int fmpz_poly_sqrt_classical(fmpz_poly_t b, const fmpz_poly_t a) { long blen, len = a->length; int result; if (len % 2 == 0) { fmpz_poly_zero(b); return len == 0; } if (b == a) { fmpz_poly_t tmp; fmpz_poly_init(tmp); result = fmpz_poly_sqrt(tmp, a); fmpz_poly_swap(b, tmp); fmpz_poly_clear(tmp); return result; } blen = len / 2 + 1; fmpz_poly_fit_length(b, blen); _fmpz_poly_set_length(b, blen); result = _fmpz_poly_sqrt_classical(b->coeffs, a->coeffs, len); if (!result) _fmpz_poly_set_length(b, 0); return result; }
void fmpz_poly_mulhigh_classical(fmpz_poly_t res, const fmpz_poly_t poly1, const fmpz_poly_t poly2, long start) { long len_out = poly1->length + poly2->length - 1; if (poly1->length == 0 || poly2->length == 0 || start >= len_out) { fmpz_poly_zero(res); return; } if (res == poly1 || res == poly2) { fmpz_poly_t temp; fmpz_poly_init2(temp, len_out); _fmpz_poly_mulhigh_classical(temp->coeffs, poly1->coeffs, poly1->length, poly2->coeffs, poly2->length, start); fmpz_poly_swap(res, temp); fmpz_poly_clear(temp); } else { fmpz_poly_fit_length(res, len_out); _fmpz_poly_mulhigh_classical(res->coeffs, poly1->coeffs, poly1->length, poly2->coeffs, poly2->length, start); } _fmpz_poly_set_length(res, len_out); }
void fmpz_poly_mullow_classical(fmpz_poly_t res, const fmpz_poly_t poly1, const fmpz_poly_t poly2, long n) { long len_out; if (poly1->length == 0 || poly2->length == 0 || n == 0) { fmpz_poly_zero(res); return; } len_out = poly1->length + poly2->length - 1; if (n > len_out) n = len_out; if (res == poly1 || res == poly2) { fmpz_poly_t t; fmpz_poly_init2(t, n); _fmpz_poly_mullow_classical(t->coeffs, poly1->coeffs, poly1->length, poly2->coeffs, poly2->length, n); fmpz_poly_swap(res, t); fmpz_poly_clear(t); } else { fmpz_poly_fit_length(res, n); _fmpz_poly_mullow_classical(res->coeffs, poly1->coeffs, poly1->length, poly2->coeffs, poly2->length, n); } _fmpz_poly_set_length(res, n); _fmpz_poly_normalise(res); }
void fmpz_poly_sqr_classical(fmpz_poly_t rop, const fmpz_poly_t op) { long len; if (op->length == 0) { fmpz_poly_zero(rop); return; } len = 2 * op->length - 1; if (rop == op) { fmpz_poly_t t; fmpz_poly_init2(t, len); _fmpz_poly_sqr_classical(t->coeffs, op->coeffs, op->length); fmpz_poly_swap(rop, t); fmpz_poly_clear(t); } else { fmpz_poly_fit_length(rop, len); _fmpz_poly_sqr_classical(rop->coeffs, op->coeffs, op->length); } _fmpz_poly_set_length(rop, len); }
void fmpz_poly_mulmid_classical(fmpz_poly_t res, const fmpz_poly_t poly1, const fmpz_poly_t poly2) { slong len_out; if (poly1->length == 0 || poly2->length == 0) { fmpz_poly_zero(res); return; } len_out = poly1->length - poly2->length + 1; if (res == poly1 || res == poly2) { fmpz_poly_t temp; fmpz_poly_init2(temp, len_out); _fmpz_poly_mulmid_classical(temp->coeffs, poly1->coeffs, poly1->length, poly2->coeffs, poly2->length); fmpz_poly_swap(res, temp); fmpz_poly_clear(temp); } else { fmpz_poly_fit_length(res, len_out); _fmpz_poly_mulmid_classical(res->coeffs, poly1->coeffs, poly1->length, poly2->coeffs, poly2->length); } _fmpz_poly_set_length(res, len_out); _fmpz_poly_normalise(res); }
void fmpz_poly_sqrlow(fmpz_poly_t res, const fmpz_poly_t poly, long n) { const long len = poly->length; if (len == 0 || n == 0) { fmpz_poly_zero(res); return; } if (res == poly) { fmpz_poly_t t; fmpz_poly_init2(t, n); fmpz_poly_sqrlow(t, poly, n); fmpz_poly_swap(res, t); fmpz_poly_clear(t); return; } n = FLINT_MIN(2 * len - 1, n); fmpz_poly_fit_length(res, n); _fmpz_poly_sqrlow(res->coeffs, poly->coeffs, len, n); _fmpz_poly_set_length(res, n); _fmpz_poly_normalise(res); }
