コード例 #1
0
ファイル: lg1.c プロジェクト: Sable/mclab-www
/* Function Definitions */
void lg1(real_T scale)
{
  real_T d0;

  /* DRV_PN_LEGENDRE_VECTN Summary of this function goes here */
  /*    Detailed explanation goes here */
  d0 = scale * 5.0 * 2.0;
  emlrtForLoopVectorCheckR2012b(1.0, 1.0, d0, mxDOUBLE_CLASS, (int32_T)d0,
    &emlrtRTEI, emlrtRootTLSGlobal);
}
コード例 #2
0
/* Function Definitions */
void compmat(const emlrtStack *sp, const emxArray_uint8_T *x, real_T dims,
             emxArray_real_T *y)
{
  int32_T i1;
  real_T d3;
  int32_T ii;
  int32_T i;
  emxArray_boolean_T *b_x;
  emxArray_int32_T *b_ii;
  int32_T nx;
  int32_T idx;
  boolean_T overflow;
  boolean_T exitg1;
  boolean_T guard1 = false;
  emlrtStack st;
  emlrtStack b_st;
  emlrtStack c_st;
  emlrtStack d_st;
  st.prev = sp;
  st.tls = sp->tls;
  b_st.prev = &st;
  b_st.tls = st.tls;
  c_st.prev = &b_st;
  c_st.tls = b_st.tls;
  d_st.prev = &c_st;
  d_st.tls = c_st.tls;
  emlrtHeapReferenceStackEnterFcnR2012b(sp);

  /* UNTITLED Summary of this function goes here */
  /*    Detailed explanation goes here */
  i1 = y->size[0] * y->size[1];
  y->size[0] = 1;
  if (!(dims >= 0.0)) {
    emlrtNonNegativeCheckR2012b(dims, (emlrtDCInfo *)&j_emlrtDCI, sp);
  }

  d3 = dims;
  if (d3 != (int32_T)muDoubleScalarFloor(d3)) {
    emlrtIntegerCheckR2012b(d3, (emlrtDCInfo *)&i_emlrtDCI, sp);
  }

  y->size[1] = (int32_T)d3;
  emxEnsureCapacity(sp, (emxArray__common *)y, i1, (int32_T)sizeof(real_T),
                    &f_emlrtRTEI);
  if (!(dims >= 0.0)) {
    emlrtNonNegativeCheckR2012b(dims, (emlrtDCInfo *)&j_emlrtDCI, sp);
  }

  if (d3 != (int32_T)muDoubleScalarFloor(d3)) {
    emlrtIntegerCheckR2012b(d3, (emlrtDCInfo *)&i_emlrtDCI, sp);
  }

  ii = (int32_T)d3;
  for (i1 = 0; i1 < ii; i1++) {
    y->data[i1] = 0.0;
  }

  emlrtForLoopVectorCheckR2012b(1.0, 1.0, dims, mxDOUBLE_CLASS, (int32_T)dims,
    (emlrtRTEInfo *)&n_emlrtRTEI, sp);
  i = 0;
  emxInit_boolean_T(sp, &b_x, 2, &f_emlrtRTEI, true);
  emxInit_int32_T(sp, &b_ii, 2, &g_emlrtRTEI, true);
  while (i <= (int32_T)dims - 1) {
    st.site = &k_emlrtRSI;
    i1 = b_x->size[0] * b_x->size[1];
    b_x->size[0] = 1;
    b_x->size[1] = x->size[1];
    emxEnsureCapacity(&st, (emxArray__common *)b_x, i1, (int32_T)sizeof
                      (boolean_T), &f_emlrtRTEI);
    ii = x->size[0] * x->size[1];
    for (i1 = 0; i1 < ii; i1++) {
      b_x->data[i1] = (x->data[i1] == 1.0 + (real_T)i);
    }

    b_st.site = &h_emlrtRSI;
    nx = b_x->size[1];
    idx = 0;
    i1 = b_ii->size[0] * b_ii->size[1];
    b_ii->size[0] = 1;
    b_ii->size[1] = b_x->size[1];
    emxEnsureCapacity(&b_st, (emxArray__common *)b_ii, i1, (int32_T)sizeof
                      (int32_T), &f_emlrtRTEI);
    c_st.site = &i_emlrtRSI;
    overflow = ((!(1 > b_x->size[1])) && (b_x->size[1] > 2147483646));
    if (overflow) {
      d_st.site = &j_emlrtRSI;
      check_forloop_overflow_error(&d_st);
    }

    ii = 1;
    exitg1 = false;
    while ((!exitg1) && (ii <= nx)) {
      guard1 = false;
      if (b_x->data[ii - 1]) {
        idx++;
        b_ii->data[idx - 1] = ii;
        if (idx >= nx) {
          exitg1 = true;
        } else {
          guard1 = true;
        }
      } else {
        guard1 = true;
      }

      if (guard1) {
        ii++;
      }
    }

    if (idx <= b_x->size[1]) {
    } else {
      emlrtErrorWithMessageIdR2012b(&b_st, &k_emlrtRTEI,
        "Coder:builtins:AssertionFailed", 0);
    }

    if (b_x->size[1] == 1) {
      if (idx == 0) {
        i1 = b_ii->size[0] * b_ii->size[1];
        b_ii->size[0] = 1;
        b_ii->size[1] = 0;
        emxEnsureCapacity(&b_st, (emxArray__common *)b_ii, i1, (int32_T)sizeof
                          (int32_T), &f_emlrtRTEI);
      }
    } else {
      i1 = b_ii->size[0] * b_ii->size[1];
      if (1 > idx) {
        b_ii->size[1] = 0;
      } else {
        b_ii->size[1] = idx;
      }

      emxEnsureCapacity(&b_st, (emxArray__common *)b_ii, i1, (int32_T)sizeof
                        (int32_T), &b_emlrtRTEI);
    }

    i1 = y->size[1];
    if (!((i + 1 >= 1) && (i + 1 <= i1))) {
      emlrtDynamicBoundsCheckR2012b(i + 1, 1, i1, (emlrtBCInfo *)&w_emlrtBCI, sp);
    }

    y->data[i] = b_ii->size[1];
    i++;
    if (*emlrtBreakCheckR2012bFlagVar != 0) {
      emlrtBreakCheckR2012b(sp);
    }
  }

  emxFree_int32_T(&b_ii);
  emxFree_boolean_T(&b_x);
  emlrtHeapReferenceStackLeaveFcnR2012b(sp);
}
コード例 #3
0
ファイル: mldivide.c プロジェクト: ofirENS/TestFiles
static void c_eml_qrsolve(const emlrtStack *sp, const emxArray_real_T *A,
  emxArray_real_T *B, emxArray_real_T *Y)
{
  emxArray_real_T *b_A;
  emxArray_real_T *work;
  int32_T mn;
  int32_T i51;
  int32_T ix;
  emxArray_real_T *tau;
  emxArray_int32_T *jpvt;
  int32_T m;
  int32_T n;
  int32_T b_mn;
  emxArray_real_T *vn1;
  emxArray_real_T *vn2;
  int32_T k;
  boolean_T overflow;
  boolean_T b12;
  int32_T i;
  int32_T i_i;
  int32_T nmi;
  int32_T mmi;
  int32_T pvt;
  int32_T iy;
  boolean_T b13;
  real_T xnorm;
  int32_T i52;
  real_T atmp;
  real_T d16;
  boolean_T b14;
  boolean_T b_i;
  ptrdiff_t n_t;
  ptrdiff_t incx_t;
  double * xix0_t;
  boolean_T exitg1;
  const mxArray *y;
  static const int32_T iv78[2] = { 1, 8 };

  const mxArray *m14;
  char_T cv76[8];
  static const char_T cv77[8] = { '%', '%', '%', 'd', '.', '%', 'd', 'e' };

  char_T cv78[14];
  uint32_T unnamed_idx_0;
  emlrtStack st;
  emlrtStack b_st;
  emlrtStack c_st;
  emlrtStack d_st;
  emlrtStack e_st;
  emlrtStack f_st;
  emlrtStack g_st;
  emlrtStack h_st;
  st.prev = sp;
  st.tls = sp->tls;
  b_st.prev = &st;
  b_st.tls = st.tls;
  c_st.prev = &b_st;
  c_st.tls = b_st.tls;
  d_st.prev = &c_st;
  d_st.tls = c_st.tls;
  e_st.prev = &d_st;
  e_st.tls = d_st.tls;
  f_st.prev = &e_st;
  f_st.tls = e_st.tls;
  g_st.prev = &f_st;
  g_st.tls = f_st.tls;
  h_st.prev = &g_st;
  h_st.tls = g_st.tls;
  emlrtHeapReferenceStackEnterFcnR2012b(sp);
  emxInit_real_T(sp, &b_A, 2, &m_emlrtRTEI, true);
  b_emxInit_real_T(sp, &work, 1, &rb_emlrtRTEI, true);
  mn = (int32_T)muDoubleScalarMin(A->size[0], A->size[1]);
  st.site = &mc_emlrtRSI;
  b_st.site = &nc_emlrtRSI;
  c_st.site = &oc_emlrtRSI;
  i51 = b_A->size[0] * b_A->size[1];
  b_A->size[0] = A->size[0];
  b_A->size[1] = A->size[1];
  emxEnsureCapacity(&c_st, (emxArray__common *)b_A, i51, (int32_T)sizeof(real_T),
                    &m_emlrtRTEI);
  ix = A->size[0] * A->size[1];
  for (i51 = 0; i51 < ix; i51++) {
    b_A->data[i51] = A->data[i51];
  }

  b_emxInit_real_T(&c_st, &tau, 1, &m_emlrtRTEI, true);
  b_emxInit_int32_T(&c_st, &jpvt, 2, &m_emlrtRTEI, true);
  m = b_A->size[0];
  n = b_A->size[1];
  b_mn = muIntScalarMin_sint32(b_A->size[0], b_A->size[1]);
  i51 = tau->size[0];
  tau->size[0] = b_mn;
  emxEnsureCapacity(&c_st, (emxArray__common *)tau, i51, (int32_T)sizeof(real_T),
                    &n_emlrtRTEI);
  d_st.site = &mf_emlrtRSI;
  e_st.site = &rb_emlrtRSI;
  f_st.site = &sb_emlrtRSI;
  g_st.site = &tb_emlrtRSI;
  eml_signed_integer_colon(&g_st, b_A->size[1], jpvt);
  if ((b_A->size[0] == 0) || (b_A->size[1] == 0)) {
  } else {
    ix = b_A->size[1];
    i51 = work->size[0];
    work->size[0] = ix;
    emxEnsureCapacity(&c_st, (emxArray__common *)work, i51, (int32_T)sizeof
                      (real_T), &m_emlrtRTEI);
    for (i51 = 0; i51 < ix; i51++) {
      work->data[i51] = 0.0;
    }

    b_emxInit_real_T(&c_st, &vn1, 1, &pb_emlrtRTEI, true);
    b_emxInit_real_T(&c_st, &vn2, 1, &qb_emlrtRTEI, true);
    d_st.site = &tc_emlrtRSI;
    ix = b_A->size[1];
    i51 = vn1->size[0];
    vn1->size[0] = ix;
    emxEnsureCapacity(&c_st, (emxArray__common *)vn1, i51, (int32_T)sizeof
                      (real_T), &pb_emlrtRTEI);
    i51 = vn2->size[0];
    vn2->size[0] = ix;
    emxEnsureCapacity(&c_st, (emxArray__common *)vn2, i51, (int32_T)sizeof
                      (real_T), &qb_emlrtRTEI);
    k = 1;
    d_st.site = &nf_emlrtRSI;
    overflow = (b_A->size[1] > 2147483646);
    if (overflow) {
      e_st.site = &db_emlrtRSI;
      check_forloop_overflow_error(&e_st);
    }

    for (ix = 0; ix + 1 <= b_A->size[1]; ix++) {
      d_st.site = &sc_emlrtRSI;
      vn1->data[ix] = b_eml_xnrm2(&d_st, b_A->size[0], b_A, k);
      vn2->data[ix] = vn1->data[ix];
      k += b_A->size[0];
    }

    d_st.site = &rc_emlrtRSI;
    if (1 > b_mn) {
      b12 = false;
    } else {
      b12 = (b_mn > 2147483646);
    }

    if (b12) {
      e_st.site = &db_emlrtRSI;
      check_forloop_overflow_error(&e_st);
    }

    for (i = 1; i <= b_mn; i++) {
      i_i = (i + (i - 1) * m) - 1;
      nmi = n - i;
      mmi = m - i;
      d_st.site = &of_emlrtRSI;
      ix = eml_ixamax(&d_st, 1 + nmi, vn1, i);
      pvt = (i + ix) - 2;
      if (pvt + 1 != i) {
        d_st.site = &pf_emlrtRSI;
        e_st.site = &bc_emlrtRSI;
        f_st.site = &cc_emlrtRSI;
        ix = 1 + m * pvt;
        iy = 1 + m * (i - 1);
        g_st.site = &dc_emlrtRSI;
        if (1 > m) {
          b13 = false;
        } else {
          b13 = (m > 2147483646);
        }

        if (b13) {
          h_st.site = &db_emlrtRSI;
          check_forloop_overflow_error(&h_st);
        }

        for (k = 1; k <= m; k++) {
          i51 = b_A->size[0] * b_A->size[1];
          xnorm = b_A->data[emlrtDynamicBoundsCheckFastR2012b(ix, 1, i51,
            &le_emlrtBCI, &f_st) - 1];
          i51 = b_A->size[0] * b_A->size[1];
          i52 = b_A->size[0] * b_A->size[1];
          b_A->data[emlrtDynamicBoundsCheckFastR2012b(ix, 1, i51, &le_emlrtBCI,
            &f_st) - 1] = b_A->data[emlrtDynamicBoundsCheckFastR2012b(iy, 1, i52,
            &le_emlrtBCI, &f_st) - 1];
          i51 = b_A->size[0] * b_A->size[1];
          b_A->data[emlrtDynamicBoundsCheckFastR2012b(iy, 1, i51, &le_emlrtBCI,
            &f_st) - 1] = xnorm;
          ix++;
          iy++;
        }

        ix = jpvt->data[pvt];
        jpvt->data[pvt] = jpvt->data[i - 1];
        jpvt->data[i - 1] = ix;
        vn1->data[pvt] = vn1->data[i - 1];
        vn2->data[pvt] = vn2->data[i - 1];
      }

      if (i < m) {
        d_st.site = &qc_emlrtRSI;
        atmp = b_A->data[i_i];
        d16 = 0.0;
        if (1 + mmi <= 0) {
        } else {
          e_st.site = &wc_emlrtRSI;
          xnorm = b_eml_xnrm2(&e_st, mmi, b_A, i_i + 2);
          if (xnorm != 0.0) {
            xnorm = muDoubleScalarHypot(b_A->data[i_i], xnorm);
            if (b_A->data[i_i] >= 0.0) {
              xnorm = -xnorm;
            }

            if (muDoubleScalarAbs(xnorm) < 1.0020841800044864E-292) {
              ix = 0;
              do {
                ix++;
                e_st.site = &xc_emlrtRSI;
                b_eml_xscal(&e_st, mmi, 9.9792015476736E+291, b_A, i_i + 2);
                xnorm *= 9.9792015476736E+291;
                atmp *= 9.9792015476736E+291;
              } while (!(muDoubleScalarAbs(xnorm) >= 1.0020841800044864E-292));

              e_st.site = &yc_emlrtRSI;
              xnorm = b_eml_xnrm2(&e_st, mmi, b_A, i_i + 2);
              xnorm = muDoubleScalarHypot(atmp, xnorm);
              if (atmp >= 0.0) {
                xnorm = -xnorm;
              }

              d16 = (xnorm - atmp) / xnorm;
              e_st.site = &ad_emlrtRSI;
              b_eml_xscal(&e_st, mmi, 1.0 / (atmp - xnorm), b_A, i_i + 2);
              e_st.site = &bd_emlrtRSI;
              if (1 > ix) {
                b14 = false;
              } else {
                b14 = (ix > 2147483646);
              }

              if (b14) {
                f_st.site = &db_emlrtRSI;
                check_forloop_overflow_error(&f_st);
              }

              for (k = 1; k <= ix; k++) {
                xnorm *= 1.0020841800044864E-292;
              }

              atmp = xnorm;
            } else {
              d16 = (xnorm - b_A->data[i_i]) / xnorm;
              atmp = 1.0 / (b_A->data[i_i] - xnorm);
              e_st.site = &cd_emlrtRSI;
              b_eml_xscal(&e_st, mmi, atmp, b_A, i_i + 2);
              atmp = xnorm;
            }
          }
        }

        tau->data[i - 1] = d16;
      } else {
        atmp = b_A->data[i_i];
        d_st.site = &pc_emlrtRSI;
        tau->data[i - 1] = eml_matlab_zlarfg();
      }

      b_A->data[i_i] = atmp;
      if (i < n) {
        atmp = b_A->data[i_i];
        b_A->data[i_i] = 1.0;
        d_st.site = &qf_emlrtRSI;
        eml_matlab_zlarf(&d_st, mmi + 1, nmi, i_i + 1, tau->data[i - 1], b_A, i
                         + i * m, m, work);
        b_A->data[i_i] = atmp;
      }

      d_st.site = &rf_emlrtRSI;
      if (i + 1 > n) {
        b_i = false;
      } else {
        b_i = (n > 2147483646);
      }

      if (b_i) {
        e_st.site = &db_emlrtRSI;
        check_forloop_overflow_error(&e_st);
      }

      for (ix = i; ix + 1 <= n; ix++) {
        if (vn1->data[ix] != 0.0) {
          xnorm = muDoubleScalarAbs(b_A->data[(i + b_A->size[0] * ix) - 1]) /
            vn1->data[ix];
          xnorm = 1.0 - xnorm * xnorm;
          if (xnorm < 0.0) {
            xnorm = 0.0;
          }

          atmp = vn1->data[ix] / vn2->data[ix];
          atmp = xnorm * (atmp * atmp);
          if (atmp <= 1.4901161193847656E-8) {
            if (i < m) {
              d_st.site = &sf_emlrtRSI;
              e_st.site = &uc_emlrtRSI;
              if (mmi < 1) {
                xnorm = 0.0;
              } else {
                f_st.site = &vc_emlrtRSI;
                g_st.site = &vc_emlrtRSI;
                n_t = (ptrdiff_t)(mmi);
                g_st.site = &vc_emlrtRSI;
                incx_t = (ptrdiff_t)(1);
                i51 = b_A->size[0] * b_A->size[1];
                i52 = (i + m * ix) + 1;
                xix0_t = (double *)(&b_A->data[emlrtDynamicBoundsCheckFastR2012b
                                    (i52, 1, i51, &vb_emlrtBCI, &f_st) - 1]);
                xnorm = dnrm2(&n_t, xix0_t, &incx_t);
              }

              vn1->data[ix] = xnorm;
              vn2->data[ix] = vn1->data[ix];
            } else {
              vn1->data[ix] = 0.0;
              vn2->data[ix] = 0.0;
            }
          } else {
            d_st.site = &tf_emlrtRSI;
            vn1->data[ix] *= muDoubleScalarSqrt(xnorm);
          }
        }
      }
    }

    emxFree_real_T(&vn2);
    emxFree_real_T(&vn1);
  }

  atmp = 0.0;
  if (mn > 0) {
    xnorm = muDoubleScalarMax(A->size[0], A->size[1]) * muDoubleScalarAbs
      (b_A->data[0]) * 2.2204460492503131E-16;
    k = 0;
    exitg1 = false;
    while ((!exitg1) && (k <= mn - 1)) {
      if (muDoubleScalarAbs(b_A->data[k + b_A->size[0] * k]) <= xnorm) {
        st.site = &lc_emlrtRSI;
        y = NULL;
        m14 = emlrtCreateCharArray(2, iv78);
        for (i = 0; i < 8; i++) {
          cv76[i] = cv77[i];
        }

        emlrtInitCharArrayR2013a(&st, 8, m14, cv76);
        emlrtAssign(&y, m14);
        b_st.site = &tg_emlrtRSI;
        emlrt_marshallIn(&b_st, c_sprintf(&b_st, b_sprintf(&b_st, y,
          emlrt_marshallOut(14.0), emlrt_marshallOut(6.0), &o_emlrtMCI),
          emlrt_marshallOut(xnorm), &p_emlrtMCI), "sprintf", cv78);
        st.site = &kc_emlrtRSI;
        b_eml_warning(&st, atmp, cv78);
        exitg1 = true;
      } else {
        atmp++;
        k++;
      }
    }
  }

  unnamed_idx_0 = (uint32_T)A->size[1];
  i51 = Y->size[0];
  Y->size[0] = (int32_T)unnamed_idx_0;
  emxEnsureCapacity(sp, (emxArray__common *)Y, i51, (int32_T)sizeof(real_T),
                    &m_emlrtRTEI);
  ix = (int32_T)unnamed_idx_0;
  for (i51 = 0; i51 < ix; i51++) {
    Y->data[i51] = 0.0;
  }

  for (ix = 0; ix < mn; ix++) {
    if (tau->data[ix] != 0.0) {
      xnorm = B->data[ix];
      i51 = A->size[0] + (int32_T)(1.0 - ((1.0 + (real_T)ix) + 1.0));
      emlrtForLoopVectorCheckR2012b((1.0 + (real_T)ix) + 1.0, 1.0, A->size[0],
        mxDOUBLE_CLASS, i51, &ac_emlrtRTEI, sp);
      for (i = 0; i < i51; i++) {
        unnamed_idx_0 = ((uint32_T)ix + i) + 2U;
        xnorm += b_A->data[((int32_T)unnamed_idx_0 + b_A->size[0] * ix) - 1] *
          B->data[(int32_T)unnamed_idx_0 - 1];
      }

      xnorm *= tau->data[ix];
      if (xnorm != 0.0) {
        B->data[ix] -= xnorm;
        i51 = A->size[0] + (int32_T)(1.0 - ((1.0 + (real_T)ix) + 1.0));
        emlrtForLoopVectorCheckR2012b((1.0 + (real_T)ix) + 1.0, 1.0, A->size[0],
          mxDOUBLE_CLASS, i51, &yb_emlrtRTEI, sp);
        for (i = 0; i < i51; i++) {
          unnamed_idx_0 = ((uint32_T)ix + i) + 2U;
          B->data[(int32_T)unnamed_idx_0 - 1] -= b_A->data[((int32_T)
            unnamed_idx_0 + b_A->size[0] * ix) - 1] * xnorm;
        }
      }
    }
  }

  emxFree_real_T(&tau);
  emlrtForLoopVectorCheckR2012b(1.0, 1.0, atmp, mxDOUBLE_CLASS, (int32_T)atmp,
    &xb_emlrtRTEI, sp);
  for (i = 0; i < (int32_T)atmp; i++) {
    Y->data[jpvt->data[i] - 1] = B->data[i];
  }

  emlrtForLoopVectorCheckR2012b(atmp, -1.0, 1.0, mxDOUBLE_CLASS, (int32_T)-(1.0
    + (-1.0 - atmp)), &wb_emlrtRTEI, sp);
  for (ix = 0; ix < (int32_T)-(1.0 + (-1.0 - atmp)); ix++) {
    xnorm = atmp + -(real_T)ix;
    Y->data[jpvt->data[(int32_T)xnorm - 1] - 1] = eml_div(Y->data[jpvt->data
      [(int32_T)xnorm - 1] - 1], b_A->data[((int32_T)xnorm + b_A->size[0] *
      ((int32_T)xnorm - 1)) - 1]);
    for (i = 0; i < (int32_T)(xnorm - 1.0); i++) {
      Y->data[jpvt->data[i] - 1] -= Y->data[jpvt->data[(int32_T)xnorm - 1] - 1] *
        b_A->data[i + b_A->size[0] * ((int32_T)xnorm - 1)];
    }
  }

  emxFree_int32_T(&jpvt);
  emxFree_real_T(&work);
  emxFree_real_T(&b_A);
  emlrtHeapReferenceStackLeaveFcnR2012b(sp);
}
コード例 #4
0
void drr_151213_XRayInParam(const emlrtStack *sp, const emxArray_boolean_T
  *voxel_data, const real_T voxel_size_mm[3], const real_T detector_dimensions[2],
  const real_T XRayIntrinsicParam[12], const real_T voxel_corner_min[3], const
  real_T T_carm[16], emxArray_real_T *projection)
{
  const mxArray *y;
  static const int32_T iv0[2] = { 1, 32 };

  const mxArray *m0;
  char_T cv0[32];
  int32_T i;
  static const char_T cv1[32] = { 'v', 'o', 'x', 'e', 'l', '_', 'd', 'a', 't',
    'a', ' ', 'm', 'u', 's', 't', ' ', 'b', 'e', ' ', '3', '-', 'd', 'i', 'm',
    'e', 'n', 's', 'i', 'o', 'n', 'a', 'l' };

  int32_T i0;
  real_T pixel_size_mm_h;
  real_T pixel_size_mm_w;
  uint32_T voxDim[3];
  real_T voxPlanes__max[3];
  real_T source[3];
  real_T pixel_size_mmel_wn[3];
  real_T pixel_size_mmel_hn[3];
  real_T corner[3];
  int32_T ih;
  int32_T iw;
  real_T tstep[3];
  real_T tnext[3];
  real_T pixel_point_mm[3];
  real_T ray_source2pixel[3];
  real_T b_voxPlanes__max[3];
  real_T b_ray_source2pixel[3];
  real_T t_plane_min[3];
  real_T t_plane_max[3];
  real_T tmax;
  int32_T pixel_size_mmIntensity;
  boolean_T exitg8;
  boolean_T exitg7;
  boolean_T exitg6;
  real_T t_larger[4];
  real_T temp;
  boolean_T exitg5;
  boolean_T exitg4;
  boolean_T exitg3;
  real_T t_smaller[4];
  int32_T itmp;
  boolean_T exitg2;
  boolean_T exitg1;
  real_T iz;
  real_T tx;
  real_T ty;
  real_T tz;
  int32_T i1;
  int32_T i2;
  int32_T i3;
  emlrtStack st;
  emlrtStack b_st;
  st.prev = sp;
  st.tls = sp->tls;
  b_st.prev = &st;
  b_st.tls = st.tls;

