コード例 #1
0
ファイル: hash.c プロジェクト: samuelkgutierrez/CLAMR
cl_mem gpu_compact_hash_init(ulong ncells, int imaxsize, int jmaxsize, int gpu_hash_method, uint hash_report_level_in,
   ulong *gpu_hash_table_size, ulong *hashsize, cl_mem *dev_hash_header_in)
{
   hash_report_level = hash_report_level_in;

   uint gpu_compact_hash_size = (uint)((double)ncells*hash_mult);
   uint gpu_perfect_hash_size = (uint)(imaxsize*jmaxsize);

   if (gpu_hash_method == METHOD_UNSET) {
      float gpu_hash_mem_factor = 20.0;
      float gpu_hash_mem_ratio = (double)gpu_perfect_hash_size/(double)gpu_compact_hash_size;
      if (mem_opt_factor != 1.0) gpu_hash_mem_factor /= (mem_opt_factor*0.2);
      gpu_hash_method = (gpu_hash_mem_ratio < gpu_hash_mem_factor) ? PERFECT_HASH : QUADRATIC;
   }

   int gpu_do_compact_hash = (gpu_hash_method == PERFECT_HASH) ? 0 : 1;

   ulong gpu_AA = 1;
   ulong gpu_BB = 0;
   if (gpu_do_compact_hash){
      (*gpu_hash_table_size) = gpu_compact_hash_size;
      gpu_AA = (ulong)(1.0+(double)(prime-1)*drand48());
      gpu_BB = (ulong)(0.0+(double)(prime-1)*drand48());
      //if ( gpu_AA > prime-1 || gpu_BB > prime-1) exit(0);
      (*hashsize) = 2*gpu_compact_hash_size;
   } else {
      (*gpu_hash_table_size) = gpu_perfect_hash_size;
      (*hashsize) = gpu_perfect_hash_size;
   }

   hashtablesize = (*hashsize);

   const uint TILE_SIZE = 128;

   cl_command_queue command_queue = ezcl_get_command_queue();

   cl_mem dev_hash = ezcl_malloc(NULL, "dev_hash", hashsize, sizeof(cl_int),  CL_MEM_READ_WRITE, 0);
   ulong *gpu_hash_header = (ulong *)genvector(hash_header_size, sizeof(ulong));
   gpu_hash_header[0] = (ulong)gpu_hash_method; 
   gpu_hash_header[1] =        (*gpu_hash_table_size);
   gpu_hash_header[2] =        gpu_AA;
   gpu_hash_header[3] =        gpu_BB;
   dev_hash_header = ezcl_malloc(NULL, "dev_hash_header", &hash_header_size, sizeof(cl_ulong),  CL_MEM_READ_WRITE, 0);
   ezcl_enqueue_write_buffer(command_queue, dev_hash_header, CL_TRUE, 0, hash_header_size*sizeof(cl_ulong), &gpu_hash_header[0], NULL);

   genvectorfree(gpu_hash_header);

   (*dev_hash_header_in) = dev_hash_header;

   size_t hash_local_work_size  = MIN((*hashsize), TILE_SIZE);
   size_t hash_global_work_size = (((*hashsize)+hash_local_work_size - 1) /hash_local_work_size) * hash_local_work_size;

   ezcl_set_kernel_arg(kernel_hash_init, 0, sizeof(cl_int),  (void *)hashsize);
   ezcl_set_kernel_arg(kernel_hash_init, 1, sizeof(cl_mem),  (void *)&dev_hash);
   ezcl_enqueue_ndrange_kernel(command_queue, kernel_hash_init,   1, NULL, &hash_global_work_size, &hash_local_work_size, NULL);

   return(dev_hash);
}
コード例 #2
0
ファイル: clamr_gpucheck.cpp プロジェクト: huahbo/CLAMR
extern "C" void do_calc(void)
{  double g     = 9.80;
   double sigma = 0.95;
   int icount, jcount;

   if (cycle_reorder == ZORDER || cycle_reorder == HILBERT_SORT) {
      do_comparison_calc = 1;
      do_sync = 0;
      do_gpu_sync = 1;
   }
   
   size_t ncells    = mesh->ncells;