void fmpz_poly_mullow_KS(fmpz_poly_t res, const fmpz_poly_t poly1, const fmpz_poly_t poly2, long n) { const long len1 = poly1->length; const long len2 = poly2->length; if (len1 == 0 || len2 == 0 || n == 0) { fmpz_poly_zero(res); return; } if (res == poly1 || res == poly2) { fmpz_poly_t t; fmpz_poly_init2(t, n); fmpz_poly_mullow_KS(t, poly1, poly2, n); fmpz_poly_swap(res, t); fmpz_poly_clear(t); return; } fmpz_poly_fit_length(res, n); if (len1 >= len2) _fmpz_poly_mullow_KS(res->coeffs, poly1->coeffs, len1, poly2->coeffs, len2, n); else _fmpz_poly_mullow_KS(res->coeffs, poly2->coeffs, len2, poly1->coeffs, len1, n); _fmpz_poly_set_length(res, n); _fmpz_poly_normalise(res); }
void fmpz_poly_revert_series_lagrange(fmpz_poly_t Qinv, const fmpz_poly_t Q, slong n) { fmpz *Qcopy; int Qalloc; slong Qlen = Q->length; if (Qlen < 2 || !fmpz_is_zero(Q->coeffs) || !fmpz_is_pm1(Q->coeffs + 1)) { flint_printf("Exception (fmpz_poly_revert_series_lagrange). Input must have \n" "zero constant term and +1 or -1 as coefficient of x^1.\n"); abort(); } if (Qlen >= n) { Qcopy = Q->coeffs; Qalloc = 0; } else { slong i; Qcopy = (fmpz *) flint_malloc(n * sizeof(fmpz)); for (i = 0; i < Qlen; i++) Qcopy[i] = Q->coeffs[i]; for ( ; i < n; i++) Qcopy[i] = 0; Qalloc = 1; } if (Qinv != Q) { fmpz_poly_fit_length(Qinv, n); _fmpz_poly_revert_series_lagrange(Qinv->coeffs, Qcopy, n); } else { fmpz_poly_t t; fmpz_poly_init2(t, n); _fmpz_poly_revert_series_lagrange(t->coeffs, Qcopy, n); fmpz_poly_swap(Qinv, t); fmpz_poly_clear(t); } _fmpz_poly_set_length(Qinv, n); _fmpz_poly_normalise(Qinv); if (Qalloc) flint_free(Qcopy); }
void fmpz_poly_compose_series(fmpz_poly_t res, const fmpz_poly_t poly1, const fmpz_poly_t poly2, long n) { long len1 = poly1->length; long len2 = poly2->length; long lenr; if (len2 != 0 && !fmpz_is_zero(poly2->coeffs)) { printf("exception: fmpz_poly_compose_series: inner polynomial " "must have zero constant term\n"); abort(); } if (len1 == 0 || n == 0) { fmpz_poly_zero(res); return; } if (len2 == 0 || len1 == 1) { fmpz_poly_set_fmpz(res, poly1->coeffs); return; } lenr = FLINT_MIN((len1 - 1) * (len2 - 1) + 1, n); len1 = FLINT_MIN(len1, lenr); len2 = FLINT_MIN(len2, lenr); if ((res != poly1) && (res != poly2)) { fmpz_poly_fit_length(res, lenr); _fmpz_poly_compose_series(res->coeffs, poly1->coeffs, len1, poly2->coeffs, len2, lenr); _fmpz_poly_set_length(res, lenr); _fmpz_poly_normalise(res); } else { fmpz_poly_t t; fmpz_poly_init2(t, lenr); _fmpz_poly_compose_series(t->coeffs, poly1->coeffs, len1, poly2->coeffs, len2, lenr); _fmpz_poly_set_length(t, lenr); _fmpz_poly_normalise(t); fmpz_poly_swap(res, t); fmpz_poly_clear(t); } }
int main(void) { int i, result; FLINT_TEST_INIT(state); flint_printf("swap...."); fflush(stdout); for (i = 0; i < 1000 * flint_test_multiplier(); i++) { fmpz_poly_t a, b, c; fmpz_poly_init(a); fmpz_poly_init(b); fmpz_poly_init(c); fmpz_poly_randtest(a, state, n_randint(state, 100), 200); fmpz_poly_randtest(b, state, n_randint(state, 100), 200); fmpz_poly_set(c, b); fmpz_poly_swap(a, b); result = (fmpz_poly_equal(a, c)); if (!result) { flint_printf("FAIL:\n"); fmpz_poly_print(a), flint_printf("\n\n"); fmpz_poly_print(b), flint_printf("\n\n"); fmpz_poly_print(c), flint_printf("\n\n"); abort(); } fmpz_poly_clear(a); fmpz_poly_clear(b); fmpz_poly_clear(c); } FLINT_TEST_CLEANUP(state); flint_printf("PASS\n"); return 0; }
