コード例 #1
0
   void AABoxContainTest::testExtendVolumePt()
   {
      // Test empty box and pt
      gmtl::AABoxf empty, result;
      gmtl::Point3f origin;
      result = empty;
      gmtl::extendVolume(result, origin);
      CPPUNIT_ASSERT(! result.isEmpty());
      CPPUNIT_ASSERT(result.getMin() == origin);
      CPPUNIT_ASSERT(result.getMax() == origin);

      // Valid box against pt inside
      gmtl::AABoxf box2(gmtl::Point3f(-1,-1,-1), gmtl::Point3f(1,1,1));
      result = box2;
      gmtl::extendVolume(result, origin);
      CPPUNIT_ASSERT(! result.isEmpty());
      CPPUNIT_ASSERT(result.getMin() == box2.getMin());
      CPPUNIT_ASSERT(result.getMax() == box2.getMax());

      // Valid box with pt outside
      gmtl::Point3f pt(30, 30, -30);
      gmtl::Point3f expMin(-1,-1,-30);
      gmtl::Point3f expMax(30,30,1);
      result = box2;
      gmtl::extendVolume(result, pt);
      CPPUNIT_ASSERT(! result.isEmpty());
      CPPUNIT_ASSERT(result.getMin() == expMin);
      CPPUNIT_ASSERT(result.getMax() == expMax);
   }
コード例 #2
0
   void AABoxContainTest::testExtendVolumeAABox()
   {
      gmtl::AABoxf empty, result;
      gmtl::AABoxf box(gmtl::Point3f(-1,-1,-1), gmtl::Point3f(1,1,1));

      // Both boxes empty
      {
         gmtl::extendVolume(result, empty);
         CPPUNIT_ASSERT(result.isEmpty());
      }

      // Empty box with valid box
      {
         result = empty;
         gmtl::extendVolume(result, box);
         CPPUNIT_ASSERT(! result.isEmpty());
         CPPUNIT_ASSERT(result.getMin() == box.getMin());
         CPPUNIT_ASSERT(result.getMax() == box.getMax());
      }

      // Overlapping valid boxes
      {
         gmtl::AABoxf box2(gmtl::Point3f(0,0,0), gmtl::Point3f(2,2,2));
         gmtl::Point3f expMin(-1,-1,-1);
         gmtl::Point3f expMax(2,2,2);
         result = box;
         gmtl::extendVolume(result, box2);
         CPPUNIT_ASSERT(! result.isEmpty());
         CPPUNIT_ASSERT(result.getMin() == expMin);
         CPPUNIT_ASSERT(result.getMax() == expMax);
      }

      // Non-overlapping valid boxes
      {
         gmtl::AABoxf box2(gmtl::Point3f(2,2,2), gmtl::Point3f(4,4,4));
         gmtl::Point3f expMin(-1,-1,-1);
         gmtl::Point3f expMax(4,4,4);
         result = box;
         gmtl::extendVolume(result, box2);
         CPPUNIT_ASSERT(! result.isEmpty());
         CPPUNIT_ASSERT(result.getMin() == expMin);
         CPPUNIT_ASSERT(result.getMax() == expMax);
      }
   }
コード例 #3
0
ファイル: gibbs.cpp プロジェクト: thodrek/sampler
void em(dd::CmdParser & cmd_parser){

  // number of NUMA nodes
  int n_numa_node = numa_max_node() + 1;
  // number of max threads per NUMA node
  int n_thread_per_numa = (sysconf(_SC_NPROCESSORS_CONF))/(n_numa_node);

  // get command line arguments
  std::string fg_file = cmd_parser.fg_file->getValue();

  std::string weight_file = cmd_parser.weight_file->getValue();
  std::string variable_file = cmd_parser.variable_file->getValue();
  std::string factor_file = cmd_parser.factor_file->getValue();
  std::string edge_file = cmd_parser.edge_file->getValue();
  std::string meta_file = cmd_parser.meta_file->getValue();

  std::string output_folder = cmd_parser.output_folder->getValue();

  int n_learning_epoch = cmd_parser.n_learning_epoch->getValue();
  int n_samples_per_learning_epoch = cmd_parser.n_samples_per_learning_epoch->getValue();
  int n_inference_epoch = cmd_parser.n_inference_epoch->getValue();

  double stepsize = cmd_parser.stepsize->getValue();
  double stepsize2 = cmd_parser.stepsize2->getValue();
  // hack to support two parameters to specify step size
  if (stepsize == 0.01) stepsize = stepsize2;
  double decay = cmd_parser.decay->getValue();

  int n_datacopy = cmd_parser.n_datacopy->getValue();
  double reg_param = cmd_parser.reg_param->getValue();
  double reg1_param = cmd_parser.reg1_param->getValue();
  bool is_quiet = cmd_parser.quiet->getValue();
  bool check_convergence = cmd_parser.check_convergence->getValue();
  bool sample_evidence = cmd_parser.sample_evidence->getValue();
  int burn_in = cmd_parser.burn_in->getValue();
  int n_iter = cmd_parser.n_iter->getValue();
  int wl_conv = cmd_parser.wl_conv->getValue();
  int delta = cmd_parser.delta->getValue();
  bool learn_non_evidence = cmd_parser.learn_non_evidence->getValue();

