int main(int argc, char **argv) { ESL_GETOPTS *go = NULL; /* application configuration */ ESL_ALPHABET *abc = NULL; /* biological alphabet */ char *alifile = NULL; /* alignment file name */ int fmt; /* format code for alifiles */ ESL_MSAFILE *afp = NULL; /* open alignment file */ ESL_MSA *msa = NULL; /* multiple sequence alignment */ int status; /* easel return code */ int do_info = TRUE; /* TRUE if -i */ int do_max = FALSE; /* TRUE if -x */ int do_ffreq = FALSE; /* TRUE if --ffreq */ int do_fmin = FALSE; /* TRUE if --fmin */ float fthresh = 0.; /* <x> from -f <x> */ int do_remove_bps = FALSE; /* TRUE if -r */ int do_consistent = FALSE; /* TRUE if -c */ int do_indi2cons = FALSE; /* TRUE if --indi <x> */ int have_cons; /* TRUE if first alignment has consensus sequence */ int do_newcons = FALSE; /* TRUE if we're creating a new consensus structure * and outputing a new alignment (if -x -f -c or --indi) */ int do_a = FALSE; /* TRUE if -a */ char *indi; /* for <x> from --indi <x> */ int nindi_read; /* number of individual sequence SS lines we've read for current alignment */ int a; /* counter over seqs */ int i, i2; /* counter over residues */ int j, j2; /* counter over residues */ int nali; /* counter over alignments */ int **bp = NULL; /* bp[i][j] is number of individual bps exist between aln cols i and j */ int *cur_ct = NULL; /* ct array of basepairs for current sequence */ int *cons_ct = NULL; /* ct array of basepairs for SS_cons being created */ int *xcons_ct = NULL; /* ct array of basepairs for existing SS_cons */ int *ngaps = NULL; /* number of gaps in each alignment position */ FILE *ofp; /* output file (default is stdout) */ int be_verbose = FALSE; /* TRUE to print extra info */ int seqthresh; /* sequence number threshold for defining a bp as consensus (int) ((fthresh * nseq) + 0.5)*/ char *sscons = NULL; /* the new SS_cons line */ FILE *lfp = NULL; /* file to list sequences with conflicting bps to */ int nlist = 0; /* number of sequences listed to list file */ int *nconflictsA; /* number of conflicting bps in seq a's individual structure annotation */ int nconflicts_total = 0; /* total number of conflicts */ int nconflicts_list = 0; /* total number of conflicts in sequences listed to file <x> from -l <x> */ int noverlaps_total = 0; /* total number of overlaps */ int nconsistent_total = 0; /* total number of consistent bps */ int nbps_total = 0; /* total number of bps */ int *nconsistentA; /* number of consistent bps in seq a's individual structure annotation */ int *noverlapsA; /* number of bps in seq a's indi structure that overlap with consensus structure */ int *nbpsA; /* number of bps in seq a's indi structure that overlap with consensus structure */ int ncons_bps = 0; /* number of bps in consensus structure */ int max_noverlaps_aidx; int max_nconsistent_aidx; int max_nbps_aidx; int *removebp; /* removebp[i] is TRUE remove consensus bp [i]:xcons_ct[i] */ int *has_conflict; int *nmates_l2r; /* half matrix, nmate_l2r[i] = <x>, i < nmate_l2r[i], there are <x> different right mates j for i */ int *nmates_r2l; /* half matrix, nmate_r2l[j] = <x>, j < nmate_r2l[j], there are <x> different left mates i for j */ int lmax; /* with -l, maximum number of conflicts to allow */ int namewidth = 18; /* length of 'SS_cons(consensus)' */ char *namedashes = NULL; /* to store underline for seq name */ /* --fmin related variables */ int nbps = 0; int prev_nbps = -1; float fmin; int inconsistent_flag; int pknot_flag; int k,l; /*********************************************** * Parse command line ***********************************************/ go = esl_getopts_Create(options); if (esl_opt_ProcessCmdline(go, argc, argv) != eslOK || esl_opt_VerifyConfig(go) != eslOK) { printf("Failed to parse command line: %s\n", go->errbuf); esl_usage(stdout, argv[0], usage); printf("\nTo see more help on available options, do %s -h\n\n", argv[0]); exit(1); } if (esl_opt_GetBoolean(go, "-h") ) { esl_banner(stdout, argv[0], banner); esl_usage (stdout, argv[0], usage); puts("\nwhere basic options are:"); esl_opt_DisplayHelp(stdout, go, 1, 2, 80); puts("\noptions for defining a new consensus structure (all of these require -o):"); esl_opt_DisplayHelp(stdout, go, 2, 2, 80); puts("\noptions for listing sequences based on structure:"); esl_opt_DisplayHelp(stdout, go, 3, 2, 80); exit(0); } if (esl_opt_ArgNumber(go) != 1) { printf("Incorrect number of command line arguments.\n"); esl_usage(stdout, argv[0], usage); printf("\nTo see more help on available options, do %s -h\n\n", argv[0]); exit(1); } alifile = esl_opt_GetArg(go, 1); fmt = eslMSAFILE_STOCKHOLM; /*********************************************** * Open the MSA file; determine alphabet; set for digital input ***********************************************/ if (esl_opt_GetBoolean(go, "--dna")) abc = esl_alphabet_Create(eslDNA); else if (esl_opt_GetBoolean(go, "--rna")) abc = esl_alphabet_Create(eslRNA); if ( (status = esl_msafile_Open(&abc, alifile, NULL, fmt, NULL, &afp)) != eslOK) esl_msafile_OpenFailure(afp, status); /* open output file */ if (esl_opt_GetString(go, "-o") != NULL) { if ((ofp = fopen(esl_opt_GetString(go, "-o"), "w")) == NULL) esl_fatal("Failed to open -o output file %s\n", esl_opt_GetString(go, "-o")); } else ofp = NULL; if (esl_opt_GetString(go, "-l") != NULL) { if ((lfp = fopen(esl_opt_GetString(go, "-l"), "w")) == NULL) esl_fatal("Failed to open -l output file %s\n", esl_opt_GetString(go, "-l")); } /* determine if we're creating a structure */ do_max = esl_opt_GetBoolean(go, "-x"); if(!(esl_opt_IsDefault(go, "--ffreq"))) { do_ffreq = TRUE; fthresh = esl_opt_GetReal(go, "--ffreq"); } if(!(esl_opt_IsDefault(go, "--fmin"))) { do_fmin = TRUE; } do_remove_bps = esl_opt_GetBoolean(go, "-r"); do_consistent = esl_opt_GetBoolean(go, "-c"); if(!(esl_opt_IsDefault(go, "--indi"))) { do_indi2cons = TRUE; } if(do_max || do_ffreq || do_fmin || do_remove_bps || do_consistent || do_indi2cons) { do_newcons = TRUE; } do_a = esl_opt_GetBoolean(go, "-a"); if(do_a || do_max || do_ffreq || do_fmin || do_remove_bps || do_consistent || do_indi2cons) { do_info = FALSE; } /*********************************************** * Read MSAs one at a time. ***********************************************/ nali = 0; have_cons = FALSE; lmax = esl_opt_GetInteger(go, "--lmax"); if(esl_opt_GetBoolean(go, "-v")) be_verbose = TRUE; while ((status = esl_msafile_Read(afp, &msa)) != eslEOF) { if (status != eslOK) esl_msafile_ReadFailure(afp, status); nali++; /* determine max length name */ namewidth = 18; /* length of 'SS_cons(consensus)' */ for(i = 0; i < msa->nseq; i++) namewidth = ESL_MAX(namewidth, strlen(msa->sqname[i])); if(namedashes != NULL) { free(namedashes); } ESL_ALLOC(namedashes, sizeof(char) * namewidth+1); namedashes[namewidth] = '\0'; for(i = 0; i < namewidth; i++) namedashes[i] = '-'; ESL_ALLOC(sscons, sizeof(char) * (msa->alen+1)); ESL_ALLOC(cur_ct, sizeof(int) * (msa->alen+1)); ESL_ALLOC(cons_ct, sizeof(int) * (msa->alen+1)); ESL_ALLOC(xcons_ct, sizeof(int) * (msa->alen+1)); ESL_ALLOC(bp, sizeof(int *) * (msa->alen+1)); ESL_ALLOC(removebp, sizeof(int) * (msa->alen+1)); ESL_ALLOC(has_conflict, sizeof(int) * (msa->alen+1)); ESL_ALLOC(nmates_l2r, sizeof(int) * (msa->alen+1)); ESL_ALLOC(nmates_r2l, sizeof(int) * (msa->alen+1)); esl_vec_ISet(cur_ct, (msa->alen+1), 0); esl_vec_ISet(cons_ct, (msa->alen+1), 0); esl_vec_ISet(xcons_ct, (msa->alen+1), 