void fmpz_poly_pow_multinomial(fmpz_poly_t res, const fmpz_poly_t poly, ulong e) { const long len = poly->length; long rlen; if ((len < 2) | (e < 3UL)) { if (e == 0UL) fmpz_poly_set_ui(res, 1); else if (len == 0) fmpz_poly_zero(res); else if (len == 1) { fmpz_poly_fit_length(res, 1); fmpz_pow_ui(res->coeffs, poly->coeffs, e); _fmpz_poly_set_length(res, 1); } else if (e == 1UL) fmpz_poly_set(res, poly); else /* e == 2UL */ fmpz_poly_sqr(res, poly); return; } rlen = (long) e * (len - 1) + 1; if (res != poly) { fmpz_poly_fit_length(res, rlen); _fmpz_poly_pow_multinomial(res->coeffs, poly->coeffs, len, e); _fmpz_poly_set_length(res, rlen); } else { fmpz_poly_t t; fmpz_poly_init2(t, rlen); _fmpz_poly_pow_multinomial(t->coeffs, poly->coeffs, len, e); _fmpz_poly_set_length(t, rlen); fmpz_poly_swap(res, t); fmpz_poly_clear(t); } }
void fmpz_poly_pow_binomial(fmpz_poly_t res, const fmpz_poly_t poly, ulong e) { const long len = poly->length; long rlen; if (len != 2) { printf("Exception: poly->length not equal to 2 in fmpz_poly_pow_binomial\n"); abort(); } if (e < 3UL) { if (e == 0UL) fmpz_poly_set_ui(res, 1UL); else if (e == 1UL) fmpz_poly_set(res, poly); else /* e == 2UL */ fmpz_poly_sqr(res, poly); return; } rlen = (long) e + 1; if (res != poly) { fmpz_poly_fit_length(res, rlen); _fmpz_poly_set_length(res, rlen); _fmpz_poly_pow_binomial(res->coeffs, poly->coeffs, e); } else { fmpz_poly_t t; fmpz_poly_init2(t, rlen); _fmpz_poly_set_length(t, rlen); _fmpz_poly_pow_binomial(t->coeffs, poly->coeffs, e); fmpz_poly_swap(res, t); fmpz_poly_clear(t); } }
void fmpz_poly_compose_divconquer(fmpz_poly_t res, const fmpz_poly_t poly1, const fmpz_poly_t poly2) { const long len1 = poly1->length; const long len2 = poly2->length; long lenr; if (len1 == 0) { fmpz_poly_zero(res); return; } if (len1 == 1 || len2 == 0) { fmpz_poly_set_fmpz(res, poly1->coeffs); return; } lenr = (len1 - 1) * (len2 - 1) + 1; if (res != poly1 && res != poly2) { fmpz_poly_fit_length(res, lenr); _fmpz_poly_compose_divconquer(res->coeffs, poly1->coeffs, len1, poly2->coeffs, len2); _fmpz_poly_set_length(res, lenr); _fmpz_poly_normalise(res); } else { fmpz_poly_t t; fmpz_poly_init2(t, lenr); _fmpz_poly_compose_divconquer(t->coeffs, poly1->coeffs, len1, poly2->coeffs, len2); _fmpz_poly_set_length(t, lenr); _fmpz_poly_normalise(t); fmpz_poly_swap(res, t); fmpz_poly_clear(t); } }
void fmpz_poly_divrem_divconquer(fmpz_poly_t Q, fmpz_poly_t R, const fmpz_poly_t A, const fmpz_poly_t B) { const long lenA = A->length; const long lenB = B->length; fmpz_poly_t tQ, tR; fmpz *q, *r; if (lenB == 0) { printf("Exception: division by zero in fmpz_poly_divrem_divconquer\n"); abort(); } if (lenA < lenB) { fmpz_poly_set(R, A); fmpz_poly_zero(Q); return; } if (Q == A || Q == B) { fmpz_poly_init2(tQ, lenA - lenB + 1); q = tQ->coeffs; } else { fmpz_poly_fit_length(Q, lenA - lenB + 1); q = Q->coeffs; } if (R == A || R == B) { fmpz_poly_init2(tR, lenA); r = tR->coeffs; } else { fmpz_poly_fit_length(R, lenA); r = R->coeffs; } _fmpz_poly_divrem_divconquer(q, r, A->coeffs, lenA, B->coeffs, lenB); if (Q == A || Q == B) { _fmpz_poly_set_length(tQ, lenA - lenB + 1); fmpz_poly_swap(tQ, Q); fmpz_poly_clear(tQ); } else _fmpz_poly_set_length(Q, lenA - lenB + 1); if (R == A || R == B) { _fmpz_poly_set_length(tR, lenA); fmpz_poly_swap(tR, R); fmpz_poly_clear(tR); } else _fmpz_poly_set_length(R, lenA); _fmpz_poly_normalise(Q); _fmpz_poly_normalise(R); }
