void eraPn06(double date1, double date2, double dpsi, double deps, double *epsa, double rb[3][3], double rp[3][3], double rbp[3][3], double rn[3][3], double rbpn[3][3]) /* ** - - - - - - - - ** e r a P n 0 6 ** - - - - - - - - ** ** Precession-nutation, IAU 2006 model: a multi-purpose function, ** supporting classical (equinox-based) use directly and CIO-based use ** indirectly. ** ** Given: ** date1,date2 double TT as a 2-part Julian Date (Note 1) ** dpsi,deps double nutation (Note 2) ** ** Returned: ** epsa double mean obliquity (Note 3) ** rb double[3][3] frame bias matrix (Note 4) ** rp double[3][3] precession matrix (Note 5) ** rbp double[3][3] bias-precession matrix (Note 6) ** rn double[3][3] nutation matrix (Note 7) ** rbpn double[3][3] GCRS-to-true matrix (Note 8) ** ** Notes: ** ** 1) The TT date date1+date2 is a Julian Date, apportioned in any ** convenient way between the two arguments. For example, ** JD(TT)=2450123.7 could be expressed in any of these ways, ** among others: ** ** date1 date2 ** ** 2450123.7 0.0 (JD method) ** 2451545.0 -1421.3 (J2000 method) ** 2400000.5 50123.2 (MJD method) ** 2450123.5 0.2 (date & time method) ** ** The JD method is the most natural and convenient to use in ** cases where the loss of several decimal digits of resolution ** is acceptable. The J2000 method is best matched to the way ** the argument is handled internally and will deliver the ** optimum resolution. The MJD method and the date & time methods ** are both good compromises between resolution and convenience. ** ** 2) The caller is responsible for providing the nutation components; ** they are in longitude and obliquity, in radians and are with ** respect to the equinox and ecliptic of date. For high-accuracy ** applications, free core nutation should be included as well as ** any other relevant corrections to the position of the CIP. ** ** 3) The returned mean obliquity is consistent with the IAU 2006 ** precession. ** ** 4) The matrix rb transforms vectors from GCRS to J2000.0 mean ** equator and equinox by applying frame bias. ** ** 5) The matrix rp transforms vectors from J2000.0 mean equator and ** equinox to mean equator and equinox of date by applying ** precession. ** ** 6) The matrix rbp transforms vectors from GCRS to mean equator and ** equinox of date by applying frame bias then precession. It is ** the product rp x rb. ** ** 7) The matrix rn transforms vectors from mean equator and equinox ** of date to true equator and equinox of date by applying the ** nutation (luni-solar + planetary). ** ** 8) The matrix rbpn transforms vectors from GCRS to true equator and ** equinox of date. It is the product rn x rbp, applying frame ** bias, precession and nutation in that order. ** ** 9) The X,Y,Z coordinates of the Celestial Intermediate Pole are ** elements (3,1-3) of the GCRS-to-true matrix, i.e. rbpn[2][0-2]. ** ** 10) It is permissible to re-use the same array in the returned ** arguments. The arrays are filled in the stated order. ** ** Called: ** eraPfw06 bias-precession F-W angles, IAU 2006 ** eraFw2m F-W angles to r-matrix ** eraCr copy r-matrix ** eraTr transpose r-matrix ** eraRxr product of two r-matrices ** ** References: ** ** Capitaine, N. & Wallace, P.T., 2006, Astron.Astrophys. 450, 855 ** ** Wallace, P.T. & Capitaine, N., 2006, Astron.Astrophys. 459, 981 ** ** Copyright (C) 2013-2017, NumFOCUS Foundation. ** Derived, with permission, from the SOFA library. See notes at end of file. */ { double gamb, phib, psib, eps, r1[3][3], r2[3][3], rt[3][3]; /* Bias-precession Fukushima-Williams angles of J2000.0 = frame bias. */ eraPfw06(ERFA_DJM0, ERFA_DJM00, &gamb, &phib, &psib, &eps); /* B matrix. */ eraFw2m(gamb, phib, psib, eps, r1); eraCr(r1, rb); /* Bias-precession Fukushima-Williams angles of date. */ eraPfw06(date1, date2, &gamb, &phib, &psib, &eps); /* Bias-precession matrix. */ eraFw2m(gamb, phib, psib, eps, r2); eraCr(r2, rbp); /* Solve for precession matrix. */ eraTr(r1, rt); eraRxr(r2, rt, rp); /* Equinox-based bias-precession-nutation matrix. */ eraFw2m(gamb, phib, psib + dpsi, eps + deps, r1); eraCr(r1, rbpn); /* Solve for nutation matrix. */ eraTr(r2, rt); eraRxr(r1, rt, rn); /* Obliquity, mean of date. */ *epsa = eps; return; }
