_list, src_in_err, &nerrs, &nsrcerrs, k, m);
		// Generate decode matrix
		re = gf_gen_decode_matrix(encode_matrix, decode_matrix,
					  invert_matrix, decode_index, src_err_list,
					  src_in_err, nerrs, nsrcerrs, k, m);
		if (re != 0) {
			printf("Fail to gf_gen_decode_matrix\n");
			return -1;
		}
		// Pack recovery array as list of valid sources
		// Its order must be the same as the order
		// to generate matrix b in gf_gen_decode_matrix
		for (i = 0; i < k; i++) {
			recov[i] = buffs[decode_index[i]];
		}

		// Recover data
		ec_init_tables(k, nerrs, decode_matrix, g_tbls);
		ec_encode_data(size, k, nerrs, g_tbls, recov, &temp_buffs[k]);

		for (i = 0; i < nerrs; i++) {

			if (0 != memcmp(temp_buffs[k + i], buffs[src_err_list[i]], size)) {
				printf("Fail error recovery (%d, %d, %d) - ", m, k, nerrs);
				printf(" - erase list = ");
				for (j = 0; j < nerrs; j++)
					printf(" %d", src_err_list[j]);
				printf(" - Index = ");
				for (p = 0; p < k; p++)
					printf(" %d", decode_index[p]);
				printf("\nencode_matrix:\n");
				dump_u8xu8((unsigned char *)encode_matrix, m, k);
				printf("inv b:\n");
				dump_u8xu8((unsigned char *)invert_matrix, k, k);
				printf("\ndecode_matrix:\n");
				dump_u8xu8((unsigned char *)decode_matrix, m, k);
				printf("orig data:\n");
				dump_matrix(buffs, m, 25);
				printf("orig   :");
				dump(buffs[src_err_list[i]], 25);
				printf("recov %d:", src_err_list[i]);
				dump(temp_buffs[k + i], 25);
				return -1;
			}
		}
	}

	printf("done EC tests: Pass\n");
	return 0;
}
コード例 #10
0
int main(int argc, char *argv[])
{
    int i, j, rtest, m, k, nerrs, r, err;
    void *buf;
    u8 *temp_buffs[TEST_SOURCES], *buffs[TEST_SOURCES];
    u8 a[MMAX*KMAX], b[MMAX*KMAX], c[MMAX*KMAX], d[MMAX*KMAX];
    u8 g_tbls[KMAX*TEST_SOURCES*32], src_in_err[TEST_SOURCES];
    u8 src_err_list[TEST_SOURCES], *recov[TEST_SOURCES];
    struct perf start, stop;

    m = 32;
    k = 28;
    printf("erasure_code_sse_perf: %dx%d ",
           m, (TEST_LEN(m)));


    // Allocate the arrays
    for(i=0; i<TEST_SOURCES; i++) {
        if (posix_memalign(&buf, 64, TEST_LEN(m))) {
            printf("alloc error: Fail");
            return -1;
        }
        buffs[i] = buf;
    }

    for (i=0; i<TEST_SOURCES; i++) {
        if (posix_memalign(&buf, 64, TEST_LEN(m))) {
            printf("alloc error: Fail");
            return -1;
        }
        temp_buffs[i] = buf;
    }

    // Test erasure code by encode and recovery

    // Pick a first test
    if (m > MMAX || k > KMAX)
        return -1;


    // Make random data
    for(i=0; i<k; i++)
        for(j=0; j<(TEST_LEN(m)); j++)
            buffs[i][j] = rand();


    memset(src_in_err, 0, TEST_SOURCES);

    srand(1);
    for (i=0, nerrs=0; i<k && nerrs<m-k; i++) {
        err = 1 & rand();
        src_in_err[i] = err;
        if (err)
            src_err_list[nerrs++] = i;
    }
    if (nerrs == 0) { // should have at least one error
        while ((err = (rand() % KMAX)) >= k) ;
        src_err_list[nerrs++] = err;
        src_in_err[err] = 1;
    }
    printf("Test erase list = ");
    for (i=0; i<nerrs; i++)
        printf(" %d", src_err_list[i]);
    printf("\n");

    perf_start(&start);

    for (rtest = 0; rtest < TEST_LOOPS(m); rtest++) {
        gf_gen_rs_matrix(a, m, k);

        // Make parity vects
        ec_init_tables(k, m-k, &a[k*k], g_tbls);
        ec_encode_data_sse((TEST_LEN(m)),
                           k, m-k, g_tbls, buffs, &buffs[k]);
    }

    perf_stop(&stop);
    printf("erasure_code_sse_encode" TEST_TYPE_STR ": ");
    perf_print(stop,start,
               (long long)(TEST_LEN(m))*(m)*rtest);

    perf_start(&start);

    for (rtest = 0; rtest < TEST_LOOPS(m); rtest++) {
        // Construct b by removing error rows
        for(i=0, r=0; i<k; i++, r++) {
            while (src_in_err[r])
                r++;
            for(j=0; j<k; j++)
                b[k*i+j] = a[k*r+j];
        }

        if (gf_invert_matrix(b, d, k) < 0) {
            printf("BAD MATRIX\n");
            return -1;
        }

        for(i=0, r=0; i<k; i++, r++) {
            while (src_in_err[r])
                r++;
            recov[i] = buffs[r];
        }

        for(i=0; i<nerrs; i++) {
            for(j=0; j<k; j++) {
                c[k*i+j]=d[k*src_err_list[i]+j];
            }
        }

