float64 helper_fsqrt_DT(CPUSH4State *env, float64 t0) { set_float_exception_flags(0, &env->fp_status); t0 = float64_sqrt(t0, &env->fp_status); update_fpscr(env, GETPC()); return t0; }
uint64_t helper_fsqrt_DT(uint64_t t0) { CPU_DoubleU d; d.ll = t0; d.d = float64_sqrt(d.d, &env->fp_status); return d.ll; }
/* square root 64-bit RR */ void HELPER(sqdbr)(CPUS390XState *env, uint32_t f1, uint32_t f2) { env->fregs[f1].d = float64_sqrt(env->fregs[f2].d, &env->fpu_status); }
void do_vfp_sqrtd(void) { FT0d = float64_sqrt(FT0d, &env->vfp.fp_status); }
unsigned int DoubleCPDO(const unsigned int opcode) { float64 rFm, rFn; unsigned int Fd, Fm, Fn, nRc = 1; //printk("DoubleCPDO(0x%08x)\n",opcode); Fm = getFm(opcode); if (CONSTANT_FM(opcode)) { rFm = getDoubleConstant(Fm); } else { switch (fpa11->fType[Fm]) { case typeSingle: rFm = float32_to_float64(fpa11->fpreg[Fm].fSingle); break; case typeDouble: rFm = fpa11->fpreg[Fm].fDouble; break; case typeExtended: // !! patb //printk("not implemented! why not?\n"); //!! ScottB // should never get here, if extended involved // then other operand should be promoted then // ExtendedCPDO called. break; default: return 0; } } if (!MONADIC_INSTRUCTION(opcode)) { Fn = getFn(opcode); switch (fpa11->fType[Fn]) { case typeSingle: rFn = float32_to_float64(fpa11->fpreg[Fn].fSingle); break; case typeDouble: rFn = fpa11->fpreg[Fn].fDouble; break; default: return 0; } } Fd = getFd(opcode); /* !! this switch isn't optimized; better (opcode & MASK_ARITHMETIC_OPCODE)>>24, sort of */ switch (opcode & MASK_ARITHMETIC_OPCODE) { /* dyadic opcodes */ case ADF_CODE: fpa11->fpreg[Fd].fDouble = float64_add(rFn,rFm); break; case MUF_CODE: case FML_CODE: fpa11->fpreg[Fd].fDouble = float64_mul(rFn,rFm); break; case SUF_CODE: fpa11->fpreg[Fd].fDouble = float64_sub(rFn,rFm); break; case RSF_CODE: fpa11->fpreg[Fd].fDouble = float64_sub(rFm,rFn); break; case DVF_CODE: case FDV_CODE: fpa11->fpreg[Fd].fDouble = float64_div(rFn,rFm); break; case RDF_CODE: case FRD_CODE: fpa11->fpreg[Fd].fDouble = float64_div(rFm,rFn); break; #if 0 case POW_CODE: fpa11->fpreg[Fd].fDouble = float64_pow(rFn,rFm); break; case RPW_CODE: fpa11->fpreg[Fd].fDouble = float64_pow(rFm,rFn); break; #endif case RMF_CODE: fpa11->fpreg[Fd].fDouble = float64_rem(rFn,rFm); break; #if 0 case POL_CODE: fpa11->fpreg[Fd].fDouble = float64_pol(rFn,rFm); break; #endif /* monadic opcodes */ case MVF_CODE: fpa11->fpreg[Fd].fDouble = rFm; break; case MNF_CODE: { unsigned int *p = (unsigned int*)&rFm; p[1] ^= 0x80000000; fpa11->fpreg[Fd].fDouble = rFm; } break; case ABS_CODE: { unsigned int *p = (unsigned int*)&rFm; p[1] &= 0x7fffffff; fpa11->fpreg[Fd].fDouble = rFm; } break; case RND_CODE: case URD_CODE: fpa11->fpreg[Fd].fDouble = int32_to_float64(float64_to_int32(rFm)); break; case SQT_CODE: fpa11->fpreg[Fd].fDouble = float64_sqrt(rFm); break; #if 0 case LOG_CODE: fpa11->fpreg[Fd].fDouble = float64_log(rFm); break; case LGN_CODE: fpa11->fpreg[Fd].fDouble = float64_ln(rFm); break; case EXP_CODE: fpa11->fpreg[Fd].fDouble = float64_exp(rFm); break; case SIN_CODE: fpa11->fpreg[Fd].fDouble = float64_sin(rFm); break; case COS_CODE: fpa11->fpreg[Fd].fDouble = float64_cos(rFm); break; case TAN_CODE: fpa11->fpreg[Fd].fDouble = float64_tan(rFm); break; case ASN_CODE: fpa11->fpreg[Fd].fDouble = float64_arcsin(rFm); break; case ACS_CODE: fpa11->fpreg[Fd].fDouble = float64_arccos(rFm); break; case ATN_CODE: fpa11->fpreg[Fd].fDouble = float64_arctan(rFm); break; #endif case NRM_CODE: break; default: { nRc = 0; } } if (0 != nRc) fpa11->fType[Fd] = typeDouble; return nRc; }