コード例 #1
0
ファイル: flash.cpp プロジェクト: DaveBerkeley/arduino
bool flash_init(FlashIO* io, 
    void (*text_fn)(const char*), 
    void (*send_fn)(const void* data, int length))
{
    flash_send_fn = send_fn;
#if defined(ALLOW_VERBOSE)
    debug_fn = text_fn;
#endif

    i2c_init(io->i2c);

    if (i2c_is_present(io->i2c)) {
        // Probe memory device to find its size.
        flash_probe(io);
#if defined(ALLOW_VERBOSE)
        if (debug_fn) {
            char buff[32];
            snprintf(buff, sizeof(buff), 
                    "flash_init(%d,%d)\r\n", 
                    io->info.pages,
                    io->info.page_size);
            debug(buff);
        }
#endif
    }

    return true;
}
コード例 #2
0
ファイル: env_flash.c プロジェクト: jait/witi-uboot
int flash_env_init(void)
{
	DECLARE_GLOBAL_DATA_PTR;

#ifdef CONFIG_OMAP2420H4
	int flash_probe(void);

	if(flash_probe() == 0)
		goto bad_flash;
#endif

#ifdef CMD_SAVEENV
	if (crc32(0, env_ptr->data, ENV_SIZE) == env_ptr->crc) {
		gd->env_addr  = (ulong)&(env_ptr->data);
		gd->env_valid = 1;
		return(0);
	}
#endif

#ifdef CONFIG_OMAP2420H4
bad_flash:
#endif
	gd->env_addr  = (ulong)&default_environment[0];
	gd->env_valid = 0;
	return (0);
}
コード例 #3
0
ファイル: env_flash.c プロジェクト: WhitePatches/snake-os
int  env_init(void)
{
	DECLARE_GLOBAL_DATA_PTR;
	int crc1_ok = 0, crc2_ok = 0;

	uchar flag1 = flash_addr->flags;
	uchar flag2 = flash_addr_new->flags;

	ulong addr_default = (ulong)&default_environment[0];
	ulong addr1 = (ulong)&(flash_addr->data);
	ulong addr2 = (ulong)&(flash_addr_new->data);

#ifdef CONFIG_OMAP2420H4
	int flash_probe(void);

	if(flash_probe() == 0)
		goto bad_flash;
#endif

	crc1_ok = (crc32(0, flash_addr->data, ENV_SIZE) == flash_addr->crc);
	crc2_ok = (crc32(0, flash_addr_new->data, ENV_SIZE) == flash_addr_new->crc);

	if (crc1_ok && ! crc2_ok) {
		gd->env_addr  = addr1;
		gd->env_valid = 1;
	} else if (! crc1_ok && crc2_ok) {
		gd->env_addr  = addr2;
		gd->env_valid = 1;
	} else if (! crc1_ok && ! crc2_ok) {
		gd->env_addr  = addr_default;
		gd->env_valid = 0;
	} else if (flag1 == ACTIVE_FLAG && flag2 == OBSOLETE_FLAG) {
		gd->env_addr  = addr1;
		gd->env_valid = 1;
	} else if (flag1 == OBSOLETE_FLAG && flag2 == ACTIVE_FLAG) {
		gd->env_addr  = addr2;
		gd->env_valid = 1;
	} else if (flag1 == flag2) {
		gd->env_addr  = addr1;
		gd->env_valid = 2;
	} else if (flag1 == 0xFF) {
		gd->env_addr  = addr1;
		gd->env_valid = 2;
	} else if (flag2 == 0xFF) {
		gd->env_addr  = addr2;
		gd->env_valid = 2;
	}

#ifdef CONFIG_OMAP2420H4
bad_flash:
#endif
	return (0);
}
コード例 #4
0
ファイル: lart.c プロジェクト: smx-smx/dsl-n55u
int __init lart_flash_init (void)
{
   int result;
   memset (&mtd,0,sizeof (mtd));
   printk ("MTD driver for LART. Written by Abraham vd Merwe <*****@*****.**>\n");
   printk ("%s: Probing for 28F160x3 flash on LART...\n",module_name);
   if (!flash_probe ())
	 {
		printk (KERN_WARNING "%s: Found no LART compatible flash device\n",module_name);
		return (-ENXIO);
	 }
   printk ("%s: This looks like a LART board to me.\n",module_name);
   mtd.name = module_name;
   mtd.type = MTD_NORFLASH;
   mtd.writesize = 1;
   mtd.flags = MTD_CAP_NORFLASH;
   mtd.size = FLASH_BLOCKSIZE_PARAM * FLASH_NUMBLOCKS_16m_PARAM + FLASH_BLOCKSIZE_MAIN * FLASH_NUMBLOCKS_16m_MAIN;
   mtd.erasesize = FLASH_BLOCKSIZE_MAIN;
   mtd.numeraseregions = ARRAY_SIZE(erase_regions);
   mtd.eraseregions = erase_regions;
   mtd.erase = flash_erase;
   mtd.read = flash_read;
   mtd.write = flash_write;
   mtd.owner = THIS_MODULE;

#ifdef LART_DEBUG
   printk (KERN_DEBUG
		   "mtd.name = %s\n"
		   "mtd.size = 0x%.8x (%uM)\n"
		   "mtd.erasesize = 0x%.8x (%uK)\n"
		   "mtd.numeraseregions = %d\n",
		   mtd.name,
		   mtd.size,mtd.size / (1024*1024),
		   mtd.erasesize,mtd.erasesize / 1024,
		   mtd.numeraseregions);

   if (mtd.numeraseregions)
	 for (result = 0; result < mtd.numeraseregions; result++)
	   printk (KERN_DEBUG
			   "\n\n"
			   "mtd.eraseregions[%d].offset = 0x%.8x\n"
			   "mtd.eraseregions[%d].erasesize = 0x%.8x (%uK)\n"
			   "mtd.eraseregions[%d].numblocks = %d\n",
			   result,mtd.eraseregions[result].offset,
			   result,mtd.eraseregions[result].erasesize,mtd.eraseregions[result].erasesize / 1024,
			   result,mtd.eraseregions[result].numblocks);

#ifdef HAVE_PARTITIONS
   printk ("\npartitions = %d\n", ARRAY_SIZE(lart_partitions));

   for (result = 0; result < ARRAY_SIZE(lart_partitions); result++)
	 printk (KERN_DEBUG
			 "\n\n"
			 "lart_partitions[%d].name = %s\n"
			 "lart_partitions[%d].offset = 0x%.8x\n"
			 "lart_partitions[%d].size = 0x%.8x (%uK)\n",
			 result,lart_partitions[result].name,
			 result,lart_partitions[result].offset,
			 result,lart_partitions[result].size,lart_partitions[result].size / 1024);
#endif
#endif