        // Recover data
        ec_init_tables(k, nerrs, c, g_tbls);
        ec_encode_data_sse((TEST_LEN(m)),
                           k, nerrs, g_tbls, recov, &temp_buffs[k]);

    }

    perf_stop(&stop);
    for(i=0; i<nerrs; i++) {
        if (0 != memcmp(temp_buffs[k+i], buffs[src_err_list[i]],
                        (TEST_LEN(m)))) {
            printf("Fail error recovery (%d, %d, %d) - ",
                   m, k, nerrs);
            printf(" - erase list = ");
            for (j=0; j<nerrs; j++)
                printf(" %d", src_err_list[j]);
            printf("\na:\n");
            dump_u8xu8((u8*)a, m, k);
            printf("inv b:\n");
            dump_u8xu8((u8*)d, k, k);
            printf("orig data:\n");
            dump_matrix(buffs, m, 25);
            printf("orig   :");
            dump(buffs[src_err_list[i]],25);
            printf("recov %d:",src_err_list[i]);
            dump(temp_buffs[k+i], 25);
            return -1;
        }
    }

    printf("erasure_code_sse_decode" TEST_TYPE_STR ": ");
    perf_print(stop,start,
               (long long)(TEST_LEN(m))*(k+nerrs)*rtest);

    printf("done all: Pass\n");
    return 0;
}
コード例 #11
0
int main(int argc, char *argv[])
{
	int i, j, rtest, srcs;
	void *buf;
	u8 gf[6][TEST_SOURCES];
	u8 *g_tbls;
	u8 *dest_ref[VECT];
	u8 *dest_ptrs[VECT], *buffs[TEST_SOURCES];
	int vector = VECT;

	int align, size;
	unsigned char *efence_buffs[TEST_SOURCES];
	unsigned int offset;
	u8 *ubuffs[TEST_SOURCES];
	u8 *udest_ptrs[VECT];
	printf("test" xstr(FUNCTION_UNDER_TEST) ": %dx%d ", TEST_SOURCES, TEST_LEN);

	// Allocate the arrays
	for (i = 0; i < TEST_SOURCES; i++) {
		if (posix_memalign(&buf, 64, TEST_LEN)) {
			printf("alloc error: Fail");
			return -1;
		}
		buffs[i] = buf;
	}

	if (posix_memalign(&buf, 16, 2 * (vector * TEST_SOURCES * 32))) {
		printf("alloc error: Fail");
		return -1;
	}
	g_tbls = buf;

	for (i = 0; i < vector; i++) {
		if (posix_memalign(&buf, 64, TEST_LEN)) {
			printf("alloc error: Fail");
			return -1;
		}
		dest_ptrs[i] = buf;
		memset(dest_ptrs[i], 0, TEST_LEN);
	}

	for (i = 0; i < vector; i++) {
		if (posix_memalign(&buf, 64, TEST_LEN)) {
			printf("alloc error: Fail");
			return -1;
		}
		dest_ref[i] = buf;
		memset(dest_ref[i], 0, TEST_LEN);
	}

	// Test of all zeros
	for (i = 0; i < TEST_SOURCES; i++)
		memset(buffs[i], 0, TEST_LEN);

	switch (vector) {
	case 6:
		memset(gf[5], 0xe6, TEST_SOURCES);
	case 5:
		memset(gf[4], 4, TEST_SOURCES);
	case 4:
		memset(gf[3], 9, TEST_SOURCES);
	case 3:
		memset(gf[2], 7, TEST_SOURCES);
	case 2:
		memset(gf[1], 1, TEST_SOURCES);
	case 1:
		memset(gf[0], 2, TEST_SOURCES);
		break;
	default:
		return -1;
	}

	for (i = 0; i < TEST_SOURCES; i++)
		for (j = 0; j < TEST_LEN; j++)
			buffs[i][j] = rand();

	for (i = 0; i < vector; i++)
		for (j = 0; j < TEST_SOURCES; j++) {
			gf[i][j] = rand();
			gf_vect_mul_init(gf[i][j], &g_tbls[i * (32 * TEST_SOURCES) + j * 32]);
		}

	for (i = 0; i < vector; i++)
		gf_vect_dot_prod_base(TEST_LEN, TEST_SOURCES, &g_tbls[i * 32 * TEST_SOURCES],
				      buffs, dest_ref[i]);

	for (i = 0; i < vector; i++)
		memset(dest_ptrs[i], 0, TEST_LEN);
	for (i = 0; i < TEST_SOURCES; i++) {
#if (VECT == 1)
		FUNCTION_UNDER_TEST(TEST_LEN, TEST_SOURCES, i, g_tbls, buffs[i], *dest_ptrs);
#else
		FUNCTION_UNDER_TEST(TEST_LEN, TEST_SOURCES, i, g_tbls, buffs[i], dest_ptrs);
#endif
	}
	for (i = 0; i < vector; i++) {
		if (0 != memcmp(dest_ref[i], dest_ptrs[i], TEST_LEN)) {
			printf("Fail zero " xstr(FUNCTION_UNDER_TEST) " test%d\n", i);
			dump_matrix(buffs, vector, TEST_SOURCES);
			printf("dprod_base:");
			dump(dest_ref[i], 25);
			printf("dprod_dut:");
			dump(dest_ptrs[i], 25);
			return -1;
		}
	}

