static int eap_fast_process_phase2_start(struct eap_sm *sm, struct eap_fast_data *data) { u8 next_type; if (data->identity) { os_free(sm->identity); sm->identity = data->identity; data->identity = NULL; sm->identity_len = data->identity_len; data->identity_len = 0; sm->require_identity_match = 1; if (eap_user_get(sm, sm->identity, sm->identity_len, 1) != 0) { wpa_hexdump_ascii(MSG_DEBUG, "EAP-FAST: " "Phase2 Identity not found " "in the user database", sm->identity, sm->identity_len); next_type = eap_fast_req_failure(sm, data); } else { wpa_printf(MSG_DEBUG, "EAP-FAST: Identity already " "known - skip Phase 2 Identity Request"); next_type = sm->user->methods[0].method; sm->user_eap_method_index = 1; } eap_fast_state(data, PHASE2_METHOD); } else { eap_fast_state(data, PHASE2_ID); next_type = EAP_TYPE_IDENTITY; } return eap_fast_phase2_init(sm, data, next_type); }
static int eap_sm_Policy_getDecision(struct eap_sm *sm) { if (!sm->eap_server && sm->identity) { asd_printf(ASD_DEFAULT,MSG_DEBUG, "EAP: getDecision: -> PASSTHROUGH"); return DECISION_PASSTHROUGH; } if (sm->m && sm->currentMethod != EAP_TYPE_IDENTITY && sm->m->isSuccess(sm, sm->eap_method_priv)) { asd_printf(ASD_DEFAULT,MSG_DEBUG, "EAP: getDecision: method succeeded -> " "SUCCESS"); sm->update_user = TRUE; return DECISION_SUCCESS; } if (sm->m && sm->m->isDone(sm, sm->eap_method_priv) && !sm->m->isSuccess(sm, sm->eap_method_priv)) { asd_printf(ASD_DEFAULT,MSG_DEBUG, "EAP: getDecision: method failed -> " "FAILURE"); sm->update_user = TRUE; return DECISION_FAILURE; } if ((sm->user == NULL || sm->update_user) && sm->identity) { if (eap_user_get(sm, sm->identity, sm->identity_len, 0) != 0) { asd_printf(ASD_DEFAULT,MSG_DEBUG, "EAP: getDecision: user not " "found from database -> FAILURE"); return DECISION_FAILURE; } sm->update_user = FALSE; } if (sm->user && sm->user_eap_method_index < EAP_MAX_METHODS && (sm->user->methods[sm->user_eap_method_index].vendor != EAP_VENDOR_IETF || sm->user->methods[sm->user_eap_method_index].method != EAP_TYPE_NONE)) { asd_printf(ASD_DEFAULT,MSG_DEBUG, "EAP: getDecision: another method " "available -> CONTINUE"); return DECISION_CONTINUE; } if (sm->identity == NULL || sm->currentId == -1) { asd_printf(ASD_DEFAULT,MSG_DEBUG, "EAP: getDecision: no identity known " "yet -> CONTINUE"); return DECISION_CONTINUE; } asd_printf(ASD_DEFAULT,MSG_DEBUG, "EAP: getDecision: no more methods available -> " "FAILURE"); return DECISION_FAILURE; }
static const u8 * eap_ikev2_get_shared_secret(void *ctx, const u8 *IDr, size_t IDr_len, size_t *secret_len) { struct eap_sm *sm = ctx; if (IDr == NULL) { wpa_printf(MSG_DEBUG, "EAP-IKEV2: No IDr received - default " "to user identity from EAP-Identity"); IDr = sm->identity; IDr_len = sm->identity_len; } if (eap_user_get(sm, IDr, IDr_len, 0) < 0 || sm->user == NULL || sm->user->password == NULL) { wpa_printf(MSG_DEBUG, "EAP-IKEV2: No user entry found"); return NULL; } *secret_len = sm->user->password_len; return sm->user->password; }