#ifndef HAVE_PARTITIONS
   result = add_mtd_device (&mtd);
#else
   result = add_mtd_partitions (&mtd,lart_partitions, ARRAY_SIZE(lart_partitions));
#endif

   return (result);
}
コード例 #5
0
/*
 * Probe the flash chip(s) and, if it succeeds, read the partition-table
 * and register the partitions with MTD.
 */
static int __init init_axis_flash(void)
{
	struct mtd_info *main_mtd;
	struct mtd_info *aux_mtd = NULL;
	int err = 0;
	int pidx = 0;
	struct partitiontable_head *ptable_head = NULL;
	struct partitiontable_entry *ptable;
	int ptable_ok = 0;
	static char page[PAGESIZE];
	size_t len;
	int ram_rootfs_partition = -1; /* -1 => no RAM rootfs partition */
	int part;

	/* We need a root fs. If it resides in RAM, we need to use an
	 * MTDRAM device, so it must be enabled in the kernel config,
	 * but its size must be configured as 0 so as not to conflict
	 * with our usage.
	 */
#if !defined(CONFIG_MTD_MTDRAM) || (CONFIG_MTDRAM_TOTAL_SIZE != 0) || (CONFIG_MTDRAM_ABS_POS != 0)
	if (!romfs_in_flash && !nand_boot) {
		printk(KERN_EMERG "axisflashmap: Cannot create an MTD RAM "
		       "device; configure CONFIG_MTD_MTDRAM with size = 0!\n");
		panic("This kernel cannot boot from RAM!\n");
	}
#endif

#ifndef CONFIG_ETRAX_VCS_SIM
	main_mtd = flash_probe();
	if (main_mtd)
		printk(KERN_INFO "%s: 0x%08x bytes of NOR flash memory.\n",
		       main_mtd->name, main_mtd->size);

#ifdef CONFIG_ETRAX_NANDFLASH
	aux_mtd = crisv32_nand_flash_probe();
	if (aux_mtd)
		printk(KERN_INFO "%s: 0x%08x bytes of NAND flash memory.\n",
			aux_mtd->name, aux_mtd->size);

#ifdef CONFIG_ETRAX_NANDBOOT
	{
		struct mtd_info *tmp_mtd;

		printk(KERN_INFO "axisflashmap: Set to boot from NAND flash, "
		       "making NAND flash primary device.\n");
		tmp_mtd = main_mtd;
		main_mtd = aux_mtd;
		aux_mtd = tmp_mtd;
	}
#endif /* CONFIG_ETRAX_NANDBOOT */
#endif /* CONFIG_ETRAX_NANDFLASH */

	if (!main_mtd && !aux_mtd) {
		/* There's no reason to use this module if no flash chip can
		 * be identified. Make sure that's understood.
		 */
		printk(KERN_INFO "axisflashmap: Found no flash chip.\n");
	}

#if 0 /* Dump flash memory so we can see what is going on */
	if (main_mtd) {
		int sectoraddr, i;
		for (sectoraddr = 0; sectoraddr < 2*65536+4096;
				sectoraddr += PAGESIZE) {
			main_mtd->read(main_mtd, sectoraddr, PAGESIZE, &len,
				page);
			printk(KERN_INFO
			       "Sector at %d (length %d):\n",
			       sectoraddr, len);
			for (i = 0; i < PAGESIZE; i += 16) {
				printk(KERN_INFO
				       "%02x %02x %02x %02x "
				       "%02x %02x %02x %02x "
				       "%02x %02x %02x %02x "
				       "%02x %02x %02x %02x\n",
				       page[i] & 255, page[i+1] & 255,
				       page[i+2] & 255, page[i+3] & 255,
				       page[i+4] & 255, page[i+5] & 255,
				       page[i+6] & 255, page[i+7] & 255,
				       page[i+8] & 255, page[i+9] & 255,
				       page[i+10] & 255, page[i+11] & 255,
				       page[i+12] & 255, page[i+13] & 255,
				       page[i+14] & 255, page[i+15] & 255);
			}
		}
	}
#endif

	if (main_mtd) {
		main_mtd->owner = THIS_MODULE;
		axisflash_mtd = main_mtd;

		loff_t ptable_sector = CONFIG_ETRAX_PTABLE_SECTOR;

		/* First partition (rescue) is always set to the default. */
		pidx++;
#ifdef CONFIG_ETRAX_NANDBOOT
		/* We know where the partition table should be located,
		 * it will be in first good block after that.
		 */
		int blockstat;
		do {
			blockstat = main_mtd->block_isbad(main_mtd,
				ptable_sector);
			if (blockstat < 0)
				ptable_sector = 0; /* read error */
			else if (blockstat)
				ptable_sector += main_mtd->erasesize;
		} while (blockstat && ptable_sector);
#endif
		if (ptable_sector) {
			main_mtd->read(main_mtd, ptable_sector, PAGESIZE,
				&len, page);
			ptable_head = &((struct partitiontable *) page)->head;
		}

#if 0 /* Dump partition table so we can see what is going on */
		printk(KERN_INFO
		       "axisflashmap: flash read %d bytes at 0x%08x, data: "
		       "%02x %02x %02x %02x %02x %02x %02x %02x\n",
		       len, CONFIG_ETRAX_PTABLE_SECTOR,
		       page[0] & 255, page[1] & 255,
		       page[2] & 255, page[3] & 255,
		       page[4] & 255, page[5] & 255,
		       page[6] & 255, page[7] & 255);
		printk(KERN_INFO
		       "axisflashmap: partition table offset %d, data: "
		       "%02x %02x %02x %02x %02x %02x %02x %02x\n",
		       PARTITION_TABLE_OFFSET,
		       page[PARTITION_TABLE_OFFSET+0] & 255,
		       page[PARTITION_TABLE_OFFSET+1] & 255,
		       page[PARTITION_TABLE_OFFSET+2] & 255,
		       page[PARTITION_TABLE_OFFSET+3] & 255,
		       page[PARTITION_TABLE_OFFSET+4] & 255,
		       page[PARTITION_TABLE_OFFSET+5] & 255,
		       page[PARTITION_TABLE_OFFSET+6] & 255,
		       page[PARTITION_TABLE_OFFSET+7] & 255);
#endif
	}

	if (ptable_head && (ptable_head->magic == PARTITION_TABLE_MAGIC)
	    && (ptable_head->size <
		(MAX_PARTITIONS * sizeof(struct partitiontable_entry) +
		PARTITIONTABLE_END_MARKER_SIZE))
	    && (*(unsigned long*)((void*)ptable_head + sizeof(*ptable_head) +
				  ptable_head->size -
				  PARTITIONTABLE_END_MARKER_SIZE)
		== PARTITIONTABLE_END_MARKER)) {
		/* Looks like a start, sane length and end of a
		 * partition table, lets check csum etc.
		 */
		struct partitiontable_entry *max_addr =
			(struct partitiontable_entry *)
			((unsigned long)ptable_head + sizeof(*ptable_head) +
			 ptable_head->size);
		unsigned long offset = CONFIG_ETRAX_PTABLE_SECTOR;
		unsigned char *p;
		unsigned long csum = 0;

		ptable = (struct partitiontable_entry *)
			((unsigned long)ptable_head + sizeof(*ptable_head));

