int sample_main(int argc, char *argv[]) { VkResult U_ASSERT_ONLY res; bool U_ASSERT_ONLY pass; struct sample_info info = {}; char sample_title[] = "Input Attachment Sample"; const bool depthPresent = false; const bool vertexPresent = false; process_command_line_args(info, argc, argv); init_global_layer_properties(info); init_instance_extension_names(info); init_device_extension_names(info); init_instance(info, sample_title); init_enumerate_device(info); VkFormatProperties props; vkGetPhysicalDeviceFormatProperties(info.gpus[0], VK_FORMAT_R8G8B8A8_UNORM, &props); if (!(props.optimalTilingFeatures & VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT)) { std::cout << "VK_FORMAT_R8G8B8A8_UNORM format unsupported for input " "attachment\n"; exit(-1); } init_window_size(info, 500, 500); init_connection(info); init_window(info); init_swapchain_extension(info); init_device(info); init_command_pool(info); init_command_buffer(info); execute_begin_command_buffer(info); init_device_queue(info); init_swap_chain(info); /* VULKAN_KEY_START */ // Create a framebuffer with 2 attachments, one the color attachment // the shaders render into, and the other an input attachment which // will be cleared to yellow, and then used by the shaders to color // the drawn triangle. Final result should be a yellow triangle // Create the image that will be used as the input attachment // The image for the color attachment is the presentable image already // created in init_swapchain() VkImageCreateInfo image_create_info = {}; image_create_info.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO; image_create_info.pNext = NULL; image_create_info.imageType = VK_IMAGE_TYPE_2D; image_create_info.format = info.format; image_create_info.extent.width = info.width; image_create_info.extent.height = info.height; image_create_info.extent.depth = 1; image_create_info.mipLevels = 1; image_create_info.arrayLayers = 1; image_create_info.samples = NUM_SAMPLES; image_create_info.tiling = VK_IMAGE_TILING_OPTIMAL; image_create_info.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; image_create_info.usage = VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT; image_create_info.queueFamilyIndexCount = 0; image_create_info.pQueueFamilyIndices = NULL; image_create_info.sharingMode = VK_SHARING_MODE_EXCLUSIVE; image_create_info.flags = 0; VkMemoryAllocateInfo mem_alloc = {}; mem_alloc.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO; mem_alloc.pNext = NULL; mem_alloc.allocationSize = 0; mem_alloc.memoryTypeIndex = 0; VkImage input_image; VkDeviceMemory input_memory; res = vkCreateImage(info.device, &image_create_info, NULL, &input_image); assert(res == VK_SUCCESS); VkMemoryRequirements mem_reqs; vkGetImageMemoryRequirements(info.device, input_image, &mem_reqs); mem_alloc.allocationSize = mem_reqs.size; pass = memory_type_from_properties(info, mem_reqs.memoryTypeBits, 0, &mem_alloc.memoryTypeIndex); assert(pass); res = vkAllocateMemory(info.device, &mem_alloc, NULL, &input_memory); assert(res == VK_SUCCESS); res = vkBindImageMemory(info.device, input_image, input_memory, 0); assert(res == VK_SUCCESS); // Set the image layout to TRANSFER_DST_OPTIMAL to be ready for clear set_image_layout(info, input_image, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT); VkImageSubresourceRange srRange = {}; srRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; srRange.baseMipLevel = 0; srRange.levelCount = VK_REMAINING_MIP_LEVELS; srRange.baseArrayLayer = 0; srRange.layerCount = VK_REMAINING_ARRAY_LAYERS; VkClearColorValue clear_color; clear_color.float32[0] = 1.0f; clear_color.float32[1] = 1.0f; clear_color.float32[2] = 0.0f; clear_color.float32[3] = 0.0f; // Clear the input attachment image to yellow vkCmdClearColorImage(info.cmd, input_image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, &clear_color, 1, &srRange); // Set the image layout to SHADER_READONLY_OPTIMAL for use by the shaders set_image_layout(info, input_image, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT); VkImageViewCreateInfo view_info = {}; view_info.