bool poly_inverse_poly_q(fmpz_poly_t Fq, const fmpz_poly_t a, const ntru_params *params) { bool retval = false; int k = 0, j = 0; fmpz *b_last; fmpz_poly_t a_tmp, b, c, f, g; /* general initialization of temp variables */ fmpz_poly_init(b); fmpz_poly_set_coeff_ui(b, 0, 1); fmpz_poly_init(c); fmpz_poly_init(f); fmpz_poly_set(f, a); /* set g(x) = x^N − 1 */ fmpz_poly_init(g); fmpz_poly_set_coeff_si(g, 0, -1); fmpz_poly_set_coeff_si(g, params->N, 1); /* avoid side effects */ fmpz_poly_init(a_tmp); fmpz_poly_set(a_tmp, a); fmpz_poly_zero(Fq); while (1) { while (fmpz_poly_get_coeff_ptr(f, 0) && fmpz_is_zero(fmpz_poly_get_coeff_ptr(f, 0))) { for (uint32_t i = 1; i <= params->N; i++) { fmpz *f_coeff = fmpz_poly_get_coeff_ptr(f, i); fmpz *c_coeff = fmpz_poly_get_coeff_ptr(c, params->N - i); /* f(x) = f(x) / x */ fmpz_poly_set_coeff_fmpz_n(f, i - 1, f_coeff); /* c(x) = c(x) * x */ fmpz_poly_set_coeff_fmpz_n(c, params->N + 1 - i, c_coeff); } fmpz_poly_set_coeff_si(f, params->N, 0); fmpz_poly_set_coeff_si(c, 0, 0); k++; if (fmpz_poly_degree(f) == -1) goto cleanup; } if (fmpz_poly_is_zero(g) == 1) goto cleanup; if (fmpz_poly_degree(f) == 0) break; if (fmpz_poly_degree(f) < fmpz_poly_degree(g)) { fmpz_poly_swap(f, g); fmpz_poly_swap(b, c); } fmpz_poly_add(f, g, f); fmpz_poly_mod_unsigned(f, 2); fmpz_poly_add(b, c, b); fmpz_poly_mod_unsigned(b, 2); } k = k % params->N; b_last = fmpz_poly_get_coeff_ptr(b, params->N); if (fmpz_cmp_si_n(b_last, 0)) goto cleanup; /* Fq(x) = x^(N-k) * b(x) */ for (int i = params->N - 1; i >= 0; i--) { fmpz *b_i; j = i - k; if (j < 0) j = j + params->N; b_i = fmpz_poly_get_coeff_ptr(b, i); fmpz_poly_set_coeff_fmpz_n(Fq, j, b_i); } poly_mod2_to_modq(Fq, a_tmp, params); /* check if the f * Fq = 1 (mod p) condition holds true */ fmpz_poly_set(a_tmp, a); poly_starmultiply(a_tmp, a_tmp, Fq, params, params->q); if (fmpz_poly_is_one(a_tmp)) retval = true; else fmpz_poly_zero(Fq); cleanup: fmpz_poly_clear(a_tmp); fmpz_poly_clear(b); fmpz_poly_clear(c); fmpz_poly_clear(f); fmpz_poly_clear(g); return retval; }
bool poly_inverse_poly_p(fmpz_poly_t Fp, const fmpz_poly_t a, const ntru_params *params) { bool retval = false; int k = 0, j = 0; fmpz *b_last; fmpz_poly_t a_tmp, b, c, f, g; /* general initialization of temp variables */ fmpz_poly_init(b); fmpz_poly_set_coeff_ui(b, 0, 1); fmpz_poly_init(c); fmpz_poly_init(f); fmpz_poly_set(f, a); /* set g(x) = x^N − 1 */ fmpz_poly_init(g); fmpz_poly_set_coeff_si(g, 0, -1); fmpz_poly_set_coeff_si(g, params->N, 1); /* avoid side effects */ fmpz_poly_init(a_tmp); fmpz_poly_set(a_tmp, a); fmpz_poly_zero(Fp); while (1) { while (fmpz_poly_get_coeff_ptr(f, 0) && fmpz_is_zero(fmpz_poly_get_coeff_ptr(f, 0))) { for (uint32_t i = 1; i <= params->N; i++) { fmpz *f_coeff = fmpz_poly_get_coeff_ptr(f, i); fmpz *c_coeff = fmpz_poly_get_coeff_ptr(c, params->N - i); /* f(x) = f(x) / x */ fmpz_poly_set_coeff_fmpz_n(f, i - 1, f_coeff); /* c(x) = c(x) * x */ fmpz_poly_set_coeff_fmpz_n(c, params->N + 1 - i, c_coeff); } fmpz_poly_set_coeff_si(f, params->N, 0); fmpz_poly_set_coeff_si(c, 0, 0); k++; if (fmpz_poly_degree(f) == -1) goto cleanup; } if (fmpz_poly_is_zero(g) == 1) goto cleanup; if (fmpz_poly_degree(f) == 0) break; if (fmpz_poly_degree(f) < fmpz_poly_degree(g)) { /* exchange f and g and exchange b and c */ fmpz_poly_swap(f, g); fmpz_poly_swap(b, c); } { fmpz_poly_t c_tmp, g_tmp; fmpz_t u, mp_tmp; fmpz_init(u); fmpz_zero(u); fmpz_init_set(mp_tmp, fmpz_poly_get_coeff_ptr(f, 0)); fmpz_poly_init(g_tmp); fmpz_poly_set(g_tmp, g); fmpz_poly_init(c_tmp); fmpz_poly_set(c_tmp, c); /* u = f[0] * g[0]^(-1) mod