  /* % Modificiation Notes */
  /*  15.12.04 */
  /*           - Release 기존의 파일을 참고로 하여 고성영이 수정하였음.  */
  /*           - DRR을 완벽하게 하지 않고, voxel에 한점이라도 만나면 on으로 계산함 */
  /*           - 계산속도가 향상되었음 */
  /*           - 젬스에 있는 X-ray와 테스트하여 검증하였음 */
  /*  15 12 13 : The function input has been changed to utilize the x-ray */
  /*             intrinsic parameter provided by GEMSS  % 151213 kosy */
  /* %function [projection] = drr (voxel_data, voxel_size_mm, detector_dimensions, pixel_size_mm, isocenter_mm, cbct_angles_deg) */
  /* Creates a 2D projection at each cbct_angle of voxel_data. the projection */
  /* axis is defined by the isocenter to which the source and center of */
  /* the detector are aligned. This simulation assumes standard Cone Beam CT */
  /* geometry (source to isocenter distance is 100 cm and source to detector */
  /* distance is 150cm). */
  /*  */
  /* voxel_data: must be a 3 dimensional matrix (typically of CT data) */
  /* voxel_size_mm: a 3 element vector listing the size (in mm) of the voxels */
  /*                along each dimension */
  /* detector_dimension: a 2 element vector listing the dimensions (number of */
  /*                     pixels) in each dimension (u,v) */
  /* pixel_size_mm: a number defining the height and width of each pixel */
  /*                (assumes square pixel) */
  /* isocenter_mm: a 3 element vector pointing from the origin (corner) of the */
  /*               matrix element(1,1,1) to the isocenter */
  /* cbct_angles_deg: a list of angles to generate projections */
  /*  */
  /* Retrun Variable */
  /* projection: a 3D matrix with the 3rd dimension representing the angle of */
  /* roatation */
  /*  */
  /* { */
  /*  Author: Michael M. Folkerts [email protected] */
  /*  Institution: UCSD Physics, UTSW Radiation Oncology */
  /*  Updated: 2014-July. */
  /*  Notes: Siddon's Incremental algorithm | modified to read in 3D matlab matrix | Simplified Input | No guarantees!! */
  /*  */
  /*  References:  */
  /*  R.L. Siddon, */
  /*  "Fast calculation of the exact radiological path for a three-dimensional CT */
  /*  array," Medical Physics 12, 252-255 (1985). */
  /*  */
  /*  F. Jacobs, E. Sundermann, B. De Sutter, M. Christiaens and I. Lemahieu, */
  /*  "A fast algorithm to calculate the exact radiological path through a pixel_size_mmel or voxel space," */
  /*  Journal of Computing and Information Technology 6, 89-94 (1998). */
  /*   */
  /*  G. Han, Z. Liang and J. You, */
  /*  "A fast ray tracing technique for TCT and ECT studies," */
  /*  IEEE Medical Imaging Conference 1999. */
  /* } */
  /* function [projection] = drr_good_151204 (voxel_data, voxel_size_mm, detector_dimensions, pixel_size_mm, voxel_corner_min, T_carm)  */
  /*  if(0) */
  /*      voxel_data = OUTPUTgrid; */
  /*      voxel_size_mm = voxel_size; */
  /*      detector_dimensions = detector_dimension; */
  /*      pixel_size_mm = pixel_size; */
  /*      isocenter_mm = isocenter; */
  /*      T_carm: Transformation matrix of C-arm (that is set at the middle of */
  /*              detector & source) with respect to Voxel coordinates */
  /* tic; */
  /* this will verify the size: */
  if (eml_ndims_varsized(*(int32_T (*)[3])voxel_data->size) != 3) {
    st.site = &emlrtRSI;
    y = NULL;
    m0 = emlrtCreateCharArray(2, iv0);
    for (i = 0; i < 32; i++) {
      cv0[i] = cv1[i];
    }

    emlrtInitCharArrayR2013a(&st, 32, m0, cv0);
    emlrtAssign(&y, m0);
    b_st.site = &b_emlrtRSI;
    error(&b_st, y, &emlrtMCI);
  }

  /* constants: */
  /* .0001; */
  /* .0001; */
  /* sounce to imager(detector) distance */
  /* source to axis distance %% RRI set the coordinate at the middle between source and the detector */
  /* initialize memory for speed: */
  i0 = projection->size[0] * projection->size[1];
  pixel_size_mm_h = emlrtNonNegativeCheckFastR2012b(detector_dimensions[0],
    &b_emlrtDCI, sp);
  projection->size[0] = (int32_T)emlrtIntegerCheckFastR2012b(pixel_size_mm_h,
    &emlrtDCI, sp);
  pixel_size_mm_h = emlrtNonNegativeCheckFastR2012b(detector_dimensions[1],
    &d_emlrtDCI, sp);
  projection->size[1] = (int32_T)emlrtIntegerCheckFastR2012b(pixel_size_mm_h,
    &c_emlrtDCI, sp);
  emxEnsureCapacity(sp, (emxArray__common *)projection, i0, (int32_T)sizeof
                    (real_T), &emlrtRTEI);
  pixel_size_mm_h = emlrtNonNegativeCheckFastR2012b(detector_dimensions[0],
    &b_emlrtDCI, sp);
  pixel_size_mm_w = emlrtNonNegativeCheckFastR2012b(detector_dimensions[1],
    &d_emlrtDCI, sp);
  i = (int32_T)emlrtIntegerCheckFastR2012b(pixel_size_mm_h, &emlrtDCI, sp) *
    (int32_T)emlrtIntegerCheckFastR2012b(pixel_size_mm_w, &c_emlrtDCI, sp);
  for (i0 = 0; i0 < i; i0++) {
    projection->data[i0] = 0.0;
  }

  for (i0 = 0; i0 < 3; i0++) {
    voxDim[i0] = (uint32_T)voxel_data->size[i0];
  }

  /* [size(voxel_data,1), size(voxel_data,2), size(voxel_data,3)]; */
  /* voxDim_x = voxDim(1); */
  /* voxDim_y = voxDim(2); */
  /* voxDim_z = voxDim(3); */
  /* difine voxel boundaries: */
  /* vector from origin to source */
  /* vector from origin to CENTER of detector */
  /* extract the key information from the intrinsic parameters   % 151213 kosy modi */
  pixel_size_mm_h = 1105.0 / XRayIntrinsicParam[0];
  pixel_size_mm_w = 1105.0 / XRayIntrinsicParam[4];

  /* vector pointing left, parallel to detector */
  /* define incremental vectors: */
  /* define upper lefthand corner of detector: */
  /* corner = detector + ( center_pixel_w*pixel_size_mmel.wn + center_pixel_h*pixel_size_mmel.hn ); */
  for (i = 0; i < 3; i++) {
    voxPlanes__max[i] = voxel_corner_min[i] + voxel_size_mm[i] * (real_T)
      voxDim[i];

    /* define up: */
    /* up = [0,0,1]; */
    /*  width of projection image */
    /*  height of projection image */
    /*  direction from the detector to the source */
    /* end initialization timer: */
    /* init_time = toc */
    /* start tracing timer: */
    /* tic; */
    source[i] = 552.5 * T_carm[4 + i] + T_carm[12 + i];

    /* define pixel_size_mmel vectors: */
    /*  length of pixel_size_mmel */
    pixel_size_mmel_wn[i] = -pixel_size_mm_w * T_carm[i];
    pixel_size_mmel_hn[i] = -pixel_size_mm_h * T_carm[8 + i];
    corner[i] = (-552.5 * T_carm[4 + i] + T_carm[12 + i]) +
      (detector_dimensions[0] * (pixel_size_mm_w * T_carm[i]) +
       detector_dimensions[1] * (pixel_size_mm_h * T_carm[8 + i])) / 2.0;
  }

  emlrtForLoopVectorCheckR2012b(1.0, 1.0, detector_dimensions[0], mxDOUBLE_CLASS,
                                (int32_T)detector_dimensions[0], &d_emlrtRTEI,
    sp);
  ih = 1;
  while (ih - 1 <= (int32_T)detector_dimensions[0] - 1) {
    /* if(mod(ih,100)==0),fprintf('height:\t%i...\n',ih);end */
    emlrtForLoopVectorCheckR2012b(1.0, 1.0, detector_dimensions[1],
      mxDOUBLE_CLASS, (int32_T)detector_dimensions[1], &c_emlrtRTEI, sp);
    iw = 1;
    while (iw - 1 <= (int32_T)detector_dimensions[1] - 1) {
      /* pixel_point_mm = corner + (ih-1)*pixel_size_mmel.hp + (iw-1)*pixel_size_mmel.wp; %ray end point */
      /* ray to be traced */
      /*  find parametrized (t) voxel plane (min or max) intersections: */
      /*  PLANE = P1 + t(P2-P1) */
      /*  SK added */
      /*  t_x = (i-x1) / (x2-x1), t_y = (j-y1) / (y2-y1), t_z = (k-z1) / (z2-z1) */
      for (i = 0; i < 3; i++) {
        pixel_size_mm_h = (corner[i] + ((1.0 + (real_T)(ih - 1)) - 1.0) *
                           pixel_size_mmel_hn[i]) + ((1.0 + (real_T)(iw - 1)) -
          1.0) * pixel_size_mmel_wn[i];

        /* ray end point */
        pixel_size_mm_w = pixel_size_mm_h - source[i];
        tstep[i] = voxel_corner_min[i] - source[i];
        tnext[i] = pixel_size_mm_w + 2.2250738585072014E-308;
        b_voxPlanes__max[i] = voxPlanes__max[i] - source[i];
        b_ray_source2pixel[i] = pixel_size_mm_w + 2.2250738585072014E-308;
        pixel_point_mm[i] = pixel_size_mm_h;
        ray_source2pixel[i] = pixel_size_mm_w;
      }

      rdivide(tstep, tnext, t_plane_min);
      rdivide(b_voxPlanes__max, b_ray_source2pixel, t_plane_max);

      /*  compute (parametric) intersection values */
      /*  tmin = max { min{tx(0), tx(Nx)}, min{ty(0), ty(Ny)], min{tz(0), tz(Nz)}, 0.0 } */
      /*  tmax = min { max{tx(0), tx(Nx)}, max{ty(0), ty(Ny)], max{tz(0), tz(Nz)}, 1.0 } */
      /* t_larger = [ max([t_plane_min(1), t_plane_max(1)]), max([t_plane_min(2), t_plane_max(2)]), max([t_plane_min(3), t_plane_max(3)]), 1.0 ]; */
      /* t_smaller = [ min([t_plane_min(1), t_plane_max(1)]), min([t_plane_min(2), t_plane_max(2)]), min([t_plane_min(3), t_plane_max(3)]), 0.0 ]; */
      i = 1;
      tmax = t_plane_min[0];
      if (muDoubleScalarIsNaN(t_plane_min[0])) {
        pixel_size_mmIntensity = 2;
        exitg8 = false;
        while ((!exitg8) && (pixel_size_mmIntensity < 3)) {
          i = 2;
          if (!muDoubleScalarIsNaN(t_plane_max[0])) {
            tmax = t_plane_max[0];
            exitg8 = true;
          } else {
            pixel_size_mmIntensity = 3;
          }
        }
      }

      if ((i < 2) && (t_plane_max[0] > tmax)) {
        tmax = t_plane_max[0];
      }

      i = 1;
      pixel_size_mm_h = t_plane_min[1];
      if (muDoubleScalarIsNaN(t_plane_min[1])) {
        pixel_size_mmIntensity = 2;
        exitg7 = false;
        while ((!exitg7) && (pixel_size_mmIntensity < 3)) {
          i = 2;
          if (!muDoubleScalarIsNaN(t_plane_max[1])) {
            pixel_size_mm_h = t_plane_max[1];
            exitg7 = true;
          } else {
            pixel_size_mmIntensity = 3;
          }
        }
      }

      if ((i < 2) && (t_plane_max[1] > pixel_size_mm_h)) {
        pixel_size_mm_h = t_plane_max[1];
      }

      i = 1;
      pixel_size_mm_w = t_plane_min[2];
      if (muDoubleScalarIsNaN(t_plane_min[2])) {
        pixel_size_mmIntensity = 2;
        exitg6 = false;
        while ((!exitg6) && (pixel_size_mmIntensity < 3)) {
          i = 2;
          if (!muDoubleScalarIsNaN(t_plane_max[2])) {
            pixel_size_mm_w = t_plane_max[2];
            exitg6 = true;
          } else {
            pixel_size_mmIntensity = 3;
          }
        }
      }

      if ((i < 2) && (t_plane_max[2] > pixel_size_mm_w)) {
        pixel_size_mm_w = t_plane_max[2];
      }

      t_larger[0] = tmax;
      t_larger[1] = pixel_size_mm_h;
      t_larger[2] = pixel_size_mm_w;
      t_larger[3] = 1.0;
      i = 1;
      temp = t_plane_min[0];
      if (muDoubleScalarIsNaN(t_plane_min[0])) {
        pixel_size_mmIntensity = 2;
        exitg5 = false;
        while ((!exitg5) && (pixel_size_mmIntensity < 3)) {
          i = 2;
          if (!muDoubleScalarIsNaN(t_plane_max[0])) {
            temp = t_plane_max[0];
            exitg5 = true;
          } else {
            pixel_size_mmIntensity = 3;
          }
        }
      }

      if ((i < 2) && (t_plane_max[0] < temp)) {
        temp = t_plane_max[0];
      }

      i = 1;
      pixel_size_mm_h = t_plane_min[1];
      if (muDoubleScalarIsNaN(t_plane_min[1])) {
        pixel_size_mmIntensity = 2;
        exitg4 = false;
        while ((!exitg4) && (pixel_size_mmIntensity < 3)) {
          i = 2;
          if (!muDoubleScalarIsNaN(t_plane_max[1])) {
            pixel_size_mm_h = t_plane_max[1];
            exitg4 = true;
          } else {
            pixel_size_mmIntensity = 3;
          }
        }
      }

      if ((i < 2) && (t_plane_max[1] < pixel_size_mm_h)) {
        pixel_size_mm_h = t_plane_max[1];
      }

      i = 1;
      pixel_size_mm_w = t_plane_min[2];
      if (muDoubleScalarIsNaN(t_plane_min[2])) {
        pixel_size_mmIntensity = 2;
        exitg3 = false;
        while ((!exitg3) && (pixel_size_mmIntensity < 3)) {
          i = 2;
          if (!muDoubleScalarIsNaN(t_plane_max[2])) {
            pixel_size_mm_w = t_plane_max[2];
            exitg3 = true;
          } else {
            pixel_size_mmIntensity = 3;
          }
        }
      }

      if ((i < 2) && (t_plane_max[2] < pixel_size_mm_w)) {
        pixel_size_mm_w = t_plane_max[2];
      }

      t_smaller[0] = temp;
      t_smaller[1] = pixel_size_mm_h;
      t_smaller[2] = pixel_size_mm_w;
      t_smaller[3] = 0.0;
      i = 1;
      itmp = 0;
      if (muDoubleScalarIsNaN(temp)) {
        pixel_size_mmIntensity = 1;
        exitg2 = false;
        while ((!exitg2) && (pixel_size_mmIntensity + 1 < 5)) {
          i = pixel_size_mmIntensity + 1;
          if (!muDoubleScalarIsNaN(t_smaller[pixel_size_mmIntensity])) {
            temp = t_smaller[pixel_size_mmIntensity];
            itmp = pixel_size_mmIntensity;
            exitg2 = true;
          } else {
            pixel_size_mmIntensity++;
          }
        }
      }

      if (i < 4) {
        while (i + 1 < 5) {
          if (t_smaller[i] > temp) {
            temp = t_smaller[i];
            itmp = i;
          }

          i++;
        }
      }

      i = 1;
      if (muDoubleScalarIsNaN(tmax)) {
        pixel_size_mmIntensity = 2;
        exitg1 = false;
        while ((!exitg1) && (pixel_size_mmIntensity < 5)) {
          i = pixel_size_mmIntensity;
          if (!muDoubleScalarIsNaN(t_larger[pixel_size_mmIntensity - 1])) {
            tmax = t_larger[pixel_size_mmIntensity - 1];
            exitg1 = true;
          } else {
            pixel_size_mmIntensity++;
          }
        }
      }

      if (i < 4) {
        while (i + 1 < 5) {
          if (t_larger[i] < tmax) {
            tmax = t_larger[i];
          }

          i++;
        }
      }

      for (i0 = 0; i0 < 3; i0++) {
        pixel_point_mm[i0] = (real_T)(pixel_point_mm[i0] < source[i0]) * -2.0 +
          1.0;
      }

      if (temp < tmax) {
        /*  if ray intersects volume */
        /* find index for each dimension: */
        for (i = 0; i < 3; i++) {
          pixel_size_mm_h = muDoubleScalarFloor((((ray_source2pixel[i] * temp +
            source[i]) - voxel_corner_min[i]) + 2.2250738585072014E-308) /
            voxel_size_mm[i]);

          /* (parametric) intersection values... */
          /* makes 0 or 1 */
          tnext[i] = (voxel_corner_min[i] + ((pixel_size_mm_h +
            (pixel_point_mm[i] + 1.0) / 2.0) * voxel_size_mm[i] - source[i])) /
            (ray_source2pixel[i] + 2.2250738585072014E-308);

          /*  parametric value for next plane intersection */
          tstep[i] = muDoubleScalarAbs(voxel_size_mm[i] / (ray_source2pixel[i] +
            2.2250738585072014E-308));
          t_plane_min[i] = pixel_size_mm_h;
        }

        /*  parametric step size */
        /* address special cases... */
        if (temp == t_plane_max[emlrtDynamicBoundsCheckFastR2012b(itmp + 1, 1, 3,
             &c_emlrtBCI, sp) - 1]) {
          /* if intersection is a "max" plane */
          t_plane_min[itmp] = (real_T)voxDim[itmp] - 1.0;
          tnext[itmp] = temp + tstep[itmp];

          /* next plane crossing */
        } else {
          t_plane_min[itmp] = 0.0;
          tnext[itmp] = temp + tstep[itmp];

          /* next plane crossing */
        }

        /*  voxel index values(add one for matlab): */
        pixel_size_mm_h = t_plane_min[0] + 1.0;
        pixel_size_mm_w = t_plane_min[1] + 1.0;
        iz = t_plane_min[2] + 1.0;
        tx = tnext[0];
        ty = tnext[1];
        tz = tnext[2];
        pixel_size_mmIntensity = 0;

        /* uncomment to generate P-matrix: */
        /* pixel_size_mmNum = 1; */
        /* len = norm(ray_source2pixel); % ray length */
        while ((temp + 0.0001 < tmax) && (!(pixel_size_mm_h * pixel_size_mm_w *
                 iz == 0.0))) {
          if ((tx < ty) && (tx < tz)) {
            /*  실제 DRR을 그리지 않고, 한점이라도 지나면 해당 점에 포함시킴 */
            i0 = voxel_data->size[0];
            i = (int32_T)emlrtIntegerCheckFastR2012b(pixel_size_mm_h,
              &k_emlrtDCI, sp);
            itmp = voxel_data->size[1];
            i1 = (int32_T)emlrtIntegerCheckFastR2012b(pixel_size_mm_w,
              &l_emlrtDCI, sp);
            i2 = voxel_data->size[2];
            i3 = (int32_T)emlrtIntegerCheckFastR2012b(iz, &m_emlrtDCI, sp);
            if (voxel_data->data[((emlrtDynamicBoundsCheckFastR2012b(i, 1, i0,
                   &j_emlrtBCI, sp) + voxel_data->size[0] *
                                   (emlrtDynamicBoundsCheckFastR2012b(i1, 1,
                    itmp, &k_emlrtBCI, sp) - 1)) + voxel_data->size[0] *
                                  voxel_data->size[1] *
                                  (emlrtDynamicBoundsCheckFastR2012b(i3, 1, i2,
                   &l_emlrtBCI, sp) - 1)) - 1]) {
              pixel_size_mmIntensity = 255;
              tmax = rtMinusInf;
            }

            temp = tx;
            tx += tstep[0];
            pixel_size_mm_h += pixel_point_mm[0];
          } else if (ty < tz) {
            /*  실제 DRR을 그리지 않고, 한점이라도 지나면 해당 점에 포함시킴 */
            i0 = voxel_data->size[0];
            i = (int32_T)emlrtIntegerCheckFastR2012b(pixel_size_mm_h,
              &h_emlrtDCI, sp);
            itmp = voxel_data->size[1];
            i1 = (int32_T)emlrtIntegerCheckFastR2012b(pixel_size_mm_w,
              &i_emlrtDCI, sp);
            i2 = voxel_data->size[2];
            i3 = (int32_T)emlrtIntegerCheckFastR2012b(iz, &j_emlrtDCI, sp);
            if (voxel_data->data[((emlrtDynamicBoundsCheckFastR2012b(i, 1, i0,
                   &g_emlrtBCI, sp) + voxel_data->size[0] *
                                   (emlrtDynamicBoundsCheckFastR2012b(i1, 1,
                    itmp, &h_emlrtBCI, sp) - 1)) + voxel_data->size[0] *
                                  voxel_data->size[1] *
                                  (emlrtDynamicBoundsCheckFastR2012b(i3, 1, i2,
                   &i_emlrtBCI, sp) - 1)) - 1]) {
              pixel_size_mmIntensity = 255;
              tmax = rtMinusInf;
            }

            temp = ty;
            ty += tstep[1];
            pixel_size_mm_w += pixel_point_mm[1];
          } else {
            /*  실제 DRR을 그리지 않고, 한점이라도 지나면 해당 점에 포함시킴 */
            i0 = voxel_data->size[0];
            i = (int32_T)emlrtIntegerCheckFastR2012b(pixel_size_mm_h,
              &e_emlrtDCI, sp);
            itmp = voxel_data->size[1];
            i1 = (int32_T)emlrtIntegerCheckFastR2012b(pixel_size_mm_w,
              &f_emlrtDCI, sp);
            i2 = voxel_data->size[2];
            i3 = (int32_T)emlrtIntegerCheckFastR2012b(iz, &g_emlrtDCI, sp);
            if (voxel_data->data[((emlrtDynamicBoundsCheckFastR2012b(i, 1, i0,
                   &d_emlrtBCI, sp) + voxel_data->size[0] *
                                   (emlrtDynamicBoundsCheckFastR2012b(i1, 1,
                    itmp, &e_emlrtBCI, sp) - 1)) + voxel_data->size[0] *
                                  voxel_data->size[1] *
                                  (emlrtDynamicBoundsCheckFastR2012b(i3, 1, i2,
                   &f_emlrtBCI, sp) - 1)) - 1]) {
              pixel_size_mmIntensity = 255;
              tmax = rtMinusInf;
            }

            temp = tz;
            tz += tstep[2];
            iz += pixel_point_mm[2];
          }

          emlrtBreakCheckFastR2012b(emlrtBreakCheckR2012bFlagVar, sp);
        }

        /* end while */
        i0 = projection->size[0];
        i = projection->size[1];
        projection->data[(emlrtDynamicBoundsCheckFastR2012b(ih, 1, i0,
          &m_emlrtBCI, sp) + projection->size[0] *
                          (emlrtDynamicBoundsCheckFastR2012b(iw, 1, i,
          &n_emlrtBCI, sp) - 1)) - 1] = pixel_size_mmIntensity;
      } else {
        /* if no intersections */
        i0 = projection->size[0];
        i = projection->size[1];
        projection->data[(emlrtDynamicBoundsCheckFastR2012b(ih, 1, i0, &emlrtBCI,
          sp) + projection->size[0] * (emlrtDynamicBoundsCheckFastR2012b(iw, 1,
          i, &b_emlrtBCI, sp) - 1)) - 1] = 0.0;
      }

      /* if intersections */
      /* uncomment to generate P-matrix: */
      /* rayCount = rayCount + 1; */
      iw++;
      emlrtBreakCheckFastR2012b(emlrtBreakCheckR2012bFlagVar, sp);
    }

    /* width */
    /* fprintf('\n'); */
    ih++;
    emlrtBreakCheckFastR2012b(emlrtBreakCheckR2012bFlagVar, sp);
  }

  /* height */
  /* uncomment to generate P-matrix: */
  /* matrix = matrix(1:mtxCount-1,:); */
  /* stop trace timer: */
  /* trace_time = toc */
  /* fprintf('\n') */
  /* function */
  /* } */
}
コード例 #5
0
ファイル: CalculateC.c プロジェクト: ofirENS/TestFiles
/* Function Definitions */
void CalculateC(const emlrtStack *sp, real_T N, real_T N0, const emxArray_real_T
                *t, const emxArray_real_T *gridX, emxArray_real_T *C)
{
  int32_T i9;
  real_T d5;
  real_T d6;
  int32_T loop_ub;
  int32_T i;
  int32_T k;
  int32_T b_C;
  real_T d7;
  emlrtStack st;
  st.prev = sp;
  st.tls = sp->tls;