		/* Lets be PARANOID, and check the checksum. */
		p = (unsigned char*) ptable;

		while (p <= (unsigned char*)max_addr) {
			csum += *p++;
			csum += *p++;
			csum += *p++;
			csum += *p++;
		}
		ptable_ok = (csum == ptable_head->checksum);

		/* Read the entries and use/show the info.  */
		printk(KERN_INFO "axisflashmap: "
		       "Found a%s partition table at 0x%p-0x%p.\n",
		       (ptable_ok ? " valid" : "n invalid"), ptable_head,
		       max_addr);

		/* We have found a working bootblock.  Now read the
		 * partition table.  Scan the table.  It ends with 0xffffffff.
		 */
		while (ptable_ok
		       && ptable->offset != PARTITIONTABLE_END_MARKER
		       && ptable < max_addr
		       && pidx < MAX_PARTITIONS - 1) {

			axis_partitions[pidx].offset = offset + ptable->offset;
#ifdef CONFIG_ETRAX_NANDFLASH
			if (main_mtd->type == MTD_NANDFLASH) {
				axis_partitions[pidx].size =
					(((ptable+1)->offset ==
					  PARTITIONTABLE_END_MARKER) ?
					  main_mtd->size :
					  ((ptable+1)->offset + offset)) -
					(ptable->offset + offset);

			} else
#endif /* CONFIG_ETRAX_NANDFLASH */
				axis_partitions[pidx].size = ptable->size;
#ifdef CONFIG_ETRAX_NANDBOOT
			/* Save partition number of jffs2 ro partition.
			 * Needed if RAM booting or root file system in RAM.
			 */
			if (!nand_boot &&
			    ram_rootfs_partition < 0 && /* not already set */
			    ptable->type == PARTITION_TYPE_JFFS2 &&
			    (ptable->flags & PARTITION_FLAGS_READONLY_MASK) ==
				PARTITION_FLAGS_READONLY)
				ram_rootfs_partition = pidx;
#endif /* CONFIG_ETRAX_NANDBOOT */
			pidx++;
			ptable++;
		}
	}

	/* Decide whether to use default partition table. */
	/* Only use default table if we actually have a device (main_mtd) */

	struct mtd_partition *partition = &axis_partitions[0];
	if (main_mtd && !ptable_ok) {
		memcpy(axis_partitions, axis_default_partitions,
		       sizeof(axis_default_partitions));
		pidx = NUM_DEFAULT_PARTITIONS;
		ram_rootfs_partition = DEFAULT_ROOTFS_PARTITION_NO;
	}

	/* Add artificial partitions for rootfs if necessary */
	if (romfs_in_flash) {
		/* rootfs is in directly accessible flash memory = NOR flash.
		   Add an overlapping device for the rootfs partition. */
		printk(KERN_INFO "axisflashmap: Adding partition for "
		       "overlapping root file system image\n");
		axis_partitions[pidx].size = romfs_length;
		axis_partitions[pidx].offset = romfs_start - FLASH_CACHED_ADDR;
		axis_partitions[pidx].name = "romfs";
		axis_partitions[pidx].mask_flags |= MTD_WRITEABLE;
		ram_rootfs_partition = -1;
		pidx++;
	} else if (romfs_length && !nand_boot) {
		/* romfs exists in memory, but not in flash, so must be in RAM.
		 * Configure an MTDRAM partition. */
		if (ram_rootfs_partition < 0) {
			/* None set yet, put it at the end */
			ram_rootfs_partition = pidx;
			pidx++;
		}
		printk(KERN_INFO "axisflashmap: Adding partition for "
		       "root file system image in RAM\n");
		axis_partitions[ram_rootfs_partition].size = romfs_length;
		axis_partitions[ram_rootfs_partition].offset = romfs_start;
		axis_partitions[ram_rootfs_partition].name = "romfs";
		axis_partitions[ram_rootfs_partition].mask_flags |=
			MTD_WRITEABLE;
	}

#ifdef CONFIG_ETRAX_AXISFLASHMAP_MTD0WHOLE
	if (main_mtd) {
		main_partition.size = main_mtd->size;
		err = mtd_device_register(main_mtd, &main_partition, 1);
		if (err)
			panic("axisflashmap: Could not initialize "
			      "partition for whole main mtd device!\n");
	}
#endif

	/* Now, register all partitions with mtd.
	 * We do this one at a time so we can slip in an MTDRAM device
	 * in the proper place if required. */

	for (part = 0; part < pidx; part++) {
		if (part == ram_rootfs_partition) {
			/* add MTDRAM partition here */
			struct mtd_info *mtd_ram;

			mtd_ram = kmalloc(sizeof(struct mtd_info), GFP_KERNEL);
			if (!mtd_ram)
				panic("axisflashmap: Couldn't allocate memory "
				      "for mtd_info!\n");
			printk(KERN_INFO "axisflashmap: Adding RAM partition "
			       "for rootfs image.\n");
			err = mtdram_init_device(mtd_ram,
						 (void *)partition[part].offset,
						 partition[part].size,
						 partition[part].name);
			if (err)
				panic("axisflashmap: Could not initialize "
				      "MTD RAM device!\n");
			/* JFFS2 likes to have an erasesize. Keep potential
			 * JFFS2 rootfs happy by providing one. Since image
			 * was most likely created for main mtd, use that
			 * erasesize, if available. Otherwise, make a guess. */
			mtd_ram->erasesize = (main_mtd ? main_mtd->erasesize :
				CONFIG_ETRAX_PTABLE_SECTOR);
		} else {
			err = mtd_device_register(main_mtd, &partition[part],
						  1);
			if (err)
				panic("axisflashmap: Could not add mtd "
					"partition %d\n", part);
		}
	}
#endif /* CONFIG_EXTRAX_VCS_SIM */

#ifdef CONFIG_ETRAX_VCS_SIM
	/* For simulator, always use a RAM partition.
	 * The rootfs will be found after the kernel in RAM,
	 * with romfs_start and romfs_end indicating location and size.
	 */
	struct mtd_info *mtd_ram;

	mtd_ram = kmalloc(sizeof(struct mtd_info), GFP_KERNEL);
	if (!mtd_ram) {
		panic("axisflashmap: Couldn't allocate memory for "
		      "mtd_info!\n");
	}

	printk(KERN_INFO "axisflashmap: Adding RAM partition for romfs, "
	       "at %u, size %u\n",
	       (unsigned) romfs_start, (unsigned) romfs_length);

	err = mtdram_init_device(mtd_ram, (void *)romfs_start,
				 romfs_length, "romfs");
	if (err) {
		panic("axisflashmap: Could not initialize MTD RAM "
		      "device!\n");
	}
#endif /* CONFIG_EXTRAX_VCS_SIM */