p */ /* = (f[0] mod p) * (g[0] inverse mod p) mod p */ fmpz_invmod_ui(u, fmpz_poly_get_coeff_ptr(g, 0), params->p); fmpz_mod_ui(mp_tmp, mp_tmp, params->p); fmpz_mul(u, mp_tmp, u); fmpz_mod_ui(u, u, params->p); /* f = f - u * g mod p */ fmpz_poly_scalar_mul_fmpz(g_tmp, g_tmp, u); fmpz_poly_sub(f, f, g_tmp); fmpz_poly_mod_unsigned(f, params->p); /* b = b - u * c mod p */ fmpz_poly_scalar_mul_fmpz(c_tmp, c_tmp, u); fmpz_poly_sub(b, b, c_tmp); fmpz_poly_mod_unsigned(b, params->p); fmpz_clear(u); fmpz_poly_clear(g_tmp); fmpz_poly_clear(c_tmp); } } k = k % params->N; b_last = fmpz_poly_get_coeff_ptr(b, params->N); if (fmpz_cmp_si_n(b_last, 0)) goto cleanup; /* Fp(x) = x^(N-k) * b(x) */ for (int i = params->N - 1; i >= 0; i--) { fmpz *b_i; /* b(X) = f[0]^(-1) * b(X) (mod p) */ { fmpz_t mp_tmp; fmpz_init(mp_tmp); fmpz_invmod_ui(mp_tmp, fmpz_poly_get_coeff_ptr(f, 0), params->p); if (fmpz_poly_get_coeff_ptr(b, i)) { fmpz_mul(fmpz_poly_get_coeff_ptr(b, i), fmpz_poly_get_coeff_ptr(b, i), mp_tmp); fmpz_mod_ui(fmpz_poly_get_coeff_ptr(b, i), fmpz_poly_get_coeff_ptr(b, i), params->p); } } j = i - k; if (j < 0) j = j + params->N; b_i = fmpz_poly_get_coeff_ptr(b, i); fmpz_poly_set_coeff_fmpz_n(Fp, j, b_i); } /* check if the f * Fp = 1 (mod p) condition holds true */ fmpz_poly_set(a_tmp, a); poly_starmultiply(a_tmp, a_tmp, Fp, params, params->p); if (fmpz_poly_is_one(a_tmp)) retval = true; else fmpz_poly_zero(Fp); cleanup: fmpz_poly_clear(a_tmp); fmpz_poly_clear(b); fmpz_poly_clear(c); fmpz_poly_clear(f); fmpz_poly_clear(g); return retval; }
int fmpz_poly_gcd_heuristic(fmpz_poly_t res, const fmpz_poly_t poly1, const fmpz_poly_t poly2) { const long len1 = poly1->length; const long len2 = poly2->length; long rlen; int done = 0; if (len1 == 0) { if (len2 == 0) fmpz_poly_zero(res); else { if (fmpz_sgn(poly2->coeffs + (len2 - 1)) > 0) fmpz_poly_set(res, poly2); else fmpz_poly_neg(res, poly2); } return 1; } else { if (len2 == 0) { if (fmpz_sgn(poly1->coeffs + (len1 - 1)) > 0) fmpz_poly_set(res, poly1); else fmpz_poly_neg(res, poly1); return 1; } } rlen = FLINT_MIN(len1, len2); if (res == poly1 || res == poly2) { fmpz_poly_t temp; fmpz_poly_init2(temp, rlen); if (len1 >= len2) done = _fmpz_poly_gcd_heuristic(temp->coeffs, poly1->coeffs, len1, poly2->coeffs, len2); else done = _fmpz_poly_gcd_heuristic(temp->coeffs, poly2->coeffs, len2, poly1->coeffs, len1); fmpz_poly_swap(temp, res); fmpz_poly_clear(temp); } else { fmpz_poly_fit_length(res, rlen); if (len1 >= len2) done = _fmpz_poly_gcd_heuristic(res->coeffs, poly1->coeffs, len1, poly2->coeffs, len2); else done = _fmpz_poly_gcd_heuristic(res->coeffs, poly2->coeffs, len2, poly1->coeffs, len1); } if (done) { _fmpz_poly_set_length(res, rlen); _fmpz_poly_normalise(res); } return done; }
int fmpz_poly_mat_inv(fmpz_poly_mat_t Ainv, fmpz_poly_t den, const fmpz_poly_mat_t A) { long n = fmpz_poly_mat_nrows(A); if (n == 0) { fmpz_poly_one(den); return 1; } else if (n == 1) { fmpz_poly_set(den, E(A, 0, 0)); fmpz_poly_one(E(Ainv, 0, 0)); return !fmpz_poly_is_zero(den); } else if (n == 2) { fmpz_poly_mat_det(den, A); if (fmpz_poly_is_zero(den)) { return 0; } else if (Ainv == A) { fmpz_poly_swap(E(A, 0, 0), E(A, 1, 1)); fmpz_poly_neg(E(A, 0, 1), E(A, 0, 1)); fmpz_poly_neg(E(A, 1, 0), E(A, 1, 0)); return 1; } else { fmpz_poly_set(E(Ainv, 0, 0), E(A, 1, 1)); fmpz_poly_set(E(Ainv, 1, 1), E(A, 0, 0)); fmpz_poly_neg(E(Ainv, 0, 1), E(A, 0, 1)); fmpz_poly_neg(E(Ainv, 1, 0), E(A, 1, 0)); return 1; } } else { fmpz_poly_mat_t LU, I; long * perm; int result; perm = _perm_init(n); fmpz_poly_mat_init_set(LU, A); result = (fmpz_poly_mat_fflu(LU, den, perm, LU, 1) == n); if (result) { fmpz_poly_mat_init(I, n, n); fmpz_poly_mat_one(I); fmpz_poly_mat_solve_fflu_precomp(Ainv, perm, LU, I); fmpz_poly_mat_clear(I); } else fmpz_poly_zero(den); if (_perm_parity(perm, n)) { fmpz_poly_mat_neg(Ainv, Ainv); fmpz_poly_neg(den, den); } _perm_clear(perm); fmpz_poly_mat_clear(LU); return result; } }