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO; view_info.pNext = NULL; view_info.image = VK_NULL_HANDLE; view_info.viewType = VK_IMAGE_VIEW_TYPE_2D; view_info.format = info.format; view_info.components.r = VK_COMPONENT_SWIZZLE_R; view_info.components.g = VK_COMPONENT_SWIZZLE_G; view_info.components.b = VK_COMPONENT_SWIZZLE_B; view_info.components.a = VK_COMPONENT_SWIZZLE_A; view_info.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; view_info.subresourceRange.baseMipLevel = 0; view_info.subresourceRange.levelCount = 1; view_info.subresourceRange.baseArrayLayer = 0; view_info.subresourceRange.layerCount = 1; VkImageView input_attachment_view; view_info.image = input_image; res = vkCreateImageView(info.device, &view_info, NULL, &input_attachment_view); assert(res == VK_SUCCESS); VkDescriptorImageInfo input_image_info = {}; input_image_info.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL; input_image_info.imageView = input_attachment_view; input_image_info.sampler = VK_NULL_HANDLE; VkDescriptorSetLayoutBinding layout_bindings[1]; layout_bindings[0].binding = 0; layout_bindings[0].descriptorType = VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT; layout_bindings[0].descriptorCount = 1; layout_bindings[0].stageFlags = VK_SHADER_STAGE_FRAGMENT_BIT; layout_bindings[0].pImmutableSamplers = NULL; VkDescriptorSetLayoutCreateInfo descriptor_layout = {}; descriptor_layout.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO; descriptor_layout.pNext = NULL; descriptor_layout.bindingCount = 1; descriptor_layout.pBindings = layout_bindings; info.desc_layout.resize(NUM_DESCRIPTOR_SETS); res = vkCreateDescriptorSetLayout(info.device, &descriptor_layout, NULL, info.desc_layout.data()); assert(res == VK_SUCCESS); VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo = {}; pPipelineLayoutCreateInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO; pPipelineLayoutCreateInfo.pNext = NULL; pPipelineLayoutCreateInfo.pushConstantRangeCount = 0; pPipelineLayoutCreateInfo.pPushConstantRanges = NULL; pPipelineLayoutCreateInfo.setLayoutCount = NUM_DESCRIPTOR_SETS; pPipelineLayoutCreateInfo.pSetLayouts = info.desc_layout.data(); res = vkCreatePipelineLayout(info.device, &pPipelineLayoutCreateInfo, NULL, &info.pipeline_layout); assert(res == VK_SUCCESS); // First attachment is the color attachment - clear at the beginning of the // renderpass and transition layout to PRESENT_SRC_KHR at the end of // renderpass VkAttachmentDescription attachments[2]; attachments[0].format = info.format; attachments[0].samples = VK_SAMPLE_COUNT_1_BIT; attachments[0].loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR; attachments[0].storeOp = VK_ATTACHMENT_STORE_OP_STORE; attachments[0].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE; attachments[0].stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE; attachments[0].initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; attachments[0].finalLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR; attachments[0].flags = 0; // Second attachment is input attachment. Once cleared it should have // width*height yellow pixels. Doing a subpassLoad in the fragment shader // should give the shader the color at the fragments x,y location // from the input attachment attachments[1].format = info.format; attachments[1].samples = VK_SAMPLE_COUNT_1_BIT; attachments[1].loadOp = VK_ATTACHMENT_LOAD_OP_LOAD; attachments[1].storeOp = VK_ATTACHMENT_STORE_OP_DONT_CARE; attachments[1].