コード例 #1
0
ファイル: lr.c プロジェクト: dineshmdh/randomjungle
int lr_train_update_b( lr_train *lrt)
{
  /* X,w,z -> b */
  /*
                   [1t]                [1t]
    Compute b = (( [--] W [1|X])^-1) * [--] W z, where W = diag(w).
                   [Xt]                [Xt]
  */
  int numatts, i, iters;
  double cgeps, cgdeveps, val;
  dyv *B, *initb;

  numatts = lrt->numatts;

  /* We are now using initial CG residuaal for scaling cgeps.
     This is best done inside mk_lr_cgresult(). */
  /* cgeps = lrt->numatts * lrt->opts->cgeps; */
  cgeps = lrt->opts->cgeps;
  cgdeveps = lrt->opts->cgdeveps;

  /* Create initb. */
  initb = NULL;
  if (lrt->opts->cgbinit) {
    initb = mk_dyv( numatts);
    dyv_set( initb, 0, lrt_b0_ref(lrt));
    for (i=1; i<numatts; ++i) {
      val = dyv_ref( lrt_b_ref(lrt), i-1);
      dyv_set( initb, i, val);
    }
  }

  B = mk_lr_update_b_conjugate_gradient_helper( lrt, cgeps, cgdeveps,
                                                lrt->opts->cgmax, &iters,
                                                initb);

  if (initb != NULL) free_dyv( initb);

  /* Break newb into ( b0, b ). */
  lrt_b0_set(lrt, dyv_ref( B, 0));
  for (i=1; i<numatts; ++i) {
    val = dyv_ref( B, i);
    dyv_set( lrt_b_ref(lrt), i-1, val);
  }

  free_dyv( B);

  /* Hitting cgmax is considered a failure. */
  if ( iters > lrt->opts->cgmax) return -2;

  return 1;
}
コード例 #2
0
ファイル: lr.c プロジェクト: dineshmdh/randomjungle
void lr_cg_multA( const dyv *v, dyv *result, void *userdata)
{
  double lambda;
  lr_train *lrt;
  dyv *Av, *lv;

  lrt = (lr_train *) userdata;

  /* Do sparse matrix-vector multiply. */
  Av = mk_lr_XtWXv_dyv( lrt, v);

  lambda = lrt->opts->rrlambda;
  if (lambda > 0.0) {
    /* Add Ridge Regression term. */
    lv = mk_dyv_scalar_mult( v, lambda);
    dyv_set( lv, 0, 0.0);  /* Don't penalize constant term. */
    dyv_plus( Av, lv, result);
    free_dyv( lv);
  }
  else {
    /* Don't do Ridge Regression. */
    copy_dyv( Av, result);
  }

  free_dyv( Av);
  return;
}
コード例 #3
0
ファイル: lr.c プロジェクト: dineshmdh/randomjungle
lr_predict *mk_in_lr_predict( PFILE *f)
{
  int i, size;
  double val;
  dyv *dv, *b;
  lr_predict *lrp;

  lrp = AM_MALLOC( lr_predict);

  dv = mk_dyv_read( f);
  size = dyv_size( dv);

  lrp->b0 = dyv_ref( dv, 0);

  b = mk_dyv( size-1);
  for (i=1; i<size; ++i) {
    val = dyv_ref( dv, i);
    dyv_set( b, i-1, val);
  }
  lrp->b = b;

  free_dyv( dv);

  return lrp;
}
コード例 #4
0
ファイル: lr.c プロジェクト: dineshmdh/randomjungle
void lr_train_update_z( lr_train *lrt)
{
  /* y,n,u,w -> z */
  int i;
  double yi, ni, ui, wi, val;

  for (i=0; i < lrt->numrows; ++i) {
    yi  = dyv_ref( lrt->y, i);
    ni  = dyv_ref( lrt_n_ref(lrt), i);
    ui  = dyv_ref( lrt_u_ref(lrt), i);
    wi  = dyv_ref( lrt_w_ref(lrt), i);
    val = ni + (yi-ui) / wi;
    