#ifndef CONFIG_ETRAX_VCS_SIM
	if (aux_mtd) {
		aux_partition.size = aux_mtd->size;
		err = mtd_device_register(aux_mtd, &aux_partition, 1);
		if (err)
			panic("axisflashmap: Could not initialize "
			      "aux mtd device!\n");

	}
#endif /* CONFIG_EXTRAX_VCS_SIM */

	return err;
}
コード例 #6
0
ファイル: axisflashmap.c プロジェクト: 1x23/unifi-gpl
/*
 * Probe the flash chip(s) and, if it succeeds, read the partition-table
 * and register the partitions with MTD.
 */
static int __init init_axis_flash(void)
{
	struct mtd_info *mymtd;
	int err = 0;
	int pidx = 0;
	struct partitiontable_head *ptable_head = NULL;
	struct partitiontable_entry *ptable;
	int use_default_ptable = 1; /* Until proven otherwise. */
	const char *pmsg = KERN_INFO "  /dev/flash%d at 0x%08x, size 0x%08x\n";
	static char page[512];
	size_t len;

#ifndef CONFIG_ETRAXFS_SIM
	mymtd = flash_probe();
	mymtd->read(mymtd, CONFIG_ETRAX_PTABLE_SECTOR, 512, &len, page);
	ptable_head = (struct partitiontable_head *)(page + PARTITION_TABLE_OFFSET);

	if (!mymtd) {
		/* There's no reason to use this module if no flash chip can
		 * be identified. Make sure that's understood.
		 */
		printk(KERN_INFO "axisflashmap: Found no flash chip.\n");
	} else {
		printk(KERN_INFO "%s: 0x%08x bytes of flash memory.\n",
		       mymtd->name, mymtd->size);
		axisflash_mtd = mymtd;
	}

	if (mymtd) {
		mymtd->owner = THIS_MODULE;
	}
	pidx++;  /* First partition is always set to the default. */

	if (ptable_head && (ptable_head->magic == PARTITION_TABLE_MAGIC)
	    && (ptable_head->size <
		(MAX_PARTITIONS * sizeof(struct partitiontable_entry) +
		PARTITIONTABLE_END_MARKER_SIZE))
	    && (*(unsigned long*)((void*)ptable_head + sizeof(*ptable_head) +
				  ptable_head->size -
				  PARTITIONTABLE_END_MARKER_SIZE)
		== PARTITIONTABLE_END_MARKER)) {
		/* Looks like a start, sane length and end of a
		 * partition table, lets check csum etc.
		 */
		int ptable_ok = 0;
		struct partitiontable_entry *max_addr =
			(struct partitiontable_entry *)
			((unsigned long)ptable_head + sizeof(*ptable_head) +
			 ptable_head->size);
		unsigned long offset = CONFIG_ETRAX_PTABLE_SECTOR;
		unsigned char *p;
		unsigned long csum = 0;

		ptable = (struct partitiontable_entry *)
			((unsigned long)ptable_head + sizeof(*ptable_head));

		/* Lets be PARANOID, and check the checksum. */
		p = (unsigned char*) ptable;

		while (p <= (unsigned char*)max_addr) {
			csum += *p++;
			csum += *p++;
			csum += *p++;
			csum += *p++;
		}
		ptable_ok = (csum == ptable_head->checksum);

		/* Read the entries and use/show the info.  */
		printk(KERN_INFO " Found a%s partition table at 0x%p-0x%p.\n",
		       (ptable_ok ? " valid" : "n invalid"), ptable_head,
		       max_addr);

		/* We have found a working bootblock.  Now read the
		 * partition table.  Scan the table.  It ends when
		 * there is 0xffffffff, that is, empty flash.
		 */
		while (ptable_ok
		       && ptable->offset != 0xffffffff
		       && ptable < max_addr
		       && pidx < MAX_PARTITIONS) {

			axis_partitions[pidx].offset = offset + ptable->offset + (crisv32_nand_boot ? 16384 : 0);
			axis_partitions[pidx].size = ptable->size;

			printk(pmsg, pidx, axis_partitions[pidx].offset,
			       axis_partitions[pidx].size);
			pidx++;
			ptable++;
		}
		use_default_ptable = !ptable_ok;
	}

	if (romfs_in_flash) {
		/* Add an overlapping device for the root partition (romfs). */

		axis_partitions[pidx].name = "romfs";
		if (crisv32_nand_boot) {
			char* data = kmalloc(1024, GFP_KERNEL);
			int len;
			int offset = crisv32_nand_cramfs_offset & ~(1024-1);
			char* tmp;

			mymtd->read(mymtd, offset, 1024, &len, data);
			tmp = &data[crisv32_nand_cramfs_offset % 512];
			axis_partitions[pidx].size = *(unsigned*)(tmp + 4);
			axis_partitions[pidx].offset = crisv32_nand_cramfs_offset;
			kfree(data);
		} else {
			axis_partitions[pidx].size = romfs_length;
			axis_partitions[pidx].offset = romfs_start - FLASH_CACHED_ADDR;
		}

		axis_partitions[pidx].mask_flags |= MTD_WRITEABLE;

		printk(KERN_INFO
                       " Adding readonly flash partition for romfs image:\n");
		printk(pmsg, pidx, axis_partitions[pidx].offset,
		       axis_partitions[pidx].size);
		pidx++;
	}

        if (mymtd) {
		if (use_default_ptable) {
			printk(KERN_INFO " Using default partition table.\n");
			err = add_mtd_partitions(mymtd, axis_default_partitions,
						 NUM_DEFAULT_PARTITIONS);
		} else {
			err = add_mtd_partitions(mymtd, axis_partitions, pidx);
		}

		if (err) {
			panic("axisflashmap could not add MTD partitions!\n");
		}
	}
/* CONFIG_EXTRAXFS_SIM */
#endif

	if (!romfs_in_flash) {
		/* Create an RAM device for the root partition (romfs). */