  /*  calculate the C matrix */
  /*  N- number of time points */
  /*  N0- number of space points */
  /*  t- time points */
  /*  gridX - grid for the space points */
  i9 = C->size[0] * C->size[1];
  d5 = 2.0 * N;
  d5 = emlrtNonNegativeCheckFastR2012b(d5, &ab_emlrtDCI, sp);
  C->size[0] = (int32_T)emlrtIntegerCheckFastR2012b(d5, &y_emlrtDCI, sp);
  d5 = emlrtNonNegativeCheckFastR2012b(N0, &cb_emlrtDCI, sp);
  C->size[1] = (int32_T)emlrtIntegerCheckFastR2012b(d5, &bb_emlrtDCI, sp);
  emxEnsureCapacity(sp, (emxArray__common *)C, i9, (int32_T)sizeof(real_T),
                    &d_emlrtRTEI);
  d5 = 2.0 * N;
  d5 = emlrtNonNegativeCheckFastR2012b(d5, &ab_emlrtDCI, sp);
  d6 = emlrtNonNegativeCheckFastR2012b(N0, &cb_emlrtDCI, sp);
  loop_ub = (int32_T)emlrtIntegerCheckFastR2012b(d5, &y_emlrtDCI, sp) * (int32_T)
    emlrtIntegerCheckFastR2012b(d6, &bb_emlrtDCI, sp);
  for (i9 = 0; i9 < loop_ub; i9++) {
    C->data[i9] = 0.0;
  }

  emlrtForLoopVectorCheckR2012b(1.0, 1.0, N, mxDOUBLE_CLASS, (int32_T)N,
    &ec_emlrtRTEI, sp);
  i = 1;
  while (i - 1 <= (int32_T)N - 1) {
    /*  space */
    emlrtForLoopVectorCheckR2012b(1.0, 1.0, N0, mxDOUBLE_CLASS, (int32_T)N0,
      &fc_emlrtRTEI, sp);
    k = 0;
    while (k <= (int32_T)N0 - 1) {
      /*  time */
      d5 = 2.0 * (1.0 + (real_T)(i - 1));
      b_C = C->size[0];
      loop_ub = C->size[1];
      emlrtDynamicBoundsCheckFastR2012b(k + 1, 1, loop_ub, &mc_emlrtBCI, sp);
      i9 = t->size[1];
      st.site = &x_emlrtRSI;
      d6 = b_Ccoeff(&st, 1.0 + (real_T)k, 0.0, t->
                    data[emlrtDynamicBoundsCheckFastR2012b(i, 1, i9,
        &nc_emlrtBCI, sp) - 1], gridX);
      i9 = t->size[1];
      st.site = &y_emlrtRSI;
      d7 = b_Ccoeff(&st, 1.0 + (real_T)k, 1.0, t->
                    data[emlrtDynamicBoundsCheckFastR2012b(i, 1, i9,
        &oc_emlrtBCI, sp) - 1], gridX);
      i9 = (int32_T)(d5 + -1.0);
      C->data[(emlrtDynamicBoundsCheckFastR2012b(i9, 1, b_C, &pc_emlrtBCI, sp) +
               C->size[0] * k) - 1] = d6;
      i9 = (int32_T)d5;
      C->data[(emlrtDynamicBoundsCheckFastR2012b(i9, 1, b_C, &pc_emlrtBCI, sp) +
               C->size[0] * k) - 1] = d7;
      k++;
      emlrtBreakCheckFastR2012b(emlrtBreakCheckR2012bFlagVar, sp);
    }

    i++;
    emlrtBreakCheckFastR2012b(emlrtBreakCheckR2012bFlagVar, sp);
  }
}
コード例 #6
0
/* Function Definitions */
void CalculateHeatSolution(const emlrtStack *sp, real_T N0, real_T N, const
  emxArray_real_T *t, const emxArray_real_T *gridT, const emxArray_real_T *x,
  const emxArray_real_T *u0, const emxArray_real_T *q0j, const emxArray_real_T
  *q1j, const emxArray_real_T *h0j, const emxArray_real_T *h1j, const
  emxArray_real_T *f, const emxArray_real_T *r, emxArray_real_T *u)
{
  emxArray_real_T *eta;
  int32_T i12;
  real_T sTime;
  int32_T loop_ub;
  int32_T i13;
  int32_T j;
  emxArray_real_T *b_f;
  int32_T i;
  real_T sSpace;
  int32_T tIdx;
  int32_T b_i;
  int32_T i14;
  int32_T i15;
  int32_T i16;
  int32_T i17;
  int32_T i18;
  int32_T i19;
  int32_T i20;
  int32_T i21;
  int32_T i22;
  int32_T i23;
  int32_T i24;
  emlrtStack st;
  emlrtStack b_st;
  emlrtStack c_st;
  st.prev = sp;
  st.tls = sp->tls;
  b_st.prev = sp;
  b_st.tls = sp->tls;
  c_st.prev = sp;
  c_st.tls = sp->tls;
  emlrtHeapReferenceStackEnterFcnR2012b(sp);
  emxInit_real_T(sp, &eta, 2, &f_emlrtRTEI, true);

  /*  get the solution for the inverse heat source, u(x,t),  */
  /*  N0 - number of space points */
  /*  N  - number of time points */
  /*  t  - time points */
  /*  gridT - time points grid */
  /*  x space points */
  /*  q0j flux at x=0 du/dn */
  /*  q1j flux at x=1 du/dn */
  /*  h0j boundary condition u(0,t) */
  /*  u1j boundary condition u(1,t) */
  /*  f multiplier of the source f(x,t)r(t) size[N N0] */
  /*  r calculated source term size [N,1] */
  i12 = eta->size[0] * eta->size[1];
  eta->size[0] = 1;
  sTime = emlrtNonNegativeCheckFastR2012b(N0, &eb_emlrtDCI, sp);
  eta->size[1] = (int32_T)emlrtIntegerCheckFastR2012b(sTime, &db_emlrtDCI, sp);
  emxEnsureCapacity(sp, (emxArray__common *)eta, i12, (int32_T)sizeof(real_T),
                    &e_emlrtRTEI);
  sTime = emlrtNonNegativeCheckFastR2012b(N0, &eb_emlrtDCI, sp);
  loop_ub = (int32_T)emlrtIntegerCheckFastR2012b(sTime, &db_emlrtDCI, sp);
  for (i12 = 0; i12 < loop_ub; i12++) {
    eta->data[i12] = 1.0;
  }

  i12 = (int32_T)N0;
  emlrtDynamicBoundsCheckFastR2012b(1, 1, i12, &tc_emlrtBCI, sp);
  eta->data[0] = 0.5;
  i12 = (int32_T)N0;
  i13 = (int32_T)N0;
  eta->data[emlrtDynamicBoundsCheckFastR2012b(i13, 1, i12, &uc_emlrtBCI, sp) - 1]
    = 0.5;
  i12 = u->size[0] * u->size[1];
  sTime = emlrtNonNegativeCheckFastR2012b(N, &gb_emlrtDCI, sp);
  u->size[0] = (int32_T)emlrtIntegerCheckFastR2012b(sTime, &fb_emlrtDCI, sp);
  u->size[1] = (int32_T)N0;
  emxEnsureCapacity(sp, (emxArray__common *)u, i12, (int32_T)sizeof(real_T),
                    &e_emlrtRTEI);
  sTime = emlrtNonNegativeCheckFastR2012b(N, &gb_emlrtDCI, sp);
  loop_ub = (int32_T)emlrtIntegerCheckFastR2012b(sTime, &fb_emlrtDCI, sp) *
    (int32_T)N0;
  for (i12 = 0; i12 < loop_ub; i12++) {
    u->data[i12] = 0.0;
  }

  j = 1;
  emxInit_real_T(sp, &b_f, 2, &e_emlrtRTEI, true);
  while (j - 1 <= (int32_T)N0 - 1) {
    /*  space index */
    emlrtForLoopVectorCheckR2012b(1.0, 1.0, N, mxDOUBLE_CLASS, (int32_T)N,
      &gc_emlrtRTEI, sp);
    i = 1;
    while (i - 1 <= (int32_T)N - 1) {
      /*  time index */
      sTime = 0.0;

      /*  cumulative sums */
      sSpace = 0.0;
      emlrtForLoopVectorCheckR2012b(1.0, 1.0, N, mxDOUBLE_CLASS, (int32_T)N,
        &hc_emlrtRTEI, sp);
      tIdx = 0;
      while (tIdx <= (int32_T)N - 1) {
        /*  time index */
        loop_ub = f->size[1];
        i12 = f->size[0];
        b_i = emlrtDynamicBoundsCheckFastR2012b(i, 1, i12, &sc_emlrtBCI, sp);
        i12 = b_f->size[0] * b_f->size[1];
        b_f->size[0] = 1;
        b_f->size[1] = loop_ub;
        emxEnsureCapacity(sp, (emxArray__common *)b_f, i12, (int32_T)sizeof
                          (real_T), &e_emlrtRTEI);
        for (i12 = 0; i12 < loop_ub; i12++) {
          b_f->data[b_f->size[0] * i12] = f->data[(b_i + f->size[0] * i12) - 1];
        }

        i12 = x->size[1];
        i13 = t->size[1];
        i14 = q0j->size[0];
        i15 = x->size[1];
        loop_ub = t->size[1];
        b_i = q1j->size[0];
        i16 = x->size[1];
        i17 = t->size[1];
        i18 = h0j->size[0];
        i19 = x->size[1];
        i20 = t->size[1];
        i21 = h1j->size[0];
        i22 = x->size[1];
        i23 = t->size[1];
        i24 = r->size[0];
        st.site = &bb_emlrtRSI;
        b_st.site = &cb_emlrtRSI;
        c_st.site = &db_emlrtRSI;
        sTime = ((((sTime + Acoeff(&st, 0.0, 1.0 + (real_T)tIdx, x->
          data[emlrtDynamicBoundsCheckFastR2012b(j, 1, i12, &cd_emlrtBCI, sp) -
          1], t->data[emlrtDynamicBoundsCheckFastR2012b(i, 1, i13, &dd_emlrtBCI,
          sp) - 1], gridT) * q0j->data[emlrtDynamicBoundsCheckFastR2012b(tIdx +
          1, 1, i14, &ed_emlrtBCI, sp) - 1]) + Acoeff(&st, 1.0, 1.0 + (real_T)
                    tIdx, x->data[emlrtDynamicBoundsCheckFastR2012b(j, 1, i15,
          &fd_emlrtBCI, sp) - 1], t->data[emlrtDynamicBoundsCheckFastR2012b(i, 1,
          loop_ub, &gd_emlrtBCI, sp) - 1], gridT) * q1j->
                   data[emlrtDynamicBoundsCheckFastR2012b(tIdx + 1, 1, b_i,
                    &hd_emlrtBCI, sp) - 1]) - Bcoeff(&b_st, 0.0, 1.0 + (real_T)
                   tIdx, x->data[emlrtDynamicBoundsCheckFastR2012b(j, 1, i16,
                    &id_emlrtBCI, sp) - 1], t->
                   data[emlrtDynamicBoundsCheckFastR2012b(i, 1, i17,
                    &jd_emlrtBCI, sp) - 1], gridT) * h0j->
                  data[emlrtDynamicBoundsCheckFastR2012b(tIdx + 1, 1, i18,
                   &kd_emlrtBCI, sp) - 1]) - Bcoeff(&b_st, 1.0, 1.0 + (real_T)
                  tIdx, x->data[emlrtDynamicBoundsCheckFastR2012b(j, 1, i19,
                   &ld_emlrtBCI, sp) - 1], t->
                  data[emlrtDynamicBoundsCheckFastR2012b(i, 1, i20, &md_emlrtBCI,
                   sp) - 1], gridT) * h1j->
                 data[emlrtDynamicBoundsCheckFastR2012b(tIdx + 1, 1, i21,
                  &nd_emlrtBCI, sp) - 1]) + b_Dcoeff(&c_st, x, 1.0 + (real_T)
          tIdx, x->data[emlrtDynamicBoundsCheckFastR2012b(j, 1, i22,
          &od_emlrtBCI, sp) - 1], t->data[emlrtDynamicBoundsCheckFastR2012b(i, 1,
          i23, &pd_emlrtBCI, sp) - 1], gridT, b_f) * r->
          data[emlrtDynamicBoundsCheckFastR2012b(tIdx + 1, 1, i24, &qd_emlrtBCI,
          sp) - 1];
        tIdx++;
        emlrtBreakCheckFastR2012b(emlrtBreakCheckR2012bFlagVar, sp);
      }

      loop_ub = 0;
      while (loop_ub <= (int32_T)N0 - 1) {
        /*  space index */
        i12 = x->size[1];
        i13 = t->size[1];
        i14 = u0->size[1];
        i15 = 1 + loop_ub;
        st.site = &eb_emlrtRSI;
        sSpace += b_Ccoeff(&st, 1.0 + (real_T)loop_ub, x->
                           data[emlrtDynamicBoundsCheckFastR2012b(j, 1, i12,
          &yc_emlrtBCI, sp) - 1], t->data[emlrtDynamicBoundsCheckFastR2012b(i, 1,
          i13, &ad_emlrtBCI, sp) - 1], gridT) * u0->
          data[emlrtDynamicBoundsCheckFastR2012b(i15, 1, i14, &bd_emlrtBCI, sp)
          - 1];
        loop_ub++;
        emlrtBreakCheckFastR2012b(emlrtBreakCheckR2012bFlagVar, sp);
      }

      i12 = u->size[0];
      i13 = u->size[1];
      i14 = eta->size[1];
      u->data[(emlrtDynamicBoundsCheckFastR2012b(i, 1, i12, &vc_emlrtBCI, sp) +
               u->size[0] * (emlrtDynamicBoundsCheckFastR2012b(j, 1, i13,
                 &wc_emlrtBCI, sp) - 1)) - 1] = (sTime + sSpace) * eta->
        data[emlrtDynamicBoundsCheckFastR2012b(j, 1, i14, &xc_emlrtBCI, sp) - 1];
      i++;
      emlrtBreakCheckFastR2012b(emlrtBreakCheckR2012bFlagVar, sp);
    }

    j++;
    emlrtBreakCheckFastR2012b(emlrtBreakCheckR2012bFlagVar, sp);
  }

  emxFree_real_T(&b_f);
  emxFree_real_T(&eta);
  emlrtHeapReferenceStackLeaveFcnR2012b(sp);
}
コード例 #7
0
ファイル: linearODESSEP2X4.c プロジェクト: metapfhor/MCION
/* Function Definitions */
void linearODESSEP2X4(const emxArray_real_T *T, const emxArray_real_T *I)
{
  int32_T i;
  real_T hoistedGlobal[9];
  int32_T j;
  int32_T b_i;
  real_T normA;
  real_T y[81];
  real_T F[81];
  boolean_T exitg2;
  real_T s;
  boolean_T exitg1;
  static const real_T theta[5] = { 0.01495585217958292, 0.253939833006323,
    0.95041789961629319, 2.097847961257068, 5.3719203511481517 };

  static const int8_T iv2[5] = { 3, 5, 7, 9, 13 };

  int32_T eint;
  real_T b_y[81];
  real_T beta1;
  char_T TRANSB;
  char_T TRANSA;
  ptrdiff_t m_t;
  ptrdiff_t n_t;
  ptrdiff_t k_t;
  ptrdiff_t lda_t;
  ptrdiff_t ldb_t;
  ptrdiff_t ldc_t;
  double * alpha1_t;
  double * Aia0_t;
  double * Bib0_t;
  double * beta1_t;
  double * Cic0_t;
  emlrtPushRtStackR2012b(&l_emlrtRSI, emlrtRootTLSGlobal);

  /* global k1 k2 k3 k4 k5 k6 k7 k8 k9 k10 k11 k12 L1 L2 L3 L4 H1 H2 H3 H4 g1 g2 E1 E2 alpha A J Q; */
  /* Right */
  /* [C1,C2,C3,Q1,Q2,Q3,D1,D2,Z] */
  Q[0] = -k2 * A - L2 * J;
  Q[9] = L2 * J;
  Q[18] = 0.0;
  Q[27] = k2 * A;
  Q[36] = 0.0;
  Q[45] = 0.0;
  Q[54] = 0.0;
  Q[63] = 0.0;
  Q[72] = 0.0;
  Q[1] = L1;
  Q[10] = (-k4 * A - L1) - L4 * J;
  Q[19] = L4 * J;
  Q[28] = 0.0;
  Q[37] = k4 * A;
  Q[46] = 0.0;
  Q[55] = 0.0;
  Q[64] = 0.0;
  Q[73] = 0.0;
  Q[2] = 0.0;
  Q[11] = L3;
  Q[20] = -k6 * A - L3;
  Q[29] = 0.0;
  Q[38] = 0.0;
  Q[47] = k6 * A;
  Q[56] = 0.0;
  Q[65] = 0.0;
  Q[74] = 0.0;
  Q[3] = k1;
  Q[12] = 0.0;
  Q[21] = 0.0;
  Q[30] = (-k1 - L2 * J) - H2;
  Q[39] = L2 * J;
  Q[48] = 0.0;
  Q[57] = 0.0;
  Q[66] = H2;
  Q[75] = 0.0;
  Q[4] = 0.0;
  Q[13] = k3;
  Q[22] = 0.0;
  Q[31] = L1;
  Q[40] = (-k3 - L1) - L4 * J;
  Q[49] = L4 * J;
  Q[58] = 0.0;
  Q[67] = 0.0;
  Q[76] = 0.0;
  Q[5] = 0.0;
  Q[14] = 0.0;
  Q[23] = k5;
  Q[32] = 0.0;
  Q[41] = L3;
  Q[50] = -k5 - L3;
  Q[59] = 0.0;
  Q[68] = 0.0;
  Q[77] = 0.0;
  Q[6] = H1;
  Q[15] = 0.0;
  Q[24] = 0.0;
  Q[33] = 0.0;
  Q[42] = 0.0;
  Q[51] = 0.0;
  Q[60] = -k2 * A - H1;
  Q[69] = k2 * A;
  Q[78] = 0.0;
  Q[7] = 0.0;
  Q[16] = 0.0;
  Q[25] = 0.0;
  Q[34] = 0.0;
  Q[43] = 0.0;
  Q[52] = 0.0;
  Q[61] = k1;
  Q[70] = -k1 - H3;
  Q[79] = H3;
  Q[8] = H4;
  Q[17] = 0.0;
  Q[26] = 0.0;
  Q[35] = 0.0;
  Q[44] = 0.0;
  Q[53] = 0.0;
  Q[62] = 0.0;
  Q[71] = 0.0;
  Q[80] = -H4;
  Q_dirty |= 1U;
  emlrtPopRtStackR2012b(&l_emlrtRSI, emlrtRootTLSGlobal);
  i = 0;
  while (i <= T->size[0] - 1) {
    emlrtPushRtStackR2012b(&m_emlrtRSI, emlrtRootTLSGlobal);
    memcpy(&hoistedGlobal[0], &p0[0], 9U * sizeof(real_T));
    j = T->size[0];
    b_i = (int32_T)(1.0 + (real_T)i);
    emlrtDynamicBoundsCheckFastR2012b(b_i, 1, j, &t_emlrtBCI, emlrtRootTLSGlobal);
    normA = T->data[i];
    for (j = 0; j < 81; j++) {
      y[j] = Q[j] * normA;
    }

    normA = 0.0;
    j = 0;
    exitg2 = FALSE;
    while ((exitg2 == FALSE) && (j < 9)) {
      s = 0.0;
      for (b_i = 0; b_i < 9; b_i++) {
        s += muDoubleScalarAbs(y[b_i + 9 * j]);
      }

      if (muDoubleScalarIsNaN(s)) {
        normA = rtNaN;
        exitg2 = TRUE;
      } else {
        if (s > normA) {
          normA = s;
        }

        j++;
      }
    }

    if (normA <= 5.3719203511481517) {
      b_i = 0;
      exitg1 = FALSE;
      while ((exitg1 == FALSE) && (b_i < 5)) {
        if (normA <= theta[b_i]) {
          emlrtPushRtStackR2012b(&n_emlrtRSI, emlrtRootTLSGlobal);
          PadeApproximantOfDegree(y, iv2[b_i], F);
          emlrtPopRtStackR2012b(&n_emlrtRSI, emlrtRootTLSGlobal);
          exitg1 = TRUE;
        } else {
          b_i++;
        }
      }
    } else {
      normA /= 5.3719203511481517;
      if ((!muDoubleScalarIsInf(normA)) && (!muDoubleScalarIsNaN(normA))) {
        normA = frexp(normA, &eint);
        j = eint;
      } else {
        j = 0;
      }

      s = j;
      if (normA == 0.5) {
        s = (real_T)j - 1.0;
      }

      normA = muDoubleScalarPower(2.0, s);
      emlrtPushRtStackR2012b(&o_emlrtRSI, emlrtRootTLSGlobal);
      for (j = 0; j < 81; j++) {
        b_y[j] = y[j] / normA;
      }

      PadeApproximantOfDegree(b_y, 13.0, F);
      emlrtPopRtStackR2012b(&o_emlrtRSI, emlrtRootTLSGlobal);
      emlrtForLoopVectorCheckR2012b(1.0, 1.0, s, mxDOUBLE_CLASS, (int32_T)s,
        &g_emlrtRTEI, emlrtRootTLSGlobal);
      for (j = 0; j < (int32_T)s; j++) {
        emlrtPushRtStackR2012b(&p_emlrtRSI, emlrtRootTLSGlobal);
        emlrtPushRtStackR2012b(&cb_emlrtRSI, emlrtRootTLSGlobal);
        memcpy(&y[0], &F[0], 81U * sizeof(real_T));
        emlrtPushRtStackR2012b(&db_emlrtRSI, emlrtRootTLSGlobal);
        emlrtPushRtStackR2012b(&eb_emlrtRSI, emlrtRootTLSGlobal);
        normA = 1.0;
        beta1 = 0.0;
        TRANSB = 'N';
        TRANSA = 'N';
        memset(&F[0], 0, 81U * sizeof(real_T));
        emlrtPushRtStackR2012b(&fb_emlrtRSI, emlrtRootTLSGlobal);
        emlrtPushRtStackR2012b(&rb_emlrtRSI, emlrtRootTLSGlobal);
        emlrt_checkEscapedGlobals();
        m_t = (ptrdiff_t)(9);
        emlrtPopRtStackR2012b(&rb_emlrtRSI, emlrtRootTLSGlobal);
        emlrtPopRtStackR2012b(&fb_emlrtRSI, emlrtRootTLSGlobal);
        emlrtPushRtStackR2012b(&gb_emlrtRSI, emlrtRootTLSGlobal);
        emlrtPushRtStackR2012b(&rb_emlrtRSI, emlrtRootTLSGlobal);
        emlrt_checkEscapedGlobals();
        n_t = (ptrdiff_t)(9);
        emlrtPopRtStackR2012b(&rb_emlrtRSI, emlrtRootTLSGlobal);
        emlrtPopRtStackR2012b(&gb_emlrtRSI, emlrtRootTLSGlobal);
        emlrtPushRtStackR2012b(&hb_emlrtRSI, emlrtRootTLSGlobal);
        emlrtPushRtStackR2012b(&rb_emlrtRSI, emlrtRootTLSGlobal);
        emlrt_checkEscapedGlobals();
        k_t = (ptrdiff_t)(9);
        emlrtPopRtStackR2012b(&rb_emlrtRSI, emlrtRootTLSGlobal);
        emlrtPopRtStackR2012b(&hb_emlrtRSI, emlrtRootTLSGlobal);
        emlrtPushRtStackR2012b(&ib_emlrtRSI, emlrtRootTLSGlobal);
        emlrtPushRtStackR2012b(&rb_emlrtRSI, emlrtRootTLSGlobal);
        emlrt_checkEscapedGlobals();
        lda_t = (ptrdiff_t)(9);
        emlrtPopRtStackR2012b(&rb_emlrtRSI, emlrtRootTLSGlobal);
        emlrtPopRtStackR2012b(&ib_emlrtRSI, emlrtRootTLSGlobal);
        emlrtPushRtStackR2012b(&jb_emlrtRSI, emlrtRootTLSGlobal);
        emlrtPushRtStackR2012b(&rb_emlrtRSI, emlrtRootTLSGlobal);
        emlrt_checkEscapedGlobals();
        ldb_t = (ptrdiff_t)(9);
        emlrtPopRtStackR2012b(&rb_emlrtRSI, emlrtRootTLSGlobal);
        emlrtPopRtStackR2012b(&jb_emlrtRSI, emlrtRootTLSGlobal);
        emlrtPushRtStackR2012b(&kb_emlrtRSI, emlrtRootTLSGlobal);
        emlrtPushRtStackR2012b(&rb_emlrtRSI, emlrtRootTLSGlobal);
        emlrt_checkEscapedGlobals();
        ldc_t = (ptrdiff_t)(9);
        emlrtPopRtStackR2012b(&rb_emlrtRSI, emlrtRootTLSGlobal);
        emlrtPopRtStackR2012b(&kb_emlrtRSI, emlrtRootTLSGlobal);
        emlrtPushRtStackR2012b(&lb_emlrtRSI, emlrtRootTLSGlobal);
        emlrt_checkEscapedGlobals();
        alpha1_t = (double *)(&normA);
        emlrtPopRtStackR2012b(&lb_emlrtRSI, emlrtRootTLSGlobal);
        emlrtPushRtStackR2012b(&mb_emlrtRSI, emlrtRootTLSGlobal);
        emlrt_checkEscapedGlobals();
        Aia0_t = (double *)(&y[0]);
        emlrtPopRtStackR2012b(&mb_emlrtRSI, emlrtRootTLSGlobal);
        emlrtPushRtStackR2012b(&nb_emlrtRSI, emlrtRootTLSGlobal);
        emlrt_checkEscapedGlobals();
        Bib0_t = (double *)(&y[0]);
        emlrtPopRtStackR2012b(&nb_emlrtRSI, emlrtRootTLSGlobal);
        emlrtPushRtStackR2012b(&ob_emlrtRSI, emlrtRootTLSGlobal);
        emlrt_checkEscapedGlobals();
        beta1_t = (double *)(&beta1);
        emlrtPopRtStackR2012b(&ob_emlrtRSI, emlrtRootTLSGlobal);
        emlrtPushRtStackR2012b(&pb_emlrtRSI, emlrtRootTLSGlobal);
        emlrt_checkEscapedGlobals();
        Cic0_t = (double *)(&F[0]);
        emlrtPopRtStackR2012b(&pb_emlrtRSI, emlrtRootTLSGlobal);
        emlrtPushRtStackR2012b(&qb_emlrtRSI, emlrtRootTLSGlobal);
        emlrt_checkEscapedGlobals();
        dgemm(&TRANSA, &TRANSB, &m_t, &n_t, &k_t, alpha1_t, Aia0_t, &lda_t,
              Bib0_t, &ldb_t, beta1_t, Cic0_t, &ldc_t);
        emlrtPopRtStackR2012b(&qb_emlrtRSI, emlrtRootTLSGlobal);
        emlrtPopRtStackR2012b(&eb_emlrtRSI, emlrtRootTLSGlobal);
        emlrtPopRtStackR2012b(&db_emlrtRSI, emlrtRootTLSGlobal);
        emlrtPopRtStackR2012b(&cb_emlrtRSI, emlrtRootTLSGlobal);
        emlrtPopRtStackR2012b(&p_emlrtRSI, emlrtRootTLSGlobal);
      }
    }

    for (j = 0; j < 9; j++) {
      p0[j] = 0.0;
      for (b_i = 0; b_i < 9; b_i++) {
        p0[j] += hoistedGlobal[b_i] * F[b_i + 9 * j];
      }
    }