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE; attachments[1].stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE; attachments[1].initialLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL; attachments[1].finalLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL; attachments[1].flags = 0; VkAttachmentReference color_reference = {}; color_reference.attachment = 0; color_reference.layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL; VkAttachmentReference input_reference = {}; input_reference.attachment = 1; input_reference.layout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL; VkSubpassDescription subpass = {}; subpass.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS; subpass.flags = 0; subpass.inputAttachmentCount = 1; subpass.pInputAttachments = &input_reference; subpass.colorAttachmentCount = 1; subpass.pColorAttachments = &color_reference; subpass.pResolveAttachments = NULL; subpass.pDepthStencilAttachment = NULL; subpass.preserveAttachmentCount = 0; subpass.pPreserveAttachments = NULL; VkRenderPassCreateInfo rp_info = {}; rp_info.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO; rp_info.pNext = NULL; rp_info.attachmentCount = 2; rp_info.pAttachments = attachments; rp_info.subpassCount = 1; rp_info.pSubpasses = &subpass; rp_info.dependencyCount = 0; rp_info.pDependencies = NULL; res = vkCreateRenderPass(info.device, &rp_info, NULL, &info.render_pass); assert(!res); init_shaders(info, vertShaderText, fragShaderText); VkImageView fb_attachments[2]; fb_attachments[1] = input_attachment_view; VkFramebufferCreateInfo fbc_info = {}; fbc_info.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO; fbc_info.pNext = NULL; fbc_info.renderPass = info.render_pass; fbc_info.attachmentCount = 2; fbc_info.pAttachments = fb_attachments; fbc_info.width = info.width; fbc_info.height = info.height; fbc_info.layers = 1; uint32_t i; info.framebuffers = (VkFramebuffer *)malloc(info.swapchainImageCount * sizeof(VkFramebuffer)); for (i = 0; i < info.swapchainImageCount; i++) { fb_attachments[0] = info.buffers[i].view; res = vkCreateFramebuffer(info.device, &fbc_info, NULL, &info.framebuffers[i]); assert(res == VK_SUCCESS); } VkDescriptorPoolSize type_count[1]; type_count[0].type = VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT; type_count[0].descriptorCount = 1; VkDescriptorPoolCreateInfo descriptor_pool = {}; descriptor_pool.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO; descriptor_pool.pNext = NULL; descriptor_pool.maxSets = 1; descriptor_pool.poolSizeCount = 1; descriptor_pool.pPoolSizes = type_count; res = vkCreateDescriptorPool(info.device, &descriptor_pool, NULL, &info.desc_pool); assert(res == VK_SUCCESS); VkDescriptorSetAllocateInfo desc_alloc_info[1]; desc_alloc_info[0].sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO; desc_alloc_info[0].pNext = NULL; desc_alloc_info[0].descriptorPool = info.desc_pool; desc_alloc_info[0].descriptorSetCount = 1; desc_alloc_info[0].pSetLayouts = info.desc_layout.data(); info.desc_set.resize(1); res = vkAllocateDescriptorSets(info.device, desc_alloc_info, info.desc_set.data()); assert(res == VK_SUCCESS); VkWriteDescriptorSet writes[1]; // Write descriptor set with one write describing input attachment writes[0] = {}; writes[0].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET; writes[0].dstSet = info.desc_set[0]; writes[0].dstBinding = 0; writes[0].descriptorCount = 1; writes[0].descriptorType = VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT; writes[0].pImageInfo = &input_image_info; writes[0].pBufferInfo = nullptr; writes[0].pTexelBufferView = nullptr; writes[0].dstArrayElement = 0; vkUpdateDescriptorSets(info.device, 1, writes, 0, NULL); init_pipeline_cache(info); init_pipeline(info, depthPresent, vertexPresent); // Color attachment clear to gray VkClearValue clear_values; clear_values.color.float32[0] = 0.2f; clear_values.color.float32[1] = 0.2f; clear_values.color.float32[2] = 0.2f; clear_values.color.float32[3] = 0.2f; VkSemaphoreCreateInfo imageAcquiredSemaphoreCreateInfo; imageAcquiredSemaphoreCreateInfo.sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO; imageAcquiredSemaphoreCreateInfo.pNext = NULL; imageAcquiredSemaphoreCreateInfo.flags = 0; res = vkCreateSemaphore(info.device, &imageAcquiredSemaphoreCreateInfo, NULL, &info.imageAcquiredSemaphore); assert(res == VK_SUCCESS); // Get the index of the next available swapchain image: res = vkAcquireNextImageKHR(info.device, info.swap_chain, UINT64_MAX, info.imageAcquiredSemaphore, VK_NULL_HANDLE, &info.current_buffer); // TODO: Deal with the VK_SUBOPTIMAL_KHR and VK_ERROR_OUT_OF_DATE_KHR // return codes assert(res == VK_SUCCESS); VkRenderPassBeginInfo rp_begin; rp_begin.