   cl_mem &dev_H        = state->dev_H;
   cl_mem &dev_U        = state->dev_U;
   cl_mem &dev_V        = state->dev_V;

   cl_mem &dev_celltype = mesh->dev_celltype;
   cl_mem &dev_i        = mesh->dev_i;
   cl_mem &dev_j        = mesh->dev_j;
   cl_mem &dev_level    = mesh->dev_level;

   cl_mem &dev_mpot     = state->dev_mpot;

   vector<int>     mpot;
   
   size_t old_ncells = ncells;
   size_t new_ncells = 0;
   size_t new_ncells_gpu = 0;
   double H_sum = -1.0;
   double deltaT = 0.0;

   cl_command_queue command_queue = ezcl_get_command_queue();

   //  Main loop.
   for (int nburst = 0; nburst < outputInterval && ncycle < niter; nburst++, ncycle++) {

      // To reduce drift in solution
      if (do_sync) {
         ezcl_enqueue_read_buffer(command_queue, dev_H, CL_FALSE, 0, ncells*sizeof(cl_state_t),  (void *)&state->H[0],  NULL);
         ezcl_enqueue_read_buffer(command_queue, dev_U, CL_FALSE, 0, ncells*sizeof(cl_state_t),  (void *)&state->U[0],  NULL);
         ezcl_enqueue_read_buffer(command_queue, dev_V, CL_TRUE,  0, ncells*sizeof(cl_state_t),  (void *)&state->V[0],  NULL);
      }

      //  Define basic domain decomposition parameters for GPU.
      old_ncells = ncells;

      //  Calculate the real time step for the current discrete time step.
      double deltaT_cpu = state->set_timestep(g, sigma);
      
      double deltaT_gpu = state->gpu_set_timestep(sigma);

#ifdef XXX
      //  Compare time step values and pass deltaT in to the kernel.
      if (do_comparison_calc)
      {  if (fabs(deltaT_gpu - deltaT_cpu) > .000001)
         {  printf("Error with deltaT calc --- cpu %lf gpu %lf\n",deltaT_cpu,deltaT_gpu); } }
#endif
      
      deltaT = (do_gpu_calc) ? deltaT_gpu : deltaT_cpu;
      simTime += deltaT;

      if (mesh->nlft == NULL) mesh->calc_neighbors();

      if (mesh->dev_nlft == NULL) mesh->gpu_calc_neighbors();

      if (do_comparison_calc) {
         mesh->compare_neighbors_gpu_global_to_cpu_global();
      }

      mesh->partition_measure();

      // Currently not working -- may need to be earlier?
      //if (do_cpu_calc && ! mesh->have_boundary) {
      //  state->add_boundary_cells(mesh);
      //}

      // Apply BCs is currently done as first part of gpu_finite_difference and so comparison won't work here

      //  Execute main kernel
      state->calc_finite_difference(deltaT);
      
      state->gpu_calc_finite_difference(deltaT);
      
      if (do_comparison_calc) {
         // Need to compare dev_H to H, etc
         state->compare_state_gpu_global_to_cpu_global("finite difference",ncycle,ncells);
      }

      if (ezcl_get_compute_device() == COMPUTE_DEVICE_ATI) {
         fflush(stdout);
         exit(0);
      }

      //  Size of arrays gets reduced to just the real cells in this call for have_boundary = 0
      state->remove_boundary_cells();
      
      mpot.resize(ncells);
      new_ncells = state->calc_refine_potential(mpot, icount, jcount);
      //printf("DEBUG cpu icount %d jcount %d new_ncells %d\n",icount,jcount,new_ncells);

      new_ncells_gpu = state->gpu_calc_refine_potential(icount, jcount);

      if (do_comparison_calc) {
         if (new_ncells != new_ncells_gpu) {
            printf("ERROR -- new_ncells cpu %lu not equal to new_ncells gpu %lu\n",new_ncells,new_ncells_gpu);
            exit(0);
         }
         // Need to compare dev_mpot to mpot
         if (dev_mpot) {
            mesh->compare_mpot_gpu_global_to_cpu_global(&mpot[0], dev_mpot);
         }
      }