    p0_dirty |= 1U;
    emlrtPopRtStackR2012b(&m_emlrtRSI, emlrtRootTLSGlobal);
    j = I->size[0];
    b_i = 1 + i;
    normA = Acell * 1.0E+12 * (g1 * p0[3] * (V - E1) + g2 * (p0[4] + p0[5]) * (V
      - E2)) - I->data[emlrtDynamicBoundsCheckFastR2012b(b_i, 1, j, &u_emlrtBCI,
      emlrtRootTLSGlobal) - 1];
    normA = muDoubleScalarAbs(normA);
    err += normA * normA;
    err_dirty |= 1U;
    i++;
    emlrtBreakCheckFastR2012b(emlrtBreakCheckR2012bFlagVar, emlrtRootTLSGlobal);
  }
}
コード例 #8
0
ファイル: linearODESSEP2X4.c プロジェクト: metapfhor/MCION
/* Function Definitions */
void linearODESSEP2X4(const emxArray_real_T *T, const emxArray_real_T *I)
{
  int32_T i;
  real_T hoistedGlobal[17];
  int32_T j;
  int32_T b_i;
  real_T normA;
  real_T y[289];
  real_T F[289];
  boolean_T exitg2;
  real_T s;
  boolean_T exitg1;
  static const real_T theta[5] = { 0.01495585217958292, 0.253939833006323,
    0.95041789961629319, 2.097847961257068, 5.3719203511481517 };

  static const int8_T iv2[5] = { 3, 5, 7, 9, 13 };

  int32_T eint;
  real_T b_y[289];
  real_T beta1;
  char_T TRANSB;
  char_T TRANSA;
  ptrdiff_t m_t;
  ptrdiff_t n_t;
  ptrdiff_t k_t;
  ptrdiff_t lda_t;
  ptrdiff_t ldb_t;
  ptrdiff_t ldc_t;
  double * alpha1_t;
  double * Aia0_t;
  double * Bib0_t;
  double * beta1_t;
  double * Cic0_t;
  emlrtPushRtStackR2012b(&db_emlrtRSI, emlrtRootTLSGlobal);
  Q[0] = -k2 * A - L2 * J;
  Q[17] = k2 * A;
  Q[34] = L2 * J;
  Q[51] = 0.0;
  Q[68] = 0.0;
  Q[85] = 0.0;
  Q[102] = 0.0;
  Q[119] = 0.0;
  Q[136] = 0.0;
  Q[153] = 0.0;
  Q[170] = 0.0;
  Q[187] = 0.0;
  Q[204] = 0.0;
  Q[221] = 0.0;
  Q[238] = 0.0;
  Q[255] = 0.0;
  Q[272] = 0.0;
  Q[1] = k1;
  Q[18] = ((-k1 - k4 * A) - H2) - L2 * J;
  Q[35] = 0.0;
  Q[52] = L2 * J;
  Q[69] = 0.0;
  Q[86] = 0.0;
  Q[103] = k4 * A;
  Q[120] = 0.0;
  Q[137] = 0.0;
  Q[154] = 0.0;
  Q[171] = 0.0;
  Q[188] = 0.0;
  Q[205] = 0.0;
  Q[222] = H2;
  Q[239] = 0.0;
  Q[256] = 0.0;
  Q[273] = 0.0;
  Q[2] = L1;
  Q[19] = 0.0;
  Q[36] = (-k8 * A - L1) - L4 * J;
  Q[53] = k8 * A;
  Q[70] = L4 * J;
  Q[87] = 0.0;
  Q[104] = 0.0;
  Q[121] = 0.0;
  Q[138] = 0.0;
  Q[155] = 0.0;
  Q[172] = 0.0;
  Q[189] = 0.0;
  Q[206] = 0.0;
  Q[223] = 0.0;
  Q[240] = 0.0;
  Q[257] = 0.0;
  Q[274] = 0.0;
  Q[3] = 0.0;
  Q[20] = L1;
  Q[37] = k7;
  Q[54] = ((-k7 - k10 * A) - L1) - L4 * J;
  Q[71] = 0.0;
  Q[88] = L4 * J;
  Q[105] = 0.0;
  Q[122] = 0.0;
  Q[139] = k10 * A;
  Q[156] = 0.0;
  Q[173] = 0.0;
  Q[190] = 0.0;
  Q[207] = 0.0;
  Q[224] = 0.0;
  Q[241] = 0.0;
  Q[258] = 0.0;
  Q[275] = 0.0;
  Q[4] = 0.0;
  Q[21] = 0.0;
  Q[38] = L3;
  Q[55] = 0.0;
  Q[72] = -k8 * alpha * A - L3;
  Q[89] = k8 * alpha * A;
  Q[106] = 0.0;
  Q[123] = 0.0;
  Q[140] = 0.0;
  Q[157] = 0.0;
  Q[174] = 0.0;
  Q[191] = 0.0;
  Q[208] = 0.0;
  Q[225] = 0.0;
  Q[242] = 0.0;
  Q[259] = 0.0;
  Q[276] = 0.0;
  Q[5] = 0.0;
  Q[22] = 0.0;
  Q[39] = 0.0;
  Q[56] = L3;
  Q[73] = k7;
  Q[90] = (-k7 - k10 * alpha * A) - L3;
  Q[107] = 0.0;
  Q[124] = 0.0;
  Q[141] = 0.0;
  Q[158] = 0.0;
  Q[175] = k10 * alpha * A;
  Q[192] = 0.0;
  Q[209] = 0.0;
  Q[226] = 0.0;
  Q[243] = 0.0;
  Q[260] = 0.0;
  Q[277] = 0.0;
  Q[6] = 0.0;
  Q[23] = k3;
  Q[40] = 0.0;
  Q[57] = 0.0;
  Q[74] = 0.0;
  Q[91] = 0.0;
  Q[108] = ((-k3 - k6 * A) - H2) - L2 * J;
  Q[125] = k6 * A;
  Q[142] = L2 * J;
  Q[159] = 0.0;
  Q[176] = 0.0;
  Q[193] = 0.0;
  Q[210] = 0.0;
  Q[227] = 0.0;
  Q[244] = H2;
  Q[261] = 0.0;
  Q[278] = 0.0;
  Q[7] = 0.0;
  Q[24] = 0.0;
  Q[41] = 0.0;
  Q[58] = 0.0;
  Q[75] = 0.0;
  Q[92] = 0.0;
  Q[109] = k5;
  Q[126] = (-k5 - H2) - L2 * J;
  Q[143] = 0.0;
  Q[160] = L2 * J;
  Q[177] = 0.0;
  Q[194] = 0.0;
  Q[211] = 0.0;
  Q[228] = 0.0;
  Q[245] = 0.0;
  Q[262] = H2;
  Q[279] = 0.0;
  Q[8] = 0.0;
  Q[25] = 0.0;
  Q[42] = 0.0;
  Q[59] = k9;
  Q[76] = 0.0;
  Q[93] = 0.0;
  Q[110] = L1;
  Q[127] = 0.0;
  Q[144] = ((-k9 - k12 * A) - L1) - L4 * J;
  Q[161] = k12 * A;
  Q[178] = L4 * J;
  Q[195] = 0.0;
  Q[212] = 0.0;
  Q[229] = 0.0;
  Q[246] = 0.0;
  Q[263] = 0.0;
  Q[280] = 0.0;
  Q[9] = 0.0;
  Q[26] = 0.0;
  Q[43] = 0.0;
  Q[60] = 0.0;
  Q[77] = 0.0;
  Q[94] = 0.0;
  Q[111] = 0.0;
  Q[128] = L1;
  Q[145] = k11;
  Q[162] = (-k11 - L1) - L4 * J;
  Q[179] = 0.0;
  Q[196] = L4 * J;
  Q[213] = 0.0;
  Q[230] = 0.0;
  Q[247] = 0.0;
  Q[264] = 0.0;
  Q[281] = 0.0;
  Q[10] = 0.0;
  Q[27] = 0.0;
  Q[44] = 0.0;
  Q[61] = 0.0;
  Q[78] = 0.0;
  Q[95] = k9;
  Q[112] = 0.0;
  Q[129] = 0.0;
  Q[146] = L3;
  Q[163] = 0.0;
  Q[180] = (-k9 - k12 * alpha * A) - L3;
  Q[197] = k12 * alpha * A;
  Q[214] = 0.0;
  Q[231] = 0.0;
  Q[248] = 0.0;
  Q[265] = 0.0;
  Q[282] = 0.0;
  Q[11] = 0.0;
  Q[28] = 0.0;
  Q[45] = 0.0;
  Q[62] = 0.0;
  Q[79] = 0.0;
  Q[96] = 0.0;
  Q[113] = 0.0;
  Q[130] = 0.0;
  Q[147] = 0.0;
  Q[164] = L3;
  Q[181] = k11;
  Q[198] = -k11 - L3;
  Q[215] = 0.0;
  Q[232] = 0.0;
  Q[249] = 0.0;
  Q[266] = 0.0;
  Q[283] = 0.0;
  Q[12] = H1;
  Q[29] = 0.0;
  Q[46] = 0.0;
  Q[63] = 0.0;
  Q[80] = 0.0;
  Q[97] = 0.0;
  Q[114] = 0.0;
  Q[131] = 0.0;
  Q[148] = 0.0;
  Q[165] = 0.0;
  Q[182] = 0.0;
  Q[199] = 0.0;
  Q[216] = -k2 * A - H1;
  Q[233] = k2 * A;
  Q[250] = 0.0;
  Q[267] = 0.0;
  Q[284] = 0.0;
  Q[13] = 0.0;
  Q[30] = 0.0;
  Q[47] = 0.0;
  Q[64] = 0.0;
  Q[81] = 0.0;
  Q[98] = 0.0;
  Q[115] = 0.0;
  Q[132] = 0.0;
  Q[149] = 0.0;
  Q[166] = 0.0;
  Q[183] = 0.0;
  Q[200] = 0.0;
  Q[217] = k1;
  Q[234] = -k1 - k4 * A;
  Q[251] = k4 * A;
  Q[268] = 0.0;
  Q[285] = 0.0;
  Q[14] = 0.0;
  Q[31] = 0.0;
  Q[48] = 0.0;
  Q[65] = 0.0;
  Q[82] = 0.0;
  Q[99] = 0.0;
  Q[116] = 0.0;
  Q[133] = 0.0;
  Q[150] = 0.0;
  Q[167] = 0.0;
  Q[184] = 0.0;
  Q[201] = 0.0;
  Q[218] = 0.0;
  Q[235] = k3;
  Q[252] = -k3 - k6 * A;
  Q[269] = k6 * A;
  Q[286] = 0.0;
  Q[15] = 0.0;
  Q[32] = 0.0;
  Q[49] = 0.0;
  Q[66] = 0.0;
  Q[83] = 0.0;
  Q[100] = 0.0;
  Q[117] = 0.0;
  Q[134] = 0.0;
  Q[151] = 0.0;
  Q[168] = 0.0;
  Q[185] = 0.0;
  Q[202] = 0.0;
  Q[219] = 0.0;
  Q[236] = 0.0;
  Q[253] = k5;
  Q[270] = -k5 - H3;
  Q[287] = H3;
  Q[16] = H4;
  Q[33] = 0.0;
  Q[50] = 0.0;
  Q[67] = 0.0;
  Q[84] = 0.0;
  Q[101] = 0.0;
  Q[118] = 0.0;
  Q[135] = 0.0;
  Q[152] = 0.0;
  Q[169] = 0.0;
  Q[186] = 0.0;
  Q[203] = 0.0;
  Q[220] = 0.0;
  Q[237] = 0.0;
  Q[254] = 0.0;
  Q[271] = 0.0;
  Q[288] = -H4;
  Q_dirty |= 1U;
  emlrtPopRtStackR2012b(&db_emlrtRSI, emlrtRootTLSGlobal);
  i = 0;
  while (i <= T->size[0] - 1) {
    emlrtPushRtStackR2012b(&eb_emlrtRSI, emlrtRootTLSGlobal);
    memcpy(&hoistedGlobal[0], &p0[0], 17U * sizeof(real_T));
    j = T->size[0];
    b_i = (int32_T)(1.0 + (real_T)i);
    emlrtDynamicBoundsCheckFastR2012b(b_i, 1, j, &bd_emlrtBCI,
      emlrtRootTLSGlobal);
    normA = T->data[i];
    for (j = 0; j < 289; j++) {
      y[j] = Q[j] * normA;
    }

    normA = 0.0;
    j = 0;
    exitg2 = FALSE;
    while ((exitg2 == FALSE) && (j < 17)) {
      s = 0.0;
      for (b_i = 0; b_i < 17; b_i++) {
        s += muDoubleScalarAbs(y[b_i + 17 * j]);
      }

      if (muDoubleScalarIsNaN(s)) {
        normA = rtNaN;
        exitg2 = TRUE;
      } else {
        if (s > normA) {
          normA = s;
        }

        j++;
      }
    }

    if (normA <= 5.3719203511481517) {
      b_i = 0;
      exitg1 = FALSE;
      while ((exitg1 == FALSE) && (b_i < 5)) {
        if (normA <= theta[b_i]) {
          emlrtPushRtStackR2012b(&fb_emlrtRSI, emlrtRootTLSGlobal);
          PadeApproximantOfDegree(y, iv2[b_i], F);
          emlrtPopRtStackR2012b(&fb_emlrtRSI, emlrtRootTLSGlobal);
          exitg1 = TRUE;
        } else {
          b_i++;
        }
      }
    } else {
      normA /= 5.3719203511481517;
      if ((!muDoubleScalarIsInf(normA)) && (!muDoubleScalarIsNaN(normA))) {
        normA = frexp(normA, &eint);
        j = eint;
      } else {
        j = 0;
      }

      s = j;
      if (normA == 0.5) {
        s = (real_T)j - 1.0;
      }

      normA = muDoubleScalarPower(2.0, s);
      emlrtPushRtStackR2012b(&gb_emlrtRSI, emlrtRootTLSGlobal);
      for (j = 0; j < 289; j++) {
        b_y[j] = y[j] / normA;
      }

      PadeApproximantOfDegree(b_y, 13.0, F);
      emlrtPopRtStackR2012b(&gb_emlrtRSI, emlrtRootTLSGlobal);
      emlrtForLoopVectorCheckR2012b(1.0, 1.0, s, mxDOUBLE_CLASS, (int32_T)s,
        &l_emlrtRTEI, emlrtRootTLSGlobal);
      for (j = 0; j < (int32_T)s; j++) {
        emlrtPushRtStackR2012b(&hb_emlrtRSI, emlrtRootTLSGlobal);
        emlrtPushRtStackR2012b(&tb_emlrtRSI, emlrtRootTLSGlobal);
        memcpy(&y[0], &F[0], 289U * sizeof(real_T));
        emlrtPushRtStackR2012b(&ub_emlrtRSI, emlrtRootTLSGlobal);
        emlrtPushRtStackR2012b(&vb_emlrtRSI, emlrtRootTLSGlobal);
        normA = 1.0;
        beta1 = 0.0;
        TRANSB = 'N';
        TRANSA = 'N';
        memset(&F[0], 0, 289U * sizeof(real_T));
        emlrtPushRtStackR2012b(&wb_emlrtRSI, emlrtRootTLSGlobal);
        emlrtPushRtStackR2012b(&jc_emlrtRSI, emlrtRootTLSGlobal);
        emlrt_checkEscapedGlobals();
        m_t = (ptrdiff_t)(17);
        emlrtPopRtStackR2012b(&jc_emlrtRSI, emlrtRootTLSGlobal);
        emlrtPopRtStackR2012b(&wb_emlrtRSI, emlrtRootTLSGlobal);
        emlrtPushRtStackR2012b(&xb_emlrtRSI, emlrtRootTLSGlobal);
        emlrtPushRtStackR2012b(&jc_emlrtRSI, emlrtRootTLSGlobal);
        emlrt_checkEscapedGlobals();
        n_t = (ptrdiff_t)(17);
        emlrtPopRtStackR2012b(&jc_emlrtRSI, emlrtRootTLSGlobal);
        emlrtPopRtStackR2012b(&xb_emlrtRSI, emlrtRootTLSGlobal);
        emlrtPushRtStackR2012b(&yb_emlrtRSI, emlrtRootTLSGlobal);
        emlrtPushRtStackR2012b(&jc_emlrtRSI, emlrtRootTLSGlobal);
        emlrt_checkEscapedGlobals();
        k_t = (ptrdiff_t)(17);
        emlrtPopRtStackR2012b(&jc_emlrtRSI, emlrtRootTLSGlobal);
        emlrtPopRtStackR2012b(&yb_emlrtRSI, emlrtRootTLSGlobal);
        emlrtPushRtStackR2012b(&ac_emlrtRSI, emlrtRootTLSGlobal);
        emlrtPushRtStackR2012b(&jc_emlrtRSI, emlrtRootTLSGlobal);
        emlrt_checkEscapedGlobals();
        lda_t = (ptrdiff_t)(17);
        emlrtPopRtStackR2012b(&jc_emlrtRSI, emlrtRootTLSGlobal);
        emlrtPopRtStackR2012b(&ac_emlrtRSI, emlrtRootTLSGlobal);
        emlrtPushRtStackR2012b(&bc_emlrtRSI, emlrtRootTLSGlobal);
        emlrtPushRtStackR2012b(&jc_emlrtRSI, emlrtRootTLSGlobal);
        emlrt_checkEscapedGlobals();
        ldb_t = (ptrdiff_t)(17);
        emlrtPopRtStackR2012b(&jc_emlrtRSI, emlrtRootTLSGlobal);
        emlrtPopRtStackR2012b(&bc_emlrtRSI, emlrtRootTLSGlobal);
        emlrtPushRtStackR2012b(&cc_emlrtRSI, emlrtRootTLSGlobal);
        emlrtPushRtStackR2012b(&jc_emlrtRSI, emlrtRootTLSGlobal);
        emlrt_checkEscapedGlobals();
        ldc_t = (ptrdiff_t)(17);
        emlrtPopRtStackR2012b(&jc_emlrtRSI, emlrtRootTLSGlobal);
        emlrtPopRtStackR2012b(&cc_emlrtRSI, emlrtRootTLSGlobal);
        emlrtPushRtStackR2012b(&dc_emlrtRSI, emlrtRootTLSGlobal);
        emlrt_checkEscapedGlobals();
        alpha1_t = (double *)(&normA);
        emlrtPopRtStackR2012b(&dc_emlrtRSI, emlrtRootTLSGlobal);
        emlrtPushRtStackR2012b(&ec_emlrtRSI, emlrtRootTLSGlobal);
        emlrt_checkEscapedGlobals();
        Aia0_t = (double *)(&y[0]);
        emlrtPopRtStackR2012b(&ec_emlrtRSI, emlrtRootTLSGlobal);
        emlrtPushRtStackR2012b(&fc_emlrtRSI, emlrtRootTLSGlobal);
        emlrt_checkEscapedGlobals();
        Bib0_t = (double *)(&y[0]);
        emlrtPopRtStackR2012b(&fc_emlrtRSI, emlrtRootTLSGlobal);
        emlrtPushRtStackR2012b(&gc_emlrtRSI, emlrtRootTLSGlobal);
        emlrt_checkEscapedGlobals();
        beta1_t = (double *)(&beta1);
        emlrtPopRtStackR2012b(&gc_emlrtRSI, emlrtRootTLSGlobal);
        emlrtPushRtStackR2012b(&hc_emlrtRSI, emlrtRootTLSGlobal);
        emlrt_checkEscapedGlobals();
        Cic0_t = (double *)(&F[0]);
        emlrtPopRtStackR2012b(&hc_emlrtRSI, emlrtRootTLSGlobal);
        emlrtPushRtStackR2012b(&ic_emlrtRSI, emlrtRootTLSGlobal);
        emlrt_checkEscapedGlobals();
        dgemm(&TRANSA, &TRANSB, &m_t, &n_t, &k_t, alpha1_t, Aia0_t, &lda_t,
              Bib0_t, &ldb_t, beta1_t, Cic0_t, &ldc_t);
        emlrtPopRtStackR2012b(&ic_emlrtRSI, emlrtRootTLSGlobal);
        emlrtPopRtStackR2012b(&vb_emlrtRSI, emlrtRootTLSGlobal);
        emlrtPopRtStackR2012b(&ub_emlrtRSI, emlrtRootTLSGlobal);
        emlrtPopRtStackR2012b(&tb_emlrtRSI, emlrtRootTLSGlobal);
        emlrtPopRtStackR2012b(&hb_emlrtRSI, emlrtRootTLSGlobal);
      }
    }

    for (j = 0; j < 17; j++) {
      p0[j] = 0.0;
      for (b_i = 0; b_i < 17; b_i++) {
        p0[j] += hoistedGlobal[b_i] * F[b_i + 17 * j];
      }
    }

    p0_dirty |= 1U;
    emlrtPopRtStackR2012b(&eb_emlrtRSI, emlrtRootTLSGlobal);
    j = I->size[0];
    b_i = 1 + i;
    normA = Acell * 1.0E+12 * (g1 * (p0[6] + p0[7]) * (V - E1) + g2 * (((p0[8] +
      p0[9]) + p0[10]) + p0[11]) * (V - E2)) - I->
      data[emlrtDynamicBoundsCheckFastR2012b(b_i, 1, j, &cd_emlrtBCI,
      emlrtRootTLSGlobal) - 1];
    normA = muDoubleScalarAbs(normA);
    err += normA * normA;
    err_dirty |= 1U;
    i++;
    emlrtBreakCheckFastR2012b(emlrtBreakCheckR2012bFlagVar, emlrtRootTLSGlobal);
  }
}
コード例 #9
0
ファイル: clcPMP_olyHyb_tmp.c プロジェクト: asgardkm/DP_PMP
/* Function Definitions */
void clcPMP_olyHyb_tmp(const emlrtStack *sp, real_T engKinPre, real_T engKinAct,
  real_T gea, real_T slp, real_T batEng, real_T psiBatEng, real_T psiTim, real_T
  batPwrAux, real_T batEngStp, real_T wayStp, const struct0_T *par, real_T
  *cosHamMin, real_T *batFrcOut, real_T *fulFrcOut)
{
  real_T mtmp;
  real_T vehVel;
  real_T b_engKinPre[2];
  real_T crsSpdVec[2];
  int32_T i18;
  int32_T k;
  boolean_T y;
  boolean_T exitg3;
  boolean_T exitg2;
  real_T crsSpd;
  real_T whlTrq;
  real_T crsTrq;
  real_T iceTrqMax;
  real_T iceTrqMin;
  real_T b_par[100];
  real_T emoTrqMaxPos;
  real_T emoTrqMinPos;
  real_T emoTrqMax;
  real_T emoTrqMin;
  real_T batPwrMax;
  real_T batPwrMin;
  real_T batOcv;
  real_T batEngDltMin;
  real_T batEngDltMax;
  real_T batEngDltMinInx;
  real_T batEngDltMaxInx;
  real_T batEngDlt;
  real_T fulFrc;
  real_T batFrc;
  real_T b_batFrc;
  real_T batPwr;
  real_T emoTrq;
  real_T iceTrq;
  real_T fulPwr;
  int32_T ixstart;
  int32_T itmp;
  int32_T ix;
  boolean_T exitg1;
  emlrtStack st;
  emlrtStack b_st;
  st.prev = sp;
  st.tls = sp->tls;
  b_st.prev = &st;
  b_st.tls = st.tls;

  /* CLCPMP Minimizing Hamiltonian: Co-States for soc and time */
  /*  Erstellungsdatum der ersten Version 19.08.2015 - Stephan Uebel */
  /*  */
  /*  Batterieleistungsgrenzen hinzugefügt am 13.12.2015 */
  /*  ^^added battery power limit */
  /*  */
  /*  Massenaufschlag durch Trägheitsmoment herausgenommen */
  /*  ^^Mass increment removed by inertia */
  /*  */
  /* % Inputdefinition */
  /*  */
  /*  engKinPre     - Double(1,1)  - kinetische Energie am Intervallanfang in J */
  /*                                 ^^ kinetic energy at start of interval (J) */
  /*  engKinAct     - Double(1,1)  - kinetische Energie am Intervallende in J */
  /*                                 ^^ kinetic energe at end of interval (J) */
  /*  gea           - Double(1,1)  - Gang */
  /*                                 ^^ gear */
  /*  slp           - Double(1,1)  - Steigung in rad */
  /*                                 ^^ slope in radians */
  /*  iceFlg        - Boolean(1,1) - Flag für Motorzustand */
  /*                                 ^^ flag for motor condition */
  /*  batEng        - Double(1,1)  - Batterieenergie in J */
  /*                                 ^^ battery energy (J) */
  /*  psibatEng     - Double(1,1)  - Costate für Batterieenergie ohne Einheit */
  /*                                 ^^ costate for battery energy w/o unity */
  /*  psiTim        - Double(1,1)  - Costate für die Zeit ohne Einheit */
  /*                                 ^^ costate for time without unity */
  /*  batPwrAux     - Double(1,1)  - elektr. Nebenverbraucherleistung in W */
  /*                                 ^^ electric auxiliary power consumed (W) */
  /*  batEngStp     - Double(1,1)  - Drehmomentschritt */
  /*                                 ^^ torque step <- no, it's a battery step */
  /*  wayStp        - Double(1,1)  - Intervallschrittweite in m */
  /*                                 ^^ interval step distance (m) */
  /*  par           - Struct(1,1)  - Modelldaten */
  /*                                 ^^ model data */
  /* % Initialisieren der Ausgabe der Funktion */
  /*    initializing function output */
  /*  Ausgabewert des Minimums der Hamiltonfunktion */
  /*    output for minimizing the hamiltonian */
  *cosHamMin = rtInf;

  /*  Batterieladungsänderung im Wegschritt beir minimaler Hamiltonfunktion */
  /*    battery change in path_idx step with the minial hamiltonian */
  *batFrcOut = rtInf;

  /*  Kraftstoffkraftänderung im Wegschritt bei minimaler Hamiltonfunktion */
  /*    fuel change in path_idx step with the minimal hamiltonian */
  *fulFrcOut = 0.0;

  /* % Initialisieren der persistent Größen */
  /*    initialize the persistance variables */
  /*  Diese werden die nur einmal für die Funktion berechnet */
  /*    only calculated once for the function */
  if (!crsSpdHybMax_not_empty) {
    /*  maximale Drehzahl Elektrommotor */
    /*    maximum electric motor rotational speed */
    /*  maximale Drehzahl der Kurbelwelle */
    /*    maximum crankshaft rotational speed */
    crsSpdHybMax = muDoubleScalarMin(par->iceSpdMgd[14850], par->emoSpdMgd[14850]);
    crsSpdHybMax_not_empty = true;

    /*  minimale Drehzahl der Kurbelwelle */
    /*    minimum crankshaft rotational speed */
    crsSpdHybMin = par->iceSpdMgd[0];
  }