#if (VECT == 1)
	REF_FUNCTION(TEST_LEN, TEST_SOURCES, g_tbls, buffs, *dest_ref);
#else
	REF_FUNCTION(TEST_LEN, TEST_SOURCES, g_tbls, buffs, dest_ref);
#endif
	for (i = 0; i < vector; i++) {
		if (0 != memcmp(dest_ref[i], dest_ptrs[i], TEST_LEN)) {
			printf("Fail zero " xstr(FUNCTION_UNDER_TEST) " test%d\n", i);
			dump_matrix(buffs, vector, TEST_SOURCES);
			printf("dprod_base:");
			dump(dest_ref[i], 25);
			printf("dprod_dut:");
			dump(dest_ptrs[i], 25);
			return -1;
		}
	}

	putchar('.');

	// Rand data test

	for (rtest = 0; rtest < RANDOMS; rtest++) {
		for (i = 0; i < TEST_SOURCES; i++)
			for (j = 0; j < TEST_LEN; j++)
				buffs[i][j] = rand();

		for (i = 0; i < vector; i++)
			for (j = 0; j < TEST_SOURCES; j++) {
				gf[i][j] = rand();
				gf_vect_mul_init(gf[i][j],
						 &g_tbls[i * (32 * TEST_SOURCES) + j * 32]);
			}

		for (i = 0; i < vector; i++)
			gf_vect_dot_prod_base(TEST_LEN, TEST_SOURCES,
					      &g_tbls[i * 32 * TEST_SOURCES], buffs,
					      dest_ref[i]);

		for (i = 0; i < vector; i++)
			memset(dest_ptrs[i], 0, TEST_LEN);
		for (i = 0; i < TEST_SOURCES; i++) {
#if (VECT == 1)
			FUNCTION_UNDER_TEST(TEST_LEN, TEST_SOURCES, i, g_tbls, buffs[i],
					    *dest_ptrs);
#else
			FUNCTION_UNDER_TEST(TEST_LEN, TEST_SOURCES, i, g_tbls, buffs[i],
					    dest_ptrs);
#endif
		}
		for (i = 0; i < vector; i++) {
			if (0 != memcmp(dest_ref[i], dest_ptrs[i], TEST_LEN)) {
				printf("Fail rand " xstr(FUNCTION_UNDER_TEST) " test%d %d\n",
				       i, rtest);
				dump_matrix(buffs, vector, TEST_SOURCES);
				printf("dprod_base:");
				dump(dest_ref[i], 25);
				printf("dprod_dut:");
				dump(dest_ptrs[i], 25);
				return -1;
			}
		}

		putchar('.');
	}

	// Rand data test with varied parameters
	for (rtest = 0; rtest < RANDOMS; rtest++) {
		for (srcs = TEST_SOURCES; srcs > 0; srcs--) {
			for (i = 0; i < srcs; i++)
				for (j = 0; j < TEST_LEN; j++)
					buffs[i][j] = rand();

			for (i = 0; i < vector; i++)
				for (j = 0; j < srcs; j++) {
					gf[i][j] = rand();
					gf_vect_mul_init(gf[i][j],
							 &g_tbls[i * (32 * srcs) + j * 32]);
				}

			for (i = 0; i < vector; i++)
				gf_vect_dot_prod_base(TEST_LEN, srcs, &g_tbls[i * 32 * srcs],
						      buffs, dest_ref[i]);

			for (i = 0; i < vector; i++)
				memset(dest_ptrs[i], 0, TEST_LEN);
			for (i = 0; i < srcs; i++) {
#if (VECT == 1)
				FUNCTION_UNDER_TEST(TEST_LEN, srcs, i, g_tbls, buffs[i],
						    *dest_ptrs);
#else
				FUNCTION_UNDER_TEST(TEST_LEN, srcs, i, g_tbls, buffs[i],
						    dest_ptrs);
#endif

			}
			for (i = 0; i < vector; i++) {
				if (0 != memcmp(dest_ref[i], dest_ptrs[i], TEST_LEN)) {
					printf("Fail rand " xstr(FUNCTION_UNDER_TEST)
					       " test%d srcs=%d\n", i, srcs);
					dump_matrix(buffs, vector, TEST_SOURCES);
					printf("dprod_base:");
					dump(dest_ref[i], 25);
					printf("dprod_dut:");
					dump(dest_ptrs[i], 25);
					return -1;
				}
			}

			putchar('.');
		}
	}

	// Run tests at end of buffer for Electric Fence
	align = (LEN_ALIGN_CHK_B != 0) ? 1 : ALIGN_SIZE;
	for (size = TEST_MIN_SIZE; size <= TEST_SIZE; size += align) {
		for (i = 0; i < TEST_SOURCES; i++)
			for (j = 0; j < TEST_LEN; j++)
				buffs[i][j] = rand();