void frob(const mpoly_t P, const ctx_t ctxFracQt, const qadic_t t1, const qadic_ctx_t Qq, prec_t *prec, const prec_t *prec_in, int verbose) { const padic_ctx_struct *Qp = &Qq->pctx; const fmpz *p = Qp->p; const long a = qadic_ctx_degree(Qq); const long n = P->n - 1; const long d = mpoly_degree(P, -1, ctxFracQt); const long b = gmc_basis_size(n, d); long i, j, k; /* Diagonal fibre */ padic_mat_t F0; /* Gauss--Manin Connection */ mat_t M; mon_t *bR, *bC; fmpz_poly_t r; /* Local solution */ fmpz_poly_mat_t C, Cinv; long vC, vCinv; /* Frobenius */ fmpz_poly_mat_t F; long vF; fmpz_poly_mat_t F1; long vF1; fmpz_poly_t cp; clock_t c0, c1; double c; if (verbose) { printf("Input:\n"); printf(" P = "), mpoly_print(P, ctxFracQt), printf("\n"); printf(" p = "), fmpz_print(p), printf("\n"); printf(" t1 = "), qadic_print_pretty(t1, Qq), printf("\n"); printf("\n"); fflush(stdout); } /* Step 1 {M, r} *********************************************************/ c0 = clock(); mat_init(M, b, b, ctxFracQt); fmpz_poly_init(r); gmc_compute(M, &bR, &bC, P, ctxFracQt); { fmpz_poly_t t; fmpz_poly_init(t); fmpz_poly_set_ui(r, 1); for (i = 0; i < M->m; i++) for (j = 0; j < M->n; j++) { fmpz_poly_lcm(t, r, fmpz_poly_q_denref( (fmpz_poly_q_struct *) mat_entry(M, i, j, ctxFracQt))); fmpz_poly_swap(r, t); } fmpz_poly_clear(t); } c1 = clock(); c = (double) (c1 - c0) / CLOCKS_PER_SEC; if (verbose) { printf("Gauss-Manin connection:\n"); printf(" r(t) = "), fmpz_poly_print_pretty(r, "t"), printf("\n"); printf(" Time = %f\n", c); printf("\n"); fflush(stdout); } { qadic_t t; qadic_init2(t, 1); fmpz_poly_evaluate_qadic(t, r, t1, Qq); if (qadic_is_zero(t)) { printf("Exception (deformation_frob).\n"); printf("The resultant r evaluates to zero (mod p) at t1.\n"); abort(); } qadic_clear(t); } /* Precisions ************************************************************/ if (prec_in != NULL) { *prec = *prec_in; } else { deformation_precisions(prec, p, a, n, d, fmpz_poly_degree(r)); } if (verbose) { printf("Precisions:\n"); printf(" N0 = %ld\n", prec->N0); printf(" N1 = %ld\n", prec->N1); printf(" N2 = %ld\n", prec->N2); printf(" N3 = %ld\n", prec->N3); printf(" N3i = %ld\n", prec->N3i); printf(" N3w = %ld\n", prec->N3w); printf(" N3iw = %ld\n", prec->N3iw); printf(" N4 = %ld\n", prec->N4); printf(" m = %ld\n", prec->m); printf(" K = %ld\n", prec->K); printf(" r = %ld\n", prec->r); printf(" s = %ld\n", prec->s); printf("\n"); fflush(stdout); } /* Initialisation ********************************************************/ padic_mat_init2(F0, b, b, prec->N4); fmpz_poly_mat_init(C, b, b); fmpz_poly_mat_init(Cinv, b, b); fmpz_poly_mat_init(F, b, b); vF = 0; fmpz_poly_mat_init(F1, b, b); vF1 = 0; fmpz_poly_init(cp); /* Step 2 {F0} ***********************************************************/ { padic_ctx_t pctx_F0; fmpz *t; padic_ctx_init(pctx_F0, p, FLINT_MIN(prec->N4 - 10, 0), prec->N4, PADIC_VAL_UNIT); t = _fmpz_vec_init(n + 1); c0 = clock(); mpoly_diagonal_fibre(t, P, ctxFracQt); diagfrob(F0, t, n, d, prec->N4, pctx_F0, 