      // Sync up cpu array with gpu version to reduce differences due to minor numerical differences
      // otherwise cell count will diverge causing code problems and crashes
      if (dev_mpot) {
         if (do_sync) {
            ezcl_enqueue_read_buffer(command_queue, dev_mpot, CL_TRUE,  0, ncells*sizeof(cl_int), &mpot[0], NULL);
         }
         if (do_gpu_sync) {
            ezcl_enqueue_write_buffer(command_queue, dev_mpot, CL_TRUE,  0, ncells*sizeof(cl_int), &mpot[0], NULL);
         }
      }

      if (do_comparison_calc) {
         // This compares ioffset for each block in the calculation
         if (dev_mpot) {
            mesh->compare_ioffset_gpu_global_to_cpu_global(old_ncells, &mpot[0]);
         }
      }

      if (do_gpu_sync) {
         if (dev_mpot) {
            size_t local_work_size  = MIN(old_ncells, TILE_SIZE);
            size_t global_work_size = ((old_ncells+local_work_size - 1) /local_work_size) * local_work_size;

            //size_t block_size = (ncells + TILE_SIZE - 1) / TILE_SIZE; //  For on-device global reduction kernel.
            size_t block_size     = global_work_size/local_work_size;

            vector<int>      ioffset(block_size);
            int mtotal = 0;
            for (int ig=0; ig<(int)(old_ncells+TILE_SIZE-1)/TILE_SIZE; ig++){
               int mcount = 0;
               for (int ic=ig*TILE_SIZE; ic<(ig+1)*TILE_SIZE; ic++){
                   if (ic >= (int)old_ncells) break;
                   if (mesh->celltype[ic] == REAL_CELL) {
                      mcount += mpot[ic] ? 4 : 1;
                   } else {
                      mcount += mpot[ic] ? 2 : 1;
                   }
               }
               ioffset[ig] = mtotal;
               mtotal += mcount;
            }
            ezcl_enqueue_write_buffer(command_queue, mesh->dev_ioffset, CL_TRUE, 0, block_size*sizeof(cl_int),       &ioffset[0], NULL);
         }
      }

      if (do_comparison_calc) {
         new_ncells = new_ncells_gpu;
      }

      //int add_ncells = new_ncells - old_ncells;
      state->rezone_all(icount, jcount, mpot);
      // Clear does not delete mpot, so have to swap with an empty vector to get
      // it to delete the mpot memory. This is all to avoid valgrind from showing
      // it as a reachable memory leak
      //mpot.clear();
      vector<int>().swap(mpot);

      //  Resize the mesh, inserting cells where refinement is necessary.
      if (dev_mpot) state->gpu_rezone_all(icount, jcount, localStencil);
      ncells = new_ncells;
      mesh->ncells = new_ncells;

      //ezcl_device_memory_remove(dev_ioffset);

      if (do_comparison_calc) {
         state->compare_state_gpu_global_to_cpu_global("rezone all",ncycle,ncells);

         mesh->compare_indices_gpu_global_to_cpu_global();
      }

      //if (do_gpu_calc) {
      //   int bcount = mesh->gpu_count_BCs();
      //}

      mesh->proc.resize(ncells);
      if (icount || jcount) {  
         if (cycle_reorder == ZORDER || cycle_reorder == HILBERT_SORT) {
            mesh->calc_spatial_coordinates(0);
         }
         vector<int> index(ncells);
         mesh->partition_cells(numpe, index, cycle_reorder);
         //state->state_reorder(index);
         if (do_gpu_sync) {
            ezcl_enqueue_write_buffer(command_queue, dev_celltype, CL_FALSE, 0, ncells*sizeof(cl_int),  (void *)&mesh->celltype[0],  NULL);
            ezcl_enqueue_write_buffer(command_queue, dev_i,     CL_FALSE, 0, ncells*sizeof(cl_int),  (void *)&mesh->i[0],  NULL);
            ezcl_enqueue_write_buffer(command_queue, dev_j,     CL_FALSE, 0, ncells*sizeof(cl_int),  (void *)&mesh->j[0],  NULL);
            ezcl_enqueue_write_buffer(command_queue, dev_level, CL_TRUE,  0, ncells*sizeof(cl_int),  (void *)&mesh->level[0],  NULL);
         }
      }
      