  /* % Initialisieren der allgemein benötigten Kenngrößen */
  /*    initializing the commonly required parameters */
  /*  mittlere kinetische Energie im Wegschritt berechnen */
  /*    define the average kinetic energy at path_idx step - is just previous KE */
  /*  mittlere Geschwindigkeit im Wegschritt berechnen */
  /*    define the average speed at path_idx step */
  mtmp = 2.0 * engKinPre / par->vehMas;
  st.site = &g_emlrtRSI;
  if (mtmp < 0.0) {
    b_st.site = &h_emlrtRSI;
    eml_error(&b_st);
  }

  vehVel = muDoubleScalarSqrt(mtmp);

  /* % vorzeitiger Funktionsabbruch? */
  /*    premature function termination? */
  /*  Drehzahl der Kurbelwelle und Grenzen */
  /*    crankshaft speed and limits */
  /*  Aus den kinetischen Energien des Fahrzeugs wird über die Raddrehzahl */
  /*  und die übersetzung vom Getriebe die Kurbelwellendrehzahl berechnet. */
  /*  Zeilenrichtung entspricht den Gängen. (Zeilenvektor) */
  /*    from the vehicle's kinetic energy, the crankshaft speed is calculated */
  /*    by the speed and gearbox translation. Line direction corresponding to */
  /*    the aisles (row rector). EQUATION 1 */
  b_engKinPre[0] = engKinPre;
  b_engKinPre[1] = engKinAct;
  for (i18 = 0; i18 < 2; i18++) {
    crsSpdVec[i18] = 2.0 * b_engKinPre[i18] / par->vehMas;
  }

  st.site = &f_emlrtRSI;
  for (k = 0; k < 2; k++) {
    if (crsSpdVec[k] < 0.0) {
      b_st.site = &h_emlrtRSI;
      eml_error(&b_st);
    }
  }

  for (k = 0; k < 2; k++) {
    crsSpdVec[k] = muDoubleScalarSqrt(crsSpdVec[k]);
  }

  i18 = par->geaRat->size[1];
  k = (int32_T)gea;
  emlrtDynamicBoundsCheckR2012b(k, 1, i18, &mb_emlrtBCI, sp);
  mtmp = par->geaRat->data[(int32_T)gea - 1];
  for (i18 = 0; i18 < 2; i18++) {
    crsSpdVec[i18] = mtmp * crsSpdVec[i18] / par->whlDrr;
  }

  /*  Abbruch, wenn die Drehzahlen der Kurbelwelle zu hoch im hybridischen */
  /*  Modus */
  /*    stop if the crankshaft rotatoinal speed is too high in hybrid mode */
  y = false;
  k = 0;
  exitg3 = false;
  while ((!exitg3) && (k < 2)) {
    if (!!(crsSpdVec[k] > crsSpdHybMax)) {
      y = true;
      exitg3 = true;
    } else {
      k++;
    }
  }

  if (y) {
  } else {
    /*  Falls die Drehzahl des Verbrennungsmotors niedriger als die */
    /*  Leerlaufdrehzahl ist, */
    /*    stop if crankhaft rotional speed is lower than the idling speed */
    y = false;
    k = 0;
    exitg2 = false;
    while ((!exitg2) && (k < 2)) {
      if (!!(crsSpdVec[k] < crsSpdHybMin)) {
        y = true;
        exitg2 = true;
      } else {
        k++;
      }
    }

    if (y) {
    } else {
      /*  Prüfen, ob die Drehzahlgrenze des Elektromotors eingehalten wird */
      /*    check if electric motor speed limit is maintained */
      /*  mittlere Kurbelwellendrehzahlen berechnen */
      /*    calculate average crankshaft rotational speed */
      /*    - really just selecting the previous path_idx KE crankshaft speed */
      crsSpd = crsSpdVec[0];

      /* % Längsdynamik berechnen */
      /*    calculate longitundinal dynamics */
      /*  Es wird eine konstante Beschleunigung angenommen, die im Wegschritt */
      /*  wayStp das Fahrzeug von velPre auf velAct beschleunigt. */
      /*    constant acceleration assumed when transitioning from velPre to velAct */
      /*    for the selected wayStp path_idx step distance */
      /*  Berechnen der konstanten Beschleunigung */
      /*    calculate the constant acceleration */
      /*  Aus der mittleren kinetischen Energie im Intervall, der mittleren */
      /*  Steigung und dem Gang lässt sich über die Fahrwiderstandsgleichung */
      /*  die nötige Fahrwiderstandskraft berechnen, die aufgebracht werden */
      /*  muss, um diese zu realisieren. */
      /*    from the (avg) kinetic energy in the interval, the (avg) slope and */
      /*    transition can calculate the necessary traction force on the driving */
      /*    resistance equation (PART OF EQUATION 5) */
      /*  Steigungskraft aus der mittleren Steigung berechnen (Skalar) */
      /*    gradiant force from the calculated (average) gradient */
      /*  Rollreibungskraft berechnen (Skalar) */
      /*    calculated rolling friction force - not included in EQ 5??? */
      /*  Luftwiderstandskraft berechnen (2*c_a/m * E_kin) (Skalar)  */
      /*    calculated air resistance force  */
      /* % Berechnung der minimalen kosten der Hamiltonfunktion */
      /*    Calculating the minimum cost of the Hamiltonian */
      /* % Berechnen der Kraft am Rad für Antriebsstrangmodus */
      /*    calculate the force on the wheel for the drivetrain mode */
      /*  % dynamische Fahrzeugmasse bei Fahrzeugmotor an berechnen. Das */
      /*  % heißt es werden Trägheitsmoment von Verbrennungsmotor, */
      /*  % Elektromotor und Rädern mit einbezogen. */
      /*    calculate dynamic vehicle mass with the vehicle engine (with the moment */
      /*    of intertia of the ICE, electric motor, and wheels) */
      /*  vehMasDyn = (par.iceMoi_geaRat(gea) +... */
      /*      par.emoGeaMoi_geaRat(gea) + par.whlMoi)/par.whlDrr^2 ... */
      /*      + par.vehMas; */
      /*  Radkraft berechnen (Beschleunigungskraft + Steigungskraft + */
      /*  Rollwiderstandskraft + Luftwiderstandskraft) */
      /*    caluclating wheel forces (accerlation force + gradient force + rolling */
      /*    resistance + air resistance)    EQUATION 5 */
      /* % Getriebeübersetzung und -verlust */
      /*    gear ratio and loss */
      /*  Das Drehmoment des Rades ergibt sich über den Radhalbmesser aus */
      /*  der Fahrwiderstandskraft. */
      /*    the weel torque is obtained from the wheel radius of the rolling */
      /*    resistance force (torque = force * distance (in this case, radius) */
      whlTrq = ((((engKinAct - engKinPre) / (par->vehMas * wayStp) * par->vehMas
                  + par->vehMas * 9.81 * muDoubleScalarSin(slp)) +
                 par->whlRolResCof * par->vehMas * 9.81 * muDoubleScalarCos(slp))
                + 2.0 * par->drgCof / par->vehMas * engKinPre) * par->whlDrr;

      /*  Berechnung des Kurbelwellenmoments */
      /*  Hier muss unterschieden werden, ob das Radmoment positiv oder */
      /*  negativ ist, da nur ein einfacher Wirkungsgrad für das Getriebe */
      /*  genutzt wird */
      /*    it's important to determine sign of crankshaft torque (positive or */
      /*    negative), since only a simple efficiency is used for the transmission */
      /*    PART OF EQ4  <- perhaps reversed? not too sure */
      if (whlTrq < 0.0) {
        i18 = par->geaRat->size[1];
        k = (int32_T)gea;
        emlrtDynamicBoundsCheckR2012b(k, 1, i18, &nb_emlrtBCI, sp);
        crsTrq = whlTrq / par->geaRat->data[(int32_T)gea - 1] * par->geaEfy;
      } else {
        i18 = par->geaRat->size[1];
        k = (int32_T)gea;
        emlrtDynamicBoundsCheckR2012b(k, 1, i18, &ob_emlrtBCI, sp);
        crsTrq = whlTrq / par->geaRat->data[(int32_T)gea - 1] / par->geaEfy;
      }

      /* % Verbrennungsmotor */
      /*    internal combustion engine */
      /*  maximales Moment des Verbrennungsmotors berechnen */
      /*    calculate max torque of the engine (quadratic based on rotation speed) */
      iceTrqMax = (par->iceTrqMaxCof[0] * (crsSpdVec[0] * crsSpdVec[0]) +
                   par->iceTrqMaxCof[1] * crsSpdVec[0]) + par->iceTrqMaxCof[2];

      /*  minimales Moment des Verbrennungsmotors berechnen */
      /*    calculating mimimum ICE moment */
      iceTrqMin = (par->iceTrqMinCof[0] * (crsSpdVec[0] * crsSpdVec[0]) +
                   par->iceTrqMinCof[1] * crsSpdVec[0]) + par->iceTrqMinCof[2];

      /* % Elektromotor */
      /*    electric motor */
      /*  maximales Moment, dass die E-Maschine liefern kann */
      /*    max torque that the electric motor can provide - from interpolation */
      /*  emoTrqMaxPos = ... */
      /*      lininterp1(par.emoSpdMgd(1,:)',par.emoTrqMax_emoSpd,crsSpd); */
      for (i18 = 0; i18 < 100; i18++) {
        b_par[i18] = par->emoSpdMgd[150 * i18];
      }

      emoTrqMaxPos = interp1q(b_par, par->emoTrqMax_emoSpd, crsSpdVec[0]);

      /*  Die gültigen Kurbelwellenmomente müssen kleiner sein als das */
      /*  Gesamtmoment von E-Motor und Verbrennungsmotor */
      /*    The valid crankshaft moments must be less than the total moment of the */
      /*    electric motor and the ICE.Otherwise, leave the function */
      if (crsTrq > iceTrqMax + emoTrqMaxPos) {
      } else {
        /* % %% Optimaler Momentensplit - Minimierung der Hamiltonfunktion */
        /*        optimum torque split - minimizing the Hamiltonian */
        /*  Die Vorgehensweise ist ähnlich wie bei der ECMS. Es wird ein Vektor der */
        /*  möglichen Batterieenergieänderungen aufgestellt. Aus diesen lässt sich  */
        /*  eine Batterieklemmleistung berechnen. Aus der über das */
        /*  Kurbelwellenmoment, ein Elektromotormoment berechnet werden kann. */
        /*  Über das geforderte Kurbelwellenmoment, kann für jedes Moment des  */
        /*  Elektromotors ein Moment des Verbrennungsmotors gefunden werden. Für  */
        /*  jedes Momentenpaar kann die Hamiltonfunktion berechnet werden. */
        /*  Ausgegeben wird der minimale Wert der Hamiltonfunktion und die */
        /*  durch das dabei verwendete Elektromotormoment verursachte */
        /*  Batterieladungsänderung. */
        /*    The procedure is similar to ECMS. It's based on a vector of possible */
        /*    battery energy changes, from which a battery terminal power can be */
        /*    calculated. */
        /*    From the crankshaft torque, an electric motor torque can be */
        /*    calculated, and an engine torque can be found for every electric motor */
        /*    moment.  */
        /*    For every moment-pair the Hamiltonian can be calculated. It */
        /*    outputs the minimum Hamilotnian value and the battery charge change */
        /*    caused by the electric motor torque used. */
        /* % Elektromotor - Aufstellen des Batterienergievektors */
        /*    electric motor - positioning the battery energy vectors */
        if (batEngStp > 0.0) {
          /* Skalar - änderung der minimalen Batterieenergieänderung */
          /*  Skalar - änderung der maximalen Batterieenergieänderung */
          /*  FUNCTION CALL */
          /*       Skalar - Wegschrittweite */
          /*       Skalar - mittlere Geschwindigkeit im Intervall */
          /*    Skalar - Nebenverbraucherlast */
          /*       Skalar - Batterieenergie */
          /*          struct - Fahrzeugparameter */
          /*       Skalar - crankshaft rotational speed */
          /*       Skalar - crankshaft torque */
          /*    Skalar - min ICE torque allowed */
          /*    Skalar - max ICE torque allowed */
          /*  Skalar - max EM torque possible */
          st.site = &e_emlrtRSI;

          /* Skalar - änderung der minimalen Batterieenergieänderung */
          /*  Skalar - änderung der maximalen Batterieenergieänderung */
          /*       Skalar - Wegschrittweite */
          /*          Skalar - Geschwindigkeit im Intervall */
          /*    Skalar - Nebenverbraucherlast */
          /*    Skalar - Batterieenergie */
          /*          struct - Fahrzeugparameter */
          /*       Skalar - crankshaft rotational speed */
          /*       Skalar - crankshaft torque */
          /*    Skalar - min ICE torque allowed */
          /*    Skalar - max ICE torque */
          /*  Skalar - max EM torque possible */
          /* BatEngDltClc Calculates the change in battery energy */
          /*  */
          /*  Erstellungsdatum der ersten Version 17.11.2015 - Stephan Uebel */
          /*    Berechnung der Verluste des Elektromotors bei voller rein elektrischer */
          /*    Fahrt (voller Lastpunktabsenkung) und bei voller Lastpunktanhebung */
          /*        Calculations of loss of electric motor at purely full electric */
          /*        Driving (full load point lowering) and at full load point raising */
          /*  */
          /*  Version vom 17.02.2016: Keine Einbeziehung von Rotationsmassen */
          /*                          ^^ No inclusion of rotational masses */
          /*  */
          /*  Version vom 25.05.2016: Zero-Order-Hold (keine mittlere Geschwindigkeit) */
          /*                          ^^ Zero-Order-Hold (no average velocities) */
          /* % Initialisieren der Ausgabe der Funktion */
          /*    initializing the function output (delta battery_energy min and max) */
          /* % Elektromotor */
          /*  minimales Moment, dass die E-Maschine liefern kann */
          /*    minimum moment that the EM can provide (max is an input to function) */
          /*  emoTrqMinPos = ... */
          /*      lininterp1(par.emoSpdMgd(1,:)',par.emoTrqMin_emoSpd,crsSpd); */
          for (i18 = 0; i18 < 100; i18++) {
            b_par[i18] = par->emoSpdMgd[150 * i18];
          }

          emoTrqMinPos = interp1q(b_par, par->emoTrqMin_emoSpd, crsSpdVec[0]);

          /* % Verbrennungsmotor berechnen */
          /*  Durch EM zu lieferndes Kurbelwellenmoment */
          /*    crankshaft torque to be delivered by the electric motor (min and max) */
          emoTrqMax = crsTrq - iceTrqMin;
          emoTrqMin = crsTrq - iceTrqMax;

          /* % Elektromotor berechnen */
          /*    calculate the electric motor */
          if (emoTrqMaxPos < emoTrqMax) {
            /*  Moment des Elektromotors bei maximaler Entladung der Batterie */
            /*    EM torque at max battery discharge */
            emoTrqMax = emoTrqMaxPos;
          }

          if (emoTrqMaxPos < emoTrqMin) {
            /*  Moment des Elektromotors bei minimaler Entladung der Batterie */
            /*    EM torque at min battery discharge */
            emoTrqMin = emoTrqMaxPos;
          }

          emoTrqMax = muDoubleScalarMax(emoTrqMinPos, emoTrqMax);
          emoTrqMin = muDoubleScalarMax(emoTrqMinPos, emoTrqMin);

          /* % Berechnung der änderung der Batterieladung */
          /*    calculating the change in battery charge */
          /*  Interpolation der benötigten Batterieklemmleistung für das */
          /*  EM-Moment. Stellen die nicht definiert sind, werden mit inf */
          /*  ausgegeben. Positive Werte entsprechen entladen der Batterie. */
          /*    interpolating the required battery terminal power for the EM torque. */
          /*    Assign undefined values to inf. Positive values coresspond with battery */
          /*    discharge. */
          /*  batPwrMax = lininterp2(par.emoSpdMgd(1,:),par.emoTrqMgd(:,1),... */
          /*      par.emoPwr_emoSpd_emoTrq',crsSpd,emoTrqMax) + batPwrAux; */
          /*   */
          /*  batPwrMin = lininterp2(par.emoSpdMgd(1,:),par.emoTrqMgd(:,1),... */
          /*      par.emoPwr_emoSpd_emoTrq',crsSpd,emoTrqMin) + batPwrAux; */
          b_st.site = &i_emlrtRSI;
          batPwrMax = codegen_interp2(&b_st, par->emoSpdMgd, par->emoTrqMgd,
            par->emoPwr_emoSpd_emoTrq, crsSpdVec[0], emoTrqMax) + batPwrAux;
          b_st.site = &j_emlrtRSI;
          batPwrMin = codegen_interp2(&b_st, par->emoSpdMgd, par->emoTrqMgd,
            par->emoPwr_emoSpd_emoTrq, crsSpdVec[0], emoTrqMin) + batPwrAux;

          /*  überprüfen, ob Batterieleistung möglich */
          /*    make sure that current battery max power is not above bat max bounds */
          if (batPwrMax > par->batPwrMax) {
            batPwrMax = par->batPwrMax;
          }

          /*  überprüfen, ob Batterieleistung möglich */
          /*    make sure that current battery min power is not below bat min bounds */
          if (batPwrMin > par->batPwrMax) {
            batPwrMin = par->batPwrMax;
          }

          /*  Es kann vorkommen, dass mehr Leistung gespeist werden soll, als */
          /*  möglich ist. */
          /*    double check that the max and min still remain within the other bounds */
          if (batPwrMax < par->batPwrMin) {
            batPwrMax = par->batPwrMin;
          }

          if (batPwrMin < par->batPwrMin) {
            batPwrMin = par->batPwrMin;
          }

          /*  Batteriespannung aus Kennkurve berechnen */
          /*    calculating battery voltage of characteristic curve - eq?-------------- */
          batOcv = batEng * par->batOcvCof_batEng[0] + par->batOcvCof_batEng[1];

          /*  FUNCTION CALL - min delta bat.energy */
          /*            Skalar - Batterieklemmleistung */
          /*                  Skalar - mittlere Geschwindigkeit im Intervall */
          /*        Skalar - Entladewiderstand */
          /*        Skalar - Ladewiderstand */
          /*                Skalar - battery open-circuit voltage */
          batEngDltMin = batFrcClc_tmp(batPwrMax, vehVel, par->batRstDch,
            par->batRstChr, batOcv) * wayStp;

          /*  <-multiply by delta_S */
          /*  FUNCTION CALL - max delta bat.energy */
          /*            Skalar - Batterieklemmleistung */
          /*                  Skalar - mittlere Geschwindigkeit im Intervall */
          /*        Skalar - Entladewiderstand */
          /*        Skalar - Ladewiderstand */
          /*                Skalar - battery open-circuit voltage */
          batEngDltMax = batFrcClc_tmp(batPwrMin, vehVel, par->batRstDch,
            par->batRstChr, batOcv) * wayStp;

          /*  Es werden 2 Fälle unterschieden: */
          /*    there are 2 different cases */
          if ((batEngDltMin > 0.0) && (batEngDltMax > 0.0)) {
            /*         %% konventionelles Bremsen + Rekuperieren */
            /*    conventional brakes + recuperation */
            /*  */
            /*  set change in energy to discretized integer values w/ ceil and */
            /*  floor. This also helps for easy looping */
            /*  Konventionelles Bremsen wird ebenfalls untersucht. */
            /*  Hier liegt eventuell noch Beschleunigungspotential, da diese */
            /*  Zustandswechsel u.U. ausgeschlossen werden können. */
            /*  NOTE: u.U. = unter Ümständen = circumstances permitting */
            /*    convetional breaks also investigated. An accelerating potential */
            /*    is still possible, as these states can be excluded */
            /*    (circumstances permitting)  <- ??? not sure what above means */
            /*  */
            /*    so if both min and max changes in battery energy are */
            /*    increasing, then set the delta min to zero */
            batEngDltMinInx = 0.0;
            batEngDltMaxInx = muDoubleScalarFloor(batEngDltMax / batEngStp);
          } else {
            batEngDltMinInx = muDoubleScalarCeil(batEngDltMin / batEngStp);
            batEngDltMaxInx = muDoubleScalarFloor(batEngDltMax / batEngStp);
          }
        } else {
          batEngDltMinInx = 0.0;
          batEngDltMaxInx = 0.0;
        }

        /*  you got a larger min chnage and a max change, you're out of bounds. Leave */
        /*  the function */
        if (batEngDltMaxInx < batEngDltMinInx) {
        } else {
          /* % Schleife über alle Elektromotormomente */
          /*    now loop through all the electric-motor torques */
          i18 = (int32_T)(batEngDltMaxInx + (1.0 - batEngDltMinInx));
          emlrtForLoopVectorCheckR2012b(batEngDltMinInx, 1.0, batEngDltMaxInx,
            mxDOUBLE_CLASS, i18, &o_emlrtRTEI, sp);
          k = 0;
          while (k <= i18 - 1) {
            batEngDlt = (batEngDltMinInx + (real_T)k) * batEngStp;

            /*  open circuit voltage over each iteration */
            batOcv = (batEng + batEngDlt) * par->batOcvCof_batEng[0] +
              par->batOcvCof_batEng[1];

            /*           Skalar für die Batterieleistung in W */
            /*           Skalar Krafstoffkraft in N */
            /*             FUNCTION CALL */
            /*          Skalar für die Wegschrittweite in m, */
            /*           Skalar - vehicular velocity */
            /*        Nebenverbraucherlast */
            /*           Skalar - battery open circuit voltage */
            /*       Skalar - Batterieenergie�nderung, */
            /*           Skalar - crankshaft speed at given path_idx */
            /*           Skalar - crankshaft torque at given path_idx */
            /*        Skalar - min ICE torque allowed */
            /*        Skalar - max ICE torque */
            /*               struct der Fahrzeugparameter */
            st.site = &d_emlrtRSI;

            /*   Skalar für die Batterieleistung */
            /*       Skalar Kraftstoffkraft */
            /*      Skalar für die Wegschrittweite in m */
            /*          vehicular velocity */
            /*    Nebenverbraucherlast */
            /*       Skalar - battery open circuit voltage */
            /*   Skalar - Batterieenergieänderung */
            /*       Skalar - crankshaft speed at given path_idx */
            /*       Skalar - crankshaft torque at given path_idx */
            /*    Skalar - min ICE torque allowed */
            /*    Skalar - max ICE torque */
            /*           struct der Fahrzeugparameter */
            /*  */
            /* FULENGCLC Calculating fuel consumption */
            /*  Erstellungsdatum der ersten Version 04.09.2015 - Stephan Uebel */
            /*  */
            /*  Diese Funktion berechnet den Kraftstoffverbrauch für einen gegebenen */
            /*  Wegschritt der kinetischen Energie, der Batterieenergie und des */
            /*  Antriebsstrangzustands über dem Weg. */
            /*    this function calculates fuel consumption for a given route step of */
            /*    KE, the battery energy, and drivetrain state of the current path_idx */
            /*  */
            /*  Version vom 17.02.2016 : Rotationsmassen vernachlässigt */
            /*                            ^^ neglected rotatary masses */
            /*  */
            /*  Version vom 25.05.2016: Zero-Order-Hold (keine mittlere Geschwindigkeit) */
            /*  */
            /*  version from 1.06.2016 - removed crsTrq calulations - they are already */
            /*  done in parent function (clcPMP_olHyb_tmp) and do not change w/ each */
            /*  iteration, making the caluclation here unnecessary */
            /* % Initialisieren der Ausgabe der Funktion */
            /*    initializing function output */
            /*    Skalar - electric battery power (W) */
            fulFrc = rtInf;

            /*    Skalar - fuel force intialization (N) */
            /* % Batterie */
            /*  Batterieenergieänderung über dem Weg (Batteriekraft) */
            /*    Change in battery energy over the path_idx way (ie battery power) */
            batFrc = batEngDlt / wayStp;

            /*  Fallunterscheidung, ob Batterie geladen oder entladen wird */
            /*    Case analysis - check if battery is charging or discharging. Set */
            /*    resistance accordingly */
            /*  elektrische Leistung des Elektromotors */
            /*    electric power from electric motor - DERIVATION? dunno */
            /*  innere Batterieleistung / internal batt power */
            /* dissipat. Leist. / dissipated */
            if (batFrc < 0.0) {
              b_batFrc = par->batRstDch;
            } else {
              b_batFrc = par->batRstChr;
            }

            batPwr = (-batFrc * vehVel - batFrc * batFrc * (vehVel * vehVel) /
                      (batOcv * batOcv) * b_batFrc) - batPwrAux;

            /*           Nebenverbrauchlast / auxiliary power */
            /* % Elektromotor */
            /*  Ermitteln des Kurbelwellenmoments durch EM aus Batterieleistung */
            /*    determine crankshaft torque cauesd by EM's battery power */
            /*        switching out codegen_interp2 for lininterp2-just might work! */
            /*  */
            b_st.site = &k_emlrtRSI;
            emoTrq = codegen_interp2(&b_st, par->emoSpdMgd, par->emoPwrMgd,
              par->emoTrq_emoSpd_emoPwr, crsSpd, batPwr);

            /*  emoTrq = lininterp2(par.emoSpdMgd(1,:), par.emoPwrMgd(:,1),... */
            /*      par.emoTrq_emoSpd_emoPwr',crsSpd,emoPwrEle); */
            if (muDoubleScalarIsInf(emoTrq)) {
            } else {
              /*  Grenzen des Elektromotors müssen hier nicht überprüft werden, da die */
              /*  Ladungsdeltas schon so gewählt wurden, dass das maximale Motormoment */
              /*  nicht überstiegen wird. */
              /*    Electric motor limits need not be checked here, since the charge deltas */
              /*    have been chosen so that the max torque is not exceeded. */
              /* % Verbrennungsmotor */
              /*  Ermitteln des Kurbelwellenmoments durch den Verbrennungsmotor */
              /*    Determining the crankshaft moment from the ICE */
              iceTrq = crsTrq - emoTrq;

              /*  Wenn das Verbrennungsmotormoment kleiner als das minimale */
              /*  Moment ist, ist dieser in der Schubabschaltung. Das */
              /*  verbleibende Moment liefern die Bremsen */
              /*    If engine torque is less than the min torque, fuel is cut. The */
              /*    remaining torque is deliver the brakes. */
              if (iceTrq < iceTrqMin) {
                fulPwr = 0.0;
              } else if (iceTrq > iceTrqMax) {
                fulPwr = rtInf;
              } else {
                /*  replacing another coden_interp2 */
                b_st.site = &l_emlrtRSI;
                fulPwr = codegen_interp2(&b_st, par->iceSpdMgd, par->iceTrqMgd,
                  par->iceFulPwr_iceSpd_iceTrq, crsSpd, iceTrq);

