void ge25519_pack(unsigned char r[32], const ge25519_p3 *p) { fe25519 tx, ty, zi; fe25519_invert(&zi, &p->z); fe25519_mul(&tx, &p->x, &zi); fe25519_mul(&ty, &p->y, &zi); fe25519_pack(r, &ty); r[31] ^= fe25519_getparity(&tx) << 7; }
/* return 0 on success, -1 otherwise */ int ge25519_unpackneg_vartime(ge25519_p3 *r, const unsigned char p[32]) { unsigned char par; fe25519 t, chk, num, den, den2, den4, den6; fe25519_setone(&r->z); par = p[31] >> 7; fe25519_unpack(&r->y, p); fe25519_square(&num, &r->y); /* x = y^2 */ fe25519_mul(&den, &num, &ge25519_ecd); /* den = dy^2 */ fe25519_sub(&num, &num, &r->z); /* x = y^2-1 */ fe25519_add(&den, &r->z, &den); /* den = dy^2+1 */ /* Computation of sqrt(num/den) */ /* 1.: computation of num^((p-5)/8)*den^((7p-35)/8) = (num*den^7)^((p-5)/8) */ fe25519_square(&den2, &den); fe25519_square(&den4, &den2); fe25519_mul(&den6, &den4, &den2); fe25519_mul(&t, &den6, &num); fe25519_mul(&t, &t, &den); fe25519_pow2523(&t, &t); /* 2. computation of r->x = t * num * den^3 */ fe25519_mul(&t, &t, &num); fe25519_mul(&t, &t, &den); fe25519_mul(&t, &t, &den); fe25519_mul(&r->x, &t, &den); /* 3. Check whether sqrt computation gave correct result, multiply by sqrt(-1) if not: */ fe25519_square(&chk, &r->x); fe25519_mul(&chk, &chk, &den); if (!fe25519_iseq_vartime(&chk, &num)) { fe25519_mul(&r->x, &r->x, &ge25519_sqrtm1); } /* 4. Now we have one of the two square roots, except if input was not a square */ fe25519_square(&chk, &r->x); fe25519_mul(&chk, &chk, &den); if (!fe25519_iseq_vartime(&chk, &num)) { return -1; } /* 5. Choose the desired square root according to parity: */ if(fe25519_getparity(&r->x) != (1-par)) { fe25519_neg(&r->x, &r->x); } fe25519_mul(&r->t, &r->x, &r->y); return 0; }