		for (i = 0; i < TEST_SOURCES; i++)	// Line up TEST_SIZE from end
			efence_buffs[i] = buffs[i] + TEST_LEN - size;

		for (i = 0; i < vector; i++)
			for (j = 0; j < TEST_SOURCES; j++) {
				gf[i][j] = rand();
				gf_vect_mul_init(gf[i][j],
						 &g_tbls[i * (32 * TEST_SOURCES) + j * 32]);
			}

		for (i = 0; i < vector; i++)
			gf_vect_dot_prod_base(size, TEST_SOURCES,
					      &g_tbls[i * 32 * TEST_SOURCES], efence_buffs,
					      dest_ref[i]);

		for (i = 0; i < vector; i++)
			memset(dest_ptrs[i], 0, size);
		for (i = 0; i < TEST_SOURCES; i++) {
#if (VECT == 1)
			FUNCTION_UNDER_TEST(size, TEST_SOURCES, i, g_tbls, efence_buffs[i],
					    *dest_ptrs);
#else
			FUNCTION_UNDER_TEST(size, TEST_SOURCES, i, g_tbls, efence_buffs[i],
					    dest_ptrs);
#endif
		}
		for (i = 0; i < vector; i++) {
			if (0 != memcmp(dest_ref[i], dest_ptrs[i], size)) {
				printf("Fail rand " xstr(FUNCTION_UNDER_TEST)
				       " test%d size=%d\n", i, size);
				dump_matrix(buffs, vector, TEST_SOURCES);
				printf("dprod_base:");
				dump(dest_ref[i], TEST_MIN_SIZE + align);
				printf("dprod_dut:");
				dump(dest_ptrs[i], TEST_MIN_SIZE + align);
				return -1;
			}
		}

		putchar('.');
	}

	// Test rand ptr alignment if available

	for (rtest = 0; rtest < RANDOMS; rtest++) {
		size = (TEST_LEN - PTR_ALIGN_CHK_B) & ~(TEST_MIN_SIZE - 1);
		srcs = rand() % TEST_SOURCES;
		if (srcs == 0)
			continue;

		offset = (PTR_ALIGN_CHK_B != 0) ? 1 : PTR_ALIGN_CHK_B;
		// Add random offsets
		for (i = 0; i < srcs; i++)
			ubuffs[i] = buffs[i] + (rand() & (PTR_ALIGN_CHK_B - offset));

		for (i = 0; i < vector; i++) {
			udest_ptrs[i] = dest_ptrs[i] + (rand() & (PTR_ALIGN_CHK_B - offset));
			memset(dest_ptrs[i], 0, TEST_LEN);	// zero pad to check write-over
		}

		for (i = 0; i < srcs; i++)
			for (j = 0; j < size; j++)
				ubuffs[i][j] = rand();

		for (i = 0; i < vector; i++)
			for (j = 0; j < srcs; j++) {
				gf[i][j] = rand();
				gf_vect_mul_init(gf[i][j], &g_tbls[i * (32 * srcs) + j * 32]);
			}

		for (i = 0; i < vector; i++)
			gf_vect_dot_prod_base(size, srcs, &g_tbls[i * 32 * srcs], ubuffs,
					      dest_ref[i]);

		for (i = 0; i < srcs; i++) {
#if (VECT == 1)
			FUNCTION_UNDER_TEST(size, srcs, i, g_tbls, ubuffs[i], *udest_ptrs);
#else
			FUNCTION_UNDER_TEST(size, srcs, i, g_tbls, ubuffs[i], udest_ptrs);
#endif
		}
		for (i = 0; i < vector; i++) {
			if (0 != memcmp(dest_ref[i], udest_ptrs[i], size)) {
				printf("Fail rand " xstr(FUNCTION_UNDER_TEST)
				       " test%d ualign srcs=%d\n", i, srcs);
				dump_matrix(buffs, vector, TEST_SOURCES);
				printf("dprod_base:");
				dump(dest_ref[i], 25);
				printf("dprod_dut:");
				dump(udest_ptrs[i], 25);
				return -1;
			}
		}

		// Confirm that padding around dests is unchanged
		memset(dest_ref[0], 0, PTR_ALIGN_CHK_B);	// Make reference zero buff

		for (i = 0; i < vector; i++) {
			offset = udest_ptrs[i] - dest_ptrs[i];
			if (memcmp(dest_ptrs[i], dest_ref[0], offset)) {
				printf("Fail rand ualign pad1 start\n");
				return -1;
			}
			if (memcmp
			    (dest_ptrs[i] + offset + size, dest_ref[0],
			     PTR_ALIGN_CHK_B - offset)) {
				printf("Fail rand ualign pad1 end\n");
				return -1;
			}
		}

		putchar('.');
	}

	// Test all size alignment
	align = (LEN_ALIGN_CHK_B != 0) ? 1 : ALIGN_SIZE;

	for (size = TEST_LEN; size >= TEST_MIN_SIZE; size -= align) {
		for (i = 0; i < TEST_SOURCES; i++)
			for (j = 0; j < size; j++)
				buffs[i][j] = rand();