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO; rp_begin.pNext = NULL; rp_begin.renderPass = info.render_pass; rp_begin.framebuffer = info.framebuffers[info.current_buffer]; rp_begin.renderArea.offset.x = 0; rp_begin.renderArea.offset.y = 0; rp_begin.renderArea.extent.width = info.width; rp_begin.renderArea.extent.height = info.height; rp_begin.clearValueCount = 1; rp_begin.pClearValues = &clear_values; vkCmdBeginRenderPass(info.cmd, &rp_begin, VK_SUBPASS_CONTENTS_INLINE); vkCmdBindPipeline(info.cmd, VK_PIPELINE_BIND_POINT_GRAPHICS, info.pipeline); vkCmdBindDescriptorSets(info.cmd, VK_PIPELINE_BIND_POINT_GRAPHICS, info.pipeline_layout, 0, NUM_DESCRIPTOR_SETS, info.desc_set.data(), 0, NULL); init_viewports(info); init_scissors(info); vkCmdDraw(info.cmd, 3, 1, 0, 0); vkCmdEndRenderPass(info.cmd); res = vkEndCommandBuffer(info.cmd); assert(res == VK_SUCCESS); /* VULKAN_KEY_END */ const VkCommandBuffer cmd_bufs[] = {info.cmd}; VkFenceCreateInfo fenceInfo; VkFence drawFence; fenceInfo.sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO; fenceInfo.pNext = NULL; fenceInfo.flags = 0; vkCreateFence(info.device, &fenceInfo, NULL, &drawFence); execute_queue_cmdbuf(info, cmd_bufs, drawFence); do { res = vkWaitForFences(info.device, 1, &drawFence, VK_TRUE, FENCE_TIMEOUT); } while (res == VK_TIMEOUT); assert(res == VK_SUCCESS); vkDestroyFence(info.device, drawFence, NULL); execute_present_image(info); wait_seconds(1); if (info.save_images) write_ppm(info, "input_attachment"); vkDestroySemaphore(info.device, info.imageAcquiredSemaphore, NULL); vkDestroyImageView(info.device, input_attachment_view, NULL); vkDestroyImage(info.device, input_image, NULL); vkFreeMemory(info.device, input_memory, NULL); destroy_pipeline(info); destroy_pipeline_cache(info); destroy_descriptor_pool(info); destroy_framebuffers(info); destroy_shaders(info); destroy_renderpass(info); destroy_descriptor_and_pipeline_layouts(info); destroy_swap_chain(info); destroy_command_buffer(info); destroy_command_pool(info); destroy_device(info); destroy_window(info); destroy_instance(info); return 0; }
int sample_main(int argc, char *argv[]) { VkResult U_ASSERT_ONLY res; bool U_ASSERT_ONLY pass; struct sample_info info = {}; char sample_title[] = "Texel Buffer Sample"; float texels[] = {1.0, 0.0, 1.0}; const bool depthPresent = false; const bool vertexPresent = false; process_command_line_args(info, argc, argv); init_global_layer_properties(info); init_instance_extension_names(info); init_device_extension_names(info); init_instance(info, sample_title); init_enumerate_device(info); if (info.gpu_props.limits.maxTexelBufferElements < 4) { std::cout << "maxTexelBufferElements too small\n"; exit(-1); } VkFormatProperties props; vkGetPhysicalDeviceFormatProperties(info.gpus[0], VK_FORMAT_R32_SFLOAT, &props); if (!(props.bufferFeatures & VK_FORMAT_FEATURE_UNIFORM_TEXEL_BUFFER_BIT)) { std::cout << "R32_SFLOAT format unsupported for texel buffer\n"; exit(-1); } init_window_size(info, 500, 500); init_connection(info); init_window(info); init_swapchain_extension(info); init_device(info); init_command_pool(info); init_command_buffer(info); execute_begin_command_buffer(info); init_device_queue(info); init_swap_chain(info); VkBufferCreateInfo buf_info = {}; buf_info.