#ifndef AMFAST
    if (!am_isnum( val)) {
      my_errorf( "lr_train_update_z: NaN or Inf problem: val is %f.\n"
		 "Inputs: i=%d, yi=%f, ni=%f, ui=%f, wi=%f\n",
		 val, i, yi, ni, ui, wi);
    }
#endif

    dyv_set( lrt_z_ref(lrt), i, val);
  }
  return;
}
コード例 #5
0
ファイル: stats.c プロジェクト: yesyestian/BNB_Globlinear
integ *mk_integ(
    double (*h)(double parameter,double constant,double x),
    double xlo,
    double xhi,
    double parameter,
    double constant,
    int size
  )
/*
   Returns an it in which
   it->integral[i] = integal_from_xlo_to(x_lo + h*i) of h(parameter,x) dx
                     ------------------------------------------------
                     integal_from_xlo_to_x_hi of h(parameter,x) dx
*/
{
  integ *it = AM_MALLOC(integ);
  dyv *dig = mk_dyv(size);
  int i;
  double sum = 0.0;
  double last_pdf = 0.0;
  double delta = (xhi - xlo) / (size-1);

  if ( h(parameter,constant,xhi) > 1e-6 )
    my_error("Hmm... I was really hoping h(parameter,xhi) == 0");

  dyv_set(dig,0,0.0);

  for ( i = 1 ; i < size ; i++ )
  {
    double x = xlo + i * delta;
    double this_pdf = h(parameter,constant,x);
    if (i == 1) sum += delta * this_pdf;
    else        sum += delta * (this_pdf + last_pdf) / 2.0;
    dyv_set(dig,i,sum);
    last_pdf = this_pdf;  /* added 2/26/97  JGS */
  }

  dyv_scalar_mult(dig,1.0 / sum,dig);

  it -> integral = dig;
  it -> xlo = xlo;
  it -> xhi = xhi;
  it -> parameter = parameter;
  it -> constant = constant;

  return(it);
}
コード例 #6
0
ファイル: lr.c プロジェクト: dineshmdh/randomjungle
void lr_train_update_w( lr_train *lrt)
{
  /* u -> w */
  int i;
  double ui, val;
  for (i=0; i < lrt->numrows; ++i) {
    ui  = dyv_ref( lrt_u_ref(lrt), i);
    val = ui * (1-ui);
    dyv_set( lrt_w_ref(lrt), i, val);
  }
  return;
}
コード例 #7
0
ファイル: lr.c プロジェクト: dineshmdh/randomjungle
void out_lr_predict( PFILE *f, lr_predict *lrp)
{
  int nump, i;
  double val;
  dyv *dv;

  nump = dyv_size( lrp->b) + 1;

  /* Copy b0, b into a single dyv. */
  dv = mk_dyv( nump);
  dyv_set( dv, 0, lrp->b0);
  for (i=1; i<nump; ++i) {
    val = dyv_ref( lrp->b, i-1);
    dyv_set( dv, i, val);
  }

  dyv_write( f, dv);

  free_dyv( dv);
  return;
}
コード例 #8
0
ファイル: lr.c プロジェクト: dineshmdh/randomjungle
void lr_compute_u_from_n( dyv *n, dyv *u)
{
  int numrows, i;
  double en, val, ni;
  numrows = dyv_size( n);

  for (i=0; i < numrows; ++i) {
    ni  = dyv_ref( n, i);
    en = exp(ni);
    val = en / (1.0 + en);
    dyv_set( u, i, val);
  }

  return;
}
コード例 #9
0
ファイル: lr.c プロジェクト: dineshmdh/randomjungle
void lr_compute_n_from_dym( const dym *M, double b0, dyv *b, dyv *n)
{
  int numrows, numgood, row, j;
  double sum;

  numrows = dym_rows( M);
  numgood = dyv_size(b);
  for (row=0; row < numrows; ++row) {
    sum = 0.0;
    for (j=0; j<numgood; ++j) sum += dym_ref( M, row, j) * dyv_ref( b, j);
    sum += b0;
    dyv_set( n, row, sum);
  }
  return;
}
コード例 #10
0
ファイル: lr.c プロジェクト: dineshmdh/randomjungle
void diag_precond( const dyv *v, dyv *result, void *userdata)
{
  /* Get diagonal     ( [1t]         )
                  diag( [--] W [1|X] )  = [ m_ii = Sum(x_ki^2 * w_k over k) ]
                      ( [Xt]         )
     In the sparse case, X is binary and x_ki^2 == x_ki, and the
     diagonal is [ m_ii = Sum(w_k over posrows_i) ].
     Preconditioning matrix is the diagonal matrix.  Multiply inverse
     of this matrix time v, which is an element-wise product.
  */
  int colidx;
  double divisor, val;
  ivec *posrows;
  dyv *w;
  lr_train *lrt;