		for (i = 0; i < vector; i++) {
			for (j = 0; j < TEST_SOURCES; j++) {
				gf[i][j] = rand();
				gf_vect_mul_init(gf[i][j],
						 &g_tbls[i * (32 * TEST_SOURCES) + j * 32]);
			}
			memset(dest_ptrs[i], 0, TEST_LEN);	// zero pad to check write-over
		}

		for (i = 0; i < vector; i++)
			gf_vect_dot_prod_base(size, TEST_SOURCES,
					      &g_tbls[i * 32 * TEST_SOURCES], buffs,
					      dest_ref[i]);

		for (i = 0; i < TEST_SOURCES; i++) {
#if (VECT == 1)
			FUNCTION_UNDER_TEST(size, TEST_SOURCES, i, g_tbls, buffs[i],
					    *dest_ptrs);
#else
			FUNCTION_UNDER_TEST(size, TEST_SOURCES, i, g_tbls, buffs[i],
					    dest_ptrs);
#endif
		}
		for (i = 0; i < vector; i++) {
			if (0 != memcmp(dest_ref[i], dest_ptrs[i], size)) {
				printf("Fail rand " xstr(FUNCTION_UNDER_TEST)
				       " test%d ualign len=%d\n", i, size);
				dump_matrix(buffs, vector, TEST_SOURCES);
				printf("dprod_base:");
				dump(dest_ref[i], 25);
				printf("dprod_dut:");
				dump(dest_ptrs[i], 25);
				return -1;
			}
		}

		putchar('.');

	}

	printf("Pass\n");
	return 0;

}
コード例 #12
0
ファイル: matrix.c プロジェクト: exianshine/gromacs
int matrix_invert(FILE *fp, int n, double **a)
{
    int      i, j, m, lda, *ipiv, lwork, info;
    double **test = NULL, **id, *work;

#ifdef DEBUG_MATRIX
    if (fp)
    {
        fprintf(fp, "Inverting %d square matrix\n", n);
        test = alloc_matrix(n, n);
        for (i = 0; (i < n); i++)
        {
            for (j = 0; (j < n); j++)
            {
                test[i][j] = a[i][j];
            }
        }
        dump_matrix(fp, "before inversion", n, a);
    }
#endif
    snew(ipiv, n);
    lwork = n*n;
    snew(work, lwork);
    m     = lda   = n;
    info  = 0;
    F77_FUNC(dgetrf, DGETRF) (&n, &m, a[0], &lda, ipiv, &info);
#ifdef DEBUG_MATRIX
    if (fp)
    {
        dump_matrix(fp, "after dgetrf", n, a);
    }
#endif
    if (info != 0)
    {
        return info;
    }
    F77_FUNC(dgetri, DGETRI) (&n, a[0], &lda, ipiv, work, &lwork, &info);
#ifdef DEBUG_MATRIX
    if (fp)
    {
        dump_matrix(fp, "after dgetri", n, a);
    }
#endif
    if (info != 0)
    {
        return info;
    }

#ifdef DEBUG_MATRIX
    if (fp)
    {
        id = alloc_matrix(n, n);
        matrix_multiply(fp, n, n, test, a, id);
        dump_matrix(fp, "And here is the product of A and Ainv", n, id);
        free_matrix(id);
        free_matrix(test);
    }
#endif
    sfree(ipiv);
    sfree(work);

    return 0;
}
コード例 #13
0
int main(int argc, char *argv[])
{
	int i, j, rtest, m, k, nerrs, r, err;
	void *buf;
	unsigned char *temp_buffs[TEST_SOURCES], *buffs[TEST_SOURCES], *a, *b, *c, *d, *g_tbls;
	unsigned char src_in_err[TEST_SOURCES], src_err_list[TEST_SOURCES];
	unsigned char *recov[TEST_SOURCES];

	int rows, align, size;
	unsigned char *efence_buffs[TEST_SOURCES];
	unsigned int offset;
	u8 *ubuffs[TEST_SOURCES];
	u8 *temp_ubuffs[TEST_SOURCES];

	printf("erasure_code_sse_test: %dx%d ", TEST_SOURCES, TEST_LEN);


	// Allocate the arrays
	for(i=0; i<TEST_SOURCES; i++){
		if (posix_memalign(&buf, 64, TEST_LEN)) {
			printf("alloc error: Fail");
			return -1;
		}
		buffs[i] = buf;
	}

	for(i=0; i<TEST_SOURCES; i++){
		if (posix_memalign(&buf, 64, TEST_LEN)) {
			printf("alloc error: Fail");
			return -1;
		}
		temp_buffs[i] = buf;
	}

	// Test erasure code by encode and recovery

	a = malloc(MMAX*KMAX);
	b = malloc(MMAX*KMAX);
	c = malloc(MMAX*KMAX);
	d = malloc(MMAX*KMAX);
	g_tbls = malloc(KMAX*TEST_SOURCES*32);

	if (a == NULL || b == NULL || c == NULL || d == NULL || g_tbls == NULL) {
		printf("Test failure! Error with malloc\n");
		return -1;
	}

	// Pick a first test
	m = 9;
	k = 5;
	if (m > MMAX || k > KMAX)
		return -1;