0); esl_vec_ISet(removebp, (msa->alen+1), FALSE); esl_vec_ISet(has_conflict, (msa->alen+1), FALSE); esl_vec_ISet(nmates_l2r, (msa->alen+1), 0); esl_vec_ISet(nmates_r2l, (msa->alen+1), 0); ESL_ALLOC(nconflictsA, sizeof(int) * msa->nseq); ESL_ALLOC(noverlapsA, sizeof(int) * msa->nseq); ESL_ALLOC(nconsistentA, sizeof(int) * msa->nseq); ESL_ALLOC(nbpsA, sizeof(int) * msa->nseq); esl_vec_ISet(nconflictsA, msa->nseq, 0); esl_vec_ISet(noverlapsA, msa->nseq, 0); esl_vec_ISet(nconsistentA, msa->nseq, 0); esl_vec_ISet(nbpsA, msa->nseq, 0); max_noverlaps_aidx = max_nconsistent_aidx = max_nbps_aidx = 0; nconsistent_total = nbps_total = noverlaps_total = nconflicts_total = nconflicts_list = 0; for(i = 1; i <= msa->alen; i++) { ESL_ALLOC(bp[i], sizeof(int) * (msa->alen+1)); esl_vec_ISet(bp[i], (msa->alen+1), 0); } /* make sure we have ss_cons and indi ss if we need it */ if(msa->ss_cons == NULL && do_remove_bps) esl_fatal("-r requires all alignments have SS_cons annotation, alignment %d does not.", nali); if(msa->ss == NULL && do_max) esl_fatal("-x requires all alignments have individual SS annotation, alignment %d does not.", nali); if(msa->ss == NULL && do_consistent) esl_fatal("-c requires all alignments have individual SS annotation, alignment %d does not.", nali); if(msa->ss == NULL && do_indi2cons) esl_fatal("--indi requires all alignments have individual SS annotation, alignment %d does not.", nali); if(msa->ss == NULL && do_ffreq) esl_fatal("--ffreq requires all alignments have individual SS annotation, alignment %d does not.", nali); if(msa->ss == NULL && do_fmin) esl_fatal("--fmin requires all alignments have individual SS annotation, alignment %d does not.", nali); if(msa->ss_cons != NULL) { if((status = esl_wuss2ct(msa->ss_cons, msa->alen, xcons_ct)) != eslOK) { esl_fatal("Existing SS_cons for alignment %d is invalid.", nali); } ncons_bps = 0; for(i = 1; i <= msa->alen; i++) if(xcons_ct[i] != 0 && i < xcons_ct[i]) ncons_bps++; if(nali > 1 && !have_cons) esl_fatal("the first aln has SS_cons but aln %d lacks it, if one has it, they all must.", nali); if(nali == 1) have_cons = TRUE; } else if (lfp != NULL) { esl_fatal("the -l option requires existing SS_cons annotation, aln %d lacks it.", nali); } else if (do_remove_bps) { esl_fatal("the -r option requires existing SS_cons annotation, aln %d lacks it.", nali); } else if (do_consistent) { esl_fatal("the -c option requires existing SS_cons annotation, aln %d lacks it.", nali); } else { if(nali > 1 && have_cons) esl_fatal("the first aln does not have SS_cons but aln %d does, if one has it, they all must.", nali); } if(do_info) { printf("# Per-sequence basepair information:\n"); printf("# Alignment file: %s\n", alifile); printf("# Alignment idx: %d\n", nali); if(msa->name != NULL) { printf("# Alignment name: %s\n", msa->name); } if(have_cons) { printf("#\n"); printf("# indibp: number of basepairs in the individual sequence SS annotation\n"); printf("# ovrlap: number of indibp basepairs that also exist as consensus basepairs\n"); printf("# cnsist: number of indibp basepairs that do not conflict with any consensus basepairs\n"); printf("# cnflct: number of indibp basepairs that conflict with >= 1 consensus basepairs\n"); printf("#\n"); printf("# A conflict exists between two basepairs in different structures, one between columns i and j\n"); printf("# and the other between columns k and l, if (i == k and j != l) or (j == l and i != k).\n"); printf("#\n"); printf("# %-*s %6s %6s %6s %6s\n", namewidth, "seqname", "indibp", "ovrlap", "cnsist", "cnflct"); printf("# %-*s %6s %6s %6s %6s\n", namewidth, namedashes, "------", "------", "-----", "------"); } else { printf("# %-*s %6s\n", namewidth, "seqname", "nbp"); printf("# %-*s %6s\n", namewidth, namedashes, "------"); } } nindi_read = 0; for (a = 0; a < msa->nseq; a++) { if(msa->ss != NULL && msa->ss[a] != NULL) { if((status = esl_wuss2ct(msa->ss[a], msa->alen, cur_ct)) != eslOK) { esl_fatal("SS annotation for sequence %d, aln %d is invalid.\n", (a+1), nali); } nindi_read++; for(i = 1; i <= msa->alen; i++) { if(i < cur_ct[i]) { bp[i][cur_ct[i]]++; if(bp[i][cur_ct[i]] == 1) { nmates_l2r[i]++; nmates_r2l[cur_ct[i]]++; } } } for(i = 1; i <= msa->alen; i++) { if(cur_ct[i] != 0 && i < cur_ct[i]) { if(xcons_ct[i] == cur_ct[i]) noverlapsA[a]++; if((xcons_ct[i] != 0) && (xcons_ct[i] != cur_ct[i])) { if(be_verbose) { printf("ali: %2d seq %3d (%s) bp %4d:%4d conflicts with consensus bp %4d:%4d\n", nali, a, msa->sqname[a], i, cur_ct[i], i, xcons_ct[i]); } nconflictsA[a]++; /* indi bp i:cur_ct[i] conflicts with i:xcons_ct[i] */ removebp[i] = TRUE; removebp[xcons_ct[i]] = TRUE; } else if((xcons_ct[cur_ct[i]] != 0) && (xcons_ct[cur_ct[i]] != i) && (cur_ct[xcons_ct[cur_ct[i]]] == 0)) { if(be_verbose) { printf("ali: %2d seq %3d (%s) bp %4d:%4d conflicts with consensus bp %4d:%4d\n", nali, a, msa->sqname[a], xcons_ct[i], cur_ct[xcons_ct[i]], xcons_ct[cur_ct[i]], cur_ct[i]); } nconflictsA[a]++; /* indi bp i:cur_ct[i] conflicts with xcons_ct[cur_ct[i]]:cur_ct[i] */ removebp[cur_ct[i]] = TRUE; removebp[xcons_ct[cur_ct[i]]] = TRUE; } else nconsistentA[a]++; } } if(nconflictsA[a] > lmax) { if(lfp != NULL) fprintf(lfp, "%s\n", msa->sqname[a]); nconflicts_list += nconflictsA[a]; nlist++; } nbpsA[a] = nconflictsA[a] + nconsistentA[a]; nconflicts_total += nconflictsA[a]; nconsistent_total += nconsistentA[a]; noverlaps_total += noverlapsA[a]; nbps_total += nbpsA[a]; if(do_info && have_cons) printf(" %-*s %6d %6d %6d %6d\n", namewidth, msa->sqname[a], nbpsA[a], noverlapsA[a], nconsistentA[a], nconflictsA[a]); if(do_info && !have_cons) printf(" %-*s %6d\n", namewidth, msa->sqname[a], nbpsA[a]); if(nbpsA[a] > nbpsA[max_nbps_aidx]) max_nbps_aidx = a; if((noverlapsA[a] > noverlapsA[max_noverlaps_aidx]) || ((noverlapsA[a] == noverlapsA[max_noverlaps_aidx]) && (nbpsA[a] > nbpsA[max_noverlaps_aidx]))) max_noverlaps_aidx = a; if((nconsistentA[a] > nconsistentA[max_nconsistent_aidx]) || ((nconsistentA[a] == nconsistentA[max_nconsistent_aidx]) && (nbpsA[a] > nbpsA[max_nconsistent_aidx]))) max_nconsistent_aidx = a; } else if(do_newcons || esl_opt_GetBoolean(go, "-a")) { esl_fatal("No SS annotation for sequence %d, aln %d.\n", (a+1), nali); } } if(do_info && have_cons) { if(nindi_read > 0) printf("\n"); printf(" %-*s %6d %6d %6d %6d\n", namewidth, "SS_cons(consensus)", ncons_bps, ncons_bps, ncons_bps, 0); if(nindi_read > 0) { printf("\n# %6d/%6d (%.3f) overlap\n", noverlaps_total, nbps_total, nbps_total > 0 ? (float) noverlaps_total / (float) nbps_total : 0.); printf("# %6d/%6d (%.3f) consistent\n", nconsistent_total, nbps_total, nbps_total > 0 ? (float) nconsistent_total / (float) nbps_total: 0.); printf("# %6d/%6d (%.3f) conflict\n", nconflicts_total, nbps_total, nbps_total > 0 ? (float) nconflicts_total / (float) nbps_total: 0.); } else { printf("# No sequences in the alignment have GR SS annotation.