  lrt = (lr_train *) userdata;

  if (lrt->X == NULL) {
    my_error( "diag_precond: dense problems not yet supported.");
  }

  w = lrt_w_ref( lrt);
  val = dyv_ref( v, 0);
  dyv_set( result, 0, val / dyv_sum( w));


  for (colidx=1; colidx < lrt->numatts; ++colidx) {
    posrows = spardat_attnum_to_posrows( lrt->X, colidx-1);
    divisor = dyv_partial_sum( w, posrows);
    val = dyv_ref( v, colidx);
    dyv_set( result, colidx, val / divisor);
  }

  return;
}
コード例 #11
0
ファイル: lr.c プロジェクト: dineshmdh/randomjungle
void lr_compute_n_from_spardat( const spardat *X, double b0, dyv *b, dyv *n)
{
  int numrows, row;
  ivec *posatts;
  double sum;

  numrows = spardat_num_rows( X);
  for (row=0; row < numrows; ++row) {
    posatts = spardat_row_to_posatts( X, row);
    /* Remember that at one time we made a copy of posatts because
       of a very mysterious and hardwared/compiler-looking bug. */
    sum = dyv_partial_sum( b, posatts);
    sum += b0;
    dyv_set( n, row, sum);
  }
  return;
}
コード例 #12
0
ファイル: lrutils.c プロジェクト: insilico/randomjungle
dyv *mk_dyv_read( PFILE *f)
{
  int i, size, lineno;
  double val;
  char line[101];
  dyv *dv;

  lineno = 1;
  line[100] = '\0';

  /* Read size and make dyv. */
    if (pfeof(f)) {
      my_errorf( "mk_dyv_read: unexpected end-of-file while reading size,\n"
                 "after line %d of file", lineno);
    }
  if (pfgets( line, 100, f) == NULL) {
    my_errorf( "mk_dyv_read: failed to read line %d from the passed stream.",
               lineno);
  }
  else lineno++;
  size = atoi( line);
  dv = mk_dyv( size);


  /* Read values. */
  for (i=0; i<size; ++i) {
    if (pfeof(f)) {
      my_errorf( "mk_dyv_read: unexpected end-of-file while reading %d vals,\n"
                 "after line %d of file (after the %dth value)",
                 size, lineno, lineno-1);
    }
    if (pfgets( line, 100, f) == NULL) {
      my_errorf( "mk_dyv_read: failed to read line %d from the passed stream.",
                 lineno);
    }
    else lineno++;

    val = atof( line);
    dyv_set( dv, i, val);
  }

  return dv;
}
コード例 #13
0
ファイル: amdyv.c プロジェクト: insilico/randomjungle
dyv *mk_dyv_x( int size, ...)
{
  /* Warning: no type checking can be done by the compiler.  You *must*
     send the values as doubles for this to work correctly. */
  int i;
  double val;
  va_list argptr;
  dyv *dv;
  
  dv = mk_dyv( size);

  va_start( argptr, size);
  for (i=0; i<size; ++i) {
    val = va_arg( argptr, double);
    dyv_set( dv, i, val);
  }
  va_end(argptr);

  return dv;
}
コード例 #14
0
ファイル: lr.c プロジェクト: dineshmdh/randomjungle
dyv *mk_lr_cgresult_cgeps( lr_train *lrt, double unscaled_cgeps,
                           int maxiters, conjgrad *cg)
{
  int iters, bestiter, window;
  double rsqr, bestrsqr, decay, cgeps, decthresh;
  dyv *x, *result, *rsqrhist;
  dyv_array *paramhist;

  /* Initialize paramters. */
  rsqrhist    = mk_constant_dyv( maxiters, FLT_MAX);
  paramhist  = mk_array_of_null_dyvs( maxiters);
  bestrsqr   = FLT_MAX;
  window     = lrt->opts->cgwindow;
  decay      = lrt->opts->cgdecay;
  decthresh  = FLT_MAX;