	// Make random data
	for(i=0; i<k; i++)
		for(j=0; j<TEST_LEN; j++)
			buffs[i][j] = rand();


	gf_gen_rs_matrix(a, m, k);
	ec_init_tables(k, m-k, &a[k*k], g_tbls);
	ec_encode_data_sse(TEST_LEN, k, m-k, g_tbls, buffs, &buffs[k]);


	// Choose random buffers to be in erasure
	memset(src_in_err, 0, TEST_SOURCES);
	for (i=0, nerrs=0; i<k && nerrs<m-k; i++){
		err = 1 & rand();
		src_in_err[i] = err;
		if (err)
			src_err_list[nerrs++] = i;
	}

	// Construct matrix b by removing error rows
	for(i=0, r=0; i<k; i++, r++){
		while (src_in_err[r]) 
			r++; 
		for(j=0; j<k; j++)
			b[k*i+j] = a[k*r+j];
	}


	// Generate decode matrix d as matrix inverse of b
	if (gf_invert_matrix(b, d, k) < 0){
		printf("BAD MATRIX\n");
		return -1;
	}
	
	// Pack recovery array as list of valid sources
	for(i=0, r=0; i<k; i++, r++){
		while (src_in_err[r]) 
			r++;
		recov[i] = buffs[r];
	}

	for(i=0; i<nerrs; i++){
		for(j=0; j<k; j++){
			c[k*i+j]=d[k*src_err_list[i]+j];
		}
	}

	// Recover data
	ec_init_tables(k, nerrs, c, g_tbls);
	ec_encode_data(TEST_LEN,
			k, nerrs, g_tbls, recov, &temp_buffs[k]);

	for(i=0; i<nerrs; i++){

		if (0 != memcmp(temp_buffs[k+i], buffs[src_err_list[i]], TEST_LEN)){
			printf("Fail error recovery (%d, %d, %d)\n", m, k, nerrs);
			printf("recov %d:",src_err_list[i]); 
			dump(temp_buffs[k+i], 25);
			printf("orig   :");     
			dump(buffs[src_err_list[i]],25);
			return -1;
		}
	}
	
	// Do more random tests

	for (rtest = 0; rtest < RANDOMS; rtest++){
		while ((m = (rand() % MMAX)) < 2);
		while ((k = (rand() % KMAX)) >= m || k < 1);

		if (m>MMAX || k>KMAX) 
			continue;


		// Make random data
		for(i=0; i<k; i++)
			for(j=0; j<TEST_LEN; j++)
				buffs[i][j] = rand();


		gf_gen_rs_matrix(a, m, k);

		// Make parity vects
		ec_init_tables(k, m-k, &a[k*k], g_tbls);
		ec_encode_data_sse(TEST_LEN, k, m-k, g_tbls, buffs, &buffs[k]);



		// Random errors
		memset(src_in_err, 0, TEST_SOURCES);
		for (i=0, nerrs=0; i<k && nerrs<m-k; i++){
			err = 1 & rand();
			src_in_err[i] = err;
			if (err)
				src_err_list[nerrs++] = i;
		}
		if (nerrs == 0){  // should have at least one error
			while ((err = (rand() % KMAX)) >= k) ;
			src_err_list[nerrs++] = err;
			src_in_err[err] = 1;
		}

		// Construct b by removing error rows
		for(i=0, r=0; i<k; i++, r++){
			while (src_in_err[r]) 
				r++;
			for(j=0; j<k; j++)
				b[k*i+j] = a[k*r+j];
		}

		if (gf_invert_matrix(b, d, k) < 0){
			printf("BAD MATRIX\n");
			return -1;
		}
	
		for(i=0, r=0; i<k; i++, r++){
			while (src_in_err[r]) 
				r++;
			recov[i] = buffs[r];
		}
		for(i=0; i<nerrs; i++){
			for(j=0; j<k; j++){
				c[k*i+j]=d[k*src_err_list[i]+j];
			}
		}

		// Recover data
		ec_init_tables(k, nerrs, c, g_tbls);
		ec_encode_data(TEST_LEN, k, nerrs, g_tbls, recov, &temp_buffs[k]);

		for(i=0; i<nerrs; i++){

			if (0 != memcmp(temp_buffs[k+i], buffs[src_err_list[i]], TEST_LEN)){
				printf("Fail error recovery (%d, %d, %d) - ", m, k, nerrs);
				printf(" - erase list = ");
				for (i=0; i<nerrs; i++)
					printf(" %d", src_err_list[i]);
				printf("\na:\n"); 
				dump_u8xu8((unsigned char*)a, m, k);
				printf("inv b:\n");   
				dump_u8xu8((unsigned char*)d, k, k);
				printf("orig data:\n"); 
				dump_matrix(buffs, m, 25);
				printf("orig   :");     
				dump(buffs[src_err_list[i]],25);
				printf("recov %d:",src_err_list[i]); 
				dump(temp_buffs[k+i], 25);
				return -1;
			}
		}
		putchar('.');
	}