\n"); } } if(lfp != NULL) { printf("# %d/%d sequences with %.3f individual bps on avg that conflict with SS_cons written to %s\n", nlist, msa->nseq, (float) nconflicts_list / (float) nlist, esl_opt_GetString(go, "-l")); } /* determine number of gaps per alignment column */ if((status = get_gaps_per_column(msa, &ngaps)) != eslOK) goto ERROR; /* -x: determine max bp structure OR * -a: list all conflicts in individual structures */ if(do_max || do_a) { for(i = 1; i <= msa->alen; i++) { if(nmates_l2r[i] > 1) {/* list the conflicts */ has_conflict[i] = TRUE; for(j = 1; j <= msa->alen; j++) { if(bp[i][j] > 0) { if(do_a) printf("More than 1 right mates for left mate %4d %4d:%4d bp exists in %4d/%4d seqs (%.3f)\n", i, i, j, bp[i][j], msa->nseq - ngaps[i], (float) bp[i][j] / (float) (msa->nseq - ngaps[i])); has_conflict[j] = TRUE; } } } } for(i = 1; i <= msa->alen; i++) { if(nmates_r2l[i] > 1) {/* list the conflicts */ has_conflict[i] = TRUE; for(j = 1; j <= msa->alen; j++) { if(bp[j][i] > 0) { if(do_a) printf("More than 1 left mates for right mate %4d %4d:%4d bp exists in %4d/%4d seqs (%.3f)\n", i, j, i, bp[j][i], msa->nseq - ngaps[i], (float) bp[j][i] / (float) (msa->nseq - ngaps[i])); has_conflict[j] = TRUE; } } } } for(i = 1; i <= msa->alen; i++) { /*printf("conflict[%4d]: %d\n", i, has_conflict[i]);*/ if(nmates_l2r[i] == 1 && (!(has_conflict[i]))) { j = i+1; while(bp[i][j] == 0) j++; cons_ct[i] = j; cons_ct[j] = i; } } /* remove pseudoknotted bps greedily */ for(i = 1; i <= msa->alen; i++) { j = cons_ct[i]; if(j != 0 && i < j) { for(i2 = i+1; i2 <= msa->alen; i2++) { j2 = cons_ct[i2]; if(j2 != 0 && i2 < j2) { if((i2 < j) && (j < j2)) { /*printf("KNOT %4d:%4d (%4d) %4d:%4d (%4d)\n", i, j, bp[i][j], i2, j2, bp[i2][j2]);*/ /* note: remove both if they have equal number of sequences */ if(bp[i][j] <= bp[i2][j2]) { /*printf("rm %4d:%4d\n", i, j);*/ cons_ct[cons_ct[i]] = 0; cons_ct[i] = 0; } if(bp[i][j] >= bp[i2][j2]) { /*printf("rm %4d:%4d\n", i2, j2);*/ cons_ct[cons_ct[i2]] = 0; cons_ct[i2] = 0; } } } } } } } /***************************************/ /*PARANOID, second check for knots for(i = 1; i <= msa->alen; i++) { j = cons_ct[i]; if(j != 0 && i < j) { printf("BP: %4d:%4d\n", i, j); for(i2 = 1; i2 <= msa->alen; i2++) { j2 = cons_ct[i2]; if(j2 != 0 && i2 < j2) { if((i2 < j) && (j < j2)) { if((i < i2)) { printf("KNOT %4d:%4d (%4d) %4d:%4d (%4d)\n", i, j, bp[i][j], i2, j2, bp[i2][j2]); } } } } } } ******************************************/ /***************************************/ /*PARANOID, check cons_ct for consistency for(i = 1; i <= msa->alen; i++) { if(cons_ct[i] != 0) { if(cons_ct[cons_ct[i]] != i) { printf("ERROR: i: %4d cons_ct[i]: %4d cons_ct[cons_ct[i]]: %4d\n", i, cons_ct[i], cons_ct[cons_ct[i]]); } } } */ /*PARANOID, write out SS_cons for(i = 1; i <= msa->alen; i++) { if(i < cons_ct[i]) printf("<"); else if(cons_ct[i] != 0) { printf(">"); } else printf("."); } printf("\n"); */ /***************************************/ /* textize alignment */ if((status = esl_msa_Textize(msa)) != eslOK) esl_fatal("ERROR textizing alignment %d\n", nali); /* --fmin */ if(do_fmin) { /* define ss_cons */ prev_nbps = -1; fthresh = 0.99; inconsistent_flag = pknot_flag = FALSE; printf("# Defining consensus structure:\n"); printf("# indi SS basepair aln columns i:j (from at least 1 indi SS) will become consensus basepair\n"); printf("# if > <x> individual SS contain i:j as a pair\n"); printf("# We'll search for minimal <x> that gives a consistent consensus structure.\n"); printf("# A consistent structure has each position involved in 0 or 1 basepairs.\n"); printf("#\n"); printf("# Alignment file: %s\n", alifile); printf("# Alignment idx: %d\n", nali); printf("# Number of seqs: %d\n", msa->nseq); printf("#\n"); printf("# %5s %23s %6s\n", "<x>", "nseq-required-with-bp", "numbps"); printf("# %5s %23s %6s\n", "-----", "-----------------------", "------"); while(fthresh >= 0.00 && (inconsistent_flag == FALSE) && (pknot_flag == FALSE)) { nbps = 0; seqthresh = (int) (fthresh * msa->nseq); /*printf("fthresh: %f seqthresh: %d nseq: %d\n", fthresh, seqthresh, msa->nseq);*/ esl_vec_ISet(cons_ct, msa->alen+1, 0); for(i = 1; i <= msa->alen; i++) { for(j = i+1; j <= msa->alen; j++) { if(bp[i][j] > seqthresh) { if(cons_ct[i] != 0 || cons_ct[j] != 0) { inconsistent_flag = TRUE; } /* check for pseudoknots */ for(k = i+1; k < j; k++) { l = cons_ct[k]; if((k < l) && (l > j)) { pknot_flag = TRUE; } if((k > l) && (l != 0) && (l < i)) { pknot_flag = TRUE; } } cons_ct[i] = j; cons_ct[j] = i; nbps++; } } } if(inconsistent_flag) printf(" %.3f %23d %s\n", fthresh, seqthresh+1, "inconsistent"); else if(pknot_flag) printf(" %.3f %23d %s\n", fthresh, seqthresh+1, "pseudoknotted"); else { if(nbps != prev_nbps) { printf(" %.3f %23d %6d\n", fthresh, seqthresh+1, nbps); } fmin = fthresh; } fthresh -= 0.01; prev_nbps = nbps; } fthresh = fmin; esl_vec_ISet(cons_ct, msa->alen+1, 0); } /* --ffreq: determine structure by defining consensus bps that occur in <x> fraction of indi structures */ if(do_ffreq || do_fmin) { if(do_fmin) { printf("#\n# <x> determined to be %.3f\n", fthresh); } if(do_ffreq) { printf("# Defining consensus structure:\n"); printf("# indi SS basepair aln columns i:j (from at least 1 indi SS) will become consensus basepair\n"); printf("# if > %f individual SS contain i:j as a pair\n", fthresh); } esl_vec_ISet(cons_ct, msa->alen+1, 0); /* define ss_cons */ seqthresh = (int) (fthresh * msa->nseq); /*printf("fthresh: %f seqthresh: %d nseq: %d\n", fthresh, seqthresh, msa->nseq);*/ for(i = 1; i <= msa->alen; i++) { for(j = i+1; j <= msa->alen; j++) { if(bp[i][j] > seqthresh) { if(cons_ct[i] != 0) { esl_fatal("ERROR, two base pairs including position %d satisfy threshold (%d:%d and %d:%d)!\n", i, i, cons_ct[i], i, j); } if(cons_ct[j] != 0) { esl_fatal("ERROR, two base pairs including position %d satisfy threshold (%d:%d and %d:%d)!\n", j, j, cons_ct[j], i, j); } cons_ct[i] = j; cons_ct[j] = i; } } } } /* -r: redefine consensus struct by removing any bps that conflict with individual structures */ if(do_remove_bps) { for(i = 1; i <= msa->alen; i++) { if(!(removebp[i])) { cons_ct[i] = xcons_ct[i]; cons_ct[cons_ct[i]] = i; } else { printf("# Removing consensus bp: %d:%d\n", i, xcons_ct[i]); cons_ct[xcons_ct[i]] = 0; cons_ct[i] = 0; } } } /* -c: define consensus structure as indi sequence with highest number of consistent bps with structure OR */ /* --indi: define consensus structure as indi sequence <x> from --indi <x> */ if(do_consistent || do_indi2cons) { if(do_indi2cons) { indi = esl_opt_GetString(go, "--indi"); for(a = 0; a < msa->nseq; a++) { if(strcmp(indi, msa->sqname[a]) == 0) break; } if(a == msa->nseq) esl_fatal("ERROR, could not find a sequence named %s in the alignment.\n", indi); } else { /* do_consistent */ a = max_nconsistent_aidx; } if(msa->ss == NULL || msa->ss[a] == NULL) esl_fatal("ERROR, no individual SS annotation for %s in the alignment.\n", msa->sqname[a]); if((status = esl_wuss2ct(msa->ss[a], msa->alen, cons_ct)) != eslOK) { esl_fatal("Second pass... SS annotation for sequence %d, aln %d is invalid.\n", (a), nali); } printf("# Defined new SS_cons as SS annotation for %s (%d basepairs)\n", msa->sqname[a], nbpsA[a]); if(esl_opt_GetBoolean(go, "--rfc") || esl_opt_GetBoolean(go, "--rfindi")) { if(msa->rf != NULL) { free(msa->rf); msa->rf = NULL; } if((status = esl_strcat(&(msa->rf), -1, msa->aseq[a], msa->alen)) != eslOK) goto ERROR; printf("# Defined new RF as %s sequence\n", msa->sqname[a]); } } /* write out alignment with new SS_cons */ if(do_newcons) { if((status = esl_ct2wuss(cons_ct, msa->alen, sscons)) != eslOK) goto ERROR; if(msa->ss_cons != NULL) { free(msa->ss_cons); msa->ss_cons = NULL; } if((status = esl_strcat(&(msa->ss_cons), -1, sscons, msa->alen)) != eslOK) goto ERROR; status = esl_msafile_Write(ofp, msa, (esl_opt_GetBoolean(go, "--pfam") ? eslMSAFILE_PFAM : eslMSAFILE_STOCKHOLM)); if (status == eslEMEM) esl_fatal("Memory error when outputting alignment\n"); else if (status != eslOK) esl_fatal("Writing alignment file failed with error %d\n", status); } free(sscons); free(cur_ct); free(cons_ct); free(xcons_ct); for(i = 1; i <= msa->alen; i++) free(bp[i]); free(bp); esl_msa_Destroy(msa); } if (nali == 0) esl_fatal("No alignments found in file %s\n", alifile); /* Cleanup, normal return */ if(lfp != NULL) fclose(lfp); if(ofp != NULL) { printf("# Alignment(s) saved to file %s\n", esl_opt_GetString(go, "-o")); fclose(ofp); } esl_msafile_Close(afp); esl_getopts_Destroy(go); return 0; ERROR: if(afp) esl_msafile_Close(afp); if(go) esl_getopts_Destroy(go); if(msa) esl_msa_Destroy(msa); if(lfp) fclose(lfp); if(ofp) fclose(ofp); esl_fatal("ERROR\n"); return 1; }