#if !defined(CONFIG_MTD_MTDRAM) || (CONFIG_MTDRAM_TOTAL_SIZE != 0) || (CONFIG_MTDRAM_ABS_POS != 0)
		/* No use trying to boot this kernel from RAM. Panic! */
		printk(KERN_EMERG "axisflashmap: Cannot create an MTD RAM "
		       "device due to kernel (mis)configuration!\n");
		panic("This kernel cannot boot from RAM!\n");
#else
		struct mtd_info *mtd_ram;

		mtd_ram = (struct mtd_info *)kmalloc(sizeof(struct mtd_info),
						     GFP_KERNEL);
		if (!mtd_ram) {
			panic("axisflashmap couldn't allocate memory for "
			      "mtd_info!\n");
		}

		printk(KERN_INFO " Adding RAM partition for romfs image:\n");
		printk(pmsg, pidx, romfs_start, romfs_length);

		err = mtdram_init_device(mtd_ram, (void*)romfs_start,
		                         romfs_length, "romfs");
		if (err) {
			panic("axisflashmap could not initialize MTD RAM "
			      "device!\n");
		}
#endif
	}

	return err;
}
コード例 #7
0
static int __init init_axis_flash(void)
{
	struct mtd_info *mymtd;
	int err = 0;
	int pidx = 0;
	struct partitiontable_head *ptable_head = NULL;
	struct partitiontable_entry *ptable;
	int use_default_ptable = 1; 
	const char pmsg[] = "  /dev/flash%d at 0x%08x, size 0x%08x\n";

	if (!(mymtd = flash_probe())) {
		printk(KERN_INFO "axisflashmap: Found no flash chip.\n");
	} else {
		printk(KERN_INFO "%s: 0x%08x bytes of flash memory.\n",
		       mymtd->name, mymtd->size);
		axisflash_mtd = mymtd;
	}

	if (mymtd) {
		mymtd->owner = THIS_MODULE;
		ptable_head = (struct partitiontable_head *)(FLASH_CACHED_ADDR +
			      CONFIG_ETRAX_PTABLE_SECTOR +
			      PARTITION_TABLE_OFFSET);
	}
	pidx++;  

	if (ptable_head && (ptable_head->magic == PARTITION_TABLE_MAGIC)
	    && (ptable_head->size <
		(MAX_PARTITIONS * sizeof(struct partitiontable_entry) +
		PARTITIONTABLE_END_MARKER_SIZE))
	    && (*(unsigned long*)((void*)ptable_head + sizeof(*ptable_head) +
				  ptable_head->size -
				  PARTITIONTABLE_END_MARKER_SIZE)
		== PARTITIONTABLE_END_MARKER)) {
		int ptable_ok = 0;
		struct partitiontable_entry *max_addr =
			(struct partitiontable_entry *)
			((unsigned long)ptable_head + sizeof(*ptable_head) +
			 ptable_head->size);
		unsigned long offset = CONFIG_ETRAX_PTABLE_SECTOR;
		unsigned char *p;
		unsigned long csum = 0;

		ptable = (struct partitiontable_entry *)
			((unsigned long)ptable_head + sizeof(*ptable_head));

		
		p = (unsigned char*) ptable;

		while (p <= (unsigned char*)max_addr) {
			csum += *p++;
			csum += *p++;
			csum += *p++;
			csum += *p++;
		}
		ptable_ok = (csum == ptable_head->checksum);

		
		printk(KERN_INFO " Found a%s partition table at 0x%p-0x%p.\n",
		       (ptable_ok ? " valid" : "n invalid"), ptable_head,
		       max_addr);

		while (ptable_ok
		       && ptable->offset != 0xffffffff
		       && ptable < max_addr
		       && pidx < MAX_PARTITIONS) {

			axis_partitions[pidx].offset = offset + ptable->offset;
			axis_partitions[pidx].size = ptable->size;

			printk(pmsg, pidx, axis_partitions[pidx].offset,
			       axis_partitions[pidx].size);
			pidx++;
			ptable++;
		}
		use_default_ptable = !ptable_ok;
	}

	if (romfs_in_flash) {
		

		axis_partitions[pidx].name = "romfs";
		axis_partitions[pidx].size = romfs_length;
		axis_partitions[pidx].offset = romfs_start - FLASH_CACHED_ADDR;
		axis_partitions[pidx].mask_flags |= MTD_WRITEABLE;

		printk(KERN_INFO
                       " Adding readonly flash partition for romfs image:\n");
		printk(pmsg, pidx, axis_partitions[pidx].offset,
		       axis_partitions[pidx].size);
		pidx++;
	}

#ifdef CONFIG_ETRAX_AXISFLASHMAP_MTD0WHOLE
	if (mymtd) {
		main_partition.size = mymtd->size;
		err = mtd_device_register(mymtd, &main_partition, 1);
		if (err)
			panic("axisflashmap: Could not initialize "
			      "partition for whole main mtd device!\n");
	}
#endif

        if (mymtd) {
		if (use_default_ptable) {
			printk(KERN_INFO " Using default partition table.\n");
			err = mtd_device_register(mymtd,
						  axis_default_partitions,
						  NUM_DEFAULT_PARTITIONS);
		} else {
			err = mtd_device_register(mymtd, axis_partitions,
						  pidx);
		}

		if (err)
			panic("axisflashmap could not add MTD partitions!\n");
	}

	if (!romfs_in_flash) {
		

#if !defined(CONFIG_MTD_MTDRAM) || (CONFIG_MTDRAM_TOTAL_SIZE != 0) || (CONFIG_MTDRAM_ABS_POS != 0)
		
		printk(KERN_EMERG "axisflashmap: Cannot create an MTD RAM "
		       "device due to kernel (mis)configuration!\n");
		panic("This kernel cannot boot from RAM!\n");
#else
		struct mtd_info *mtd_ram;

		mtd_ram = kmalloc(sizeof(struct mtd_info), GFP_KERNEL);
		if (!mtd_ram)
			panic("axisflashmap couldn't allocate memory for "
			      "mtd_info!\n");

		printk(KERN_INFO " Adding RAM partition for romfs image:\n");
		printk(pmsg, pidx, (unsigned)romfs_start,
			(unsigned)romfs_length);

		err = mtdram_init_device(mtd_ram,
			(void *)romfs_start,
			romfs_length,
			"romfs");
		if (err)
			panic("axisflashmap could not initialize MTD RAM "
			      "device!\n");
#endif
	}
	return err;
}
コード例 #8
0
ファイル: setup.c プロジェクト: BackupTheBerlios/wl530g-svn
void setup_arch(char **cmdline_p)
{
	int bootmap_size;

#if defined(CAT_ROMARRAY) && defined(DEBUG)
	extern int __data_rom_start;
	extern int __data_start;
	int *romarray = (int *)((int) &__data_rom_start +
			      (int)&_edata - (int)&__data_start);
#endif

#if defined(CONFIG_CHR_DEV_FLASH) || defined(CONFIG_BLK_DEV_FLASH)
	/* we need to initialize the Flashrom device here since we might
	 * do things with flash early on in the boot
	 */
	flash_probe();
#endif

	memory_start = PAGE_ALIGN(_ramstart);
	memory_end = _ramend; /* by now the stack is part of the init task */

	init_mm.start_code = (unsigned long) &_stext;
	init_mm.end_code = (unsigned long) &_etext;
	init_mm.end_data = (unsigned long) &_edata;
#if 0 /* DAVIDM - don't set brk just incase someone decides to use it */
	init_mm.brk = (unsigned long) &_end;
#else
	init_mm.brk = (unsigned long) 0; 
#endif