	// Run tests at end of buffer for Electric Fence
	k = 16;
	align = (LEN_ALIGN_CHK_B != 0) ? 1 : 16;
	if (k > KMAX)
		return -1;

	for(rows=1; rows<=16; rows++){
		m = k+rows;
		if (m > MMAX)
			return -1;

		// Make random data
		for(i=0; i<k; i++)
			for(j=0; j<TEST_LEN; j++)
				buffs[i][j] = rand();


		for(size=EFENCE_TEST_MIN_SIZE; size<=TEST_SIZE; size+=align){
			for(i=0; i<m; i++) // Line up TEST_SIZE from end
				efence_buffs[i] = buffs[i] + TEST_LEN - size;

			gf_gen_rs_matrix(a, m, k);
			ec_init_tables(k, m-k, &a[k*k], g_tbls);
			ec_encode_data_sse(size, k, m-k, g_tbls, efence_buffs, &efence_buffs[k]);

			// Random errors
			memset(src_in_err, 0, TEST_SOURCES);
			for (i=0, nerrs=0; i<k && nerrs<m-k; i++){
				err = 1 & rand();
				src_in_err[i] = err;
				if (err)
					src_err_list[nerrs++] = i;
			}
			if (nerrs == 0){  // should have at least one error
				while ((err = (rand() % KMAX)) >= k) ;
				src_err_list[nerrs++] = err;
				src_in_err[err] = 1;
			}

			// Construct b by removing error rows
			for(i=0, r=0; i<k; i++, r++){
				while (src_in_err[r])
					r++;
				for(j=0; j<k; j++)
					b[k*i+j] = a[k*r+j];
			}

			// Generate decode matrix d as matrix inverse of b
			if (gf_invert_matrix(b, d, k) < 0){
				printf("BAD MATRIX\n");
				return -1;
			}

			// Pack recovery array as list of valid sources
			for(i=0, r=0; i<k; i++, r++){
				while (src_in_err[r])
					r++;
				recov[i] = efence_buffs[r];
			}
			for(i=0; i<nerrs; i++){
				for(j=0; j<k; j++){
					c[k*i+j]=d[k*src_err_list[i]+j];
				}
			}

			// Recover data
			ec_init_tables(k, nerrs, c, g_tbls);
			ec_encode_data(size, k, nerrs, g_tbls, recov, &temp_buffs[k]);

			for(i=0; i<nerrs; i++){

				if (0 != memcmp(temp_buffs[k+i], efence_buffs[src_err_list[i]], size)){
					printf("Efence: Fail error recovery (%d, %d, %d)\n", m, k, nerrs);

					printf("Test erase list = ");
					for (i=0; i<nerrs; i++)
						printf(" %d", src_err_list[i]);
					printf("\n");

					printf("recov %d:",src_err_list[i]);
					dump(temp_buffs[k+i], align);
					printf("orig   :");
					dump(efence_buffs[src_err_list[i]],align);
					return -1;
				}
			}
		}

	}

	// Test rand ptr alignment if available

	for(rtest=0; rtest<RANDOMS; rtest++){
		while ((m = (rand() % MMAX)) < 2);
		while ((k = (rand() % KMAX)) >= m || k < 1);

		if (m>MMAX || k>KMAX)
			continue;

		size = (TEST_LEN - PTR_ALIGN_CHK_B) & ~15;

		offset = (PTR_ALIGN_CHK_B != 0) ? 1 : PTR_ALIGN_CHK_B;
		// Add random offsets
		for(i=0; i<m; i++) {
			memset(buffs[i], 0, TEST_LEN);  // zero pad to check write-over
			memset(temp_buffs[i], 0, TEST_LEN);  // zero pad to check write-over
			ubuffs[i] = buffs[i] + (rand() & (PTR_ALIGN_CHK_B - offset));
			temp_ubuffs[i] = temp_buffs[i] + (rand() & (PTR_ALIGN_CHK_B - offset));
		}

		for(i=0; i<k; i++)
			for(j=0; j<size; j++)
				ubuffs[i][j] = rand();

		gf_gen_rs_matrix(a, m, k);

		// Make parity vects
		ec_init_tables(k, m-k, &a[k*k], g_tbls);
		ec_encode_data_sse(size, k, m-k, g_tbls, ubuffs, &ubuffs[k]);

		// Random errors
		memset(src_in_err, 0, TEST_SOURCES);
		for (i=0, nerrs=0; i<k && nerrs<m-k; i++){
			err = 1 & rand();
			src_in_err[i] = err;
			if (err)
				src_err_list[nerrs++] = i;
		}
		if (nerrs == 0){  // should have at least one error
			while ((err = (rand() % KMAX)) >= k) ;
			src_err_list[nerrs++] = err;
			src_in_err[err] = 1;
		}

		// Construct b by removing error rows
		for(i=0, r=0; i<k; i++, r++){
			while (src_in_err[r]) 
				r++;
			for(j=0; j<k; j++)
				b[k*i+j] = a[k*r+j];
		}

		if (gf_invert_matrix(b, d, k) < 0){
			printf("BAD MATRIX\n");
			return -1;
		}

		for(i=0, r=0; i<k; i++, r++){
			while (src_in_err[r]) 
				r++;
			recov[i] = ubuffs[r];
		}
		for(i=0; i<nerrs; i++){
			for(j=0; j<k; j++){
				c[k*i+j]=d[k*src_err_list[i]+j];
			}
		}