      if (do_gpu_sync) {
         ezcl_enqueue_write_buffer(command_queue, dev_H, CL_FALSE, 0, ncells*sizeof(cl_state_t),  (void *)&state->H[0],  NULL);
         ezcl_enqueue_write_buffer(command_queue, dev_U, CL_FALSE, 0, ncells*sizeof(cl_state_t),  (void *)&state->U[0],  NULL);
         ezcl_enqueue_write_buffer(command_queue, dev_V, CL_TRUE,  0, ncells*sizeof(cl_state_t),  (void *)&state->V[0],  NULL);
      }
   } // End burst loop

   H_sum = state->mass_sum(enhanced_precision_sum);
   if (isnan(H_sum)) {
      printf("Got a NAN on cycle %d\n",ncycle);
      exit(-1);
   }
   if (do_comparison_calc) {
      double total_mass = state->gpu_mass_sum(enhanced_precision_sum);
      if (fabs(total_mass - H_sum) > CONSERVATION_EPS) printf("Error: mass sum gpu %f cpu %f\n", total_mass, H_sum);/***/
   }

   printf("Iteration %3d timestep %lf Sim Time %lf cells %ld Mass Sum %14.12lg Mass Change %12.6lg\n",
      ncycle, deltaT, simTime, ncells, H_sum, H_sum - H_sum_initial);

#ifdef HAVE_GRAPHICS
   if (do_cpu_calc){
      mesh->calc_spatial_coordinates(0);
   }
   if (do_gpu_calc){
      cl_mem dev_x  = ezcl_malloc(NULL, const_cast<char *>("dev_x"),  &ncells, sizeof(cl_spatial_t),  CL_MEM_READ_WRITE, 0);
      cl_mem dev_dx = ezcl_malloc(NULL, const_cast<char *>("dev_dx"), &ncells, sizeof(cl_spatial_t),  CL_MEM_READ_WRITE, 0);
      cl_mem dev_y  = ezcl_malloc(NULL, const_cast<char *>("dev_y"),  &ncells, sizeof(cl_spatial_t),  CL_MEM_READ_WRITE, 0);
      cl_mem dev_dy = ezcl_malloc(NULL, const_cast<char *>("dev_dy"), &ncells, sizeof(cl_spatial_t),  CL_MEM_READ_WRITE, 0);

      mesh->gpu_calc_spatial_coordinates(dev_x, dev_dx, dev_y, dev_dy);

      if (do_comparison_calc){
#ifdef FULL_PRECISION
         mesh->compare_coordinates_gpu_global_to_cpu_global_double(dev_x, dev_dx, dev_y, dev_dy, dev_H, &state->H[0]);
#else
         mesh->compare_coordinates_gpu_global_to_cpu_global_float(dev_x, dev_dx, dev_y, dev_dy, dev_H, &state->H[0]);
#endif
      }

      ezcl_device_memory_remove(dev_x);
      ezcl_device_memory_remove(dev_dx);
      ezcl_device_memory_remove(dev_y);
      ezcl_device_memory_remove(dev_dy);
   }

   set_mysize(ncells);
   set_viewmode(view_mode);
   set_cell_coordinates(&mesh->x[0], &mesh->dx[0], &mesh->y[0], &mesh->dy[0]);
   set_cell_data(&state->H[0]);
   set_cell_proc(&mesh->proc[0]);
   set_circle_radius(circle_radius);
   draw_scene();
#endif

   //  Output final results and timing information.
   if (ncycle >= niter) {
      //free_display();
      
      //  Get overall program timing.
      double elapsed_time = cpu_timer_stop(tstart);
      
      state->output_timing_info(do_cpu_calc, do_gpu_calc, elapsed_time);

      mesh->print_partition_measure();
      mesh->print_calc_neighbor_type();
      mesh->print_partition_type();