int main(int argc, char **argv) { ESL_GETOPTS *go = esl_getopts_CreateDefaultApp(options, 2, argc, argv, banner, usage); char *hmmfile = esl_opt_GetArg(go, 1); char *seqfile = esl_opt_GetArg(go, 2); ESL_STOPWATCH *w = esl_stopwatch_Create(); ESL_RANDOMNESS*r = esl_randomness_Create(esl_opt_GetInteger(go, "-s")); ESL_ALPHABET*abc = NULL; P7_HMMFILE *hfp = NULL; P7_HMM *hmm = NULL; P7_BG *bg = NULL; P7_PROFILE *gm1, *gm2; int L = esl_opt_GetInteger(go, "-L"); int N = esl_opt_GetInteger(go, "-N") / SSE16_NVALS; int MaxPart = esl_opt_GetInteger(go, "-M"); int NROUNDS = esl_opt_GetInteger(go, "-R"); int check = esl_opt_GetBoolean(go, "-c"); __m128 resdata[10]; int i, j; float *sc1 = (float*) resdata; ESL_SQFILE *sqfp = NULL; DATA_COPS16 *dcops; struct timeb tbstart, tbend; int sumlengths = 0; float* results = NULL; srand(time(NULL)); if (p7_hmmfile_Open(hmmfile, NULL, &hfp) != eslOK) p7_Fail("Failed to open HMM file %s", hmmfile); if (p7_hmmfile_Read(hfp, &abc, &hmm) != eslOK) p7_Fail("Failed to read HMM"); bg = p7_bg_Create(abc); p7_bg_SetLength(bg, L); gm1 = p7_profile_Create(hmm->M, abc); gm2 = p7_profile_Create(hmm->M, abc); p7_ProfileConfig(hmm, bg, gm1, L, p7_UNILOCAL); p7_ProfileConfig(hmm, bg, gm2, L, p7_UNILOCAL); dcops = p7_ViterbiCOPSw_Create(gm1); p7_ViterbiCOPSW_Setup(dcops, L+100, MaxPart); // use max L dcops->L = L; int dbsize = SSE16_NVALS*N; SEQ **seqsdb= calloc(dbsize+1, sizeof(SEQ*)); int equallength = 1; if (esl_sqfile_OpenDigital(abc, seqfile, eslSQFILE_FASTA, NULL, &sqfp) == eslOK) { // Use Sequence file ESL_SQ* sq = esl_sq_CreateDigital(abc); int maxseqs, len=0; if (esl_opt_IsDefault(go, "-N")) // N not specified in cmdline maxseqs = INT_MAX; // no limit else maxseqs = SSE16_NVALS*N; // use cmdline limit for (j = 0; j < maxseqs && esl_sqio_Read(sqfp, sq) == eslOK; j++) { if (equallength && sq->n != len && j > 0) equallength = 0; len = sq->n; if (j > dbsize) { seqsdb = realloc(seqsdb, 2*(dbsize+1)*sizeof(SEQ*)); dbsize *= 2; } ESL_DSQ* dsq = sq->dsq; seqsdb[j] = malloc(sizeof(SEQ)); seqsdb[j]->length = len; seqsdb[j]->seq = malloc((len+4)*sizeof(ESL_DSQ)); memcpy(seqsdb[j]->seq, dsq, len+2); sumlengths += len; esl_sq_Reuse(sq); } N = j/SSE16_NVALS; } else // Not found database. Generate random sequences for (i = 0; i < N; i++) for (j = 0; j < SSE16_NVALS; j++) { int len = L; // - rand()%1000; seqsdb[i*SSE16_NVALS+j] = malloc(sizeof(SEQ)); seqsdb[i*SSE16_NVALS+j]->seq = malloc(len+4); seqsdb[i*SSE16_NVALS+j]->length = len; esl_rsq_xfIID(r, bg->f, abc->K, len, seqsdb[i*SSE16_NVALS+j]->seq); sumlengths += len; } printf("Viterbi COPS Word with %d threads, model %s. ModelLen: %d, #Segms: %d, SeqL.: %d, #seqs: %d, Partition: %d, #parts: %d\n", NTHREADS, hmmfile, gm1->M, (int) ceil(gm1->M/SSE16_NVALS), L, SSE16_NVALS*N*NROUNDS, dcops->partition, dcops->Npartitions); /* // No. of partitions computed without full parallelism ( == no. of threads active while some are idle) int Niters_part = dcops->Npartitions % NTHREADS; // No. of Model lines that could be computed but are wasted by idle threads waiting on the end int Nwasted_threads = dcops->partition * ((NTHREADS-Niters_part) % NTHREADS); // No. of lines in the last partition that go beyond M. It's wasted comp time by a single thread int Nwasted_leftover= (dcops->partition - gm1->M % dcops->partition) % dcops->partition; // Total number of wasted lines int wastedcomp = Nwasted_threads + Nwasted_leftover; // Total number of lines computed and waited for int totalcomp = wastedcomp + gm1->M; // same as: roundtop(gm1->M, dcops->partition * NTHREADS); printf("Total Comp Lines: %d | Wasted Comp Lines: %d\n", totalcomp, wastedcomp); */ if (check) results = (float*) alloc_m128_aligned64((N+1)*2); ftime(&tbstart); if (!equallength) { // Sort sequences by length qsort(seqsdb, N*SSE16_NVALS, sizeof(SEQ*), compare_seqs); } for (j = 0; j < NROUNDS; j++) for (i = 0; i < N; i++) { // if (i % 1000 == 0) printf("Seq %d\n", i); p7_ViterbiCOPSw_run(dcops, seqsdb+i*SSE16_NVALS, sc1); if (check) memcpy(results+i*SSE16_NVALS, sc1, 32); // 32 bytes indeed! SSE16_NVALS floats } ftime(&tbend); double secs = TIMEDIFF(tbstart,tbend); w->elapsed = w->user = secs; esl_stopwatch_Display(stdout, w, "# Opt CPU time: "); double compmillioncells = NROUNDS * (double) sumlengths * (double) hmm->M * 1e-6; printf("# %.0fM cells in %.1f Mc/s\n", compmillioncells, compmillioncells / secs); if (check) { P7_OPROFILE *om = p7_oprofile_Create(hmm->M, gm1->abc); p7_oprofile_Convert(gm1, om); P7_OMX *ox = p7_omx_Create(hmm->M, 0, 0); printf("Compare results against base version\n"); for (i = 0; i < N; i++) { int maxll = 0; float sc2; for (j = 0; j < SSE16_NVALS; j++) if (maxll < seqsdb[i*SSE16_NVALS+j]->length) maxll = seqsdb[i*SSE16_NVALS+j]->length; p7_oprofile_ReconfigRestLength(om, maxll); // p7_ReconfigLength(gm2, maxll); // emulate the lock-step inter-sequence reconfigs for (j = 0; j < SSE16_NVALS; j++) { // p7_ReconfigLength(gm2, seqsdb[i*SSE16_NVALS+j]->length); // p7_Viterbi_unilocal(seqsdb[i*SSE16_NVALS+j]->seq, seqsdb[i*SSE16_NVALS+j]->length, gm2, &sc3); // p7_Viterbi_unilocal_word(seqsdb[i*SSE16_NVALS+j]->seq, seqsdb[i*SSE16_NVALS+j]->length, gm2, &sc2); // p7_oprofile_ReconfigLength(om, seqsdb[i*SSE16_NVALS+j]->length); p7_ViterbiFilter(seqsdb[i*SSE16_NVALS+j]->seq, seqsdb[i*SSE16_NVALS+j]->length, om, ox, &sc2); sc2 += 1.0; // -2.0nat optimization, Local to Unilocal mode if (fabs(results[i*SSE16_NVALS+j] - sc2) > 0.0001) { printf("Seq %d Len %4d: %f - %f\tdiff: %f\n", i*SSE16_NVALS+j, seqsdb[i*SSE16_NVALS+j]->length, results[i*SSE16_NVALS+j], sc2, fabs(results[i*SSE16_NVALS+j] - sc2)); } } } } return 0; }
int main(int argc, char **argv) { ESL_GETOPTS *go = NULL; /* command line configuration */ struct cfg_s cfg; /* application configuration */ char *basename= NULL; /* base of the output file names */ char *alifile = NULL; /* alignment file name */ char *dbfile = NULL; /* name of seq db file */ char outfile[256]; /* name of an output file */ int alifmt; /* format code for alifile */ int dbfmt; /* format code for dbfile */ ESL_MSAFILE *afp = NULL; /* open alignment file */ ESL_MSA *origmsa = NULL; /* one multiple sequence alignment */ ESL_MSA *msa = NULL; /* MSA after frags are removed */ ESL_MSA *trainmsa= NULL; /* training set, aligned */ ESL_STACK *teststack=NULL; /* test set: stack of ESL_SQ ptrs */ int status; /* easel return code */ int nfrags; /* # of fragments removed */ int ntestdom; /* # of test domains */ int ntest; /* # of test sequences created */ int nali; /* number of alignments read */ double avgid; /* Parse command line */ go = esl_getopts_Create(options); if (esl_opt_ProcessCmdline(go, argc, argv) != eslOK) cmdline_failure(argv[0], "Failed to parse command line: %s\n", go->errbuf); if (esl_opt_VerifyConfig(go) != eslOK) cmdline_failure(argv[0], "Error