void eraBp06(double date1, double date2, double rb[3][3], double rp[3][3], double rbp[3][3]) /* ** - - - - - - - - ** e r a B p 0 6 ** - - - - - - - - ** ** Frame bias and precession, IAU 2006. ** ** Given: ** date1,date2 double TT as a 2-part Julian Date (Note 1) ** ** Returned: ** rb double[3][3] frame bias matrix (Note 2) ** rp double[3][3] precession matrix (Note 3) ** rbp double[3][3] bias-precession matrix (Note 4) ** ** Notes: ** ** 1) The TT date date1+date2 is a Julian Date, apportioned in any ** convenient way between the two arguments. For example, ** JD(TT)=2450123.7 could be expressed in any of these ways, ** among others: ** ** date1 date2 ** ** 2450123.7 0.0 (JD method) ** 2451545.0 -1421.3 (J2000 method) ** 2400000.5 50123.2 (MJD method) ** 2450123.5 0.2 (date & time method) ** ** The JD method is the most natural and convenient to use in ** cases where the loss of several decimal digits of resolution ** is acceptable. The J2000 method is best matched to the way ** the argument is handled internally and will deliver the ** optimum resolution. The MJD method and the date & time methods ** are both good compromises between resolution and convenience. ** ** 2) The matrix rb transforms vectors from GCRS to mean J2000.0 by ** applying frame bias. ** ** 3) The matrix rp transforms vectors from mean J2000.0 to mean of ** date by applying precession. ** ** 4) The matrix rbp transforms vectors from GCRS to mean of date by ** applying frame bias then precession. It is the product rp x rb. ** ** Called: ** eraPfw06 bias-precession F-W angles, IAU 2006 ** eraFw2m F-W angles to r-matrix ** eraPmat06 PB matrix, IAU 2006 ** eraTr transpose r-matrix ** eraRxr product of two r-matrices ** ** References: ** ** Capitaine, N. & Wallace, P.T., 2006, Astron.Astrophys. 450, 855 ** ** Wallace, P.T. & Capitaine, N., 2006, Astron.Astrophys. 459, 981 ** ** Copyright (C) 2013, NumFOCUS Foundation. ** Derived, with permission, from the SOFA library. See notes at end of file. */ { double gamb, phib, psib, epsa, rbt[3][3]; /* B matrix. */ eraPfw06(ERFA_DJM0, ERFA_DJM00, &gamb, &phib, &psib, &epsa); eraFw2m(gamb, phib, psib, epsa, rb); /* PxB matrix. */ eraPmat06(date1, date2, rbp); /* P matrix. */ eraTr(rb, rbt); eraRxr(rbp, rbt, rp); return; }
void eraFw2xy(double gamb, double phib, double psi, double eps, double *x, double *y) /* ** - - - - - - - - - ** e r a F w 2 x y ** - - - - - - - - - ** ** CIP X,Y given Fukushima-Williams bias-precession-nutation angles. ** ** Given: ** gamb double F-W angle gamma_bar (radians) ** phib double F-W angle phi_bar (radians) ** psi double F-W angle psi (radians) ** eps double F-W angle epsilon (radians) ** ** Returned: ** x,y double CIP unit vector X,Y ** ** Notes: ** ** 1) Naming the following points: ** ** e = J2000.0 ecliptic pole, ** p = GCRS pole ** E = ecliptic pole of date, ** and P = CIP, ** ** the four Fukushima-Williams angles are as follows: ** ** gamb = gamma = epE ** phib = phi = pE ** psi = psi = pEP ** eps = epsilon = EP ** ** 2) The matrix representing the combined effects of frame bias, ** precession and nutation is: ** ** NxPxB = R_1(-epsA).R_3(-psi).R_1(phib).R_3(gamb) ** ** The returned values x,y are elements [2][0] and [2][1] of the ** matrix. Near J2000.0, they are essentially angles in radians. ** ** Called: ** eraFw2m F-W angles to r-matrix ** eraBpn2xy extract CIP X,Y coordinates from NPB matrix ** ** Reference: ** ** Hilton, J. et al., 2006, Celest.Mech.Dyn.Astron. 94, 351 ** ** Copyright (C) 2013-2014, NumFOCUS Foundation. ** Derived, with permission, from the SOFA library. See notes at end of file. */ { double r[3][3]; /* Form NxPxB matrix. */ eraFw2m(gamb, phib, psi, eps, r); /* Extract CIP X,Y. */ eraBpn2xy(r, x, y); return; }
void eraPmat06(double date1, double date2, double rbp[3][3]) /* ** - - - - - - - - - - ** e r a P m a t 0 6 ** - - - - - - - - - - ** ** Precession matrix (including frame bias) from GCRS to a specified ** date, IAU 2006 model. ** ** Given: ** date1,date2 double TT as a 2-part Julian Date (Note 1) ** ** Returned: ** rbp double[3][3] bias-precession matrix (Note 2) ** ** Notes: ** ** 1) The TT date date1+date2 is a Julian Date, apportioned in any ** convenient way between the two arguments. For example, ** JD(TT)=2450123.7 could be expressed in any of these ways, ** among others: ** ** date1 date2 ** ** 2450123.7 0.0 (JD method) ** 2451545.0 -1421.3 (J2000 method) ** 2400000.5 50123.2 (MJD method) ** 2450123.5 0.2 (date & time method) ** ** The JD method is the most natural and convenient to use in ** cases where the loss of several decimal digits of resolution ** is acceptable. The J2000 method is best matched to the way ** the argument is handled internally and will deliver the ** optimum resolution. The MJD method and the date & time methods ** are both good compromises between resolution and convenience. ** ** 2) The matrix operates in the sense V(date) = rbp * V(GCRS), where ** the p-vector V(GCRS) is with respect to the Geocentric Celestial ** Reference System (IAU, 2000) and the p-vector V(date) is with ** respect to the mean equatorial triad of the given date. ** ** Called: ** eraPfw06 bias-precession F-W angles, IAU 2006 ** eraFw2m F-W angles to r-matrix ** ** References: ** ** Capitaine, N. & Wallace, P.T., 2006, Astron.Astrophys. 450, 855 ** ** Wallace, P.T. & Capitaine, N., 2006, Astron.Astrophys. 459, 981 ** ** Copyright (C) 2013-2016, NumFOCUS Foundation. ** Derived, with permission, from the SOFA library. See notes at end of file. */ { double gamb, phib, psib, epsa; /* Bias-precession Fukushima-Williams angles. */ eraPfw06(date1, date2, &gamb, &phib, &psib, &epsa); /* Form the matrix. */ eraFw2m(gamb, phib, psib, epsa, rbp); return; }