      printf("CPU:  rezone frequency                \t %8.4f\tpercent\n",     (double)mesh->get_cpu_rezone_count()/(double)ncycle*100.0 );
      printf("CPU:  calc neigh frequency            \t %8.4f\tpercent\n",     (double)mesh->get_cpu_calc_neigh_count()/(double)ncycle*100.0 );
      if (mesh->get_cpu_rezone_count() > 0) {
         printf("CPU:  refine_smooth_iter per rezone   \t %8.4f\t\n",            (double)mesh->get_cpu_refine_smooth_count()/(double)mesh->get_cpu_rezone_count() );
      }
      printf("GPU:  rezone frequency                \t %8.4f\tpercent\n",     (double)mesh->get_gpu_rezone_count()/(double)ncycle*100.0 );
      printf("GPU:  calc neigh frequency            \t %8.4f\tpercent\n",     (double)mesh->get_gpu_calc_neigh_count()/(double)ncycle*100.0 );
      if (mesh->get_gpu_rezone_count() > 0) {
         printf("GPU:  refine_smooth_iter per rezone   \t %8.4f\t\n",            (double)mesh->get_gpu_refine_smooth_count()/(double)mesh->get_gpu_rezone_count() );
      }

      if (mesh->dev_nlft != NULL){
         ezcl_device_memory_remove(mesh->dev_nlft);
         ezcl_device_memory_remove(mesh->dev_nrht);
         ezcl_device_memory_remove(mesh->dev_nbot);
         ezcl_device_memory_remove(mesh->dev_ntop);
      }

      mesh->terminate();
      state->terminate();
      ezcl_terminate();

      ezcl_mem_walk_all();

      exit(0);
   }  //  Complete final output.
   
}
コード例 #3
0
ファイル: clamr_gpucheck.cpp プロジェクト: huahbo/CLAMR
int main(int argc, char **argv) {
   int ierr;

    // Needed for code to compile correctly on the Mac
   int mype=0;
   int numpe=-1;

   //  Process command-line arguments, if any.
   parseInput(argc, argv);
   
   numpe = 16;

   ierr = ezcl_devtype_init(CL_DEVICE_TYPE_GPU, 0);
   if (ierr == EZCL_NODEVICE) {
      ierr = ezcl_devtype_init(CL_DEVICE_TYPE_CPU, 0);
   }
   if (ierr != EZCL_SUCCESS) {
      printf("No opencl device available -- aborting\n");
      exit(-1);
   }

   real_t circ_radius = 6.0;
   //  Scale the circle appropriately for the mesh size.
   circ_radius = circ_radius * (real_t) nx / 128.0;
   int boundary = 1;
   int parallel_in = 0;
   
   mesh  = new Mesh(nx, ny, levmx, ndim, boundary, parallel_in, do_gpu_calc);
   if (DEBUG) {
      //if (mype == 0) mesh->print();

      char filename[10];
      sprintf(filename,"out%1d",mype);
      mesh->fp=fopen(filename,"w");

      //mesh->print_local();
   } 
   mesh->init(nx, ny, circ_radius, initial_order, do_gpu_calc);
   size_t &ncells = mesh->ncells;
   state = new State(mesh);
   state->init(do_gpu_calc);
   mesh->proc.resize(ncells);
   mesh->calc_distribution(numpe);
   state->fill_circle(circ_radius, 100.0, 7.0);
   
   cl_mem &dev_celltype = mesh->dev_celltype;
   cl_mem &dev_i        = mesh->dev_i;
   cl_mem &dev_j        = mesh->dev_j;
   cl_mem &dev_level    = mesh->dev_level;

   cl_mem &dev_H    = state->dev_H;
   cl_mem &dev_U    = state->dev_U;
   cl_mem &dev_V    = state->dev_V;

   state_t  *H        = state->H;
   state_t  *U        = state->U;
   state_t  *V        = state->V;

   state->allocate_device_memory(ncells);

   size_t one = 1;
   state->dev_deltaT   = ezcl_malloc(NULL, const_cast<char *>("dev_deltaT"), &one,    sizeof(cl_real_t),  CL_MEM_READ_WRITE, 0);