in app configuration: %s\n", go->errbuf); if (esl_opt_GetBoolean(go, "-h")) cmdline_help(argv[0], go); if (esl_opt_ArgNumber(go) != 3) cmdline_failure(argv[0], "Incorrect number of command line arguments\n"); basename = esl_opt_GetArg(go, 1); alifile = esl_opt_GetArg(go, 2); dbfile = esl_opt_GetArg(go, 3); alifmt = eslMSAFILE_STOCKHOLM; dbfmt = eslSQFILE_FASTA; /* Set up the configuration structure shared amongst functions here */ if (esl_opt_IsDefault(go, "--seed")) cfg.r = esl_randomness_CreateTimeseeded(); else cfg.r = esl_randomness_Create(esl_opt_GetInteger(go, "--seed")); cfg.abc = NULL; /* until we open the MSA file, below */ cfg.fragfrac = esl_opt_GetReal(go, "-F"); cfg.idthresh1 = esl_opt_GetReal(go, "-1"); cfg.idthresh2 = esl_opt_GetReal(go, "-2"); cfg.test_lens = NULL; cfg.ntest = 0; /* Open the output files */ if (snprintf(outfile, 256, "%s.msa", basename) >= 256) esl_fatal("Failed to construct output MSA file name"); if ((cfg.out_msafp = fopen(outfile, "w")) == NULL) esl_fatal("Failed to open MSA output file %s\n", outfile); if (snprintf(outfile, 256, "%s.fa", basename) >= 256) esl_fatal("Failed to construct output FASTA file name"); if ((cfg.out_seqfp = fopen(outfile, "w")) == NULL) esl_fatal("Failed to open FASTA output file %s\n", outfile); if (snprintf(outfile, 256, "%s.pos", basename) >= 256) esl_fatal("Failed to construct pos test set summary file name"); if ((cfg.possummfp = fopen(outfile, "w")) == NULL) esl_fatal("Failed to open pos test set summary file %s\n", outfile); if (snprintf(outfile, 256, "%s.neg", basename) >= 256) esl_fatal("Failed to construct neg test set summary file name"); if ((cfg.negsummfp = fopen(outfile, "w")) == NULL) esl_fatal("Failed to open neg test set summary file %s\n", outfile); if (snprintf(outfile, 256, "%s.tbl", basename) >= 256) esl_fatal("Failed to construct benchmark table file name"); if ((cfg.tblfp = fopen(outfile, "w")) == NULL) esl_fatal("Failed to open benchmark table file %s\n", outfile); /* Open the MSA file; determine alphabet */ status = esl_msafile_Open(alifile, alifmt, NULL, &afp); if (status == eslENOTFOUND) esl_fatal("Alignment file %s doesn't exist or is not readable\n", alifile); else if (status == eslEFORMAT) esl_fatal("Couldn't determine format of alignment %s\n", alifile); else if (status != eslOK) esl_fatal("Alignment file open failed with error %d\n", status); if (esl_opt_GetBoolean(go, "--amino")) cfg.abc = esl_alphabet_Create(eslAMINO); else if (esl_opt_GetBoolean(go, "--dna")) cfg.abc = esl_alphabet_Create(eslDNA); else if (esl_opt_GetBoolean(go, "--rna")) cfg.abc = esl_alphabet_Create(eslRNA); else { int type; status = esl_msafile_GuessAlphabet(afp, &type); if (status == eslEAMBIGUOUS) esl_fatal("Failed to guess the bio alphabet used in %s.\nUse --dna, --rna, or --amino option to specify it.", alifile); else if (status == eslEFORMAT) esl_fatal("Alignment file parse failed: %s\n", afp->errbuf); else if (status == eslENODATA) esl_fatal("Alignment file %s is empty\n", alifile); else if (status != eslOK) esl_fatal("Failed to read alignment file %s\n", alifile); cfg.abc = esl_alphabet_Create(type); } esl_msafile_SetDigital(afp, cfg.abc); if (cfg.abc->type == eslAMINO) esl_composition_SW34(cfg.fq); else esl_vec_DSet(cfg.fq, cfg.abc->K, 1.0 / (double) cfg.abc->K); /* Open and process the dbfile; make sure it's in the same alphabet */ process_dbfile(&cfg, dbfile, dbfmt); /* Read and process MSAs one at a time */ nali = 0; while ((status = esl_msa_Read(afp, &origmsa)) == eslOK) { remove_fragments(&cfg, origmsa, &msa, &nfrags); separate_sets (&cfg, msa, &trainmsa, &teststack); ntestdom = esl_stack_ObjectCount(teststack); if (ntestdom >= 2) { esl_stack_Shuffle(cfg.r, teststack); synthesize_positives(go, &cfg, msa->name, teststack, &ntest); esl_msa_MinimGaps(trainmsa, NULL, NULL); esl_msa_Write(cfg.out_msafp, trainmsa, eslMSAFILE_STOCKHOLM); esl_dst_XAverageId(cfg.abc, trainmsa->ax, trainmsa->nseq, 10000, &avgid); /* 10000 is max_comparisons, before sampling kicks in */ fprintf(cfg.tblfp, "%-20s %3.0f%% %6d %6d %6d %6d %6d %6d\n", msa->name, 100.*avgid, (int) trainmsa->alen, msa->nseq, nfrags, trainmsa->nseq, ntestdom, ntest); nali++; } esl_msa_Destroy(trainmsa); esl_msa_Destroy(origmsa); esl_msa_Destroy(msa); } if (status == eslEFORMAT) esl_fatal("Alignment file parse error, line %d of file %s:\n%s\nOffending line is:\n%s\n", afp->linenumber, afp->fname, afp->errbuf, afp->buf); else if (status != eslEOF) esl_fatal("Alignment file read failed with error code %d\n", status); else if (nali == 0) esl_fatal("No alignments found in file %s\n", alifile); if (nali > 0) synthesize_negatives(go, &cfg, esl_opt_GetInteger(go, "-N")); fclose(cfg.out_msafp); fclose(cfg.out_seqfp); fclose(cfg.possummfp); fclose(cfg.negsummfp); fclose(cfg.tblfp); esl_randomness_Destroy(cfg.r); esl_alphabet_Destroy(cfg.abc); esl_msafile_Close(afp); esl_getopts_Destroy(go); return 0; }
int main(int argc, char **argv) { ESL_GETOPTS *go; /* application configuration */ int kstatus, tstatus;/* return code from Easel routine */ int fmt; /* expected format of kfile, tfile */ char *kfile, *tfile; /* known, test structure file */ ESL_MSAFILE *kfp, *tfp; /* open kfile, tfile */ ESL_MSA *ka, *ta; /* known, trusted alignment */ int64_t klen, tlen; /* lengths of dealigned seqs */ int i; /* counter over sequences */ int apos; /* counter over alignment columns */ int rfpos; /* counter over consensus (non-gap RF) columns */ int is_rfpos; /* TRUE if current apos is a consensus pos, FALSE if not */ int uapos; /* counter over unaligned residue positions */ int nali; /* number of alignment we're on in each file */ int **kp; /* [0..i..nseq-1][1..r..sq->n] = x known non-gap RF position of residue r in sequence i */ int **tp; /* [0..i..nseq-1][1..r..sq->n] = x predicted non-gap RF position of residue r in sequence i */ /* for both kp and pp, if x <= 0, residue r for seq i is not aligned to a non-gap RF position, but rather as an 'insert' * after non-gap RF position (x * -1) */ int *km_pos; /* [0..rflen] = x, in known aln, number of residues aligned to non-gap RF column x; special case: mct[0] = 0 */ int *ki_pos; /* [0..rflen] = x, in known aln, number of residues inserted after non-gap RF column x */ int *tm_pos; /* [0..rflen] = x, in predicted aln, number of residues aligned to non-gap RF column x; special case: mct[0] = 0 */ int *ti_pos; /* [0..rflen] = x, in predicted aln, number of residues inserted after non-gap RF column x */ int *cor_tm_pos; /* [0..rflen] = x, in predicted aln, number of correctly predicted residues aligned to non-gap RF column x; special case: mct[0] = 0 */ int *cor_ti_pos; /* [0..rflen] = x, in predicted aln, number of correctly predicted residues inserted after non-gap RF column x */ int *km_seq; /* [0..i..nseq-1] = x, in known aln, number of residues aligned to non-gap RF columns in seq i; */ int *ki_seq; /* [0..i..nseq-1] = x, in known aln, number of residues inserted in seq i */ int *tm_seq; /* [0..i..nseq-1] = x, in predicted aln, number of residues aligned to non-gap RF columns in seq i; */ int *ti_seq; /* [0..i..nseq-1] = x, in predicted aln, number of residues inserted in seq i */ int *cor_tm_seq; /* [0..i..nseq-1] = x, in predicted aln, number of correctly predicted residues aligned to non-gap RF columns in seq i */ int *cor_ti_seq; /* [0..i..nseq-1] = x, in predicted aln, number of correctly predicted residues inserted in seq i */ int *seqlen; /* [0..i..nseq-1] = x, unaligned seq i has length x */ ESL_ALPHABET *abc = NULL; /* alphabet for all alignments */ int rflen, t_rflen; /* non-gap RF length (consensus lengths) */ int status; char *namedashes; int ni; int namewidth = 8; /* length of 'seq name' */ int cor_tm, cor_ti, km, ki; /* correct predicted match, correct predicted insert, total match, total insert */ char *mask = NULL; int masklen; ESL_DSQ *ks; ESL_DSQ *ts; FILE *dfp = NULL; /* for --c2dfile */ /* variables needed for -p and related options */ int do_post = FALSE; /* TRUE if -p enabled */ int do_post_for_this_rfpos = FALSE; /* set for each consensus position, always TRUE unless --mask-p2xm */ int p; /* counter over integerized posteriors */ int *ptm = NULL; /* [0..p..10] number of total matches with posterior value p (10="*")*/ int *pti = NULL; /* [0..p..10] number of total inserts with posterior value p */ int *cor_ptm = NULL; /* [0..p..10] number of correct matches with posterior value p */ int *cor_pti = NULL; /* [0..p..10] number of correct inserts with posterior value p */ int npostvals = 11; /* number of posterior values 0-9, * */ int ppidx; /* index of PP */ char ppchars[11] = "0123456789*"; int cm_cor_ptm, cm_cor_pti, cm_ptm, cm_pti, cm_incor_ptm, cm_incor_pti; /* cumulative counts of posteriors */ // int tot_cor_ptm, tot_cor_pti, tot_ptm, tot_pti; /* total counts of posteriors */ // int tot_incor_ptm,tot_incor_pti; // SRE: commented out; don't seem to be used; need to silence compiler warning char errbuf[eslERRBUFSIZE]; /*********************************************** * Parse command line ***********************************************/ go = esl_getopts_Create(options); if (esl_opt_ProcessCmdline(go, argc, argv) != eslOK || esl_opt_VerifyConfig(go) != eslOK) { printf("Failed to parse command line: %s\n", go->errbuf); esl_usage(stdout, argv[0], usage); printf("\nTo see more help on available options, do %s -h\n\n", argv[0]); exit(1); } if (esl_opt_GetBoolean(go, "-h") ) { esl_banner(stdout, argv[0], banner); esl_usage (stdout, argv[0], usage); puts("\n where options are:"); esl_opt_DisplayHelp(stdout, go, 1, 2, 80); esl_opt_DisplayHelp(stdout, go, 2, 2, 80); exit(EXIT_SUCCESS); } if (esl_opt_ArgNumber(go) != 2) { printf("Incorrect number of command line arguments.\n"); esl_usage(stdout, argv[0], usage); printf("\nTo see more help on available options, do %s -h\n\n", argv[0]); exit(1); } kfile = esl_opt_GetArg(go, 1); tfile = esl_opt_GetArg(go, 2); fmt = eslMSAFILE_STOCKHOLM; /*********************************************** * Open the two Stockholm files. ***********************************************/ if (esl_opt_GetBoolean(go, "--amino")) abc = esl_alphabet_Create(eslAMINO); else if (esl_opt_GetBoolean(go, "--dna")) abc = esl_alphabet_Create(eslDNA); else if (esl_opt_GetBoolean(go, "--rna")) abc = esl_alphabet_Create(eslRNA); if ( (kstatus = esl_msafile_Open(&abc, kfile, NULL, fmt, NULL, &kfp)) != eslOK) esl_msafile_OpenFailure(kfp, kstatus); if ( (tstatus = esl_msafile_Open(&abc, tfile, NULL, fmt, NULL, &tfp)) != eslOK) esl_msafile_OpenFailure(tfp, tstatus); do_post = esl_opt_GetBoolean(go, "-p"); /* read the mask file if --p-mask is enabled */ if(! esl_opt_IsDefault(go, "--p-mask")) { if((status = read_mask_file(esl_opt_GetString(go, "--p-mask"), errbuf, &mask, &masklen)) != eslOK) esl_fatal(errbuf); } /* open the c2dfile for output, if nec */ if (esl_opt_IsOn(go, "--c2dfile")) { if ((dfp = fopen(esl_opt_GetString(go, "--c2dfile"), "w")) == NULL) esl_fatal("Failed to open --c2dfile output file %s\n", esl_opt_GetString(go, "--c2dfile")); } /*********************************************** * Do alignment comparisons, one seq at a time; * this means looping over all seqs in all alignments. ***********************************************/ nali = 0; while ( (kstatus = esl_msafile_Read(kfp, &ka)) != eslEOF) { if ( kstatus != eslOK) esl_msafile_ReadFailure(kfp, kstatus); if ( (tstatus = esl_msafile_Read(tfp, &ta)) != eslOK) esl_msafile_ReadFailure(tfp, tstatus); nali++; if((nali > 1) && (esl_opt_IsOn(go, "--c2dfile"))) esl_fatal("--c2dfile is only meant for msafiles with single alignments"); /* Sanity check on alignment */ if (ka->nseq != ta->nseq) esl_fatal("trusted, test alignments don't have same seq #\n"); if (ka->rf == NULL) esl_fatal("trusted alignment has no reference annotation\n"); if (ta->rf == NULL) esl_fatal("test alignment has no reference annotation\n"); /* make sure the sequences are all identical */ ESL_ALLOC(seqlen, sizeof(int) * ka->nseq); for(i = 0; i < ka->nseq; i++) { if(strcmp(ka->sqname[i], ta->sqname[i]) != 0) esl_fatal("sequence %d of trusted alignment %s has different name than seq %d of predicted alignment %s\n", (i+1), ka->sqname[i], (i+1), ta->sqname[i]); ESL_ALLOC(ks, sizeof(ESL_DSQ) * (ka->alen+2)); memcpy(ks, ka->ax[i], (ka->alen+2) * sizeof(ESL_DSQ)); esl_abc_XDealign(ka->abc, ks, ka->ax[i], &klen); ESL_ALLOC(ts, sizeof(ESL_DSQ) * (ta->alen+2)); memcpy(ts, ta->ax[i], (ta->alen+2) * sizeof(ESL_DSQ)); esl_abc_XDealign(ta->abc, ts, ta->ax[i], &tlen); if (tlen != klen) esl_fatal("dealigned sequence mismatch, seq %d, when dealigned, is %d residues in the known alignment, but %d residues in the trusted alignment.", (i+1), klen, tlen); if (memcmp(ks, ts, sizeof(ESL_DSQ) * klen) != 0) esl_fatal("dealigned sequence mismatch, seq %d %s, when dealigned, are not identical.", (i+1), ka->sqname[i]); seqlen[i] = tlen; free(ks); free(ts); } /* determine non-gap RF length */ rflen = 0; for(apos = 1; apos <= ka->alen; apos++) { if((! esl_abc_CIsGap (ka->abc, ka->rf[apos-1])) && (! esl_abc_CIsMissing(ka->abc, ka->rf[apos-1]))) rflen++; } t_rflen = 0; for(apos = 1; apos <= ta->alen; apos++) { if((! esl_abc_CIsGap (ta->abc, ta->rf[apos-1])) && (! esl_abc_CIsMissing (ta->abc, ta->rf[apos-1]))) t_rflen++; } if(t_rflen != rflen) esl_fatal("Trusted alignment non-gap RF length (%d) != predicted alignment non-gap RF length (%d).\n", rflen, t_rflen); /* if -p, make sure the test alignment has posterior probabilities, and allocate our counters for correct/incorrect per post value */ if(do_post) { if(! esl_opt_IsDefault(go, "--p-mask")) { if(masklen != rflen) { esl_fatal("Length of mask in %s (%d) not equal to non-gap RF len of alignments (%d)\n", esl_opt_GetString(go, "--p-mask"), masklen, rflen); } } if(ta->pp == NULL) esl_fatal("-p requires \"#=GR PP\" annotation in the test alignment, but none exists"); ESL_ALLOC(ptm, sizeof(int) * npostvals); ESL_ALLOC(pti, sizeof(int) * npostvals); ESL_ALLOC(cor_ptm, sizeof(int) * npostvals); ESL_ALLOC(cor_pti, sizeof(int) * npostvals); esl_vec_ISet(ptm, npostvals, 0); esl_vec_ISet(pti, npostvals, 0); esl_vec_ISet(cor_ptm, npostvals, 0); esl_vec_ISet(cor_pti, npostvals, 0); } /* allocate and initialize our counters */ ESL_ALLOC(kp, sizeof(int *) * ka->nseq); ESL_ALLOC(tp, sizeof(int *) * ta->nseq); for(i = 0; i < ka->nseq; i++) { ESL_ALLOC(kp[i], sizeof(int) * (seqlen[i]+1)); ESL_ALLOC(tp[i], sizeof(int) * (seqlen[i]+1)); esl_vec_ISet(kp[i], seqlen[i]+1, -987654321); esl_vec_ISet(tp[i], seqlen[i]+1, -987654321); } ESL_ALLOC(km_pos, sizeof(int) * (rflen+1)); ESL_ALLOC(ki_pos, sizeof(int) * (rflen+1)); ESL_ALLOC(tm_pos, sizeof(int) * (rflen+1)); ESL_ALLOC(ti_pos, sizeof(int) * (rflen+1)); ESL_ALLOC(cor_tm_pos, sizeof(int) * (rflen+1)); ESL_ALLOC(cor_ti_pos, sizeof(int) * (rflen+1)); esl_vec_ISet(km_pos, rflen+1, 0); esl_vec_ISet(ki_pos, rflen+1, 0); esl_vec_ISet(tm_pos, rflen+1, 