#if defined (CONFIG_M68360)
    m360_cpm_reset();

   /* Calculate the real system clock value. */
   {
       unsigned int local_pllcr = (unsigned int)(pquicc->sim_pllcr);
       if( local_pllcr & MCU_PREEN ) // If the prescaler is dividing by 128
       {
           int mf = (int)(pquicc->sim_pllcr & 0x0fff);
           system_clock = (OSCILLATOR / 128) * (mf + 1);
       }
       else
       {
           int mf = (int)(pquicc->sim_pllcr & 0x0fff);
           system_clock = (OSCILLATOR) * (mf + 1);
       }
   }

   /* Setup SMC 2 as a serial console */
   serial_console_setup(&sercons, NULL);
   console_360_init(0, 0);
#endif

	config_BSP(&command_line[0], sizeof(command_line));

	printk("\r\nuClinux/" CPU "\n");

/* (es) */
#ifdef CONFIG_UCDIMM
	printk("uCdimm by Lineo, Inc. <www.lineo.com>\n");
#endif
#ifdef CONFIG_M68VZ328
	printk("M68VZ328 support by Evan Stawnyczy <*****@*****.**>\n");
#endif
/* (/es) */
#ifdef CONFIG_COLDFIRE
	printk("COLDFIRE port done by Greg Ungerer, [email protected]\n");
#ifdef CONFIG_M5307
	printk("Modified for M5307 by Dave Miller, [email protected]\n");
#endif
#ifdef CONFIG_ELITE
	printk("Modified for M5206eLITE by Rob Scott, [email protected]\n");
#endif  
#ifdef CONFIG_TELOS
	printk("Modified for Omnia ToolVox by James D. Schettine, [email protected]\n");
#endif
#endif
	printk("Flat model support (C) 1998,1999 Kenneth Albanowski, D. Jeff Dionne\n");

#if defined( CONFIG_PILOT ) && defined( CONFIG_M68328 )
	printk("TRG SuperPilot FLASH card support <*****@*****.**>\n");
#endif

#if defined( CONFIG_PILOT ) && defined( CONFIG_M68EZ328 )
	printk("PalmV support by Lineo Inc. <*****@*****.**>\n");
#endif

#ifdef CONFIG_M68EZ328ADS
	printk("M68EZ328ADS board support (C) 1999 Vladimir Gurevich <*****@*****.**>\n");
#endif

#ifdef CONFIG_ALMA_ANS
	printk("Alma Electronics board support (C) 1999 Vladimir Gurevich <*****@*****.**>\n");
#endif
#if defined (CONFIG_M68360)
    printk("QUICC port done by SED Systems <*****@*****.**>,\n");
    printk("based on 2.0.38 port by Lineo Inc. <*****@*****.**>.\n");
#endif
#ifdef CONFIG_DRAGEN2
	printk("DragonEngine II board support by Georges Menie\n");
#endif

#ifdef CONFIG_CWEZ328
	printk("cwez328 board support by 2002 Andrew Ip <*****@*****.**> and Inky Lung <*****@*****.**>\n");
#endif

#ifdef CONFIG_CWVZ328
	printk("cwvz328 board support by 2002 Andrew Ip <*****@*****.**> and Inky Lung <*****@*****.**>\n");
#endif

#ifdef DEBUG
	printk("KERNEL -> TEXT=0x%06x-0x%06x DATA=0x%06x-0x%06x "
		"BSS=0x%06x-0x%06x\n", (int) &_stext, (int) &_etext,
		(int) &_sdata, (int) &_edata,
		(int) &_sbss, (int) &_ebss);
	printk("KERNEL -> ROMFS=0x%06x-0x%06x MEM=0x%06x-0x%06x "
		"STACK=0x%06x-0x%06x\n",
#ifdef CAT_ROMARRAY
	       (int) romarray, ((int) romarray) + romarray[2],
#else
	       (int) &_ebss, (int) memory_start,
#endif
		(int) memory_start, (int) memory_end,
		(int) memory_end, (int) _ramend);
#endif

#ifdef CONFIG_BLK_DEV_BLKMEM
	ROOT_DEV = MKDEV(BLKMEM_MAJOR,0);
#endif

	/* Keep a copy of command line */
	*cmdline_p = &command_line[0];
	memcpy(saved_command_line, command_line, sizeof(saved_command_line));
	saved_command_line[sizeof(saved_command_line)-1] = 0;

#ifdef DEBUG
	if (strlen(*cmdline_p)) 
		printk("Command line: '%s'\n", *cmdline_p);
#endif
	/*rom_length = (unsigned long)&_flashend - (unsigned long)&_romvec;*/
	
#ifdef CONFIG_CONSOLE
#ifdef CONFIG_FRAMEBUFFER
	conswitchp = &fb_con;
#else
	conswitchp = 0;
#endif
#endif

	/*
	 * give all the memory to the bootmap allocator,  tell it to put the
	 * boot mem_map at the start of memory
	 */
	bootmap_size = init_bootmem_node(
			NODE_DATA(0),
			memory_start >> PAGE_SHIFT, /* map goes here */
			PAGE_OFFSET >> PAGE_SHIFT,	/* 0 on coldfire */
			memory_end >> PAGE_SHIFT);
	/*
	 * free the usable memory,  we have to make sure we do not free
	 * the bootmem bitmap so we then reserve it after freeing it :-)
	 */
	free_bootmem(memory_start, memory_end - memory_start);
	reserve_bootmem(memory_start, bootmap_size);
	/*
	 * get kmalloc into gear
	 */
	paging_init();
#ifdef DEBUG
	printk("Done setup_arch\n");
#endif

}
コード例 #9
0
static int __init init_axis_flash(void)
{
	struct mtd_info *main_mtd;
	struct mtd_info *aux_mtd = NULL;
	int err = 0;
	int pidx = 0;
	struct partitiontable_head *ptable_head = NULL;
	struct partitiontable_entry *ptable;
	int ptable_ok = 0;
	static char page[PAGESIZE];
	size_t len;
	int ram_rootfs_partition = -1; 
	int part;

#if !defined(CONFIG_MTD_MTDRAM) || (CONFIG_MTDRAM_TOTAL_SIZE != 0) || (CONFIG_MTDRAM_ABS_POS != 0)
	if (!romfs_in_flash && !nand_boot) {
		printk(KERN_EMERG "axisflashmap: Cannot create an MTD RAM "
		       "device; configure CONFIG_MTD_MTDRAM with size = 0!\n");
		panic("This kernel cannot boot from RAM!\n");
	}
#endif

#ifndef CONFIG_ETRAX_VCS_SIM
	main_mtd = flash_probe();
	if (main_mtd)
		printk(KERN_INFO "%s: 0x%08x bytes of NOR flash memory.\n",
		       main_mtd->name, main_mtd->size);