                /*      fulPwr = lininterp2(par.iceSpdMgd(1,:), par.iceTrqMgd(:,1), ... */
                /*          par.iceFulPwr_iceSpd_iceTrq', crsSpd, iceTrq); */
              }

              /*  Berechnen der Kraftstoffkraft */
              /*    calculate fuel force */
              fulFrc = fulPwr / vehVel;

              /*  Berechnen der Kraftstoffvolumenänderung */
              /*  caluclate change in fuel volume - energy, no? */
              /* % Ende der Funktion */
            }

            /*       FUNCTION CALL */
            /*           Skalar - Batterieklemmleistung */
            /*           Skalar - mittlere Geschwindigkeit im Intervall */
            /*    Skalar - Entladewiderstand */
            /*    Skalar - Ladewiderstand */
            /*            Skalar - battery open circuit voltage */
            batFrc = batFrcClc_tmp(batPwr, vehVel, par->batRstDch,
              par->batRstChr, batOcv);

            /*     %% Hamiltonfunktion bestimmen */
            /*    determine the hamiltonian */
            /*  Eq (29b) */
            crsSpdVec[0] = (fulFrc + psiBatEng * batFrc) + psiTim / vehVel;
            ixstart = 1;
            mtmp = crsSpdVec[0];
            itmp = 1;
            if (muDoubleScalarIsNaN(crsSpdVec[0])) {
              ix = 2;
              exitg1 = false;
              while ((!exitg1) && (ix < 3)) {
                ixstart = 2;
                if (!muDoubleScalarIsNaN(*cosHamMin)) {
                  mtmp = *cosHamMin;
                  itmp = 2;
                  exitg1 = true;
                } else {
                  ix = 3;
                }
              }
            }

            if ((ixstart < 2) && (*cosHamMin < mtmp)) {
              mtmp = *cosHamMin;
              itmp = 2;
            }

            *cosHamMin = mtmp;

            /*  Wenn der aktuelle Punkt besser ist, als der in cosHamMin */
            /*  gespeicherte Wert, werden die Ausgabegrößen neu beschrieben. */
            /*    if the current point is better than the stored cosHamMin value, */
            /*    then the output values are rewritten (selected prev. value is = 2) */
            if (itmp == 1) {
              *batFrcOut = batFrc;
              *fulFrcOut = fulFrc;
            }

            k++;
            if (*emlrtBreakCheckR2012bFlagVar != 0) {
              emlrtBreakCheckR2012b(sp);
            }
          }
        }
      }
    }
  }

  /*  end of function */
}
コード例 #10
0
/* Function Definitions */
real_T compressedindex(const emlrtStack *sp, const emxArray_real_T *x, const
  emxArray_real_T *ctable, real_T range, real_T dims)
{
  real_T y;
  real_T py;
  int32_T i;
  int32_T i2;
  int32_T i3;
  real_T d4;
  int32_T k;
  int32_T vlen;
  boolean_T p;
  boolean_T b_p;
  int32_T exitg1;
  int32_T b_k;
  emlrtStack st;
  emlrtStack b_st;
  emlrtStack c_st;
  emlrtStack d_st;
  emlrtStack e_st;
  st.prev = sp;
  st.tls = sp->tls;
  b_st.prev = &st;
  b_st.tls = st.tls;
  c_st.prev = &b_st;
  c_st.tls = b_st.tls;
  d_st.prev = &c_st;
  d_st.tls = c_st.tls;
  e_st.prev = &d_st;
  e_st.tls = d_st.tls;

  /* for a  given vector, find its index within the transition space matrix */
  /* workspace; */
  py = 1.0;
  range++;
  emlrtForLoopVectorCheckR2012b(1.0, 1.0, dims - 2.0, mxDOUBLE_CLASS, (int32_T)
    (dims - 2.0), (emlrtRTEInfo *)&o_emlrtRTEI, sp);
  i = 0;
  while (i <= (int32_T)(dims - 2.0) - 1) {
    i2 = x->size[1];
    if (!((i + 1 >= 1) && (i + 1 <= i2))) {
      emlrtDynamicBoundsCheckR2012b(i + 1, 1, i2, (emlrtBCInfo *)&bb_emlrtBCI,
        sp);
    }

    if (x->data[i] == 0.0) {
    } else {
      i2 = x->size[1];
      if (!((i + 1 >= 1) && (i + 1 <= i2))) {
        emlrtDynamicBoundsCheckR2012b(i + 1, 1, i2, (emlrtBCInfo *)&cb_emlrtBCI,
          sp);
      }

      d4 = range - (x->data[i] - 1.0);
      if (d4 > range) {
        i3 = 1;
        i2 = 1;
      } else {
        if (d4 != (int32_T)muDoubleScalarFloor(d4)) {
          emlrtIntegerCheckR2012b(d4, (emlrtDCInfo *)&k_emlrtDCI, sp);
        }

        i2 = ctable->size[0];
        i3 = (int32_T)d4;
        if (!((i3 >= 1) && (i3 <= i2))) {
          emlrtDynamicBoundsCheckR2012b(i3, 1, i2, (emlrtBCInfo *)&x_emlrtBCI,
            sp);
        }

        if (range != (int32_T)muDoubleScalarFloor(range)) {
          emlrtIntegerCheckR2012b(range, (emlrtDCInfo *)&k_emlrtDCI, sp);
        }

        i2 = ctable->size[0];
        k = (int32_T)range;
        if (!((k >= 1) && (k <= i2))) {
          emlrtDynamicBoundsCheckR2012b(k, 1, i2, (emlrtBCInfo *)&x_emlrtBCI, sp);
        }

        i2 = k + 1;
      }

      st.site = &l_emlrtRSI;
      d4 = dims - (1.0 + (real_T)i);
      if (d4 != (int32_T)muDoubleScalarFloor(d4)) {
        emlrtIntegerCheckR2012b(d4, (emlrtDCInfo *)&l_emlrtDCI, &st);
      }

      k = ctable->size[1];
      vlen = (int32_T)d4;
      if (!((vlen >= 1) && (vlen <= k))) {
        emlrtDynamicBoundsCheckR2012b(vlen, 1, k, (emlrtBCInfo *)&y_emlrtBCI,
          &st);
      }

      b_st.site = &m_emlrtRSI;
      if ((i2 - i3 == 1) || (i2 - i3 != 1)) {
        p = true;
      } else {
        p = false;
      }

      if (p) {
      } else {
        emlrtErrorWithMessageIdR2012b(&b_st, &p_emlrtRTEI,
          "Coder:toolbox:autoDimIncompatibility", 0);
      }

      p = false;
      b_p = false;
      k = 0;
      do {
        exitg1 = 0;
        if (k < 2) {
          if (k + 1 <= 1) {
            b_k = i2 - i3;
          } else {
            b_k = 1;
          }

          if (b_k != 0) {
            exitg1 = 1;
          } else {
            k++;
          }
        } else {
          b_p = true;
          exitg1 = 1;
        }
      } while (exitg1 == 0);

      if (!b_p) {
      } else {
        p = true;
      }

      if (!p) {
      } else {
        emlrtErrorWithMessageIdR2012b(&b_st, &q_emlrtRTEI,
          "Coder:toolbox:UnsupportedSpecialEmpty", 0);
      }

      c_st.site = &n_emlrtRSI;
      if (i2 - i3 == 0) {
        y = 0.0;
      } else {
        vlen = i2 - i3;
        y = ctable->data[(i3 + ctable->size[0] * ((int32_T)(dims - (1.0 +
          (real_T)i)) - 1)) - 1];
        d_st.site = &o_emlrtRSI;
        if ((!(2 > i2 - i3)) && (i2 - i3 > 2147483646)) {
          e_st.site = &j_emlrtRSI;
          check_forloop_overflow_error(&e_st);
        }

        for (k = 0; k + 2 <= vlen; k++) {
          y += ctable->data[(i3 + k) + ctable->size[0] * ((int32_T)(dims - (1.0
            + (real_T)i)) - 1)];
        }
      }

      py += y;
      i2 = x->size[1];
      if (!((i + 1 >= 1) && (i + 1 <= i2))) {
        emlrtDynamicBoundsCheckR2012b(i + 1, 1, i2, (emlrtBCInfo *)&db_emlrtBCI,
          sp);
      }

      range -= x->data[i];
    }

    i++;
    if (*emlrtBreakCheckR2012bFlagVar != 0) {
      emlrtBreakCheckR2012b(sp);
    }
  }

  i2 = x->size[1];
  i3 = x->size[1] - 1;
  if (!((i3 >= 1) && (i3 <= i2))) {
    emlrtDynamicBoundsCheckR2012b(i3, 1, i2, (emlrtBCInfo *)&ab_emlrtBCI, sp);
  }

  return py + x->data[i3 - 1];
}
コード例 #11
0
/* Function Definitions */
void occflow(const emlrtStack *sp, const emxArray_real_T *cgridvec,
             emxArray_real_T *cgridvecprev, emxArray_real_T *context, const
             emxArray_real_T *nei_idx, const emxArray_real_T *nei_weight, real_T
             nei_filter_n, const emxArray_real_T *nei4u_idx, const
             emxArray_real_T *nei4u_weight, real_T nei4u_filter_n, real_T occval,
             real_T minthreshold, real_T maxthreshold, real_T reinitval, real_T
             intensifyrate, real_T nocc_attenuaterate, real_T
             unknown_attenuaterate, real_T sigm_coef, real_T
             do_attenuation_first, emxArray_real_T *predvec, emxArray_real_T
             *maxvec)
{
  emxArray_boolean_T *x;
  int32_T ix;
  int32_T idx;
  emxArray_boolean_T *r0;
  int32_T nx;
  emxArray_int32_T *ii;
  boolean_T overflow;
  int32_T iy;
  boolean_T exitg6;
  boolean_T guard3 = false;
  boolean_T guard4 = false;
  emxArray_real_T *newlyoccidx;
  boolean_T exitg5;
  boolean_T guard2 = false;
  boolean_T b_guard3 = false;
  emxArray_real_T *occidx;
  boolean_T exitg4;
  boolean_T guard1 = false;
  boolean_T b_guard2 = false;
  emxArray_real_T *noccidx;
  int32_T nrnocc;
  int32_T j;
  emxArray_real_T *curr_col;
  emxArray_real_T *updt_col;
  emxArray_real_T *z;
  int32_T coccidx;
  boolean_T b_guard1 = false;
  int32_T ixstart;
  int32_T n;
  real_T mtmp;
  boolean_T exitg3;
  int32_T varargin_1[2];
  int32_T k;
  int32_T iv3[2];
  int32_T iv4[2];
  real_T d0;
  emxArray_real_T *tempcontext;
  emxArray_real_T *b_nei4u_weight;
  real_T sumval;
  int32_T m;
  int32_T iv5[2];
  boolean_T b_ix;
  boolean_T exitg2;
  boolean_T b_ixstart;
  int32_T varargin_2[2];
  boolean_T p;
  boolean_T exitg1;
  emlrtStack st;
  emlrtStack b_st;
  emlrtStack c_st;
  emlrtStack d_st;
  emlrtStack e_st;
  emlrtStack f_st;
  (void)unknown_attenuaterate;
  st.prev = sp;
  st.tls = sp->tls;
  b_st.prev = &st;
  b_st.tls = st.tls;
  c_st.prev = &b_st;
  c_st.tls = b_st.tls;
  d_st.prev = &c_st;
  d_st.tls = c_st.tls;
  e_st.prev = &d_st;
  e_st.tls = d_st.tls;
  f_st.prev = &e_st;
  f_st.tls = e_st.tls;
  emlrtHeapReferenceStackEnterFcnR2012b(sp);
  emxInit_boolean_T(sp, &x, 1, &emlrtRTEI, true);

  /*  */
  /*  Occupancy flow with vector input  */
  /*  */
  /*  Compute indices first  */
  ix = x->size[0];
  x->size[0] = cgridvec->size[0];
  emxEnsureCapacity(sp, (emxArray__common *)x, ix, (int32_T)sizeof(boolean_T),
                    &emlrtRTEI);
  idx = cgridvec->size[0];
  for (ix = 0; ix < idx; ix++) {
    x->data[ix] = (cgridvec->data[ix] == occval);
  }

  emxInit_boolean_T(sp, &r0, 1, &emlrtRTEI, true);
  ix = r0->size[0];
  r0->size[0] = cgridvecprev->size[0];
  emxEnsureCapacity(sp, (emxArray__common *)r0, ix, (int32_T)sizeof(boolean_T),
                    &emlrtRTEI);
  idx = cgridvecprev->size[0];
  for (ix = 0; ix < idx; ix++) {
    r0->data[ix] = (cgridvecprev->data[ix] != occval);
  }

  ix = x->size[0];
  nx = r0->size[0];
  if (ix != nx) {
    emlrtSizeEqCheck1DR2012b(ix, nx, &emlrtECI, sp);
  }

  st.site = &emlrtRSI;
  ix = x->size[0];
  emxEnsureCapacity(&st, (emxArray__common *)x, ix, (int32_T)sizeof(boolean_T),
                    &emlrtRTEI);
  idx = x->size[0];
  for (ix = 0; ix < idx; ix++) {
    x->data[ix] = (x->data[ix] && r0->data[ix]);
  }

  emxFree_boolean_T(&r0);
  emxInit_int32_T(&st, &ii, 1, &l_emlrtRTEI, true);
  b_st.site = &i_emlrtRSI;
  nx = x->size[0];
  idx = 0;
  ix = ii->size[0];
  ii->size[0] = x->size[0];
  emxEnsureCapacity(&b_st, (emxArray__common *)ii, ix, (int32_T)sizeof(int32_T),
                    &emlrtRTEI);
  c_st.site = &j_emlrtRSI;
  if (1 > x->size[0]) {
    overflow = false;
  } else {
    overflow = (x->size[0] > 2147483646);
  }

  if (overflow) {
    d_st.site = &l_emlrtRSI;
    check_forloop_overflow_error(&d_st);
  }

  iy = 1;
  exitg6 = false;
  while ((!exitg6) && (iy <= nx)) {
    guard3 = false;
    if (x->data[iy - 1]) {
      idx++;
      ii->data[idx - 1] = iy;
      if (idx >= nx) {
        exitg6 = true;
      } else {
        guard3 = true;
      }
    } else {
      guard3 = true;
    }

    if (guard3) {
      iy++;
    }
  }

  if (idx <= x->size[0]) {
  } else {
    emlrtErrorWithMessageIdR2012b(&b_st, &s_emlrtRTEI,
      "Coder:builtins:AssertionFailed", 0);
  }

  if (x->size[0] == 1) {
    if (idx == 0) {
      ix = ii->size[0];
      ii->size[0] = 0;
      emxEnsureCapacity(&b_st, (emxArray__common *)ii, ix, (int32_T)sizeof
                        (int32_T), &emlrtRTEI);
    }
  } else {
    if (1 > idx) {
      ix = 0;
    } else {
      ix = idx;
    }

    c_st.site = &k_emlrtRSI;
    overflow = !(ii->size[0] != 1);
    guard4 = false;
    if (overflow) {
      overflow = false;
      if (ix != 1) {
        overflow = true;
      }

      if (overflow) {
        overflow = true;
      } else {
        guard4 = true;
      }
    } else {
      guard4 = true;
    }

    if (guard4) {
      overflow = false;
    }

    d_st.site = &m_emlrtRSI;
    if (!overflow) {
    } else {
      emlrtErrorWithMessageIdR2012b(&d_st, &t_emlrtRTEI,
        "Coder:FE:PotentialVectorVector", 0);
    }

    nx = ii->size[0];
    ii->size[0] = ix;
    emxEnsureCapacity(&b_st, (emxArray__common *)ii, nx, (int32_T)sizeof(int32_T),
                      &c_emlrtRTEI);
  }

  emxInit_real_T(&b_st, &newlyoccidx, 1, &f_emlrtRTEI, true);
  ix = newlyoccidx->size[0];
  newlyoccidx->size[0] = ii->size[0];
  emxEnsureCapacity(&st, (emxArray__common *)newlyoccidx, ix, (int32_T)sizeof
                    (real_T), &emlrtRTEI);
  idx = ii->size[0];
  for (ix = 0; ix < idx; ix++) {
    newlyoccidx->data[ix] = ii->data[ix];
  }

  st.site = &b_emlrtRSI;
  ix = x->size[0];
  x->size[0] = cgridvec->size[0];
  emxEnsureCapacity(&st, (emxArray__common *)x, ix, (int32_T)sizeof(boolean_T),
                    &emlrtRTEI);
  idx = cgridvec->size[0];
  for (ix = 0; ix < idx; ix++) {
    x->data[ix] = (cgridvec->data[ix] == occval);
  }

  b_st.site = &i_emlrtRSI;
  nx = x->size[0];
  idx = 0;
  ix = ii->size[0];
  ii->size[0] = x->size[0];
  emxEnsureCapacity(&b_st, (emxArray__common *)ii, ix, (int32_T)sizeof(int32_T),
                    &emlrtRTEI);
  c_st.site = &j_emlrtRSI;
  if (1 > x->size[0]) {
    overflow = false;
  } else {
    overflow = (x->size[0] > 2147483646);
  }

  if (overflow) {
    d_st.site = &l_emlrtRSI;
    check_forloop_overflow_error(&d_st);
  }

  iy = 1;
  exitg5 = false;
  while ((!exitg5) && (iy <= nx)) {
    guard2 = false;
    if (x->data[iy - 1]) {
      idx++;
      ii->data[idx - 1] = iy;
      if (idx >= nx) {
        exitg5 = true;
      } else {
        guard2 = true;
      }
    } else {
      guard2 = true;
    }

    if (guard2) {
      iy++;
    }
  }

  if (idx <= x->size[0]) {
  } else {
    emlrtErrorWithMessageIdR2012b(&b_st, &s_emlrtRTEI,
      "Coder:builtins:AssertionFailed", 0);
  }

  if (x->size[0] == 1) {
    if (idx == 0) {
      ix = ii->size[0];
      ii->size[0] = 0;
      emxEnsureCapacity(&b_st, (emxArray__common *)ii, ix, (int32_T)sizeof
                        (int32_T), &emlrtRTEI);
    }
  } else {
    if (1 > idx) {
      ix = 0;
    } else {
      ix = idx;
    }

    c_st.site = &k_emlrtRSI;
    overflow = !(ii->size[0] != 1);
    b_guard3 = false;
    if (overflow) {
      overflow = false;
      if (ix != 1) {
        overflow = true;
      }

      if (overflow) {
        overflow = true;
      } else {
        b_guard3 = true;
      }
    } else {
      b_guard3 = true;
    }

    if (b_guard3) {
      overflow = false;
    }

    d_st.site = &m_emlrtRSI;
    if (!overflow) {
    } else {
      emlrtErrorWithMessageIdR2012b(&d_st, &t_emlrtRTEI,
        "Coder:FE:PotentialVectorVector", 0);
    }

    nx = ii->size[0];
    ii->size[0] = ix;
    emxEnsureCapacity(&b_st, (emxArray__common *)ii, nx, (int32_T)sizeof(int32_T),
                      &c_emlrtRTEI);
  }

  emxInit_real_T(&b_st, &occidx, 1, &g_emlrtRTEI, true);
  ix = occidx->size[0];
  occidx->size[0] = ii->size[0];
  emxEnsureCapacity(&st, (emxArray__common *)occidx, ix, (int32_T)sizeof(real_T),
                    &emlrtRTEI);
  idx = ii->size[0];
  for (ix = 0; ix < idx; ix++) {
    occidx->data[ix] = ii->data[ix];
  }

  st.site = &c_emlrtRSI;
  ix = x->size[0];
  x->size[0] = cgridvec->size[0];
  emxEnsureCapacity(&st, (emxArray__common *)x, ix, (int32_T)sizeof(boolean_T),
                    &emlrtRTEI);
  idx = cgridvec->size[0];
  for (ix = 0; ix < idx; ix++) {
    x->data[ix] = (cgridvec->data[ix] != occval);
  }

  b_st.site = &i_emlrtRSI;
  nx = x->size[0];
  idx = 0;
  ix = ii->size[0];
  ii->size[0] = x->size[0];
  emxEnsureCapacity(&b_st, (emxArray__common *)ii, ix, (int32_T)sizeof(int32_T),
                    &emlrtRTEI);
  c_st.site = &j_emlrtRSI;
  if (1 > x->size[0]) {
    overflow = false;
  } else {
    overflow = (x->size[0] > 2147483646);
  }

  if (overflow) {
    d_st.site = &l_emlrtRSI;
    check_forloop_overflow_error(&d_st);
  }

  iy = 1;
  exitg4 = false;
  while ((!exitg4) && (iy <= nx)) {
    guard1 = false;
    if (x->data[iy - 1]) {
      idx++;
      ii->data[idx - 1] = iy;
      if (idx >= nx) {
        exitg4 = true;
      } else {
        guard1 = true;
      }
    } else {
      guard1 = true;
    }

    if (guard1) {
      iy++;
    }
  }

  if (idx <= x->size[0]) {
  } else {
    emlrtErrorWithMessageIdR2012b(&b_st, &s_emlrtRTEI,
      "Coder:builtins:AssertionFailed", 0);
  }

  if (x->size[0] == 1) {
    if (idx == 0) {
      ix = ii->size[0];
      ii->size[0] = 0;
      emxEnsureCapacity(&b_st, (emxArray__common *)ii, ix, (int32_T)sizeof
                        (int32_T), &emlrtRTEI);
    }
  } else {
    if (1 > idx) {
      ix = 0;
    } else {
      ix = idx;
    }

    c_st.site = &k_emlrtRSI;
    overflow = !(ii->size[0] != 1);
    b_guard2 = false;
    if (overflow) {
      overflow = false;
      if (ix != 1) {
        overflow = true;
      }

      if (overflow) {
        overflow = true;
      } else {
        b_guard2 = true;
      }
    } else {
      b_guard2 = true;
    }

    if (b_guard2) {
      overflow = false;
    }

    d_st.site = &m_emlrtRSI;
    if (!overflow) {
    } else {
      emlrtErrorWithMessageIdR2012b(&d_st, &t_emlrtRTEI,
        "Coder:FE:PotentialVectorVector", 0);
    }

    nx = ii->size[0];
    ii->size[0] = ix;
    emxEnsureCapacity(&b_st, (emxArray__common *)ii, nx, (int32_T)sizeof(int32_T),
                      &c_emlrtRTEI);
  }

  emxFree_boolean_T(&x);
  emxInit_real_T(&b_st, &noccidx, 1, &h_emlrtRTEI, true);
  ix = noccidx->size[0];
  noccidx->size[0] = ii->size[0];
  emxEnsureCapacity(&st, (emxArray__common *)noccidx, ix, (int32_T)sizeof(real_T),
                    &emlrtRTEI);
  idx = ii->size[0];
  for (ix = 0; ix < idx; ix++) {
    noccidx->data[ix] = ii->data[ix];
  }

  nrnocc = noccidx->size[0] - 1;

  /*  1 Intensify newly occupied cells  */
  j = 0;
  emxInit_real_T1(sp, &curr_col, 2, &i_emlrtRTEI, true);
  emxInit_real_T1(sp, &updt_col, 2, &j_emlrtRTEI, true);
  emxInit_real_T1(sp, &z, 2, &emlrtRTEI, true);
  while (j <= newlyoccidx->size[0] - 1) {
    /*  For newly occupied cells  */
    ix = newlyoccidx->size[0];
    if (!((j + 1 >= 1) && (j + 1 <= ix))) {
      emlrtDynamicBoundsCheckR2012b(j + 1, 1, ix, &eb_emlrtBCI, sp);
    }

    coccidx = (int32_T)newlyoccidx->data[j] - 1;
    ix = context->size[0];
    nx = (int32_T)newlyoccidx->data[j];
    if (!((nx >= 1) && (nx <= ix))) {
      emlrtDynamicBoundsCheckR2012b(nx, 1, ix, &emlrtBCI, sp);
    }

    st.site = &d_emlrtRSI;
    b_st.site = &n_emlrtRSI;
    c_st.site = &o_emlrtRSI;
    ix = context->size[1];
    b_guard1 = false;
    if (ix == 1) {
      b_guard1 = true;
    } else {
      ix = context->size[1];
      if (ix != 1) {
        b_guard1 = true;
      } else {
        overflow = false;
      }
    }

    if (b_guard1) {
      overflow = true;
    }

    if (overflow) {
    } else {
      emlrtErrorWithMessageIdR2012b(&c_st, &u_emlrtRTEI,
        "Coder:toolbox:autoDimIncompatibility", 0);
    }

    ix = context->size[1];
    if (ix > 0) {
    } else {
      emlrtErrorWithMessageIdR2012b(&c_st, &v_emlrtRTEI,
        "Coder:toolbox:eml_min_or_max_varDimZero", 0);
    }

    d_st.site = &p_emlrtRSI;
    ixstart = 1;
    n = context->size[1];
    nx = (int32_T)newlyoccidx->data[j];
    mtmp = context->data[nx - 1];
    ix = context->size[1];
    if (ix > 1) {
      if (muDoubleScalarIsNaN(mtmp)) {
        e_st.site = &r_emlrtRSI;
        ix = context->size[1];
        if (2 > ix) {
          overflow = false;
        } else {
          ix = context->size[1];
          overflow = (ix > 2147483646);
        }

        if (overflow) {
          f_st.site = &l_emlrtRSI;
          check_forloop_overflow_error(&f_st);
        }

        ix = 2;
        exitg3 = false;
        while ((!exitg3) && (ix <= n)) {
          ixstart = ix;
          if (!muDoubleScalarIsNaN(context->data[coccidx + context->size[0] *
               (ix - 1)])) {
            mtmp = context->data[coccidx + context->size[0] * (ix - 1)];
            exitg3 = true;
          } else {
            ix++;
          }
        }
      }

      ix = context->size[1];
      if (ixstart < ix) {
        e_st.site = &q_emlrtRSI;
        ix = context->size[1];
        if (ixstart + 1 > ix) {
          overflow = false;
        } else {
          ix = context->size[1];
          overflow = (ix > 2147483646);
        }

        if (overflow) {
          f_st.site = &l_emlrtRSI;
          check_forloop_overflow_error(&f_st);
        }

        for (ix = ixstart + 1; ix <= n; ix++) {
          if (context->data[coccidx + context->size[0] * (ix - 1)] > mtmp) {
            mtmp = context->data[coccidx + context->size[0] * (ix - 1)];
          }
        }
      }
    }

    if (mtmp < minthreshold) {
      idx = context->size[1];
      iy = context->size[0];
      nx = (int32_T)newlyoccidx->data[j];
      if (!((nx >= 1) && (nx <= iy))) {
        emlrtDynamicBoundsCheckR2012b(nx, 1, iy, &b_emlrtBCI, sp);
      }

      for (ix = 0; ix < idx; ix++) {
        context->data[(nx + context->size[0] * ix) - 1] = reinitval;
      }