0); esl_vec_ISet(ti_pos, rflen+1, 0); esl_vec_ISet(cor_tm_pos, rflen+1, 0); esl_vec_ISet(cor_ti_pos, rflen+1, 0); ESL_ALLOC(km_seq, sizeof(int) * ka->nseq); ESL_ALLOC(ki_seq, sizeof(int) * ka->nseq); ESL_ALLOC(tm_seq, sizeof(int) * ka->nseq); ESL_ALLOC(ti_seq, sizeof(int) * ka->nseq); ESL_ALLOC(cor_tm_seq, sizeof(int) * ka->nseq); ESL_ALLOC(cor_ti_seq, sizeof(int) * ka->nseq); esl_vec_ISet(km_seq, ka->nseq, 0); esl_vec_ISet(ki_seq, ka->nseq, 0); esl_vec_ISet(tm_seq, ka->nseq, 0); esl_vec_ISet(ti_seq, ka->nseq, 0); esl_vec_ISet(cor_tm_seq, ka->nseq, 0); esl_vec_ISet(cor_ti_seq, ka->nseq, 0); /* determine non-gap RF location of each residue in known alignment */ for(i = 0; i < ka->nseq; i++) { uapos = rfpos = 0; for(apos = 1; apos <= ka->alen; apos++) { is_rfpos = FALSE; if((! esl_abc_CIsGap (ka->abc, ka->rf[apos-1])) && (! esl_abc_CIsMissing (ka->abc, ka->rf[apos-1]))) { rfpos++; is_rfpos = TRUE; } if(esl_abc_XIsResidue(ka->abc, ka->ax[i][apos])) { uapos++; kp[i][uapos] = (is_rfpos) ? rfpos : (-1 * rfpos); if(is_rfpos) { km_pos[rfpos]++; km_seq[i]++; } else { ki_pos[rfpos]++; ki_seq[i]++; } } } } /* determine non-gap RF location of each residue in predicted alignment */ for(i = 0; i < ta->nseq; i++) { uapos = rfpos = 0; for(apos = 1; apos <= ta->alen; apos++) { is_rfpos = FALSE; if((! esl_abc_CIsGap (abc, ta->rf[apos-1])) && (! esl_abc_CIsMissing (abc, ta->rf[apos-1]))) { rfpos++; is_rfpos = TRUE; if(do_post) { do_post_for_this_rfpos = (mask != NULL && mask[rfpos-1] == '0') ? FALSE : TRUE; } } if(esl_abc_XIsResidue(ta->abc, ta->ax[i][apos])) { uapos++; tp[i][uapos] = (is_rfpos) ? rfpos : (-1 * rfpos); if(do_post) { if(esl_abc_CIsGap(abc, ta->pp[i][(apos-1)])) esl_fatal("gap PP value for nongap residue: ali: %d seq: %d apos: %d\n", nali, i, apos); ppidx = get_pp_idx(abc, ta->pp[i][(apos-1)]); if(ppidx == -1) esl_fatal("unrecognized PP value (%c) for nongap residue: ali: %d seq: %d apos: %d\n", ta->pp[i][(apos-1)], nali, i, apos); } if(is_rfpos) { tm_pos[rfpos]++; tm_seq[i]++; if(do_post_for_this_rfpos) ptm[ppidx]++; } else { ti_pos[rfpos]++; ti_seq[i]++; if(do_post) pti[ppidx]++; } if(kp[i][uapos] == tp[i][uapos]) { /* correctly predicted this residue */ if(is_rfpos) { cor_tm_seq[i]++; cor_tm_pos[rfpos]++; if(do_post_for_this_rfpos) cor_ptm[ppidx]++; } else { cor_ti_seq[i]++; cor_ti_pos[rfpos]++; if(do_post) cor_pti[ppidx]++; } } } } } if((! (esl_opt_GetBoolean(go, "-c"))) && (! esl_opt_GetBoolean(go, "-p"))) { /* print per sequence statistics */ /* determine the longest name in msa */ for(ni = 0; ni < ka->nseq; ni++) namewidth = ESL_MAX(namewidth, strlen(ka->sqname[ni])); ESL_ALLOC(namedashes, sizeof(char) * namewidth+1); namedashes[namewidth] = '\0'; for(ni = 0; ni < namewidth; ni++) namedashes[ni] = '-'; printf("# %-*s %6s %28s %28s %28s\n", namewidth, "seq name", "len", "match columns", "insert columns", "all columns"); printf("# %-*s %6s %28s %28s %28s\n", namewidth, namedashes, "------", "----------------------------", "----------------------------", "----------------------------"); for(i = 0; i < ta->nseq; i++) { printf(" %-*s %6d %8d / %8d (%.3f) %8d / %8d (%.3f) %8d / %8d (%.3f)\n", namewidth, ka->sqname[i], seqlen[i], cor_tm_seq[i], km_seq[i], (km_seq[i] == 0) ? 0. : ((float) cor_tm_seq[i] / (float) km_seq[i]), cor_ti_seq[i], ki_seq[i], (ki_seq[i] == 0) ? 0. : ((float) cor_ti_seq[i] / (float) ki_seq[i]), (cor_tm_seq[i] + cor_ti_seq[i]), (km_seq[i] + ki_seq[i]), ((float) (cor_tm_seq[i] + cor_ti_seq[i]) / ((float) km_seq[i] + ki_seq[i]))); } cor_tm = esl_vec_ISum(cor_tm_seq, ka->nseq); cor_ti = esl_vec_ISum(cor_ti_seq, ka->nseq); km = esl_vec_ISum(km_seq, ka->nseq); ki = esl_vec_ISum(ki_seq, ka->nseq); printf("# %-*s %6s %28s %28s %28s\n", namewidth, namedashes, "-----", "----------------------------", "----------------------------", "----------------------------"); printf("# %-*s %6s %8d / %8d (%.3f) %8d / %8d (%.3f) %8d / %8d (%.3f)\n", namewidth, "*all*", "-", cor_tm, km, ((float) cor_tm / (float) km), cor_ti, ki, ((float) cor_ti / (float) ki), (cor_tm+cor_ti), (km+ki), (((float) (cor_tm + cor_ti))/ ((float) (km + ki)))); free(namedashes); for(i = 0; i < ka->nseq; i++) { free(kp[i]); free(tp[i]); } } else if(esl_opt_GetBoolean(go, "-c")) { /* print per column statistics */ printf("# %5s %20s %20s %20s\n", "rfpos", "match", "insert", "both"); printf("# %5s %20s %20s %20s\n", "-----", "--------------------", "--------------------", "--------------------"); for(rfpos = 0; rfpos <= rflen; rfpos++) { printf(" %5d %4d / %4d (%.3f) %4d / %4d (%.3f) %4d / %4d (%.3f)\n", rfpos, cor_tm_pos[rfpos], km_pos[rfpos], (km_pos[rfpos] == 0) ? 0. : ((float) cor_tm_pos[rfpos] / (float) km_pos[rfpos]), cor_ti_pos[rfpos], ki_pos[rfpos], (ki_pos[rfpos] == 0) ? 0. : ((float) cor_ti_pos[rfpos] / (float) ki_pos[rfpos]), (cor_tm_pos[rfpos] + cor_ti_pos[rfpos]), (km_pos[rfpos] + ki_pos[rfpos]), ((float) (cor_tm_pos[rfpos] + cor_ti_pos[rfpos]) / ((float) km_pos[rfpos] + ki_pos[rfpos]))); } } else if(do_post) { /* do posterior output */ if(mask == NULL) { printf("# %2s %29s %29s\n", "", " match columns ", " insert columns "); printf("# %2s %29s %29s\n", "", "-----------------------------", "-----------------------------") ; printf("# %2s %8s %8s %9s %8s %8s %9s\n", "PP", "ncorrect", "ntotal", "fractcor", "ncorrect", "ntotal", "fractcor"); printf("# %2s %8s %8s %9s %8s %8s %9s\n", "--", "--------", "--------", "---------", "--------", "--------", "---------"); } else { printf("# %2s %29s %29s\n", "", " match columns within mask ", " insert columns "); printf("# %2s %29s %29s\n", "", "-----------------------------", "-----------------------------") ; printf("# %2s %8s %8s %9s %8s %8s %9s\n", "PP", "ncorrect", "ntotal", "fractcor", "ncorrect", "ntotal", "fractcor"); printf("# %2s %8s %8s %9s %8s %8s %9s\n", "--", "--------", "--------", "---------", "--------", "--------", "---------"); } cm_ptm = cm_pti = cm_cor_ptm = cm_cor_pti = cm_incor_ptm = cm_incor_pti = 0; //tot_ptm = esl_vec_ISum(ptm, npostvals); //tot_pti = esl_vec_ISum(pti, npostvals); //tot_cor_ptm = esl_vec_ISum(cor_ptm, npostvals); //tot_cor_pti = esl_vec_ISum(cor_pti, npostvals); //tot_incor_ptm = tot_ptm - tot_cor_ptm; //tot_incor_pti = tot_pti - tot_cor_pti; for(p = (npostvals-1); p >= 0; p--) { cm_cor_ptm += cor_ptm[p]; cm_cor_pti += cor_pti[p]; cm_ptm += ptm[p]; cm_pti += pti[p]; cm_incor_ptm += ptm[p] - cor_ptm[p]; cm_incor_pti += pti[p] - cor_pti[p]; printf(" %2c %8d / %8d (%.5f) %8d / %8d (%.5f)\n", ppchars[p], cor_ptm[p], ptm[p], (ptm[p] == 0) ? 0. : (float) cor_ptm[p] / (float) ptm[p], cor_pti[p], pti[p], (pti[p] == 0) ? 