static int eap_sm_Policy_getDecision(struct eap_sm *sm) { if (!sm->eap_server && sm->identity && !sm->start_reauth) { wpa_printf(MSG_DEBUG, "EAP: getDecision: -> PASSTHROUGH"); return DECISION_PASSTHROUGH; } if (sm->m && sm->currentMethod != EAP_TYPE_IDENTITY && sm->m->isSuccess(sm, sm->eap_method_priv)) { wpa_printf(MSG_DEBUG, "EAP: getDecision: method succeeded -> " "SUCCESS"); sm->update_user = TRUE; return DECISION_SUCCESS; } if (sm->m && sm->m->isDone(sm, sm->eap_method_priv) && !sm->m->isSuccess(sm, sm->eap_method_priv)) { wpa_printf(MSG_DEBUG, "EAP: getDecision: method failed -> " "FAILURE"); sm->update_user = TRUE; return DECISION_FAILURE; } if ((sm->user == NULL || sm->update_user) && sm->identity && !sm->start_reauth) { /* * Allow Identity method to be started once to allow identity * selection hint to be sent from the authentication server, * but prevent a loop of Identity requests by only allowing * this to happen once. */ int id_req = 0; if (sm->user && sm->currentMethod == EAP_TYPE_IDENTITY && sm->user->methods[0].vendor == EAP_VENDOR_IETF && sm->user->methods[0].method == EAP_TYPE_IDENTITY) id_req = 1; if (eap_user_get(sm, sm->identity, sm->identity_len, 0) != 0) { wpa_printf(MSG_DEBUG, "EAP: getDecision: user not " "found from database -> FAILURE"); return DECISION_FAILURE; } if (id_req && sm->user && sm->user->methods[0].vendor == EAP_VENDOR_IETF && sm->user->methods[0].method == EAP_TYPE_IDENTITY) { wpa_printf(MSG_DEBUG, "EAP: getDecision: stop " "identity request loop -> FAILURE"); sm->update_user = TRUE; return DECISION_FAILURE; } sm->update_user = FALSE; } sm->start_reauth = FALSE; if (sm->user && sm->user_eap_method_index < EAP_MAX_METHODS && (sm->user->methods[sm->user_eap_method_index].vendor != EAP_VENDOR_IETF || sm->user->methods[sm->user_eap_method_index].method != EAP_TYPE_NONE)) { wpa_printf(MSG_DEBUG, "EAP: getDecision: another method " "available -> CONTINUE"); return DECISION_CONTINUE; } if (sm->identity == NULL || sm->currentId == -1) { wpa_printf(MSG_DEBUG, "EAP: getDecision: no identity known " "yet -> CONTINUE"); return DECISION_CONTINUE; } wpa_printf(MSG_DEBUG, "EAP: getDecision: no more methods available -> " "FAILURE"); return DECISION_FAILURE; }
static void eap_pax_process_std_2(struct eap_sm *sm, struct eap_pax_data *data, struct wpabuf *respData) { struct eap_pax_hdr *resp; u8 mac[EAP_PAX_MAC_LEN], icvbuf[EAP_PAX_ICV_LEN]; const u8 *pos; size_t len, left; int i; if (data->state != PAX_STD_1) return; wpa_printf(MSG_DEBUG, "EAP-PAX: Received PAX_STD-2"); pos = eap_hdr_validate(EAP_VENDOR_IETF, EAP_TYPE_PAX, respData, &len); if (pos == NULL || len < sizeof(*resp) + EAP_PAX_ICV_LEN) return; resp = (struct eap_pax_hdr *) pos; pos = (u8 *) (resp + 1); left = len - sizeof(*resp); if (left < 2 + EAP_PAX_RAND_LEN || WPA_GET_BE16(pos) != EAP_PAX_RAND_LEN) { wpa_printf(MSG_INFO, "EAP-PAX: Too short PAX_STD-2 (B)"); return; } pos += 2; left -= 2; os_memcpy(data->rand.r.y, pos, EAP_PAX_RAND_LEN); wpa_hexdump(MSG_MSGDUMP, "EAP-PAX: Y (client rand)", data->rand.r.y, EAP_PAX_RAND_LEN); pos += EAP_PAX_RAND_LEN; left -= EAP_PAX_RAND_LEN; if (left < 2 || (size_t) 2 + WPA_GET_BE16(pos) > left) { wpa_printf(MSG_INFO, "EAP-PAX: Too short PAX_STD-2 (CID)"); return; } data->cid_len = WPA_GET_BE16(pos); os_free(data->cid); data->cid = os_malloc(data->cid_len); if (data->cid == NULL) { wpa_printf(MSG_INFO, "EAP-PAX: Failed to allocate memory for " "CID"); return; } os_memcpy(data->cid, pos + 2, data->cid_len); pos += 2 + data->cid_len; left -= 2 + data->cid_len; wpa_hexdump_ascii(MSG_MSGDUMP, "EAP-PAX: CID", (u8 *) data->cid, data->cid_len); if (left < 2 + EAP_PAX_MAC_LEN || WPA_GET_BE16(pos) != EAP_PAX_MAC_LEN) { wpa_printf(MSG_INFO, "EAP-PAX: Too short PAX_STD-2 (MAC_CK)"); return; } pos += 2; left -= 2; wpa_hexdump(MSG_MSGDUMP, "EAP-PAX: MAC_CK(A, B, CID)", pos, EAP_PAX_MAC_LEN); if (eap_user_get(sm, (u8 *) data->cid, data->cid_len, 0) < 0) { wpa_hexdump_ascii(MSG_DEBUG, "EAP-PAX: unknown CID", (u8 *) data->cid, data->cid_len); data->state = FAILURE; return; } for (i = 0; i < EAP_MAX_METHODS && (sm->user->methods[i].vendor != EAP_VENDOR_IETF || sm->user->methods[i].method != EAP_TYPE_NONE); i++) { if (sm->user->methods[i].vendor == EAP_VENDOR_IETF && sm->user->methods[i].method == EAP_TYPE_PAX) break; } if (i >= EAP_MAX_METHODS || sm->user->methods[i].vendor != EAP_VENDOR_IETF || sm->user->methods[i].method != EAP_TYPE_PAX) { wpa_hexdump_ascii(MSG_DEBUG, "EAP-PAX: EAP-PAX not enabled for CID", (u8 *) data->cid, data->cid_len); data->state = FAILURE; return; } if (sm->user->password == NULL || sm->user->password_len != EAP_PAX_AK_LEN) { wpa_hexdump_ascii(MSG_DEBUG, "EAP-PAX: invalid password in " "user database for CID", (u8 *) data->cid, data->cid_len); data->state = FAILURE; return; } os_memcpy(data->ak, sm->user->password, EAP_PAX_AK_LEN); if (eap_pax_initial_key_derivation(data->mac_id, data->ak, data->rand.e, data->mk, data->ck, data->ick) < 0) { wpa_printf(MSG_INFO, "EAP-PAX: Failed to complete initial " "key derivation"); data->state = FAILURE; return; } data->keys_set = 1; eap_pax_mac(data->mac_id, data->ck, EAP_PAX_CK_LEN, data->rand.r.x, EAP_PAX_RAND_LEN, data->rand.r.y, EAP_PAX_RAND_LEN, (u8 *) data->cid, data->cid_len, mac); if (os_memcmp_const(mac, pos, EAP_PAX_MAC_LEN) != 0) { wpa_printf(MSG_INFO, "EAP-PAX: Invalid MAC_CK(A, B, CID) in " "PAX_STD-2"); wpa_hexdump(MSG_MSGDUMP, "EAP-PAX: Expected MAC_CK(A, B, CID)", mac, EAP_PAX_MAC_LEN); data->state = FAILURE; return; } pos += EAP_PAX_MAC_LEN; left -= EAP_PAX_MAC_LEN; if (left < EAP_PAX_ICV_LEN) { wpa_printf(MSG_INFO, "EAP-PAX: Too short ICV (%lu) in " "PAX_STD-2", (unsigned long) left); return; } wpa_hexdump(MSG_MSGDUMP, "EAP-PAX: ICV", pos, EAP_PAX_ICV_LEN); eap_pax_mac(data->mac_id, data->ick, EAP_PAX_ICK_LEN, wpabuf_head(respData), wpabuf_len(respData) - EAP_PAX_ICV_LEN, NULL, 0, NULL, 0, icvbuf); if (os_memcmp_const(icvbuf, pos, EAP_PAX_ICV_LEN) != 0) { wpa_printf(MSG_INFO, "EAP-PAX: Invalid ICV in PAX_STD-2"); wpa_hexdump(MSG_MSGDUMP, "EAP-PAX: Expected ICV", icvbuf, EAP_PAX_ICV_LEN); return; } pos += EAP_PAX_ICV_LEN; left -= EAP_PAX_ICV_LEN; if (left > 0) { wpa_hexdump(MSG_MSGDUMP, "EAP-PAX: ignored extra payload", pos, left); } data->state = PAX_STD_3; }
static void eap_fast_process_phase2_response(struct eap_sm *sm, struct eap_fast_data *data, u8 *in_data, size_t in_len) { u8 next_type = EAP_TYPE_NONE; struct eap_hdr *hdr; u8 *pos; size_t left; struct wpabuf buf; const struct eap_method *m = data->phase2_method; void *priv = data->phase2_priv; if (priv == NULL) { wpa_printf(MSG_DEBUG, "EAP-FAST: %s - Phase2 not " "initialized?!", __func__); return; } hdr = (struct eap_hdr *) in_data; pos = (u8 *) (hdr + 1); if (in_len > sizeof(*hdr) && *pos == EAP_TYPE_NAK) { left = in_len - sizeof(*hdr); wpa_hexdump(MSG_DEBUG, "EAP-FAST: Phase2 type Nak'ed; " "allowed types", pos + 1, left - 1); #ifdef EAP_SERVER_TNC if (m && m->vendor == EAP_VENDOR_IETF && m->method == EAP_TYPE_TNC) { wpa_printf(MSG_DEBUG, "EAP-FAST: Peer Nak'ed required " "TNC negotiation"); next_type = eap_fast_req_failure(sm, data); eap_fast_phase2_init(sm, data, next_type); return; } #endif /* EAP_SERVER_TNC */ eap_sm_process_nak(sm, pos + 1, left - 1); if (sm->user && sm->user_eap_method_index < EAP_MAX_METHODS && sm->user->methods[sm->user_eap_method_index].method != EAP_TYPE_NONE) { next_type = sm->user->methods[ sm->user_eap_method_index++].method; wpa_printf(MSG_DEBUG, "EAP-FAST: try EAP type %d", next_type); } else { next_type = eap_fast_req_failure(sm, data); } eap_fast_phase2_init(sm, data, next_type); return; } wpabuf_set(&buf, in_data, in_len); if (m->check(sm, priv, &buf)) { wpa_printf(MSG_DEBUG, "EAP-FAST: Phase2 check() asked to " "ignore the packet"); eap_fast_req_failure(sm, data); return; } m->process(sm, priv, &buf); if (!m->isDone(sm, priv)) return; if (!m->isSuccess(sm, priv)) { wpa_printf(MSG_DEBUG, "EAP-FAST: Phase2 method failed"); next_type = eap_fast_req_failure(sm, data); eap_fast_phase2_init(sm, data, next_type); return; } switch (data->state) { case PHASE2_ID: if (eap_user_get(sm, sm->identity, sm->identity_len, 1) != 0) { wpa_hexdump_ascii(MSG_DEBUG, "EAP-FAST: Phase2 " "Identity not found in the user " "database", sm->identity, sm->identity_len); next_type = eap_fast_req_failure(sm, data); break; } eap_fast_state(data, PHASE2_METHOD); if (data->anon_provisioning) { /* * Only EAP-MSCHAPv2 is allowed for anonymous * provisioning. */ next_type = EAP_TYPE_MSCHAPV2; sm->user_eap_method_index = 0; } else { next_type = sm->user->methods[0].method; sm->user_eap_method_index = 1; } wpa_printf(MSG_DEBUG, "EAP-FAST: try EAP type %d", next_type); break; case PHASE2_METHOD: case CRYPTO_BINDING: eap_fast_update_icmk(sm, data); eap_fast_state(data, CRYPTO_BINDING); data->eap_seq++; next_type = EAP_TYPE_NONE; #ifdef EAP_SERVER_TNC if (sm->tnc && !data->tnc_started) { wpa_printf(MSG_DEBUG, "EAP-FAST: Initialize TNC"); next_type = EAP_TYPE_TNC; data->tnc_started = 1; } #endif /* EAP_SERVER_TNC */ break; case FAILURE: break; default: wpa_printf(MSG_DEBUG, "EAP-FAST: %s - unexpected state %d", __func__, data->state); break; } eap_fast_phase2_init(sm, data, next_type); }
static void eap_peap_process_phase2_response(struct eap_sm *sm, struct eap_peap_data *data, struct wpabuf *in_data) { int next_vendor = EAP_VENDOR_IETF; u32 next_type = EAP_TYPE_NONE; const struct eap_hdr *hdr; const u8 *pos; size_t left; if (data->state == PHASE2_TLV) { eap_peap_process_phase2_tlv(sm, data, in_data); return; } #ifdef EAP_SERVER_TNC if (data->state == PHASE2_SOH) { eap_peap_process_phase2_soh(sm, data, in_data); return; } #endif /* EAP_SERVER_TNC */ if (data->phase2_priv == NULL) { wpa_printf(MSG_DEBUG, "EAP-PEAP: %s - Phase2 not " "initialized?!", __func__); return; } hdr = wpabuf_head(in_data); pos = (const u8 *) (hdr + 1); if (wpabuf_len(in_data) > sizeof(*hdr) && *pos == EAP_TYPE_NAK) { left = wpabuf_len(in_data) - sizeof(*hdr); wpa_hexdump(MSG_DEBUG, "EAP-PEAP: Phase2 type Nak'ed; " "allowed types", pos + 1, left - 1); eap_sm_process_nak(sm, pos + 1, left - 1); if (sm->user && sm->user_eap_method_index < EAP_MAX_METHODS && (sm->user->methods[sm->user_eap_method_index].vendor != EAP_VENDOR_IETF || sm->user->methods[sm->user_eap_method_index].method != EAP_TYPE_NONE)) { next_vendor = sm->user->methods[ sm->user_eap_method_index].vendor; next_type = sm->user->methods[ sm->user_eap_method_index++].method; wpa_printf(MSG_DEBUG, "EAP-PEAP: try EAP vendor %d type 0x%x", next_vendor, next_type); } else { eap_peap_req_failure(sm, data); next_vendor = EAP_VENDOR_IETF; next_type = EAP_TYPE_NONE; } eap_peap_phase2_init(sm, data, next_vendor, next_type); return; } if (data->phase2_method->check(sm, data->phase2_priv, in_data)) { wpa_printf(MSG_DEBUG, "EAP-PEAP: Phase2 check() asked to " "ignore the packet"); return; } data->phase2_method->process(sm, data->phase2_priv, in_data); if (sm->method_pending == METHOD_PENDING_WAIT) { wpa_printf(MSG_DEBUG, "EAP-PEAP: Phase2 method is in " "pending wait state - save decrypted response"); wpabuf_free(data->pending_phase2_resp); data->pending_phase2_resp = wpabuf_dup(in_data); } if (!data->phase2_method->isDone(sm, data->phase2_priv)) return; if (!data->phase2_method->isSuccess(sm, data->phase2_priv)) { wpa_printf(MSG_DEBUG, "EAP-PEAP: Phase2 method failed"); eap_peap_req_failure(sm, data); next_vendor = EAP_VENDOR_IETF; next_type = EAP_TYPE_NONE; eap_peap_phase2_init(sm, data, next_vendor, next_type); return; } os_free(data->phase2_key); if (data->phase2_method->getKey) { data->phase2_key = data->phase2_method->getKey( sm, data->phase2_priv, &data->phase2_key_len); if (data->phase2_key == NULL) { wpa_printf(MSG_DEBUG, "EAP-PEAP: Phase2 getKey " "failed"); eap_peap_req_failure(sm, data); eap_peap_phase2_init(sm, data, EAP_VENDOR_IETF, EAP_TYPE_NONE); return; } } switch (data->state) { case PHASE1_ID2: case PHASE2_ID: case PHASE2_SOH: if (eap_user_get(sm, sm->identity, sm->identity_len, 1) != 0) { wpa_hexdump_ascii(MSG_DEBUG, "EAP_PEAP: Phase2 " "Identity not found in the user " "database", sm->identity, sm->identity_len); eap_peap_req_failure(sm, data); next_vendor = EAP_VENDOR_IETF; next_type = EAP_TYPE_NONE; break; } #ifdef EAP_SERVER_TNC if (data->state != PHASE2_SOH && sm->tnc && data->peap_version == 0) { eap_peap_state(data, PHASE2_SOH); wpa_printf(MSG_DEBUG, "EAP-PEAP: Try to initialize " "TNC (NAP SOH)"); next_vendor = EAP_VENDOR_IETF; next_type = EAP_TYPE_NONE; break; } #endif /* EAP_SERVER_TNC */ eap_peap_state(data, PHASE2_METHOD); next_vendor = sm->user->methods[0].vendor; next_type = sm->user->methods[0].method; sm->user_eap_method_index = 1; wpa_printf(MSG_DEBUG, "EAP-PEAP: try EAP vendor %d type 0x%x", next_vendor, next_type); break; case PHASE2_METHOD: eap_peap_req_success(sm, data); next_vendor = EAP_VENDOR_IETF; next_type = EAP_TYPE_NONE; break; case FAILURE: break; default: wpa_printf(MSG_DEBUG, "EAP-PEAP: %s - unexpected state %d", __func__, data->state); break; } eap_peap_phase2_init(sm, data, next_vendor, next_type); }