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO; buf_info.pNext = NULL; buf_info.usage = VK_BUFFER_USAGE_UNIFORM_TEXEL_BUFFER_BIT; buf_info.size = sizeof(texels); buf_info.queueFamilyIndexCount = 0; buf_info.pQueueFamilyIndices = NULL; buf_info.sharingMode = VK_SHARING_MODE_EXCLUSIVE; buf_info.flags = 0; VkBuffer texelBuf; res = vkCreateBuffer(info.device, &buf_info, NULL, &texelBuf); assert(res == VK_SUCCESS); VkMemoryRequirements mem_reqs; vkGetBufferMemoryRequirements(info.device, texelBuf, &mem_reqs); VkMemoryAllocateInfo alloc_info = {}; alloc_info.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO; alloc_info.pNext = NULL; alloc_info.memoryTypeIndex = 0; alloc_info.allocationSize = mem_reqs.size; pass = memory_type_from_properties(info, mem_reqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &alloc_info.memoryTypeIndex); assert(pass && "No mappable, coherent memory"); VkDeviceMemory texelMem; res = vkAllocateMemory(info.device, &alloc_info, NULL, &texelMem); assert(res == VK_SUCCESS); uint8_t *pData; res = vkMapMemory(info.device, texelMem, 0, mem_reqs.size, 0, (void **)&pData); assert(res == VK_SUCCESS); memcpy(pData, &texels, sizeof(texels)); vkUnmapMemory(info.device, texelMem); res = vkBindBufferMemory(info.device, texelBuf, texelMem, 0); assert(res == VK_SUCCESS); VkBufferView texel_view; VkBufferViewCreateInfo view_info = {}; view_info.sType = VK_STRUCTURE_TYPE_BUFFER_VIEW_CREATE_INFO; view_info.pNext = NULL; view_info.buffer = texelBuf; view_info.format = VK_FORMAT_R32_SFLOAT; view_info.offset = 0; view_info.range = sizeof(texels); vkCreateBufferView(info.device, &view_info, NULL, &texel_view); VkDescriptorBufferInfo texel_buffer_info = {}; texel_buffer_info.buffer = texelBuf; texel_buffer_info.offset = 0; texel_buffer_info.range = sizeof(texels); // init_descriptor_and_pipeline_layouts(info, false); VkDescriptorSetLayoutBinding layout_bindings[1]; layout_bindings[0].binding = 0; layout_bindings[0].descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER; layout_bindings[0].descriptorCount = 1; layout_bindings[0].stageFlags = VK_SHADER_STAGE_VERTEX_BIT; layout_bindings[0].pImmutableSamplers = NULL; /* Next take layout bindings and use them to create a descriptor set layout */ VkDescriptorSetLayoutCreateInfo descriptor_layout = {}; descriptor_layout.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO; descriptor_layout.pNext = NULL; descriptor_layout.bindingCount = 1; descriptor_layout.pBindings = layout_bindings; info.desc_layout.resize(NUM_DESCRIPTOR_SETS); res = vkCreateDescriptorSetLayout(info.device, &descriptor_layout, NULL, info.desc_layout.data()); assert(res == VK_SUCCESS); /* Now use the descriptor layout to create a pipeline layout */ VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo = {}; pPipelineLayoutCreateInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO; pPipelineLayoutCreateInfo.pNext = NULL; pPipelineLayoutCreateInfo.pushConstantRangeCount = 0; pPipelineLayoutCreateInfo.pPushConstantRanges = NULL; pPipelineLayoutCreateInfo.setLayoutCount = NUM_DESCRIPTOR_SETS; pPipelineLayoutCreateInfo.pSetLayouts = info.desc_layout.data(); res = vkCreatePipelineLayout(info.device, &pPipelineLayoutCreateInfo, NULL, &info.pipeline_layout); assert(res == VK_SUCCESS); init_renderpass(info, depthPresent); init_shaders(info, vertShaderText, fragShaderText); init_framebuffers(info, depthPresent); VkDescriptorPoolSize type_count[1]; type_count[0].type = VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER; type_count[0].descriptorCount = 1; VkDescriptorPoolCreateInfo descriptor_pool = {}; descriptor_pool.