#ifdef CONFIG_ETRAX_NANDFLASH
	aux_mtd = crisv32_nand_flash_probe();
	if (aux_mtd)
		printk(KERN_INFO "%s: 0x%08x bytes of NAND flash memory.\n",
			aux_mtd->name, aux_mtd->size);

#ifdef CONFIG_ETRAX_NANDBOOT
	{
		struct mtd_info *tmp_mtd;

		printk(KERN_INFO "axisflashmap: Set to boot from NAND flash, "
		       "making NAND flash primary device.\n");
		tmp_mtd = main_mtd;
		main_mtd = aux_mtd;
		aux_mtd = tmp_mtd;
	}
#endif 
#endif 

	if (!main_mtd && !aux_mtd) {
		printk(KERN_INFO "axisflashmap: Found no flash chip.\n");
	}

#if 0 
	if (main_mtd) {
		int sectoraddr, i;
		for (sectoraddr = 0; sectoraddr < 2*65536+4096;
				sectoraddr += PAGESIZE) {
			main_mtd->read(main_mtd, sectoraddr, PAGESIZE, &len,
				page);
			printk(KERN_INFO
			       "Sector at %d (length %d):\n",
			       sectoraddr, len);
			for (i = 0; i < PAGESIZE; i += 16) {
				printk(KERN_INFO
				       "%02x %02x %02x %02x "
				       "%02x %02x %02x %02x "
				       "%02x %02x %02x %02x "
				       "%02x %02x %02x %02x\n",
				       page[i] & 255, page[i+1] & 255,
				       page[i+2] & 255, page[i+3] & 255,
				       page[i+4] & 255, page[i+5] & 255,
				       page[i+6] & 255, page[i+7] & 255,
				       page[i+8] & 255, page[i+9] & 255,
				       page[i+10] & 255, page[i+11] & 255,
				       page[i+12] & 255, page[i+13] & 255,
				       page[i+14] & 255, page[i+15] & 255);
			}
		}
	}
#endif

	if (main_mtd) {
		main_mtd->owner = THIS_MODULE;
		axisflash_mtd = main_mtd;

		loff_t ptable_sector = CONFIG_ETRAX_PTABLE_SECTOR;

		
		pidx++;
#ifdef CONFIG_ETRAX_NANDBOOT
		int blockstat;
		do {
			blockstat = mtd_block_isbad(main_mtd, ptable_sector);
			if (blockstat < 0)
				ptable_sector = 0; 
			else if (blockstat)
				ptable_sector += main_mtd->erasesize;
		} while (blockstat && ptable_sector);
#endif
		if (ptable_sector) {
			mtd_read(main_mtd, ptable_sector, PAGESIZE, &len,
				 page);
			ptable_head = &((struct partitiontable *) page)->head;
		}

#if 0 
		printk(KERN_INFO
		       "axisflashmap: flash read %d bytes at 0x%08x, data: "
		       "%02x %02x %02x %02x %02x %02x %02x %02x\n",
		       len, CONFIG_ETRAX_PTABLE_SECTOR,
		       page[0] & 255, page[1] & 255,
		       page[2] & 255, page[3] & 255,
		       page[4] & 255, page[5] & 255,
		       page[6] & 255, page[7] & 255);
		printk(KERN_INFO
		       "axisflashmap: partition table offset %d, data: "
		       "%02x %02x %02x %02x %02x %02x %02x %02x\n",
		       PARTITION_TABLE_OFFSET,
		       page[PARTITION_TABLE_OFFSET+0] & 255,
		       page[PARTITION_TABLE_OFFSET+1] & 255,
		       page[PARTITION_TABLE_OFFSET+2] & 255,
		       page[PARTITION_TABLE_OFFSET+3] & 255,
		       page[PARTITION_TABLE_OFFSET+4] & 255,
		       page[PARTITION_TABLE_OFFSET+5] & 255,
		       page[PARTITION_TABLE_OFFSET+6] & 255,
		       page[PARTITION_TABLE_OFFSET+7] & 255);
#endif
	}

	if (ptable_head && (ptable_head->magic == PARTITION_TABLE_MAGIC)
	    && (ptable_head->size <
		(MAX_PARTITIONS * sizeof(struct partitiontable_entry) +
		PARTITIONTABLE_END_MARKER_SIZE))
	    && (*(unsigned long*)((void*)ptable_head + sizeof(*ptable_head) +
				  ptable_head->size -
				  PARTITIONTABLE_END_MARKER_SIZE)
		== PARTITIONTABLE_END_MARKER)) {
		struct partitiontable_entry *max_addr =
			(struct partitiontable_entry *)
			((unsigned long)ptable_head + sizeof(*ptable_head) +
			 ptable_head->size);
		unsigned long offset = CONFIG_ETRAX_PTABLE_SECTOR;
		unsigned char *p;
		unsigned long csum = 0;

		ptable = (struct partitiontable_entry *)
			((unsigned long)ptable_head + sizeof(*ptable_head));

		
		p = (unsigned char*) ptable;

		while (p <= (unsigned char*)max_addr) {
			csum += *p++;
			csum += *p++;
			csum += *p++;
			csum += *p++;
		}
		ptable_ok = (csum == ptable_head->checksum);

		
		printk(KERN_INFO "axisflashmap: "
		       "Found a%s partition table at 0x%p-0x%p.\n",
		       (ptable_ok ? " valid" : "n invalid"), ptable_head,
		       max_addr);

		while (ptable_ok
		       && ptable->offset != PARTITIONTABLE_END_MARKER
		       && ptable < max_addr
		       && pidx < MAX_PARTITIONS - 1) {

			axis_partitions[pidx].offset = offset + ptable->offset;
#ifdef CONFIG_ETRAX_NANDFLASH
			if (main_mtd->type == MTD_NANDFLASH) {
				axis_partitions[pidx].size =
					(((ptable+1)->offset ==
					  PARTITIONTABLE_END_MARKER) ?
					  main_mtd->size :
					  ((ptable+1)->offset + offset)) -
					(ptable->offset + offset);

			} else
#endif 
				axis_partitions[pidx].size = ptable->size;
#ifdef CONFIG_ETRAX_NANDBOOT
			if (!nand_boot &&
			    ram_rootfs_partition < 0 && 
			    ptable->type == PARTITION_TYPE_JFFS2 &&
			    (ptable->flags & PARTITION_FLAGS_READONLY_MASK) ==
				PARTITION_FLAGS_READONLY)
				ram_rootfs_partition = pidx;
#endif 
			pidx++;
			ptable++;
		}
	}