		// Recover data
		ec_init_tables(k, nerrs, c, g_tbls);
		ec_encode_data(size, k, nerrs, g_tbls, recov, &temp_ubuffs[k]);

		for(i=0; i<nerrs; i++){

			if (0 != memcmp(temp_ubuffs[k+i], ubuffs[src_err_list[i]], size)){
				printf("Fail error recovery (%d, %d, %d) - ", m, k, nerrs);
				printf(" - erase list = ");
				for (i=0; i<nerrs; i++)
					printf(" %d", src_err_list[i]);
				printf("\na:\n"); 
				dump_u8xu8((unsigned char*)a, m, k);
				printf("inv b:\n");   
				dump_u8xu8((unsigned char*)d, k, k);
				printf("orig data:\n"); 
				dump_matrix(ubuffs, m, 25);
				printf("orig   :");     
				dump(ubuffs[src_err_list[i]],25);
				printf("recov %d:",src_err_list[i]); 
				dump(temp_ubuffs[k+i], 25);
				return -1;
			}
		}

		// Confirm that padding around dests is unchanged
		memset(temp_buffs[0], 0, PTR_ALIGN_CHK_B);  // Make reference zero buff

		for(i=0; i<m; i++){

			offset = ubuffs[i] - buffs[i];

			if (memcmp(buffs[i], temp_buffs[0], offset)){
				printf("Fail rand ualign encode pad start\n");
				return -1;
			}
			if (memcmp(buffs[i] + offset + size, temp_buffs[0], PTR_ALIGN_CHK_B - offset)){
				printf("Fail rand ualign encode pad end\n");
				return -1;
			}
		}

		for(i=0; i<nerrs; i++){

			offset = temp_ubuffs[k+i] - temp_buffs[k+i];
			if (memcmp(temp_buffs[k+i], temp_buffs[0], offset)){
				printf("Fail rand ualign decode pad start\n");
				return -1;
			}
			if (memcmp(temp_buffs[k+i] + offset + size, temp_buffs[0], PTR_ALIGN_CHK_B - offset)){
				printf("Fail rand ualign decode pad end\n");
				return -1;
			}
		}

		putchar('.');
	}

	// Test size alignment
	align = (LEN_ALIGN_CHK_B != 0) ? 13 : 16;

	for(size=TEST_LEN; size>0; size-=align){
		while ((m = (rand() % MMAX)) < 2);
		while ((k = (rand() % KMAX)) >= m || k < 1);

		if (m>MMAX || k>KMAX)
			continue;

		for(i=0; i<k; i++)
			for(j=0; j<size; j++)
				buffs[i][j] = rand();

		gf_gen_rs_matrix(a, m, k);

		// Make parity vects
		ec_init_tables(k, m-k, &a[k*k], g_tbls);
		ec_encode_data_sse(size, k, m-k, g_tbls, buffs, &buffs[k]);

		// Random errors
		memset(src_in_err, 0, TEST_SOURCES);
		for (i=0, nerrs=0; i<k && nerrs<m-k; i++){
			err = 1 & rand();
			src_in_err[i] = err;
			if (err)
				src_err_list[nerrs++] = i;
		}
		if (nerrs == 0){  // should have at least one error
			while ((err = (rand() % KMAX)) >= k) ;
			src_err_list[nerrs++] = err;
			src_in_err[err] = 1;
		}

		// Construct b by removing error rows
		for(i=0, r=0; i<k; i++, r++){
			while (src_in_err[r]) 
				r++;
			for(j=0; j<k; j++)
				b[k*i+j] = a[k*r+j];
		}

		if (gf_invert_matrix(b, d, k) < 0){
			printf("BAD MATRIX\n");
			return -1;
		}

		for(i=0, r=0; i<k; i++, r++){
			while (src_in_err[r]) 
				r++;
			recov[i] = buffs[r];
		}
		for(i=0; i<nerrs; i++){
			for(j=0; j<k; j++){
				c[k*i+j]=d[k*src_err_list[i]+j];
			}
		}

		// Recover data
		ec_init_tables(k, nerrs, c, g_tbls);
		ec_encode_data(size, k, nerrs, g_tbls, recov, &temp_buffs[k]);

		for(i=0; i<nerrs; i++){

			if (0 != memcmp(temp_buffs[k+i], buffs[src_err_list[i]], size)){
				printf("Fail error recovery (%d, %d, %d) - ", m, k, nerrs);
				printf(" - erase list = ");
				for (i=0; i<nerrs; i++)
					printf(" %d", src_err_list[i]);
				printf("\na:\n"); 
				dump_u8xu8((unsigned char*)a, m, k);
				printf("inv b:\n");   
				dump_u8xu8((unsigned char*)d, k, k);
				printf("orig data:\n"); 
				dump_matrix(buffs, m, 25);
				printf("orig   :");     
				dump(buffs[src_err_list[i]],25);
				printf("recov %d:",src_err_list[i]); 
				dump(temp_buffs[k+i], 25);
				return -1;
			}
		}
	}

	printf("done EC tests: Pass\n");
	return 0;
}