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO; descriptor_pool.pNext = NULL; descriptor_pool.maxSets = 1; descriptor_pool.poolSizeCount = 1; descriptor_pool.pPoolSizes = type_count; res = vkCreateDescriptorPool(info.device, &descriptor_pool, NULL, &info.desc_pool); assert(res == VK_SUCCESS); VkDescriptorSetAllocateInfo desc_alloc_info[1]; desc_alloc_info[0].sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO; desc_alloc_info[0].pNext = NULL; desc_alloc_info[0].descriptorPool = info.desc_pool; desc_alloc_info[0].descriptorSetCount = NUM_DESCRIPTOR_SETS; desc_alloc_info[0].pSetLayouts = info.desc_layout.data(); /* Allocate descriptor set with UNIFORM_BUFFER_DYNAMIC */ info.desc_set.resize(NUM_DESCRIPTOR_SETS); res = vkAllocateDescriptorSets(info.device, desc_alloc_info, info.desc_set.data()); assert(res == VK_SUCCESS); VkWriteDescriptorSet writes[1]; writes[0] = {}; writes[0].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET; writes[0].dstSet = info.desc_set[0]; writes[0].dstBinding = 0; writes[0].descriptorCount = 1; writes[0].descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER; writes[0].pBufferInfo = &texel_buffer_info; writes[0].pTexelBufferView = &texel_view; writes[0].dstArrayElement = 0; vkUpdateDescriptorSets(info.device, 1, writes, 0, NULL); init_pipeline_cache(info); init_pipeline(info, depthPresent, vertexPresent); /* VULKAN_KEY_START */ VkClearValue clear_values[1]; clear_values[0].color.float32[0] = 0.2f; clear_values[0].color.float32[1] = 0.2f; clear_values[0].color.float32[2] = 0.2f; clear_values[0].color.float32[3] = 0.2f; VkSemaphoreCreateInfo imageAcquiredSemaphoreCreateInfo; imageAcquiredSemaphoreCreateInfo.sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO; imageAcquiredSemaphoreCreateInfo.pNext = NULL; imageAcquiredSemaphoreCreateInfo.flags = 0; res = vkCreateSemaphore(info.device, &imageAcquiredSemaphoreCreateInfo, NULL, &info.imageAcquiredSemaphore); assert(res == VK_SUCCESS); // Get the index of the next available swapchain image: res = vkAcquireNextImageKHR(info.device, info.swap_chain, UINT64_MAX, info.imageAcquiredSemaphore, VK_NULL_HANDLE, &info.current_buffer); // TODO: Deal with the VK_SUBOPTIMAL_KHR and VK_ERROR_OUT_OF_DATE_KHR // return codes assert(res == VK_SUCCESS); VkRenderPassBeginInfo rp_begin; rp_begin.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO; rp_begin.pNext = NULL; rp_begin.renderPass = info.render_pass; rp_begin.framebuffer = info.framebuffers[info.current_buffer]; rp_begin.renderArea.offset.x = 0; rp_begin.renderArea.offset.y = 0; rp_begin.renderArea.extent.width = info.width; rp_begin.renderArea.extent.height = info.height; rp_begin.clearValueCount = 1; rp_begin.pClearValues = clear_values; vkCmdBeginRenderPass(info.cmd, &rp_begin, VK_SUBPASS_CONTENTS_INLINE); vkCmdBindPipeline(info.cmd, VK_PIPELINE_BIND_POINT_GRAPHICS, info.pipeline); vkCmdBindDescriptorSets(info.cmd, VK_PIPELINE_BIND_POINT_GRAPHICS, info.pipeline_layout, 0, NUM_DESCRIPTOR_SETS, info.desc_set.data(), 0, NULL); init_viewports(info); init_scissors(info); vkCmdDraw(info.cmd, 3, 1, 0, 0); vkCmdEndRenderPass(info.cmd); res = vkEndCommandBuffer(info.cmd); const VkCommandBuffer cmd_bufs[] = {info.cmd}; VkFenceCreateInfo fenceInfo; VkFence drawFence; fenceInfo.sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO; fenceInfo.pNext = NULL; fenceInfo.flags = 0; vkCreateFence(info.device, &fenceInfo, NULL, &drawFence); execute_queue_cmdbuf(info, cmd_bufs, drawFence); do { res = vkWaitForFences(info.device, 1, &drawFence, VK_TRUE, FENCE_TIMEOUT); } while (res == VK_TIMEOUT); assert(res == VK_SUCCESS); vkDestroyFence(info.device, drawFence, NULL); execute_present_image(info); wait_seconds(1); /* VULKAN_KEY_END */ if (info.save_images) write_ppm(info, "texel_buffer"); vkDestroySemaphore(info.device, info.imageAcquiredSemaphore, NULL); vkDestroyBufferView(info.device, texel_view, NULL); vkDestroyBuffer(info.device, texelBuf, NULL); vkFreeMemory(info.device, texelMem, NULL); destroy_pipeline(info); destroy_pipeline_cache(info); destroy_descriptor_pool(info); destroy_framebuffers(info); destroy_shaders(info); destroy_renderpass(info); destroy_descriptor_and_pipeline_layouts(info); destroy_swap_chain(info); destroy_command_buffer(info); destroy_command_pool(info); destroy_device(info); destroy_window(info); destroy_instance(info); return 0; }