  /* Scale cgeps. */
  rsqr = sqrt(dyv_scalar_product( cg->cgs->r, cg->cgs->r));
  if (Verbosity >= 2) printf( "    CGINITIAL RSQR: %g\n", rsqr);
  cgeps = unscaled_cgeps * rsqr;

  /* Store initial position in history. */
  iters = 0;
  dyv_set( rsqrhist, iters, rsqr);
  dyv_array_set( paramhist, iters, conjgrad_x_ref( cg));
  iters += 1;

  /* Abort iterations if rsqr gets too small for calcs to proceed. */
  while (rsqr >= cgeps) {
    if (Verbosity > 3) {
      fprintf_oneline_dyv( stdout, "    CG POS:", cg->cgs->x, "\n");
    }

    /* Non-epsilon termination conditions. */
    if (iters >= maxiters) break;
    if (window <= 0) break;
    if (rsqr > decthresh) break;

    /* Iterate. */
    cgiter( cg);

    /* CG resisdual Euclidean norm. */
    rsqr = dyv_magnitude( conjgrad_r_ref( cg));

    /* Store history. */
    dyv_set( rsqrhist, iters, rsqr);
    dyv_array_set( paramhist, iters, conjgrad_x_ref( cg));
    if (Verbosity >= 2) printf( "    CGEPS RSQR: %g\n", rsqr);


    /* Update records. */
    if (rsqr <= bestrsqr) {
      bestrsqr  = rsqr;
      window    = lrt->opts->cgwindow;
      decthresh = decay * bestrsqr;
    }
    else window -= 1;

    /* Count number of iters. */
    iters += 1;
  }

  /* Select parameters. */
  /* CG residual: use last iteration's parameter vector. */
  /* x = conjgrad_x_ref( cg); */
  /* Get best params from paramhist. */
  bestiter = dyv_argmin( rsqrhist);
  x = dyv_array_ref( paramhist, bestiter);
  if (x == NULL) {
    my_errorf( "mk_lr_cgresult_cgeps: NULL param vec %d", bestiter);
  }

  if (Verbosity >= 2) {
    rsqr = sqrt(dyv_scalar_product( cg->cgs->r, cg->cgs->r));
    printf( "    CGFINAL RSQR: %g\n", rsqr);
  }

  result = mk_copy_dyv( x);
  free_dyv_array( paramhist);
  free_dyv( rsqrhist);
  return result;

}
コード例 #15
0
ファイル: lr.c プロジェクト: dineshmdh/randomjungle
/* Exactly one of X and ds should be NULL. */
lr_train *mk_lr_train( spardat *X, dym *factors, dyv *outputs,
                       dyv *initb, lr_options *opts)
{
  /* initb is copied into lr->b. */
  int converge, rc;
  int numiters, bestiter;
  double dev, olddev;
  dyv *devhist;
  lr_train *lrt;
  lr_state *bestlrs;
  lr_statearr *lrsarr;

  /* Create lr_train struct. */
  if (X != NULL) lrt = mk_lr_train_from_spardat( X, opts);
  else lrt = mk_lr_train_from_dym( factors, outputs, opts);

  /* Set initial value of model parameters, if desired. */
  if (initb != NULL) lr_train_overwrite_b( lrt, initb);

  /* Initialize our loop state */
  dev = -1000.0;
  lrsarr = mk_array_of_null_lr_states( opts->lrmax);
  devhist = mk_constant_dyv( opts->lrmax, FLT_MAX);

  /* START OF IRLS ITERATIONS */
  /* Iterate until the change in deviance is relatively small. */
  for (numiters=0; numiters < opts->lrmax; ++numiters) {

    /* Update olddev and iterate. */
    olddev = dev;
    rc = lr_train_iterate(lrt);

    /* Test for convergence. */
    lr_statearr_set( lrsarr, numiters, lrt->lrs);
    converge = lr_deviance_test( lrt, opts->lreps, olddev, &dev);
    dyv_set( devhist, numiters, dev);