	
	

	struct mtd_partition *partition = &axis_partitions[0];
	if (main_mtd && !ptable_ok) {
		memcpy(axis_partitions, axis_default_partitions,
		       sizeof(axis_default_partitions));
		pidx = NUM_DEFAULT_PARTITIONS;
		ram_rootfs_partition = DEFAULT_ROOTFS_PARTITION_NO;
	}

	
	if (romfs_in_flash) {
		printk(KERN_INFO "axisflashmap: Adding partition for "
		       "overlapping root file system image\n");
		axis_partitions[pidx].size = romfs_length;
		axis_partitions[pidx].offset = romfs_start - FLASH_CACHED_ADDR;
		axis_partitions[pidx].name = "romfs";
		axis_partitions[pidx].mask_flags |= MTD_WRITEABLE;
		ram_rootfs_partition = -1;
		pidx++;
	} else if (romfs_length && !nand_boot) {
		if (ram_rootfs_partition < 0) {
			
			ram_rootfs_partition = pidx;
			pidx++;
		}
		printk(KERN_INFO "axisflashmap: Adding partition for "
		       "root file system image in RAM\n");
		axis_partitions[ram_rootfs_partition].size = romfs_length;
		axis_partitions[ram_rootfs_partition].offset = romfs_start;
		axis_partitions[ram_rootfs_partition].name = "romfs";
		axis_partitions[ram_rootfs_partition].mask_flags |=
			MTD_WRITEABLE;
	}

#ifdef CONFIG_ETRAX_AXISFLASHMAP_MTD0WHOLE
	if (main_mtd) {
		main_partition.size = main_mtd->size;
		err = mtd_device_register(main_mtd, &main_partition, 1);
		if (err)
			panic("axisflashmap: Could not initialize "
			      "partition for whole main mtd device!\n");
	}
#endif


	for (part = 0; part < pidx; part++) {
		if (part == ram_rootfs_partition) {
			
			struct mtd_info *mtd_ram;

			mtd_ram = kmalloc(sizeof(struct mtd_info), GFP_KERNEL);
			if (!mtd_ram)
				panic("axisflashmap: Couldn't allocate memory "
				      "for mtd_info!\n");
			printk(KERN_INFO "axisflashmap: Adding RAM partition "
			       "for rootfs image.\n");
			err = mtdram_init_device(mtd_ram,
						 (void *)partition[part].offset,
						 partition[part].size,
						 partition[part].name);
			if (err)
				panic("axisflashmap: Could not initialize "
				      "MTD RAM device!\n");
			mtd_ram->erasesize = (main_mtd ? main_mtd->erasesize :
				CONFIG_ETRAX_PTABLE_SECTOR);
		} else {
			err = mtd_device_register(main_mtd, &partition[part],
						  1);
			if (err)
				panic("axisflashmap: Could not add mtd "
					"partition %d\n", part);
		}
	}
#endif 

#ifdef CONFIG_ETRAX_VCS_SIM
	struct mtd_info *mtd_ram;

	mtd_ram = kmalloc(sizeof(struct mtd_info), GFP_KERNEL);
	if (!mtd_ram) {
		panic("axisflashmap: Couldn't allocate memory for "
		      "mtd_info!\n");
	}

	printk(KERN_INFO "axisflashmap: Adding RAM partition for romfs, "
	       "at %u, size %u\n",
	       (unsigned) romfs_start, (unsigned) romfs_length);

	err = mtdram_init_device(mtd_ram, (void *)romfs_start,
				 romfs_length, "romfs");
	if (err) {
		panic("axisflashmap: Could not initialize MTD RAM "
		      "device!\n");
	}
#endif 

#ifndef CONFIG_ETRAX_VCS_SIM
	if (aux_mtd) {
		aux_partition.size = aux_mtd->size;
		err = mtd_device_register(aux_mtd, &aux_partition, 1);
		if (err)
			panic("axisflashmap: Could not initialize "
			      "aux mtd device!\n");

	}
#endif 

	return err;
}
コード例 #10
0
ファイル: gflash.c プロジェクト: cstrotm/smartfirmware
Retcode
generic_install_flash(Environ *e, Flash_methods *methods)
{
	Retcode ret;
	Package *pkg;
	Byte *prop;
	Flash *f;
	Int plen = 0;
	Self self;
	int i;

	DPRINTF(("generic_install_flash: e=%#x\n", e));

	memset(&self, 0, sizeof self);
	self.meths = methods;
	self.width = methods->width;
	self.buf = (uByte *)malloc(4 * self.width);

	if (self.buf == NULL)
		return NO_ERROR;

	for (i = methods->unitcells - 1; i >= 0; i--)
		PUSH(e, methods->unit[i]);

	PUSH(e, methods->size);
	DPRINTF(("generic_install_flash: about to map-in\n", ret));
	ret = execute_static_method_name(e, e->root, "map-in", CSTR);
	DPRINTF(("generic_install_flash: map-in returns %d\n", ret));

	if (ret != NO_ERROR)
		return ret;

	POPT(e, self.addr, void *);
	DPRINTF(("generic_install_flash: self.addr %p\n", self.addr));

	if (self.addr == (void *)0)
	{
		DPRINTF(("generic_install_flash: unable to map-in\n"));
		return E_NO_DEVICE;
	}

	/* show the mapping */
	//PUSH(e, (Cell)self.addr);
	//f_mapq(e);

	f = flash_probe(e, &self);
	DPRINTF(("flash_probe: ret=%p\n", f));
	free((void *)self.buf);
	PUSH(e, self.addr);
	PUSH(e, methods->size);
	ret = execute_static_method_name(e, e->root, "map-out", CSTR);
	DPRINTF(("generic_install_flash: map-out returns %d\n", ret));

	if (!f)
		return E_NO_DEVICE;

	IFCKSP(e, 0, 3);
	pkg = new_pkg_name(e->currpkg, "flash");

	if (pkg == NULL)
		return E_OUT_OF_MEMORY;

	pkg->self = (struct pself*)methods;

	/* set the type of this device */
	prop_set_str(pkg->props, "device_type", CSTR, "block", CSTR);

	/* encode "reg" property for unit address */
	prop = prop_alloc(e, methods->unitcells * 2 * sizeof (Int));

	if (prop == NULL)
		return E_OUT_OF_MEMORY;

	for (i = 0; i < methods->unitcells; i++)
		prop_encode_int(prop + plen, &plen, methods->unit[i]);

	for (i = 0; i < methods->unitcells - 1; i++)
		prop_encode_int(prop + plen, &plen, 0);

	prop_encode_int(prop + plen, &plen, f->size * (methods->width / f->width));

	ret = add_property(pkg->props, "reg", CSTR, prop, plen);

	/* add device specific information */
	prop_set_str(pkg->props, "manufacture", CSTR, f->manufname, CSTR);
	prop_set_str(pkg->props, "device", CSTR, f->devname, CSTR);
	prop_set_int(pkg->props, "id", CSTR, (f->manufid << 16) | f->devid);
	prop_set_int(pkg->props, "bias", CSTR, methods->bias);

	if (ret == NO_ERROR)
		ret = init_entries(e, pkg->dict, flash_methods);

	return ret;
}