0. : (float) cor_pti[p] / (float) pti[p]); } } /* handle --c2dfile */ if (dfp != NULL) { /* match stats, 4 fields, CMYK color values */ for(rfpos = 1; rfpos <= rflen; rfpos++) { if(km_pos[rfpos] == 0) { /* special case, no known alignment residues, a blank position */ fprintf(dfp, "%.3f %.3f %.3f %.3f\n", 0., 0., 0., 0.); } else { fprintf(dfp, "%.3f %.3f %.3f %.3f\n", 0., /* cyan */ 1. - ((float) cor_tm_pos[rfpos] / (float) km_pos[rfpos]), /* magenta, fraction incorrect */ 1. - ((float) km_pos[rfpos] / ta->nseq), /* yellow, 1 - fraction of seqs with residue in column */ 0.); } } fprintf(dfp, "//\n"); /* insert stats, 4 fields, CMYK color values */ rfpos = 0; /* special case, combine insert posn 0 and 1 together */ if(ki_pos[rfpos] == 0) { /* special case, no known alignment residues, a blank position */ fprintf(dfp, "%.3f %.3f %.3f %.3f\n", 0., 0., 0., 0.); } else { fprintf(dfp, "%.3f %.3f %.3f %.3f\n", 0., /* cyan */ 1. - ((float) (cor_ti_pos[0] + cor_ti_pos[1]) / ((float) (ki_pos[0] + ki_pos[1]))), /* magenta, fraction correct */ 0., 0.); } /* insert stats posn 2..rflen */ for(rfpos = 2; rfpos <= rflen; rfpos++) { if(ki_pos[rfpos] == 0) { /* special case, no known alignment residues, a blank position */ fprintf(dfp, "%.3f %.3f %.3f %.3f\n", 0., 0., 0., 0.); } else { fprintf(dfp, "%.3f %.3f %.3f %.3f\n", 0., /* cyan */ 1. - ((float) cor_ti_pos[rfpos] / (float) ki_pos[rfpos]), /* magenta, fraction correct */ 0., 0.); } } fprintf(dfp, "//\n"); } if(ptm != NULL) free(ptm); if(pti != NULL) free(pti); if(cor_ptm != NULL) free(cor_ptm); if(cor_ptm != NULL) free(cor_pti); free(kp); free(tp); free(km_seq); free(ki_seq); free(tm_seq); free(ti_seq); free(cor_tm_seq); free(cor_ti_seq); free(km_pos); free(ki_pos); free(tm_pos); free(ti_pos); free(cor_tm_pos); free(cor_ti_pos); free(seqlen); esl_msa_Destroy(ka); esl_msa_Destroy(ta); } if(mask != NULL) free(mask); if(dfp != NULL) { fclose(dfp); printf("# Draw file of per-column stats saved to file: %s\n", esl_opt_GetString(go, "--c2dfile")); } if(abc) esl_alphabet_Destroy(abc); esl_getopts_Destroy(go); esl_msafile_Close(tfp); esl_msafile_Close(kfp); return 0; ERROR: return status; }
int main(int argc, char **argv) { ESL_GETOPTS *go = NULL; /* command line configuration */ struct cfg_s cfg; /* application configuration */ char *basename= NULL; /* base of the output file names */ char *alifile = NULL; /* alignment file name */ char *dbfile = NULL; /* name of seq db file */ char outfile[256]; /* name of an output file */ int alifmt; /* format code for alifile */ int dbfmt; /* format code for dbfile */ ESLX_MSAFILE *afp = NULL; /* open alignment file */ ESL_MSA *origmsa = NULL; /* one multiple sequence alignment */ ESL_MSA *msa = NULL; /* MSA after frags are removed */ ESL_MSA *trainmsa= NULL; /* training set, aligned */ ESL_STACK *teststack=NULL; /* test set: stack of ESL_SQ ptrs */ int status; /* easel return code */ int nfrags; /* # of fragments removed */ int ntestdom; /* # of test domains */ int ntest; /* # of test sequences created */ int nali; /* number of alignments read */ double avgid; /* Parse command line */ go = esl_getopts_Create(options); if (esl_opt_ProcessCmdline(go, argc, argv) != eslOK) cmdline_failure(argv[0], "Failed to parse command line: %s\n", go->errbuf); if (esl_opt_VerifyConfig(go) != eslOK) cmdline_failure(argv[0], "Error in app configuration: %s\n", go->errbuf); if (esl_opt_GetBoolean(go, "-h")) cmdline_help(argv[0], go); if (esl_opt_ArgNumber(go) != 3) cmdline_failure(argv[0], "Incorrect number of command line arguments\n"); basename = esl_opt_GetArg(go, 1); alifile = esl_opt_GetArg(go, 2); dbfile = esl_opt_GetArg(go, 3); alifmt = eslMSAFILE_STOCKHOLM; dbfmt = eslSQFILE_FASTA; /* Set up the configuration structure shared amongst functions here */ if (esl_opt_IsDefault(go, "--seed")) cfg.r = esl_randomness_CreateTimeseeded(); else cfg.r = esl_randomness_Create(esl_opt_GetInteger(go, "--seed")); cfg.abc = NULL; /* until we open the MSA file, below */ cfg.fragfrac = esl_opt_GetReal(go, "-F"); cfg.idthresh1 = esl_opt_GetReal(go, "-1"); cfg.idthresh2 = esl_opt_GetReal(go, "-2"); cfg.test_lens = NULL; cfg.ntest = 0; cfg.max_ntest = (esl_opt_IsOn(go, "--maxtest") ? esl_opt_GetInteger(go, "--maxtest") : 0); cfg.max_ntrain = (esl_opt_IsOn(go, "--maxtrain") ? esl_opt_GetInteger(go, "--maxtrain") : 0); /* Open the output files */ if (snprintf(outfile, 256, "%s.msa", basename) >= 256) esl_fatal("Failed to construct output MSA file name"); if ((cfg.out_msafp = fopen(outfile, "w")) == NULL) esl_fatal("Failed to open MSA output file %s\n", outfile); if (snprintf(outfile, 256, "%s.fa", basename) >= 256) esl_fatal("Failed to construct output FASTA file name"); if ((cfg.out_seqfp = fopen(outfile, "w")) == NULL) esl_fatal("Failed to open FASTA output file %s\n", outfile); if (snprintf(outfile, 256, "%s.pos", basename) >= 256) esl_fatal("Failed to construct pos test set summary file name"); if ((cfg.possummfp = fopen(outfile, "w")) == NULL) esl_fatal("Failed to open pos test set summary file %s\n", outfile); if (snprintf(outfile, 256, "%s.neg", basename) >= 256) esl_fatal("Failed to construct neg test set summary file name"); if ((cfg.negsummfp = fopen(outfile, "w")) == NULL) esl_fatal("Failed to open neg test set summary file %s\n", outfile); if (snprintf(outfile, 256, "%s.tbl", basename) >= 256) esl_fatal("Failed to construct benchmark table file name"); if ((cfg.tblfp = fopen(outfile, "w")) == NULL) esl_fatal("Failed to open benchmark table file %s\n", outfile); if (esl_opt_GetBoolean(go, "--pid")) { if (snprintf(outfile, 256, "%s.pid", basename) >= 256) esl_fatal("Failed to construct %%id table file name"); if ((cfg.pidfp = fopen(outfile, "w")) == NULL) esl_fatal("Failed to open %%id table file %s\n", outfile); } else cfg.pidfp = NULL; /* Open the MSA file, digital mode; determine alphabet */ if (esl_opt_GetBoolean(go, "--amino")) cfg.abc = esl_alphabet_Create(eslAMINO); else if (esl_opt_GetBoolean(go, "--dna")) cfg.abc = esl_alphabet_Create(eslDNA); else if (esl_opt_GetBoolean(go, "--rna")) cfg.abc = esl_alphabet_Create(eslRNA); status = eslx_msafile_Open(&(cfg.abc), alifile, NULL, alifmt, NULL, &afp); if (status != eslOK) eslx_msafile_OpenFailure(afp, status); if (cfg.abc->type == eslAMINO) esl_composition_SW34(cfg.fq); else esl_vec_DSet(cfg.fq, cfg.abc->K, 1.0 / (double) cfg.abc->K); /* Open and process the dbfile; make sure it's in the same alphabet */ process_dbfile(&cfg, dbfile, dbfmt); /* Read and process MSAs one at a time */ nali = 0; while ((status = eslx_msafile_Read(afp, &origmsa)) != eslEOF) { if (status != eslOK) eslx_msafile_ReadFailure(afp, status); esl_msa_ConvertDegen2X(origmsa); esl_msa_Hash(origmsa); remove_fragments(&cfg, origmsa, &msa, &nfrags); separate_sets (&cfg, msa, &trainmsa, &teststack); if ( esl_stack_ObjectCount(teststack) >= 2) { /* randomize test domain order, and apply size limit if any */ esl_stack_Shuffle(cfg.r, teststack); if (cfg.max_ntest) pstack_select_topn(&teststack, cfg.max_ntest); ntestdom = esl_stack_ObjectCount(teststack); /* randomize training set alignment order, and apply size limit if any */ esl_msashuffle_PermuteSequenceOrder(cfg.r, trainmsa); if (cfg.max_ntrain) msa_select_topn(&trainmsa, cfg.max_ntrain); esl_msa_MinimGaps(trainmsa, NULL, NULL, FALSE); if (esl_opt_GetBoolean(go, "--pid")) write_pids(cfg.pidfp, origmsa, trainmsa, teststack); synthesize_positives(go, &cfg, msa->name, teststack, &ntest); eslx_msafile_Write(cfg.out_msafp, trainmsa, eslMSAFILE_STOCKHOLM); esl_dst_XAverageId(cfg.abc, trainmsa->ax, trainmsa->nseq, 10000, &avgid); /* 10000 is max_comparisons, before sampling kicks in */ fprintf(cfg.tblfp, "%-20s %3.0f%% %6d %6d %6d %6d %6d %6d\n", msa->name, 100.*avgid, (int) trainmsa->alen, msa->nseq, nfrags, trainmsa->nseq, ntestdom, ntest); nali++; } esl_msa_Destroy(trainmsa); esl_msa_Destroy(origmsa); esl_msa_Destroy(msa); } if (nali == 0) esl_fatal("No alignments found in file %s\n", alifile); synthesize_negatives(go, &cfg, esl_opt_GetInteger(go, "-N")); fclose(cfg.out_msafp); fclose(cfg.out_seqfp); fclose(cfg.possummfp); fclose(cfg.negsummfp); fclose(cfg.tblfp); if (cfg.pidfp) fclose(cfg.pidfp); esl_randomness_Destroy(cfg.r); esl_alphabet_Destroy(cfg.abc); eslx_msafile_Close(afp); esl_getopts_Destroy(go); return 0; }