static void eap_eke_process_identity(struct eap_sm *sm, struct eap_eke_data *data, const struct wpabuf *respData, const u8 *payload, size_t payloadlen) { const u8 *pos, *end; int i; wpa_printf(MSG_DEBUG, "EAP-EKE: Received Response/Identity"); if (data->state != IDENTITY) { eap_eke_fail(data, EAP_EKE_FAIL_PROTO_ERROR); return; } pos = payload; end = payload + payloadlen; if (pos + 2 + 4 + 1 > end) { wpa_printf(MSG_INFO, "EAP-EKE: Too short EAP-EKE-ID payload"); eap_eke_fail(data, EAP_EKE_FAIL_PROTO_ERROR); return; } if (*pos != 1) { wpa_printf(MSG_INFO, "EAP-EKE: Unexpected NumProposals %d (expected 1)", *pos); eap_eke_fail(data, EAP_EKE_FAIL_PROTO_ERROR); return; } pos += 2; if (!supported_proposal(pos)) { wpa_printf(MSG_INFO, "EAP-EKE: Unexpected Proposal (%u:%u:%u:%u)", pos[0], pos[1], pos[2], pos[3]); eap_eke_fail(data, EAP_EKE_FAIL_PROTO_ERROR); return; } wpa_printf(MSG_DEBUG, "EAP-EKE: Selected Proposal (%u:%u:%u:%u)", pos[0], pos[1], pos[2], pos[3]); if (eap_eke_session_init(&data->sess, pos[0], pos[1], pos[2], pos[3]) < 0) { eap_eke_fail(data, EAP_EKE_FAIL_PRIVATE_INTERNAL_ERROR); return; } pos += 4; data->peerid_type = *pos++; os_free(data->peerid); data->peerid = os_memdup(pos, end - pos); if (data->peerid == NULL) { wpa_printf(MSG_INFO, "EAP-EKE: Failed to allocate memory for peerid"); eap_eke_fail(data, EAP_EKE_FAIL_PRIVATE_INTERNAL_ERROR); return; } data->peerid_len = end - pos; wpa_printf(MSG_DEBUG, "EAP-EKE: Peer IDType %u", data->peerid_type); wpa_hexdump_ascii(MSG_DEBUG, "EAP-EKE: Peer Identity", data->peerid, data->peerid_len); if (eap_user_get(sm, data->peerid, data->peerid_len, data->phase2)) { wpa_printf(MSG_INFO, "EAP-EKE: Peer Identity not found from user database"); eap_eke_fail(data, EAP_EKE_FAIL_PASSWD_NOT_FOUND); return; } for (i = 0; i < EAP_MAX_METHODS; i++) { if (sm->user->methods[i].vendor == EAP_VENDOR_IETF && sm->user->methods[i].method == EAP_TYPE_EKE) break; } if (i == EAP_MAX_METHODS) { wpa_printf(MSG_INFO, "EAP-EKE: Matching user entry does not allow EAP-EKE"); eap_eke_fail(data, EAP_EKE_FAIL_PASSWD_NOT_FOUND); return; } if (sm->user->password == NULL || sm->user->password_len == 0) { wpa_printf(MSG_INFO, "EAP-EKE: No password configured for peer"); eap_eke_fail(data, EAP_EKE_FAIL_PASSWD_NOT_FOUND); return; } if (wpabuf_resize(&data->msgs, wpabuf_len(respData)) < 0) { eap_eke_fail(data, EAP_EKE_FAIL_PRIVATE_INTERNAL_ERROR); return; } wpabuf_put_buf(data->msgs, respData); eap_eke_state(data, COMMIT); }
static void eap_psk_process_2(struct eap_sm *sm, struct eap_psk_data *data, struct wpabuf *respData) { const struct eap_psk_hdr_2 *resp; u8 *pos, mac[EAP_PSK_MAC_LEN], *buf; size_t left, buflen; int i; const u8 *cpos; if (data->state != PSK_1) return; wpa_printf(MSG_DEBUG, "EAP-PSK: Received PSK-2"); cpos = eap_hdr_validate(EAP_VENDOR_IETF, EAP_TYPE_PSK, respData, &left); if (cpos == NULL || left < sizeof(*resp)) { wpa_printf(MSG_INFO, "EAP-PSK: Invalid frame"); return; } resp = (const struct eap_psk_hdr_2 *) cpos; cpos = (const u8 *) (resp + 1); left -= sizeof(*resp); os_free(data->id_p); data->id_p = os_malloc(left); if (data->id_p == NULL) { wpa_printf(MSG_INFO, "EAP-PSK: Failed to allocate memory for " "ID_P"); return; } os_memcpy(data->id_p, cpos, left); data->id_p_len = left; wpa_hexdump_ascii(MSG_MSGDUMP, "EAP-PSK: ID_P", data->id_p, data->id_p_len); if (eap_user_get(sm, data->id_p, data->id_p_len, 0) < 0) { wpa_hexdump_ascii(MSG_DEBUG, "EAP-PSK: unknown ID_P", data->id_p, data->id_p_len); data->state = FAILURE; return; } for (i = 0; i < EAP_MAX_METHODS && (sm->user->methods[i].vendor != EAP_VENDOR_IETF || sm->user->methods[i].method != EAP_TYPE_NONE); i++) { if (sm->user->methods[i].vendor == EAP_VENDOR_IETF && sm->user->methods[i].method == EAP_TYPE_PSK) break; } if (i >= EAP_MAX_METHODS || sm->user->methods[i].vendor != EAP_VENDOR_IETF || sm->user->methods[i].method != EAP_TYPE_PSK) { wpa_hexdump_ascii(MSG_DEBUG, "EAP-PSK: EAP-PSK not enabled for ID_P", data->id_p, data->id_p_len); data->state = FAILURE; return; } if (sm->user->password == NULL || sm->user->password_len != EAP_PSK_PSK_LEN) { wpa_hexdump_ascii(MSG_DEBUG, "EAP-PSK: invalid password in " "user database for ID_P", data->id_p, data->id_p_len); data->state = FAILURE; return; } if (eap_psk_key_setup(sm->user->password, data->ak, data->kdk)) { data->state = FAILURE; return; } wpa_hexdump_key(MSG_DEBUG, "EAP-PSK: AK", data->ak, EAP_PSK_AK_LEN); wpa_hexdump_key(MSG_DEBUG, "EAP-PSK: KDK", data->kdk, EAP_PSK_KDK_LEN); wpa_hexdump(MSG_MSGDUMP, "EAP-PSK: RAND_P (client rand)", resp->rand_p, EAP_PSK_RAND_LEN); os_memcpy(data->rand_p, resp->rand_p, EAP_PSK_RAND_LEN); /* MAC_P = OMAC1-AES-128(AK, ID_P||ID_S||RAND_S||RAND_P) */ buflen = data->id_p_len + data->id_s_len + 2 * EAP_PSK_RAND_LEN; buf = os_malloc(buflen); if (buf == NULL) { data->state = FAILURE; return; } os_memcpy(buf, data->id_p, data->id_p_len); pos = buf + data->id_p_len; os_memcpy(pos, data->id_s, data->id_s_len); pos += data->id_s_len; os_memcpy(pos, data->rand_s, EAP_PSK_RAND_LEN); pos += EAP_PSK_RAND_LEN; os_memcpy(pos, data->rand_p, EAP_PSK_RAND_LEN); if (omac1_aes_128(data->ak, buf, buflen, mac)) { os_free(buf); data->state = FAILURE; return; } os_free(buf); wpa_hexdump(MSG_DEBUG, "EAP-PSK: MAC_P", resp->mac_p, EAP_PSK_MAC_LEN); if (os_memcmp(mac, resp->mac_p, EAP_PSK_MAC_LEN) != 0) { wpa_printf(MSG_INFO, "EAP-PSK: Invalid MAC_P"); wpa_hexdump(MSG_MSGDUMP, "EAP-PSK: Expected MAC_P", mac, EAP_PSK_MAC_LEN); data->state = FAILURE; return; } data->state = PSK_3; }
static void eap_peap_process_phase2_response(struct eap_sm *sm, struct eap_peap_data *data, u8 *in_data, size_t in_len) { u8 next_type = EAP_TYPE_NONE; struct eap_hdr *hdr; u8 *pos; size_t left; if (data->phase2_priv == NULL) { wpa_printf(MSG_DEBUG, "EAP-PEAP: %s - Phase2 not " "initialized?!", __func__); return; } hdr = (struct eap_hdr *) in_data; pos = (u8 *) (hdr + 1); left = in_len - sizeof(*hdr); if (in_len > sizeof(*hdr) && *pos == EAP_TYPE_NAK) { wpa_hexdump(MSG_DEBUG, "EAP-PEAP: Phase2 type Nak'ed; " "allowed types", pos + 1, left - 1); eap_sm_process_nak(sm, pos + 1, left - 1); if (sm->user && sm->user_eap_method_index < EAP_MAX_METHODS && sm->user->methods[sm->user_eap_method_index] != EAP_TYPE_NONE) { next_type = sm->user->methods[sm->user_eap_method_index++]; wpa_printf(MSG_DEBUG, "EAP-PEAP: try EAP type %d", next_type); } else { next_type = eap_peap_req_failure(sm, data); } eap_peap_phase2_init(sm, data, next_type); return; } if (data->phase2_method->check(sm, data->phase2_priv, in_data, in_len)) { wpa_printf(MSG_DEBUG, "EAP-PEAP: Phase2 check() asked to " "ignore the packet"); return; } data->phase2_method->process(sm, data->phase2_priv, in_data, in_len); if (!data->phase2_method->isDone(sm, data->phase2_priv)) return; if (!data->phase2_method->isSuccess(sm, data->phase2_priv)) { wpa_printf(MSG_DEBUG, "EAP-PEAP: Phase2 method failed"); next_type = eap_peap_req_failure(sm, data); eap_peap_phase2_init(sm, data, next_type); return; } switch (data->state) { case PHASE2_ID: if (eap_user_get(sm, sm->identity, sm->identity_len, 1) != 0) { wpa_hexdump_ascii(MSG_DEBUG, "EAP_PEAP: Phase2 " "Identity not found in the user " "database", sm->identity, sm->identity_len); next_type = eap_peap_req_failure(sm, data); break; } eap_peap_state(data, PHASE2_METHOD); next_type = sm->user->methods[0]; sm->user_eap_method_index = 1; wpa_printf(MSG_DEBUG, "EAP-PEAP: try EAP type %d", next_type); break; case PHASE2_METHOD: next_type = eap_peap_req_success(sm, data); break; case PHASE2_TLV: if (sm->tlv_request == TLV_REQ_SUCCESS || data->state == SUCCESS_REQ) { eap_peap_state(data, SUCCESS); } else { eap_peap_state(data, FAILURE); } break; case FAILURE: break; default: wpa_printf(MSG_DEBUG, "EAP-PEAP: %s - unexpected state %d", __func__, data->state); break; } eap_peap_phase2_init(sm, data, next_type); }
static void eap_gtc_process(struct eap_sm *sm, void *priv, struct wpabuf *respData) { struct eap_gtc_data *data = priv; const u8 *pos; size_t rlen; pos = eap_hdr_validate(EAP_VENDOR_IETF, EAP_TYPE_GTC, respData, &rlen); if (pos == NULL || rlen < 1) return; /* Should not happen - frame already validated */ wpa_hexdump_ascii_key(MSG_MSGDUMP, "EAP-GTC: Response", pos, rlen); #ifdef EAP_FAST if (data->prefix) { const u8 *pos2, *end; /* "RESPONSE=<user>\0<password>" */ if (rlen < 10) { wpa_printf(MSG_DEBUG, "EAP-GTC: Too short response " "for EAP-FAST prefix"); data->state = FAILURE; return; } end = pos + rlen; pos += 9; pos2 = pos; while (pos2 < end && *pos2) pos2++; if (pos2 == end) { wpa_printf(MSG_DEBUG, "EAP-GTC: No password in " "response to EAP-FAST prefix"); data->state = FAILURE; return; } wpa_hexdump_ascii(MSG_MSGDUMP, "EAP-GTC: Response user", pos, pos2 - pos); if (sm->identity && sm->require_identity_match && (pos2 - pos != (int) sm->identity_len || os_memcmp(pos, sm->identity, sm->identity_len))) { wpa_printf(MSG_DEBUG, "EAP-GTC: Phase 2 Identity did " "not match with required Identity"); wpa_hexdump_ascii(MSG_MSGDUMP, "EAP-GTC: Expected " "identity", sm->identity, sm->identity_len); data->state = FAILURE; return; } else { os_free(sm->identity); sm->identity_len = pos2 - pos; sm->identity = os_malloc(sm->identity_len); if (sm->identity == NULL) { data->state = FAILURE; return; } os_memcpy(sm->identity, pos, sm->identity_len); } if (eap_user_get(sm, sm->identity, sm->identity_len, 1) != 0) { wpa_hexdump_ascii(MSG_DEBUG, "EAP-GTC: Phase2 " "Identity not found in the user " "database", sm->identity, sm->identity_len); data->state = FAILURE; return; } pos = pos2 + 1; rlen = end - pos; wpa_hexdump_ascii_key(MSG_MSGDUMP, "EAP-GTC: Response password", pos, rlen); } #endif /* EAP_FAST */ if (sm->user == NULL || sm->user->password == NULL || sm->user->password_hash) { wpa_printf(MSG_INFO, "EAP-GTC: Plaintext password not " "configured"); data->state = FAILURE; return; } if (rlen != sm->user->password_len || os_memcmp(pos, sm->user->password, rlen) != 0) { wpa_printf(MSG_DEBUG, "EAP-GTC: Done - Failure"); data->state = FAILURE; } else { wpa_printf(MSG_DEBUG, "EAP-GTC: Done - Success"); data->state = SUCCESS; } }