   size_t mem_request = (int)((float)ncells*mesh->mem_factor);
   dev_celltype = ezcl_malloc(NULL, const_cast<char *>("dev_celltype"), &mem_request, sizeof(cl_int),   CL_MEM_READ_ONLY, 0);
   dev_i        = ezcl_malloc(NULL, const_cast<char *>("dev_i"),        &mem_request, sizeof(cl_int),   CL_MEM_READ_ONLY, 0);
   dev_j        = ezcl_malloc(NULL, const_cast<char *>("dev_j"),        &mem_request, sizeof(cl_int),   CL_MEM_READ_ONLY, 0);
   dev_level    = ezcl_malloc(NULL, const_cast<char *>("dev_level"),    &mem_request, sizeof(cl_int),   CL_MEM_READ_ONLY, 0);

   cl_command_queue command_queue = ezcl_get_command_queue();
   ezcl_enqueue_write_buffer(command_queue, dev_celltype, CL_FALSE, 0, ncells*sizeof(cl_int),  (void *)&mesh->celltype[0], &start_write_event);
   ezcl_enqueue_write_buffer(command_queue, dev_i,        CL_FALSE, 0, ncells*sizeof(cl_int),  (void *)&mesh->i[0],        NULL            );
   ezcl_enqueue_write_buffer(command_queue, dev_j,        CL_FALSE, 0, ncells*sizeof(cl_int),  (void *)&mesh->j[0],        NULL            );
   ezcl_enqueue_write_buffer(command_queue, dev_level,    CL_FALSE, 0, ncells*sizeof(cl_int),  (void *)&mesh->level[0],    NULL            );
   ezcl_enqueue_write_buffer(command_queue, dev_H,        CL_FALSE, 0, ncells*sizeof(cl_state_t),  (void *)&H[0],       NULL              );
   ezcl_enqueue_write_buffer(command_queue, dev_U,        CL_FALSE, 0, ncells*sizeof(cl_state_t),  (void *)&U[0],       NULL              );
   ezcl_enqueue_write_buffer(command_queue, dev_V,        CL_TRUE,  0, ncells*sizeof(cl_state_t),  (void *)&V[0],       &end_write_event  );
   state->gpu_time_write += ezcl_timer_calc(&start_write_event, &end_write_event);

   mesh->nlft = NULL;
   mesh->nrht = NULL;
   mesh->nbot = NULL;
   mesh->ntop = NULL;

   mesh->dev_nlft = NULL;
   mesh->dev_nrht = NULL;
   mesh->dev_nbot = NULL;
   mesh->dev_ntop = NULL;

   if (ezcl_get_compute_device() == COMPUTE_DEVICE_ATI) enhanced_precision_sum = false;

   //  Kahan-type enhanced precision sum implementation.
   double H_sum = state->mass_sum(enhanced_precision_sum);
   printf ("Mass of initialized cells equal to %14.12lg\n", H_sum);
   H_sum_initial = H_sum;

   printf("Iteration   0 timestep      n/a Sim Time      0.0 cells %ld Mass Sum %14.12lg\n", ncells, H_sum);

   mesh->cpu_calc_neigh_counter=0;
   mesh->cpu_time_calc_neighbors=0.0;
   mesh->cpu_rezone_counter=0;
   mesh->cpu_time_rezone_all=0.0;
   mesh->cpu_refine_smooth_counter=0;

   //  Set up grid.
#ifdef GRAPHICS_OUTPUT
   mesh->write_grid(n);
#endif

#ifdef HAVE_GRAPHICS
   set_mysize(ncells);
   set_viewmode(view_mode);
   set_window((float)mesh->xmin, (float)mesh->xmax, (float)mesh->ymin, (float)mesh->ymax);
   set_outline((int)outline);
   init_display(&argc, argv, "Shallow Water", mype);
   set_cell_coordinates(&mesh->x[0], &mesh->dx[0], &mesh->y[0], &mesh->dy[0]);
   set_cell_data(&H[0]);
   set_cell_proc(&mesh->proc[0]);
   set_circle_radius(circle_radius);
   draw_scene();
   //if (verbose) sleep(5);
   sleep(2);

   //  Set flag to show mesh results rather than domain decomposition.
   view_mode = 1;
   
   //  Clear superposition of circle on grid output.
   circle_radius = -1.0;
   
   cpu_timer_start(&tstart);

   set_idle_function(&do_calc);
   start_main_loop();
#else
   cpu_timer_start(&tstart);
   for (int it = 0; it < 10000000; it++) {
      do_calc();
   }
#endif
   
   return 0;
}