    /* Print stuff. */
    if (Verbosity >= 1) printf( ".");
    if (Verbosity >= 3) {
      printf( "LR ITER %d: likesat: %g, likelihood: %g, deviance: %g\n",
	      numiters, lrt->likesat,
              lr_log_likelihood_from_deviance( dev, lrt->likesat), dev);
    }
    if (Verbosity >= 5) {
      /* Print all or most extreme attributes. */
        printf( "  Params, b0: %g\n", lrt->lrs->b0);
        fprintf_oneline_dyv( stdout, "  Params, b:", lrt->lrs->b, "\n");
    }

    if (converge) break;
    else if (rc == -2) break; /* Exceeded cgmax. */
    else if (am_isnan(dev)) break;
  }
  /* END OF ITERATIONS */

  /* Check state history for best holdout performance. */
  bestiter = dyv_argmin( devhist);
  bestlrs  = lr_statearr_ref( lrsarr, bestiter);
  free_lr_state( lrt->lrs);
  lrt->lrs = mk_copy_lr_state( bestlrs);
	if (converge) lrt->lrs->converged = converge;
  if (Verbosity == 1) printf( "\n");
  if (Verbosity >= 2) {
    printf( "CHOOSING ITERATION %d WITH DEVIANCE %g\n",
            bestiter, dyv_ref( devhist, bestiter));
  }
  if (Verbosity >= 2) {
    fprintf_oneline_dyv( stdout, "  devhist:", devhist, "\n");
  }

  /* Free state history. */
  free_lr_statearr( lrsarr);
  free_dyv( devhist);

  /* Done. */
  return lrt;
}
コード例 #16
0
ファイル: lr.c プロジェクト: dineshmdh/randomjungle
dyv *mk_lr_cgresult_cgdeveps( lr_train *lrt, double cgdeveps,
                              int maxiters, conjgrad *cg)
{
  int iters, bestiter, window;
  double dev, olddev, bestdev, rsqr, decay, decthresh;
  dyv *devhist, *x, *result;
  dyv_array *paramhist;

  /* Run conjugate gradient. */
  devhist    = mk_constant_dyv( maxiters, FLT_MAX);
  paramhist  = mk_array_of_null_dyvs( maxiters);
  dev        = -FLT_MAX;
  bestdev    = FLT_MAX;
  window     = lrt->opts->cgwindow;
  decay      = lrt->opts->cgdecay;
  decthresh  = FLT_MAX;

  /* Scale cgeps. */
  rsqr = sqrt(dyv_scalar_product( cg->cgs->r, cg->cgs->r));

  /* Store initial position in history. */
  iters = 0;
  dev = lr_deviance_from_cg( lrt, cg);
  dyv_set( devhist, iters, dev);
  dyv_array_set( paramhist, iters, conjgrad_x_ref( cg));
  iters += 1;

  /* Abort the iters if rsqr gets too small for calcs to proceed. */
  while (rsqr > 1e-300) {
    if (Verbosity > 3) {
      fprintf_oneline_dyv( stdout, "    CG POS:", cg->cgs->x, "\n");
    }

    /* Non-deviance termination criteria. */
    if (iters > maxiters) break; /* Strict, since we start with iters=1. */
    if (window <= 0) break;
    if (dev > decthresh) break;

    /* Iterate. */
    olddev  = dev;
    cgiter( cg);

    /* Relative difference of deviance. */
    dev = lr_deviance_from_cg( lrt, cg);
    if (dev <= bestdev) {
      bestdev   = dev;
      window    = lrt->opts->cgwindow;
      decthresh = decay * bestdev;
    }
    else window -= 1;

    /* Store history. */
    dyv_set( devhist, iters, dev);
    dyv_array_set( paramhist, iters,
                   conjgrad_x_ref( cg) /* good params */);
    if (Verbosity >= 2) printf( "CG DEVIANCE: %g\n", dev);

    /* Terminate on rel diff of deviance. */
    if (fabs(olddev-dev) < dev*cgdeveps) break;

    /* Count number of iters. */
    iters += 1;

    /* We must calculate rsqr for the while-loop condition. */
    rsqr = dyv_magnitude( conjgrad_r_ref( cg));
  }

  /* Select parameters. */
  /* Get best params from paramhist. */
  bestiter = dyv_argmin( devhist);
  x = dyv_array_ref( paramhist, bestiter);
  if (x == NULL) {
    my_errorf( "mk_lr_cgresult_cgdeveps: NULL param vec %d", bestiter);
  }

  result = mk_copy_dyv( x);
  free_dyv_array( paramhist);
  free_dyv( devhist);
  return result;
}