      /*  Reinitialize */
    } else {
      idx = context->size[1];
      nx = (int32_T)newlyoccidx->data[j];
      ix = updt_col->size[0] * updt_col->size[1];
      updt_col->size[0] = 1;
      updt_col->size[1] = idx;
      emxEnsureCapacity(sp, (emxArray__common *)updt_col, ix, (int32_T)sizeof
                        (real_T), &emlrtRTEI);
      for (ix = 0; ix < idx; ix++) {
        updt_col->data[updt_col->size[0] * ix] = intensifyrate * context->data
          [(nx + context->size[0] * ix) - 1];
      }

      /*  Intensify */
      st.site = &e_emlrtRSI;
      b_st.site = &s_emlrtRSI;
      c_st.site = &o_emlrtRSI;
      d_st.site = &t_emlrtRSI;
      ix = curr_col->size[0] * curr_col->size[1];
      curr_col->size[0] = 1;
      curr_col->size[1] = updt_col->size[1];
      emxEnsureCapacity(&d_st, (emxArray__common *)curr_col, ix, (int32_T)sizeof
                        (real_T), &emlrtRTEI);
      idx = updt_col->size[0] * updt_col->size[1];
      for (ix = 0; ix < idx; ix++) {
        curr_col->data[ix] = updt_col->data[ix];
      }

      e_st.site = &u_emlrtRSI;
      for (ix = 0; ix < 2; ix++) {
        varargin_1[ix] = updt_col->size[ix];
      }

      ix = z->size[0] * z->size[1];
      z->size[0] = 1;
      z->size[1] = updt_col->size[1];
      emxEnsureCapacity(&e_st, (emxArray__common *)z, ix, (int32_T)sizeof(real_T),
                        &d_emlrtRTEI);
      iy = updt_col->size[1];
      ix = updt_col->size[0] * updt_col->size[1];
      updt_col->size[0] = 1;
      updt_col->size[1] = varargin_1[1];
      emxEnsureCapacity(&e_st, (emxArray__common *)updt_col, ix, (int32_T)sizeof
                        (real_T), &e_emlrtRTEI);
      if (dimagree(updt_col, curr_col)) {
      } else {
        emlrtErrorWithMessageIdR2012b(&e_st, &x_emlrtRTEI, "MATLAB:dimagree", 0);
      }

      e_st.site = &v_emlrtRSI;
      if (1 > z->size[1]) {
        overflow = false;
      } else {
        overflow = (z->size[1] > 2147483646);
      }

      if (overflow) {
        f_st.site = &l_emlrtRSI;
        check_forloop_overflow_error(&f_st);
      }

      for (k = 0; k + 1 <= iy; k++) {
        updt_col->data[k] = muDoubleScalarMin(curr_col->data[k], maxthreshold);
      }

      /*  Max-thesholding */
      ix = context->size[0];
      nx = (int32_T)newlyoccidx->data[j];
      if (!((nx >= 1) && (nx <= ix))) {
        emlrtDynamicBoundsCheckR2012b(nx, 1, ix, &c_emlrtBCI, sp);
      }

      idx = context->size[1];
      ix = ii->size[0];
      ii->size[0] = idx;
      emxEnsureCapacity(sp, (emxArray__common *)ii, ix, (int32_T)sizeof(int32_T),
                        &emlrtRTEI);
      for (ix = 0; ix < idx; ix++) {
        ii->data[ix] = ix;
      }

      iv3[0] = 1;
      iv3[1] = ii->size[0];
      emlrtSubAssignSizeCheckR2012b(iv3, 2, *(int32_T (*)[2])updt_col->size, 2,
        &b_emlrtECI, sp);
      nx = (int32_T)newlyoccidx->data[j];
      idx = updt_col->size[1];
      for (ix = 0; ix < idx; ix++) {
        context->data[(nx + context->size[0] * ii->data[ix]) - 1] =
          updt_col->data[updt_col->size[0] * ix];
      }
    }

    j++;
    if (*emlrtBreakCheckR2012bFlagVar != 0) {
      emlrtBreakCheckR2012b(sp);
    }
  }

  emxFree_real_T(&z);

  /*  2 Attenuate unoccupied cells */
  if (do_attenuation_first == 1.0) {
    j = 0;
    while (j <= nrnocc) {
      /*  For unoccupied cells */
      ix = noccidx->size[0];
      nx = j + 1;
      if (!((nx >= 1) && (nx <= ix))) {
        emlrtDynamicBoundsCheckR2012b(nx, 1, ix, &d_emlrtBCI, sp);
      }

      ix = context->size[0];
      nx = (int32_T)noccidx->data[j];
      if (!((nx >= 1) && (nx <= ix))) {
        emlrtDynamicBoundsCheckR2012b(nx, 1, ix, &e_emlrtBCI, sp);
      }

      idx = context->size[1];
      iy = (int32_T)noccidx->data[j];
      ix = updt_col->size[0] * updt_col->size[1];
      updt_col->size[0] = 1;
      updt_col->size[1] = idx;
      emxEnsureCapacity(sp, (emxArray__common *)updt_col, ix, (int32_T)sizeof
                        (real_T), &emlrtRTEI);
      for (ix = 0; ix < idx; ix++) {
        updt_col->data[updt_col->size[0] * ix] = context->data[(iy +
          context->size[0] * ix) - 1] * nocc_attenuaterate;
      }

      /*  Attenuate */
      ix = context->size[0];
      nx = (int32_T)noccidx->data[j];
      if (!((nx >= 1) && (nx <= ix))) {
        emlrtDynamicBoundsCheckR2012b(nx, 1, ix, &f_emlrtBCI, sp);
      }

      idx = context->size[1];
      ix = ii->size[0];
      ii->size[0] = idx;
      emxEnsureCapacity(sp, (emxArray__common *)ii, ix, (int32_T)sizeof(int32_T),
                        &emlrtRTEI);
      for (ix = 0; ix < idx; ix++) {
        ii->data[ix] = ix;
      }

      iv4[0] = 1;
      iv4[1] = ii->size[0];
      emlrtSubAssignSizeCheckR2012b(iv4, 2, *(int32_T (*)[2])updt_col->size, 2,
        &c_emlrtECI, sp);
      iy = (int32_T)noccidx->data[j];
      idx = updt_col->size[1];
      for (ix = 0; ix < idx; ix++) {
        context->data[(iy + context->size[0] * ii->data[ix]) - 1] =
          updt_col->data[updt_col->size[0] * ix];
      }

      j++;
      if (*emlrtBreakCheckR2012bFlagVar != 0) {
        emlrtBreakCheckR2012b(sp);
      }
    }
  }

  /*  4 Propagation  */
  j = 0;
  while (j <= occidx->size[0] - 1) {
    /*  For occupied cells  */
    ix = occidx->size[0];
    if (!((j + 1 >= 1) && (j + 1 <= ix))) {
      emlrtDynamicBoundsCheckR2012b(j + 1, 1, ix, &bb_emlrtBCI, sp);
    }

    idx = context->size[1];
    ix = context->size[0];
    iy = (int32_T)occidx->data[j];
    if (!((iy >= 1) && (iy <= ix))) {
      emlrtDynamicBoundsCheckR2012b(iy, 1, ix, &g_emlrtBCI, sp);
    }

    ix = curr_col->size[0] * curr_col->size[1];
    curr_col->size[0] = 1;
    curr_col->size[1] = idx;
    emxEnsureCapacity(sp, (emxArray__common *)curr_col, ix, (int32_T)sizeof
                      (real_T), &emlrtRTEI);
    for (ix = 0; ix < idx; ix++) {
      curr_col->data[curr_col->size[0] * ix] = context->data[(iy + context->
        size[0] * ix) - 1];
    }

    ix = nei_idx->size[0];
    nx = (int32_T)occidx->data[j];
    if (!((nx >= 1) && (nx <= ix))) {
      emlrtDynamicBoundsCheckR2012b(nx, 1, ix, &h_emlrtBCI, sp);
    }

    ix = nei_weight->size[0];
    nx = (int32_T)occidx->data[j];
    if (!((nx >= 1) && (nx <= ix))) {
      emlrtDynamicBoundsCheckR2012b(nx, 1, ix, &i_emlrtBCI, sp);
    }

    emlrtForLoopVectorCheckR2012b(1.0, 1.0, nei_filter_n, mxDOUBLE_CLASS,
      (int32_T)nei_filter_n, &p_emlrtRTEI, sp);
    k = 0;
    while (k <= (int32_T)nei_filter_n - 1) {
      /*  For all neighbor cells  */
      ix = curr_col->size[1];
      nx = k + 1;
      if (!((nx >= 1) && (nx <= ix))) {
        emlrtDynamicBoundsCheckR2012b(nx, 1, ix, &j_emlrtBCI, sp);
      }

      ix = nei_idx->size[1];
      nx = k + 1;
      if (!((nx >= 1) && (nx <= ix))) {
        emlrtDynamicBoundsCheckR2012b(nx, 1, ix, &k_emlrtBCI, sp);
      }

      ix = nei_weight->size[1];
      nx = k + 1;
      if (!((nx >= 1) && (nx <= ix))) {
        emlrtDynamicBoundsCheckR2012b(nx, 1, ix, &l_emlrtBCI, sp);
      }

      iy = (int32_T)occidx->data[j];
      if (nei_idx->data[(iy + nei_idx->size[0] * k) - 1] != 0.0) {
        /*  If properly connected, propagate */
        iy = (int32_T)occidx->data[j];
        d0 = nei_idx->data[(iy + nei_idx->size[0] * k) - 1];
        if (d0 != (int32_T)muDoubleScalarFloor(d0)) {
          emlrtIntegerCheckR2012b(d0, &emlrtDCI, sp);
        }

        ix = context->size[0];
        nx = (int32_T)d0;
        if (!((nx >= 1) && (nx <= ix))) {
          emlrtDynamicBoundsCheckR2012b(nx, 1, ix, &m_emlrtBCI, sp);
        }

        ix = context->size[1];
        nx = k + 1;
        if (!((nx >= 1) && (nx <= ix))) {
          emlrtDynamicBoundsCheckR2012b(nx, 1, ix, &n_emlrtBCI, sp);
        }

        /*  Maximum value thresholding  */
        iy = (int32_T)occidx->data[j];
        idx = (int32_T)occidx->data[j];
        nx = (int32_T)occidx->data[j];
        ix = context->size[0];
        nx = (int32_T)nei_idx->data[(nx + nei_idx->size[0] * k) - 1];
        if (!((nx >= 1) && (nx <= ix))) {
          emlrtDynamicBoundsCheckR2012b(nx, 1, ix, &cb_emlrtBCI, sp);
        }

        ix = context->size[1];
        if (!((k + 1 >= 1) && (k + 1 <= ix))) {
          emlrtDynamicBoundsCheckR2012b(k + 1, 1, ix, &db_emlrtBCI, sp);
        }

        context->data[(nx + context->size[0] * k) - 1] = muDoubleScalarMax
          (context->data[((int32_T)nei_idx->data[(iy + nei_idx->size[0] * k) - 1]
                          + context->size[0] * k) - 1], muDoubleScalarMin
           (nei_weight->data[(idx + nei_weight->size[0] * k) - 1] *
            curr_col->data[k], maxthreshold));

        /*  Make sure current context propagation does not weaken the flow information */
      }

      k++;
      if (*emlrtBreakCheckR2012bFlagVar != 0) {
        emlrtBreakCheckR2012b(sp);
      }
    }

    j++;
    if (*emlrtBreakCheckR2012bFlagVar != 0) {
      emlrtBreakCheckR2012b(sp);
    }
  }

  emxFree_real_T(&occidx);
  emxInit_real_T1(sp, &tempcontext, 2, &k_emlrtRTEI, true);

  /*  5 Uncertainty in acceleration */
  ix = tempcontext->size[0] * tempcontext->size[1];
  tempcontext->size[0] = context->size[0];
  tempcontext->size[1] = context->size[1];
  emxEnsureCapacity(sp, (emxArray__common *)tempcontext, ix, (int32_T)sizeof
                    (real_T), &emlrtRTEI);
  idx = context->size[0] * context->size[1];
  for (ix = 0; ix < idx; ix++) {
    tempcontext->data[ix] = context->data[ix];
  }

  emlrtForLoopVectorCheckR2012b(1.0, 1.0, nei_filter_n, mxDOUBLE_CLASS, (int32_T)
    nei_filter_n, &q_emlrtRTEI, sp);
  j = 0;
  emxInit_real_T1(sp, &b_nei4u_weight, 2, &emlrtRTEI, true);
  while (j <= (int32_T)nei_filter_n - 1) {
    /*  For all context level */
    k = 0;
    while (k <= nei_idx->size[0] - 1) {
      /*  For all cells */
      sumval = 0.0;
      emlrtForLoopVectorCheckR2012b(1.0, 1.0, nei4u_filter_n, mxDOUBLE_CLASS,
        (int32_T)nei4u_filter_n, &r_emlrtRTEI, sp);
      m = 0;
      while (m <= (int32_T)nei4u_filter_n - 1) {
        ix = nei4u_idx->size[0];
        nx = k + 1;
        if (!((nx >= 1) && (nx <= ix))) {
          emlrtDynamicBoundsCheckR2012b(nx, 1, ix, &o_emlrtBCI, sp);
        }

        ix = nei4u_idx->size[1];
        nx = m + 1;
        if (!((nx >= 1) && (nx <= ix))) {
          emlrtDynamicBoundsCheckR2012b(nx, 1, ix, &p_emlrtBCI, sp);
        }

        ix = nei4u_weight->size[0];
        nx = k + 1;
        if (!((nx >= 1) && (nx <= ix))) {
          emlrtDynamicBoundsCheckR2012b(nx, 1, ix, &q_emlrtBCI, sp);
        }

        ix = nei4u_weight->size[1];
        nx = m + 1;
        if (!((nx >= 1) && (nx <= ix))) {
          emlrtDynamicBoundsCheckR2012b(nx, 1, ix, &r_emlrtBCI, sp);
        }

        idx = nei4u_weight->size[1];
        ix = nei4u_weight->size[0];
        nx = 1 + k;
        if (!((nx >= 1) && (nx <= ix))) {
          emlrtDynamicBoundsCheckR2012b(nx, 1, ix, &s_emlrtBCI, sp);
        }

        ix = b_nei4u_weight->size[0] * b_nei4u_weight->size[1];
        b_nei4u_weight->size[0] = 1;
        b_nei4u_weight->size[1] = idx;
        emxEnsureCapacity(sp, (emxArray__common *)b_nei4u_weight, ix, (int32_T)
                          sizeof(real_T), &emlrtRTEI);
        for (ix = 0; ix < idx; ix++) {
          b_nei4u_weight->data[b_nei4u_weight->size[0] * ix] =
            nei4u_weight->data[(nx + nei4u_weight->size[0] * ix) - 1];
        }

        st.site = &f_emlrtRSI;
        mtmp = sum(&st, b_nei4u_weight);
        if (nei4u_idx->data[k + nei4u_idx->size[0] * m] != 0.0) {
          d0 = nei4u_idx->data[k + nei4u_idx->size[0] * m];
          if (d0 != (int32_T)muDoubleScalarFloor(d0)) {
            emlrtIntegerCheckR2012b(d0, &b_emlrtDCI, sp);
          }

          ix = context->size[0];
          nx = (int32_T)d0;
          if (!((nx >= 1) && (nx <= ix))) {
            emlrtDynamicBoundsCheckR2012b(nx, 1, ix, &t_emlrtBCI, sp);
          }

          ix = context->size[1];
          nx = j + 1;
          if (!((nx >= 1) && (nx <= ix))) {
            emlrtDynamicBoundsCheckR2012b(nx, 1, ix, &u_emlrtBCI, sp);
          }

          sumval += nei4u_weight->data[k + nei4u_weight->size[0] * m] / mtmp *
            context->data[((int32_T)nei4u_idx->data[k + nei4u_idx->size[0] * m]
                           + context->size[0] * j) - 1];
        }

        m++;
        if (*emlrtBreakCheckR2012bFlagVar != 0) {
          emlrtBreakCheckR2012b(sp);
        }
      }

      ix = tempcontext->size[0];
      nx = 1 + k;
      if (!((nx >= 1) && (nx <= ix))) {
        emlrtDynamicBoundsCheckR2012b(nx, 1, ix, &y_emlrtBCI, sp);
      }

      ix = tempcontext->size[1];
      if (!((j + 1 >= 1) && (j + 1 <= ix))) {
        emlrtDynamicBoundsCheckR2012b(j + 1, 1, ix, &ab_emlrtBCI, sp);
      }

      tempcontext->data[(nx + tempcontext->size[0] * j) - 1] = sumval;
      k++;
      if (*emlrtBreakCheckR2012bFlagVar != 0) {
        emlrtBreakCheckR2012b(sp);
      }
    }

    j++;
    if (*emlrtBreakCheckR2012bFlagVar != 0) {
      emlrtBreakCheckR2012b(sp);
    }
  }

  emxFree_real_T(&b_nei4u_weight);
  ix = context->size[0] * context->size[1];
  context->size[0] = tempcontext->size[0];
  context->size[1] = tempcontext->size[1];
  emxEnsureCapacity(sp, (emxArray__common *)context, ix, (int32_T)sizeof(real_T),
                    &emlrtRTEI);
  idx = tempcontext->size[1];
  for (ix = 0; ix < idx; ix++) {
    iy = tempcontext->size[0];
    for (nx = 0; nx < iy; nx++) {
      context->data[nx + context->size[0] * ix] = tempcontext->data[nx +
        tempcontext->size[0] * ix];
    }
  }

  if (do_attenuation_first == 0.0) {
    /*  2 Attenuate unoccupied cells */
    j = 0;
    while (j <= nrnocc) {
      /*  For unoccupied cells, attenuate */
      ix = noccidx->size[0];
      nx = j + 1;
      if (!((nx >= 1) && (nx <= ix))) {
        emlrtDynamicBoundsCheckR2012b(nx, 1, ix, &v_emlrtBCI, sp);
      }

      ix = context->size[0];
      nx = (int32_T)noccidx->data[j];
      if (!((nx >= 1) && (nx <= ix))) {
        emlrtDynamicBoundsCheckR2012b(nx, 1, ix, &w_emlrtBCI, sp);
      }

      idx = context->size[1];
      iy = (int32_T)noccidx->data[j];
      ix = updt_col->size[0] * updt_col->size[1];
      updt_col->size[0] = 1;
      updt_col->size[1] = idx;
      emxEnsureCapacity(sp, (emxArray__common *)updt_col, ix, (int32_T)sizeof
                        (real_T), &emlrtRTEI);
      for (ix = 0; ix < idx; ix++) {
        updt_col->data[updt_col->size[0] * ix] = context->data[(iy +
          context->size[0] * ix) - 1] * nocc_attenuaterate;
      }

      ix = context->size[0];
      nx = (int32_T)noccidx->data[j];
      if (!((nx >= 1) && (nx <= ix))) {
        emlrtDynamicBoundsCheckR2012b(nx, 1, ix, &x_emlrtBCI, sp);
      }

      idx = context->size[1];
      ix = ii->size[0];
      ii->size[0] = idx;
      emxEnsureCapacity(sp, (emxArray__common *)ii, ix, (int32_T)sizeof(int32_T),
                        &emlrtRTEI);
      for (ix = 0; ix < idx; ix++) {
        ii->data[ix] = ix;
      }

      iv5[0] = 1;
      iv5[1] = ii->size[0];
      emlrtSubAssignSizeCheckR2012b(iv5, 2, *(int32_T (*)[2])updt_col->size, 2,
        &d_emlrtECI, sp);
      iy = (int32_T)noccidx->data[j];
      idx = updt_col->size[1];
      for (ix = 0; ix < idx; ix++) {
        context->data[(iy + context->size[0] * ii->data[ix]) - 1] =
          updt_col->data[updt_col->size[0] * ix];
      }

      j++;
      if (*emlrtBreakCheckR2012bFlagVar != 0) {
        emlrtBreakCheckR2012b(sp);
      }
    }
  }

  emxFree_int32_T(&ii);
  emxFree_real_T(&updt_col);
  emxFree_real_T(&noccidx);

  /*  6 Prediction */
  st.site = &g_emlrtRSI;
  ix = tempcontext->size[0] * tempcontext->size[1];
  tempcontext->size[0] = context->size[1];
  tempcontext->size[1] = context->size[0];
  emxEnsureCapacity(&st, (emxArray__common *)tempcontext, ix, (int32_T)sizeof
                    (real_T), &emlrtRTEI);
  idx = context->size[0];
  for (ix = 0; ix < idx; ix++) {
    iy = context->size[1];
    for (nx = 0; nx < iy; nx++) {
      tempcontext->data[nx + tempcontext->size[0] * ix] = context->data[ix +
        context->size[0] * nx];
    }
  }

  b_st.site = &n_emlrtRSI;
  c_st.site = &o_emlrtRSI;
  if (((tempcontext->size[0] == 1) && (tempcontext->size[1] == 1)) ||
      (tempcontext->size[0] != 1)) {
    overflow = true;
  } else {
    overflow = false;
  }

  if (overflow) {
  } else {
    emlrtErrorWithMessageIdR2012b(&c_st, &u_emlrtRTEI,
      "Coder:toolbox:autoDimIncompatibility", 0);
  }

  if (tempcontext->size[0] > 0) {
  } else {
    emlrtErrorWithMessageIdR2012b(&c_st, &v_emlrtRTEI,
      "Coder:toolbox:eml_min_or_max_varDimZero", 0);
  }

  ix = curr_col->size[0] * curr_col->size[1];
  curr_col->size[0] = 1;
  curr_col->size[1] = tempcontext->size[1];
  emxEnsureCapacity(&c_st, (emxArray__common *)curr_col, ix, (int32_T)sizeof
                    (real_T), &emlrtRTEI);
  n = tempcontext->size[0];
  ix = 0;
  iy = -1;
  d_st.site = &ab_emlrtRSI;
  if (1 > tempcontext->size[1]) {
    overflow = false;
  } else {
    overflow = (tempcontext->size[1] > 2147483646);
  }

  if (overflow) {
    e_st.site = &l_emlrtRSI;
    check_forloop_overflow_error(&e_st);
  }

  for (nx = 1; nx <= tempcontext->size[1]; nx++) {
    d_st.site = &bb_emlrtRSI;
    ixstart = ix;
    idx = ix + n;
    mtmp = tempcontext->data[ix];
    if (n > 1) {
      if (muDoubleScalarIsNaN(tempcontext->data[ix])) {
        e_st.site = &r_emlrtRSI;
        if (ix + 2 > idx) {
          b_ix = false;
        } else {
          b_ix = (idx > 2147483646);
        }

        if (b_ix) {
          f_st.site = &l_emlrtRSI;
          check_forloop_overflow_error(&f_st);
        }

        k = ix + 1;
        exitg2 = false;
        while ((!exitg2) && (k + 1 <= idx)) {
          ixstart = k;
          if (!muDoubleScalarIsNaN(tempcontext->data[k])) {
            mtmp = tempcontext->data[k];
            exitg2 = true;
          } else {
            k++;
          }
        }
      }

      if (ixstart + 1 < idx) {
        e_st.site = &q_emlrtRSI;
        if (ixstart + 2 > idx) {
          b_ixstart = false;
        } else {
          b_ixstart = (idx > 2147483646);
        }

        if (b_ixstart) {
          f_st.site = &l_emlrtRSI;
          check_forloop_overflow_error(&f_st);
        }

        for (k = ixstart + 1; k + 1 <= idx; k++) {
          if (tempcontext->data[k] > mtmp) {
            mtmp = tempcontext->data[k];
          }
        }
      }
    }

    iy++;
    curr_col->data[iy] = mtmp;
    ix += n;
  }

  emxFree_real_T(&tempcontext);
  ix = maxvec->size[0];
  maxvec->size[0] = curr_col->size[1];
  emxEnsureCapacity(sp, (emxArray__common *)maxvec, ix, (int32_T)sizeof(real_T),
                    &emlrtRTEI);
  idx = curr_col->size[1];
  for (ix = 0; ix < idx; ix++) {
    maxvec->data[ix] = curr_col->data[curr_col->size[0] * ix];
  }

  emxFree_real_T(&curr_col);
  st.site = &h_emlrtRSI;