  Meta meta = read_meta(fg_file);

  if (is_quiet) {
    std::cout << "Running in quiet mode..." << std::endl;
  } else {
    std::cout << std::endl;
    std::cout << "#################MACHINE CONFIG#################" << std::endl;
    std::cout << "# # NUMA Node        : " << n_numa_node << std::endl;
    std::cout << "# # Thread/NUMA Node : " << n_thread_per_numa << std::endl;
    std::cout << "################################################" << std::endl;
    std::cout << std::endl;
    std::cout << "#################GIBBS SAMPLING#################" << std::endl;
    std::cout << "# fg_file            : " << fg_file << std::endl;
    std::cout << "# edge_file          : " << edge_file << std::endl;
    std::cout << "# weight_file        : " << weight_file << std::endl;
    std::cout << "# variable_file      : " << variable_file << std::endl;
    std::cout << "# factor_file        : " << factor_file << std::endl;
    std::cout << "# meta_file          : " << meta_file << std::endl;
    std::cout << "# output_folder      : " << output_folder << std::endl;
    std::cout << "# n_learning_epoch   : " << n_learning_epoch << std::endl;
    std::cout << "# n_samples/l. epoch : " << n_samples_per_learning_epoch << std::endl;
    std::cout << "# n_inference_epoch  : " << n_inference_epoch << std::endl;
    std::cout << "# stepsize           : " << stepsize << std::endl;
    std::cout << "# decay              : " << decay << std::endl;
    std::cout << "# regularization     : " << reg_param << std::endl;
    std::cout << "# l1 regularization     : " << reg1_param << std::endl;
    std::cout << "################################################" << std::endl;
    std::cout << "# IGNORE -s (n_samples/l. epoch). ALWAYS -s 1. #" << std::endl;
    std::cout << "# IGNORE -t (threads). ALWAYS USE ALL THREADS. #" << std::endl;
    std::cout << "################################################" << std::endl;


    std::cout << "# nvar               : " << meta.num_variables << std::endl;
    std::cout << "# nfac               : " << meta.num_factors << std::endl;
    std::cout << "# nweight            : " << meta.num_weights << std::endl;
    std::cout << "# nedge              : " << meta.num_edges << std::endl;
    std::cout << "################################################" << std::endl;
  }

  // run on NUMA node 0
  numa_run_on_node(0);
  numa_set_localalloc();

  // load factor graph
  dd::FactorGraph fg(meta.num_variables, meta.num_factors, meta.num_weights, meta.num_edges);
  fg.load(cmd_parser, is_quiet);
  dd::GibbsSampling gibbs(&fg, &cmd_parser, n_datacopy, sample_evidence, burn_in, learn_non_evidence);

  // Initialize EM instance
  dd::ExpMax expMax(&fg, &gibbs, wl_conv, delta, check_convergence);

  // number of inference epochs
  int numa_aware_n_epoch;
  int numa_aware_n_learning_epoch;

  // EM init -- run Maximzation (semi-supervised learning)

  // Maximization step
  numa_aware_n_learning_epoch = (int)(n_learning_epoch/n_numa_node) +
                                (n_learning_epoch%n_numa_node==0?0:1);
  expMax.maximization(numa_aware_n_learning_epoch, n_samples_per_learning_epoch,
                      stepsize, decay, reg_param, reg1_param, is_quiet);
  /*expMax.maximization(numa_aware_n_learning_epoch, n_samples_per_learning_epoch,
                      stepsize, decay, reg_param, reg1_param, meta_file, is_quiet);*/

  while (!expMax.hasConverged && n_iter > 0) {

    // Expectation step
    numa_aware_n_epoch = (int)(n_inference_epoch/n_numa_node) +
                         (n_inference_epoch%n_numa_node==0?0:1);
    expMax.expectation(numa_aware_n_epoch,is_quiet);


    // Maximization step
    numa_aware_n_learning_epoch = (int)(n_learning_epoch/n_numa_node) +
                                  (n_learning_epoch%n_numa_node==0?0:1);
    /*expMax.maximization(numa_aware_n_learning_epoch, n_samples_per_learning_epoch,
                        stepsize, decay, reg_param, reg1_param, meta_file, is_quiet);*/
    expMax.maximization(numa_aware_n_learning_epoch, n_samples_per_learning_epoch,
                        stepsize, decay, reg_param, reg1_param, is_quiet);

    //Decrement iteration counter
    n_iter--;
  }

  expMax.dump_weights(is_quiet);
  expMax.aggregate_results_and_dump(is_quiet);


}