  /*  sigm_a  <= if we increase the value, than the sigm function gets peaky! */
  b_st.site = &cb_emlrtRSI;
  ix = predvec->size[0];
  predvec->size[0] = maxvec->size[0];
  emxEnsureCapacity(&b_st, (emxArray__common *)predvec, ix, (int32_T)sizeof
                    (real_T), &emlrtRTEI);
  idx = maxvec->size[0];
  for (ix = 0; ix < idx; ix++) {
    predvec->data[ix] = -sigm_coef * maxvec->data[ix];
  }

  c_st.site = &cb_emlrtRSI;
  b_exp(&c_st, predvec);
  ix = predvec->size[0];
  emxEnsureCapacity(&b_st, (emxArray__common *)predvec, ix, (int32_T)sizeof
                    (real_T), &emlrtRTEI);
  idx = predvec->size[0];
  for (ix = 0; ix < idx; ix++) {
    predvec->data[ix] = 1.0 - predvec->data[ix];
  }

  ix = newlyoccidx->size[0];
  newlyoccidx->size[0] = maxvec->size[0];
  emxEnsureCapacity(&b_st, (emxArray__common *)newlyoccidx, ix, (int32_T)sizeof
                    (real_T), &emlrtRTEI);
  idx = maxvec->size[0];
  for (ix = 0; ix < idx; ix++) {
    newlyoccidx->data[ix] = -sigm_coef * maxvec->data[ix];
  }

  c_st.site = &cb_emlrtRSI;
  b_exp(&c_st, newlyoccidx);
  ix = newlyoccidx->size[0];
  emxEnsureCapacity(&b_st, (emxArray__common *)newlyoccidx, ix, (int32_T)sizeof
                    (real_T), &emlrtRTEI);
  idx = newlyoccidx->size[0];
  for (ix = 0; ix < idx; ix++) {
    newlyoccidx->data[ix]++;
  }

  varargin_1[0] = predvec->size[0];
  varargin_1[1] = 1;
  varargin_2[0] = newlyoccidx->size[0];
  varargin_2[1] = 1;
  overflow = false;
  p = true;
  k = 0;
  exitg1 = false;
  while ((!exitg1) && (k < 2)) {
    if (!(varargin_1[k] == varargin_2[k])) {
      p = false;
      exitg1 = true;
    } else {
      k++;
    }
  }

  if (!p) {
  } else {
    overflow = true;
  }

  if (overflow) {
  } else {
    emlrtErrorWithMessageIdR2012b(&b_st, &w_emlrtRTEI, "MATLAB:dimagree", 0);
  }

  ix = predvec->size[0];
  emxEnsureCapacity(&b_st, (emxArray__common *)predvec, ix, (int32_T)sizeof
                    (real_T), &emlrtRTEI);
  idx = predvec->size[0];
  for (ix = 0; ix < idx; ix++) {
    predvec->data[ix] /= newlyoccidx->data[ix];
  }

  emxFree_real_T(&newlyoccidx);

  /*  7 Save previous grid */
  ix = cgridvecprev->size[0];
  cgridvecprev->size[0] = cgridvec->size[0];
  emxEnsureCapacity(sp, (emxArray__common *)cgridvecprev, ix, (int32_T)sizeof
                    (real_T), &emlrtRTEI);
  idx = cgridvec->size[0];
  for (ix = 0; ix < idx; ix++) {
    cgridvecprev->data[ix] = cgridvec->data[ix];
  }

  emlrtHeapReferenceStackLeaveFcnR2012b(sp);
}
コード例 #12
0
ファイル: CalculateABBStarD.c プロジェクト: ofirENS/TestFiles
/* Function Definitions */
void CalculateABBStarD(const emlrtStack *sp, real_T N, const emxArray_real_T *t,
  const emxArray_real_T *gridT, const emxArray_real_T *x, const emxArray_real_T *
  f, emxArray_real_T *A, emxArray_real_T *B, emxArray_real_T *Bstar,
  emxArray_real_T *D)
{
  int32_T i4;
  real_T d1;
  real_T d2;
  int32_T loop_ub;
  int32_T i;
  emxArray_real_T *a;
  int32_T j;
  int32_T deltaij;
  int32_T b_A;
  real_T d3;
  real_T d4;
  real_T b1j0i;
  real_T b1j1i;
  int32_T i5;
  int32_T i6;
  int32_T i7;
  int32_T i8;
  emlrtStack st;
  emlrtStack b_st;
  st.prev = sp;
  st.tls = sp->tls;
  b_st.prev = &st;
  b_st.tls = st.tls;
  emlrtHeapReferenceStackEnterFcnR2012b(sp);

  /*  Calculate A and B, B*, and D */
  /*  N is the number of time points */
  /*  grid T is the time points grid on which the solution is calculated  */
  /*  f is the multiplicative function for the source f(x,t)*r(t), size [N, */
  /*  N0], with N0 the number of space points */
  i4 = A->size[0] * A->size[1];
  d1 = 2.0 * N;
  d1 = emlrtNonNegativeCheckFastR2012b(d1, &j_emlrtDCI, sp);
  A->size[0] = (int32_T)emlrtIntegerCheckFastR2012b(d1, &i_emlrtDCI, sp);
  d1 = 2.0 * N;
  d1 = emlrtNonNegativeCheckFastR2012b(d1, &l_emlrtDCI, sp);
  A->size[1] = (int32_T)emlrtIntegerCheckFastR2012b(d1, &k_emlrtDCI, sp);
  emxEnsureCapacity(sp, (emxArray__common *)A, i4, (int32_T)sizeof(real_T),
                    &b_emlrtRTEI);
  d1 = 2.0 * N;
  d1 = emlrtNonNegativeCheckFastR2012b(d1, &j_emlrtDCI, sp);
  d2 = 2.0 * N;
  d2 = emlrtNonNegativeCheckFastR2012b(d2, &l_emlrtDCI, sp);
  loop_ub = (int32_T)emlrtIntegerCheckFastR2012b(d1, &i_emlrtDCI, sp) * (int32_T)
    emlrtIntegerCheckFastR2012b(d2, &k_emlrtDCI, sp);
  for (i4 = 0; i4 < loop_ub; i4++) {
    A->data[i4] = 0.0;
  }

  i4 = B->size[0] * B->size[1];
  d1 = 2.0 * N;
  d1 = emlrtNonNegativeCheckFastR2012b(d1, &n_emlrtDCI, sp);
  B->size[0] = (int32_T)emlrtIntegerCheckFastR2012b(d1, &m_emlrtDCI, sp);
  d1 = 2.0 * N;
  d1 = emlrtNonNegativeCheckFastR2012b(d1, &p_emlrtDCI, sp);
  B->size[1] = (int32_T)emlrtIntegerCheckFastR2012b(d1, &o_emlrtDCI, sp);
  emxEnsureCapacity(sp, (emxArray__common *)B, i4, (int32_T)sizeof(real_T),
                    &b_emlrtRTEI);
  d1 = 2.0 * N;
  d1 = emlrtNonNegativeCheckFastR2012b(d1, &n_emlrtDCI, sp);
  d2 = 2.0 * N;
  d2 = emlrtNonNegativeCheckFastR2012b(d2, &p_emlrtDCI, sp);
  loop_ub = (int32_T)emlrtIntegerCheckFastR2012b(d1, &m_emlrtDCI, sp) * (int32_T)
    emlrtIntegerCheckFastR2012b(d2, &o_emlrtDCI, sp);
  for (i4 = 0; i4 < loop_ub; i4++) {
    B->data[i4] = 0.0;
  }

  i4 = Bstar->size[0] * Bstar->size[1];
  d1 = 2.0 * N;
  d1 = emlrtNonNegativeCheckFastR2012b(d1, &r_emlrtDCI, sp);
  Bstar->size[0] = (int32_T)emlrtIntegerCheckFastR2012b(d1, &q_emlrtDCI, sp);
  d1 = 2.0 * N;
  d1 = emlrtNonNegativeCheckFastR2012b(d1, &t_emlrtDCI, sp);
  Bstar->size[1] = (int32_T)emlrtIntegerCheckFastR2012b(d1, &s_emlrtDCI, sp);
  emxEnsureCapacity(sp, (emxArray__common *)Bstar, i4, (int32_T)sizeof(real_T),
                    &b_emlrtRTEI);
  d1 = 2.0 * N;
  d1 = emlrtNonNegativeCheckFastR2012b(d1, &r_emlrtDCI, sp);
  d2 = 2.0 * N;
  d2 = emlrtNonNegativeCheckFastR2012b(d2, &t_emlrtDCI, sp);
  loop_ub = (int32_T)emlrtIntegerCheckFastR2012b(d1, &q_emlrtDCI, sp) * (int32_T)
    emlrtIntegerCheckFastR2012b(d2, &s_emlrtDCI, sp);
  for (i4 = 0; i4 < loop_ub; i4++) {
    Bstar->data[i4] = 0.0;
  }

  i4 = D->size[0] * D->size[1];
  d1 = 2.0 * N;
  d1 = emlrtNonNegativeCheckFastR2012b(d1, &v_emlrtDCI, sp);
  D->size[0] = (int32_T)emlrtIntegerCheckFastR2012b(d1, &u_emlrtDCI, sp);
  d1 = emlrtNonNegativeCheckFastR2012b(N, &x_emlrtDCI, sp);
  D->size[1] = (int32_T)emlrtIntegerCheckFastR2012b(d1, &w_emlrtDCI, sp);
  emxEnsureCapacity(sp, (emxArray__common *)D, i4, (int32_T)sizeof(real_T),
                    &b_emlrtRTEI);
  d1 = 2.0 * N;
  d1 = emlrtNonNegativeCheckFastR2012b(d1, &v_emlrtDCI, sp);
  d2 = emlrtNonNegativeCheckFastR2012b(N, &x_emlrtDCI, sp);
  loop_ub = (int32_T)emlrtIntegerCheckFastR2012b(d1, &u_emlrtDCI, sp) * (int32_T)
    emlrtIntegerCheckFastR2012b(d2, &w_emlrtDCI, sp);
  for (i4 = 0; i4 < loop_ub; i4++) {
    D->data[i4] = 0.0;
  }

  emlrtForLoopVectorCheckR2012b(1.0, 1.0, N, mxDOUBLE_CLASS, (int32_T)N,
    &dc_emlrtRTEI, sp);
  i = 0;
  emxInit_real_T(sp, &a, 2, &c_emlrtRTEI, true);
  while (i <= (int32_T)N - 1) {
    /*  time */
    emlrtForLoopVectorCheckR2012b(1.0, 1.0, N, mxDOUBLE_CLASS, (int32_T)N,
      &cc_emlrtRTEI, sp);
    j = 0;
    while (j <= (int32_T)N - 1) {
      /*  time */
      deltaij = (1.0 + (real_T)i == 1.0 + (real_T)j);
      d1 = 2.0 * (1.0 + (real_T)i);
      loop_ub = A->size[0];
      d2 = 2.0 * (1.0 + (real_T)j);
      b_A = A->size[1];
      i4 = t->size[1];
      st.site = &n_emlrtRSI;
      d3 = Acoeff(&st, 0.0, 1.0 + (real_T)j, 0.0, t->
                  data[emlrtDynamicBoundsCheckFastR2012b(i + 1, 1, i4,
        &qb_emlrtBCI, sp) - 1], gridT);
      i4 = t->size[1];
      st.site = &n_emlrtRSI;
      d4 = Acoeff(&st, 1.0, 1.0 + (real_T)j, 0.0, t->
                  data[emlrtDynamicBoundsCheckFastR2012b(i + 1, 1, i4,
        &rb_emlrtBCI, sp) - 1], gridT);
      i4 = t->size[1];
      st.site = &o_emlrtRSI;
      b1j0i = Acoeff(&st, 0.0, 1.0 + (real_T)j, 1.0, t->
                     data[emlrtDynamicBoundsCheckFastR2012b(i + 1, 1, i4,
        &sb_emlrtBCI, sp) - 1], gridT);
      i4 = t->size[1];
      st.site = &o_emlrtRSI;
      b1j1i = Acoeff(&st, 1.0, 1.0 + (real_T)j, 1.0, t->
                     data[emlrtDynamicBoundsCheckFastR2012b(i + 1, 1, i4,
        &tb_emlrtBCI, sp) - 1], gridT);
      i4 = (int32_T)(d1 + -1.0);
      i5 = (int32_T)(d2 + -1.0);
      A->data[(emlrtDynamicBoundsCheckFastR2012b(i4, 1, loop_ub, &ub_emlrtBCI,
                sp) + A->size[0] * (emlrtDynamicBoundsCheckFastR2012b(i5, 1, b_A,
                 &vb_emlrtBCI, sp) - 1)) - 1] = d3;
      i4 = (int32_T)(d1 + -1.0);
      i5 = (int32_T)d2;
      A->data[(emlrtDynamicBoundsCheckFastR2012b(i4, 1, loop_ub, &ub_emlrtBCI,
                sp) + A->size[0] * (emlrtDynamicBoundsCheckFastR2012b(i5, 1, b_A,
                 &vb_emlrtBCI, sp) - 1)) - 1] = d4;
      i4 = (int32_T)d1;
      i5 = (int32_T)(d2 + -1.0);
      A->data[(emlrtDynamicBoundsCheckFastR2012b(i4, 1, loop_ub, &ub_emlrtBCI,
                sp) + A->size[0] * (emlrtDynamicBoundsCheckFastR2012b(i5, 1, b_A,
                 &vb_emlrtBCI, sp) - 1)) - 1] = b1j0i;
      i4 = (int32_T)d1;
      i5 = (int32_T)d2;
      A->data[(emlrtDynamicBoundsCheckFastR2012b(i4, 1, loop_ub, &ub_emlrtBCI,
                sp) + A->size[0] * (emlrtDynamicBoundsCheckFastR2012b(i5, 1, b_A,
                 &vb_emlrtBCI, sp) - 1)) - 1] = b1j1i;

      /*  temp terms */
      i4 = t->size[1];
      st.site = &p_emlrtRSI;
      b1j0i = Bcoeff(&st, 1.0, 1.0 + (real_T)j, 0.0, t->
                     data[emlrtDynamicBoundsCheckFastR2012b(i + 1, 1, i4,
        &wb_emlrtBCI, sp) - 1], gridT);
      i4 = t->size[1];
      st.site = &q_emlrtRSI;
      b1j1i = Bcoeff(&st, 1.0, 1.0 + (real_T)j, 1.0, t->
                     data[emlrtDynamicBoundsCheckFastR2012b(i + 1, 1, i4,
        &xb_emlrtBCI, sp) - 1], gridT);
      d1 = 2.0 * (1.0 + (real_T)i);
      loop_ub = B->size[0];
      d2 = 2.0 * (1.0 + (real_T)j);
      b_A = B->size[1];
      i4 = t->size[1];
      st.site = &r_emlrtRSI;
      d3 = Bcoeff(&st, 0.0, 1.0 + (real_T)j, 0.0, t->
                  data[emlrtDynamicBoundsCheckFastR2012b(i + 1, 1, i4,
        &yb_emlrtBCI, sp) - 1], gridT);
      i4 = t->size[1];
      st.site = &s_emlrtRSI;
      d4 = Bcoeff(&st, 0.0, 1.0 + (real_T)j, 1.0, t->
                  data[emlrtDynamicBoundsCheckFastR2012b(i + 1, 1, i4,
        &ac_emlrtBCI, sp) - 1], gridT);
      i4 = (int32_T)(d1 + -1.0);
      i5 = (int32_T)(d2 + -1.0);
      B->data[(emlrtDynamicBoundsCheckFastR2012b(i4, 1, loop_ub, &bc_emlrtBCI,
                sp) + B->size[0] * (emlrtDynamicBoundsCheckFastR2012b(i5, 1, b_A,
                 &cc_emlrtBCI, sp) - 1)) - 1] = d3 + 0.5 * (real_T)deltaij;
      i4 = (int32_T)(d1 + -1.0);
      i5 = (int32_T)d2;
      B->data[(emlrtDynamicBoundsCheckFastR2012b(i4, 1, loop_ub, &bc_emlrtBCI,
                sp) + B->size[0] * (emlrtDynamicBoundsCheckFastR2012b(i5, 1, b_A,
                 &cc_emlrtBCI, sp) - 1)) - 1] = b1j0i;
      i4 = (int32_T)d1;
      i5 = (int32_T)(d2 + -1.0);
      B->data[(emlrtDynamicBoundsCheckFastR2012b(i4, 1, loop_ub, &bc_emlrtBCI,
                sp) + B->size[0] * (emlrtDynamicBoundsCheckFastR2012b(i5, 1, b_A,
                 &cc_emlrtBCI, sp) - 1)) - 1] = d4;
      i4 = (int32_T)d1;
      i5 = (int32_T)d2;
      B->data[(emlrtDynamicBoundsCheckFastR2012b(i4, 1, loop_ub, &bc_emlrtBCI,
                sp) + B->size[0] * (emlrtDynamicBoundsCheckFastR2012b(i5, 1, b_A,
                 &cc_emlrtBCI, sp) - 1)) - 1] = b1j1i + 0.5 * (real_T)deltaij;
      d1 = 2.0 * (1.0 + (real_T)i);
      loop_ub = Bstar->size[0];
      d2 = 2.0 * (1.0 + (real_T)j);
      b_A = Bstar->size[1];
      i4 = (int32_T)(d1 + -1.0);
      i5 = (int32_T)(d2 + -1.0);
      Bstar->data[(emlrtDynamicBoundsCheckFastR2012b(i4, 1, loop_ub,
        &dc_emlrtBCI, sp) + Bstar->size[0] * (emlrtDynamicBoundsCheckFastR2012b
        (i5, 1, b_A, &ec_emlrtBCI, sp) - 1)) - 1] = b1j0i;
      i4 = (int32_T)(d1 + -1.0);
      i5 = (int32_T)d2;
      Bstar->data[(emlrtDynamicBoundsCheckFastR2012b(i4, 1, loop_ub,
        &dc_emlrtBCI, sp) + Bstar->size[0] * (emlrtDynamicBoundsCheckFastR2012b
        (i5, 1, b_A, &ec_emlrtBCI, sp) - 1)) - 1] = -b1j0i;
      i4 = (int32_T)d1;
      i5 = (int32_T)(d2 + -1.0);
      Bstar->data[(emlrtDynamicBoundsCheckFastR2012b(i4, 1, loop_ub,
        &dc_emlrtBCI, sp) + Bstar->size[0] * (emlrtDynamicBoundsCheckFastR2012b
        (i5, 1, b_A, &ec_emlrtBCI, sp) - 1)) - 1] = b1j1i + (real_T)deltaij /
        2.0;
      i4 = (int32_T)d1;
      i5 = (int32_T)d2;
      Bstar->data[(emlrtDynamicBoundsCheckFastR2012b(i4, 1, loop_ub,
        &dc_emlrtBCI, sp) + Bstar->size[0] * (emlrtDynamicBoundsCheckFastR2012b
        (i5, 1, b_A, &ec_emlrtBCI, sp) - 1)) - 1] = -b1j1i - 0.5 * (real_T)
        deltaij;
      st.site = &t_emlrtRSI;
      i4 = t->size[1];
      i5 = i + 1;
      emlrtDynamicBoundsCheckFastR2012b(i5, 1, i4, &pb_emlrtBCI, &st);
      i4 = f->size[0];
      i5 = i + 1;
      emlrtDynamicBoundsCheckFastR2012b(i5, 1, i4, &ob_emlrtBCI, &st);

      /*  Calculate the integral int_0^1(f(y,t_j)*A_{yj}(x,t)dy) by midpoint */
      /*  integration rule */
      /*  the spatial integration of all points y at time t_j */
      i4 = a->size[0] * a->size[1];
      a->size[0] = 1;
      emxEnsureCapacity(&st, (emxArray__common *)a, i4, (int32_T)sizeof(real_T),
                        &b_emlrtRTEI);
      loop_ub = x->size[1];
      i4 = a->size[0] * a->size[1];
      a->size[1] = loop_ub;
      emxEnsureCapacity(&st, (emxArray__common *)a, i4, (int32_T)sizeof(real_T),
                        &b_emlrtRTEI);
      loop_ub = x->size[1];
      for (i4 = 0; i4 < loop_ub; i4++) {
        a->data[i4] = 0.0;
      }

      b1j0i = 0.0;
      loop_ub = x->size[1];
      emlrtDynamicBoundsCheckFastR2012b(1, 1, loop_ub, &jb_emlrtBCI, &st);
      i4 = x->size[1];
      emlrtDynamicBoundsCheckFastR2012b(1, 1, i4, &kb_emlrtBCI, &st);
      b_st.site = &v_emlrtRSI;
      a->data[0] = Acoeff(&b_st, x->data[0], 1.0 + (real_T)j, 0.0, t->data[i],
                          gridT);

      /*  y = 0:1/(numel(y)-2):1; */
      i4 = f->size[1];
      loop_ub = 2;
      while (loop_ub - 2 <= i4 - 2) {
        i5 = a->size[1];
        b_A = x->size[1];
        b_st.site = &w_emlrtRSI;
        a->data[emlrtDynamicBoundsCheckFastR2012b(loop_ub, 1, i5, &gc_emlrtBCI,
          &st) - 1] = Acoeff(&b_st, x->data[emlrtDynamicBoundsCheckFastR2012b
                             (loop_ub, 1, b_A, &hc_emlrtBCI, &st) - 1], 1.0 +
                             (real_T)j, 0.0, t->data[i], gridT);
        i5 = f->size[1];
        emlrtDynamicBoundsCheckFastR2012b(loop_ub, 1, i5, &ib_emlrtBCI, &st);
        i5 = f->size[1];
        b_A = loop_ub - 1;
        emlrtDynamicBoundsCheckFastR2012b(b_A, 1, i5, &hb_emlrtBCI, &st);
        i5 = a->size[1];
        b_A = a->size[1];
        deltaij = loop_ub - 1;
        i6 = x->size[1];
        i7 = x->size[1];
        i8 = loop_ub - 1;
        b1j0i += 0.5 * (a->data[emlrtDynamicBoundsCheckFastR2012b(loop_ub, 1, i5,
          &ic_emlrtBCI, &st) - 1] * f->data[i + f->size[0] * (loop_ub - 1)] +
                        a->data[emlrtDynamicBoundsCheckFastR2012b(deltaij, 1,
          b_A, &jc_emlrtBCI, &st) - 1] * f->data[i + f->size[0] * (loop_ub - 2)])
          * (x->data[emlrtDynamicBoundsCheckFastR2012b(loop_ub, 1, i6,
              &kc_emlrtBCI, &st) - 1] - x->
             data[emlrtDynamicBoundsCheckFastR2012b(i8, 1, i7, &lc_emlrtBCI, &st)
             - 1]);
        loop_ub++;
        emlrtBreakCheckFastR2012b(emlrtBreakCheckR2012bFlagVar, &st);
      }

      st.site = &u_emlrtRSI;
      i4 = t->size[1];
      i5 = i + 1;
      emlrtDynamicBoundsCheckFastR2012b(i5, 1, i4, &nb_emlrtBCI, &st);
      i4 = f->size[0];
      i5 = i + 1;
      emlrtDynamicBoundsCheckFastR2012b(i5, 1, i4, &mb_emlrtBCI, &st);

      /*  Calculate the integral int_0^1(f(y,t_j)*A_{yj}(x,t)dy) by midpoint */
      /*  integration rule */
      /*  the spatial integration of all points y at time t_j */
      i4 = a->size[0] * a->size[1];
      a->size[0] = 1;
      emxEnsureCapacity(&st, (emxArray__common *)a, i4, (int32_T)sizeof(real_T),
                        &b_emlrtRTEI);
      loop_ub = x->size[1];
      i4 = a->size[0] * a->size[1];
      a->size[1] = loop_ub;
      emxEnsureCapacity(&st, (emxArray__common *)a, i4, (int32_T)sizeof(real_T),
                        &b_emlrtRTEI);
      loop_ub = x->size[1];
      for (i4 = 0; i4 < loop_ub; i4++) {
        a->data[i4] = 0.0;
      }

      b1j1i = 0.0;
      loop_ub = x->size[1];
      emlrtDynamicBoundsCheckFastR2012b(1, 1, loop_ub, &jb_emlrtBCI, &st);
      i4 = x->size[1];
      emlrtDynamicBoundsCheckFastR2012b(1, 1, i4, &kb_emlrtBCI, &st);
      b_st.site = &v_emlrtRSI;
      a->data[0] = Acoeff(&b_st, x->data[0], 1.0 + (real_T)j, 1.0, t->data[i],
                          gridT);

      /*  y = 0:1/(numel(y)-2):1; */
      i4 = f->size[1];
      loop_ub = 2;
      while (loop_ub - 2 <= i4 - 2) {
        i5 = a->size[1];
        b_A = x->size[1];
        b_st.site = &w_emlrtRSI;
        a->data[emlrtDynamicBoundsCheckFastR2012b(loop_ub, 1, i5, &gc_emlrtBCI,
          &st) - 1] = Acoeff(&b_st, x->data[emlrtDynamicBoundsCheckFastR2012b
                             (loop_ub, 1, b_A, &hc_emlrtBCI, &st) - 1], 1.0 +
                             (real_T)j, 1.0, t->data[i], gridT);
        i5 = f->size[1];
        emlrtDynamicBoundsCheckFastR2012b(loop_ub, 1, i5, &ib_emlrtBCI, &st);
        i5 = f->size[1];
        b_A = loop_ub - 1;
        emlrtDynamicBoundsCheckFastR2012b(b_A, 1, i5, &hb_emlrtBCI, &st);
        i5 = a->size[1];
        b_A = a->size[1];
        deltaij = loop_ub - 1;
        i6 = x->size[1];
        i7 = x->size[1];
        i8 = loop_ub - 1;
        b1j1i += 0.5 * (a->data[emlrtDynamicBoundsCheckFastR2012b(loop_ub, 1, i5,
          &ic_emlrtBCI, &st) - 1] * f->data[i + f->size[0] * (loop_ub - 1)] +
                        a->data[emlrtDynamicBoundsCheckFastR2012b(deltaij, 1,
          b_A, &jc_emlrtBCI, &st) - 1] * f->data[i + f->size[0] * (loop_ub - 2)])
          * (x->data[emlrtDynamicBoundsCheckFastR2012b(loop_ub, 1, i6,
              &kc_emlrtBCI, &st) - 1] - x->
             data[emlrtDynamicBoundsCheckFastR2012b(i8, 1, i7, &lc_emlrtBCI, &st)
             - 1]);
        loop_ub++;
        emlrtBreakCheckFastR2012b(emlrtBreakCheckR2012bFlagVar, &st);
      }

      d1 = 2.0 * (1.0 + (real_T)i);
      b_A = D->size[0];
      loop_ub = D->size[1];
      emlrtDynamicBoundsCheckFastR2012b(j + 1, 1, loop_ub, &lb_emlrtBCI, sp);
      i4 = (int32_T)(d1 + -1.0);
      D->data[(emlrtDynamicBoundsCheckFastR2012b(i4, 1, b_A, &fc_emlrtBCI, sp) +
               D->size[0] * j) - 1] = b1j0i;
      i4 = (int32_T)d1;
      D->data[(emlrtDynamicBoundsCheckFastR2012b(i4, 1, b_A, &fc_emlrtBCI, sp) +
               D->size[0] * j) - 1] = b1j1i;
      j++;
      emlrtBreakCheckFastR2012b(emlrtBreakCheckR2012bFlagVar, sp);
    }

    i++;
    emlrtBreakCheckFastR2012b(emlrtBreakCheckR2012bFlagVar, sp);
  }

  emxFree_real_T(&a);
  emlrtHeapReferenceStackLeaveFcnR2012b(sp);
}