0); padic_mat_transpose(F0, F0); c1 = clock(); c = (double) (c1 - c0) / CLOCKS_PER_SEC; if (verbose) { printf("Diagonal fibre:\n"); printf(" P(0) = {"), _fmpz_vec_print(t, n + 1), printf("}\n"); printf(" Time = %f\n", c); printf("\n"); fflush(stdout); } _fmpz_vec_clear(t, n + 1); padic_ctx_clear(pctx_F0); } /* Step 3 {C, Cinv} ******************************************************/ /* Compute C as a matrix over Z_p[[t]]. A is the same but as a series of matrices over Z_p. Mt is the matrix -M^t, and Cinv is C^{-1}^t, the local solution of the differential equation replacing M by Mt. */ c0 = clock(); { const long K = prec->K; padic_mat_struct *A; gmde_solve(&A, K, p, prec->N3, prec->N3w, M, ctxFracQt); gmde_convert_soln(C, &vC, A, K, p); for(i = 0; i < K; i++) padic_mat_clear(A + i); free(A); } c1 = clock(); c = (double) (c1 - c0) / CLOCKS_PER_SEC; if (verbose) { printf("Local solution:\n"); printf(" Time for C = %f\n", c); fflush(stdout); } c0 = clock(); { const long K = (prec->K + (*p) - 1) / (*p); mat_t Mt; padic_mat_struct *Ainv; mat_init(Mt, b, b, ctxFracQt); mat_transpose(Mt, M, ctxFracQt); mat_neg(Mt, Mt, ctxFracQt); gmde_solve(&Ainv, K, p, prec->N3i, prec->N3iw, Mt, ctxFracQt); gmde_convert_soln(Cinv, &vCinv, Ainv, K, p); fmpz_poly_mat_transpose(Cinv, Cinv); fmpz_poly_mat_compose_pow(Cinv, Cinv, *p); for(i = 0; i < K; i++) padic_mat_clear(Ainv + i); free(Ainv); mat_clear(Mt, ctxFracQt); } c1 = clock(); c = (double) (c1 - c0) / CLOCKS_PER_SEC; if (verbose) { printf(" Time for C^{-1} = %f\n", c); printf("\n"); fflush(stdout); } /* Step 4 {F(t) := C(t) F(0) C(t^p)^{-1}} ********************************/ /* Computes the product C(t) F(0) C(t^p)^{-1} modulo (p^{N_2}, t^K). This is done by first computing the unit part of the product exactly over the integers modulo t^K. */ c0 = clock(); { fmpz_t pN; fmpz_poly_mat_t T; fmpz_init(pN); fmpz_poly_mat_init(T, b, b); for (i = 0; i < b; i++) { /* Find the unique k s.t. F0(i,k) is non-zero */ for (k = 0; k < b; k++) if (!fmpz_is_zero(padic_mat_entry(F0, i, k))) break; if (k == b) { printf("Exception (frob). F0 is singular.\n\n"); abort(); } for (j = 0; j < b; j++) { fmpz_poly_scalar_mul_fmpz(fmpz_poly_mat_entry(T, i, j), fmpz_poly_mat_entry(Cinv, k, j), padic_mat_entry(F0, i, k)); } } fmpz_poly_mat_mul(F, C, T); fmpz_poly_mat_truncate(F, prec->K); vF = vC + padic_mat_val(F0) + vCinv; /* Canonicalise (F, vF) */ { long v = fmpz_poly_mat_ord_p(F, p); if (v == LONG_MAX) { printf("ERROR (deformation_frob). F(t) == 0.\n"); abort(); } else if (v > 0) { fmpz_pow_ui(pN, p, v); fmpz_poly_mat_scalar_divexact_fmpz(F, F, pN); vF = vF + v; } } /* Reduce (F, vF) modulo p^{N2} */ fmpz_pow_ui(pN, p, prec->N2 - vF); fmpz_poly_mat_scalar_mod_fmpz(F, F, pN); fmpz_clear(pN); fmpz_poly_mat_clear(T); } c1 = clock(); c = (double) (c1 - c0) / CLOCKS_PER_SEC; if (verbose) { printf("Matrix for F(t):\n"); printf(" Time = %f\n", c); printf("\n"); fflush(stdout); } /* Step 5 {G = r(t)^m F(t)} **********************************************/ c0 = clock(); { fmpz_t pN; fmpz_poly_t t; fmpz_init(pN); fmpz_poly_init(t); fmpz_pow_ui(pN, p, prec->N2 - vF); /* Compute r(t)^m mod p^{N2-vF} */ if (prec->denR == NULL) { fmpz_mod_poly_t _t; fmpz_mod_poly_init(_t, pN); fmpz_mod_poly_set_fmpz_poly(_t, r); fmpz_mod_poly_pow(_t, _t, prec->m); fmpz_mod_poly_get_fmpz_poly(t, _t); fmpz_mod_poly_clear(_t); } else { /* TODO: We don't really need a copy */ fmpz_poly_set(t, prec->denR); } fmpz_poly_mat_scalar_mul_fmpz_poly(F, F, t); fmpz_poly_mat_scalar_mod_fmpz(F, F, pN); /* TODO: This should not be necessary? */ fmpz_poly_mat_truncate(F, prec->K); fmpz_clear(pN); fmpz_poly_clear(t); } c1 = clock(); c = (double) (c1 - c0) / CLOCKS_PER_SEC; if (verbose) { printf("Analytic continuation:\n"); printf(" Time = %f\n", c); printf("\n"); fflush(stdout); } /* Steps 6 and 7 *********************************************************/ if (a == 1) { /* Step 6 {F(1) = r(t_1)^{-m} G(t_1)} ********************************/ c0 = clock(); { const long N = prec->N2 - vF; fmpz_t f, g, t, pN; fmpz_init(f); fmpz_init(g); fmpz_init(t); fmpz_init(pN); fmpz_pow_ui(pN, p, N); /* f := \hat{t_1}, g := r(\hat{t_1})^{-m} */ _padic_teichmuller(f, t1->coeffs + 0, p, N); if (prec->denR == NULL) { _fmpz_mod_poly_evaluate_fmpz(g, r->coeffs, r->length, f, pN); fmpz_powm_ui(t, g, prec->m, pN); } else { _fmpz_mod_poly_evaluate_fmpz(t, prec->denR->coeffs, prec->denR->length, f, pN); } _padic_inv(g, t, p, N); /* F1 := g G(\hat{t_1}) */ for (i = 0; i < b; i++) for (j = 0; j < b; j++) { const fmpz_poly_struct *poly = fmpz_poly_mat_entry(F, i, j); const long len = poly->length; if (len == 0) { fmpz_poly_zero(fmpz_poly_mat_entry(F1, i, j)); } else { fmpz_poly_fit_length(fmpz_poly_mat_entry(F1, i, j), 1); _fmpz_mod_poly_evaluate_fmpz(t, poly->coeffs, len, f, pN); fmpz_mul(fmpz_poly_mat_entry(F1, i, j)->coeffs + 0, g, t); fmpz_mod(fmpz_poly_mat_entry(F1, i, j)->coeffs + 0, fmpz_poly_mat_entry(F1, i, j)->coeffs + 0, pN); _fmpz_poly_set_length(fmpz_poly_mat_entry(F1, i, j), 1); _fmpz_poly_normalise(fmpz_poly_mat_entry(F1, i, j)); } } vF1 = vF; fmpz_poly_mat_canonicalise(F1, &vF1, p); fmpz_clear(f); fmpz_clear(g); fmpz_clear(t); fmpz_clear(pN); } c1 = clock(); c = (double) (c1 - c0) / CLOCKS_PER_SEC; if (verbose) { printf("Evaluation:\n"); printf(" Time = %f\n", c); printf("\n"); fflush(stdout); } } else { /* Step 6 {F(1) = r(t_1)^{-m} G(t_1)} ********************************/ c0 = clock(); { const long N = prec->N2 - vF; fmpz_t pN; fmpz *f, *g, *t; fmpz_init(pN); f = _fmpz_vec_init(a); g = _fmpz_vec_init(2 * a - 1); t = _fmpz_vec_init(2 * a - 1); fmpz_pow_ui(pN, p, N); /* f := \hat{t_1}, g := r(\hat{t_1})^{-m} */ _qadic_teichmuller(f, t1->coeffs, t1->length, Qq->a, Qq->j, Qq->len, p, N); if (prec->denR == NULL) { fmpz_t e; fmpz_init_set_ui(e, prec->m); _fmpz_mod_poly_compose_smod(g, r->coeffs, r->length, f, a, Qq->a, Qq->j, Qq->len, pN); _qadic_pow(t, g, a, e, Qq->a, Qq->j, Qq->len, pN); fmpz_clear(e); } else { _fmpz_mod_poly_reduce(prec->denR->coeffs, prec->denR->length, Qq->a, Qq->j, Qq->len, pN); _fmpz_poly_normalise(prec->denR); _fmpz_mod_poly_compose_smod(t, prec->denR->coeffs, prec->denR->length, f, a, Qq->a, Qq->j, Qq->len, pN); } _qadic_inv(g, t, a, Qq->a, Qq->j, Qq->len, p, N); /* F1 := g G(\hat{t_1}) */ for (i = 0; i < b; i++) for (j = 0; j < b; j++) { const fmpz_poly_struct *poly = fmpz_poly_mat_entry(F, i, j); const long len = poly->length; fmpz_poly_struct *poly2 = fmpz_poly_mat_entry(F1, i, j); if (len == 0) { fmpz_poly_zero(poly2); } else { _fmpz_mod_poly_compose_smod(t, poly->coeffs, len, f, a, Qq->a, Qq->j, Qq->len, pN); fmpz_poly_fit_length(poly2, 2 * a - 1); _fmpz_poly_mul(poly2->coeffs, g, a, t, a); _fmpz_mod_poly_reduce(poly2->coeffs, 2 * a - 1, Qq->a, Qq->j, Qq->len, pN); _fmpz_poly_set_length(poly2, a); _fmpz_poly_normalise(poly2); } } /* Now the matrix for p^{-1} F_p at t=t_1 is (F1, vF1). */ vF1 = vF; fmpz_poly_mat_canonicalise(F1, &vF1, p); fmpz_clear(pN); _fmpz_vec_clear(f, a); _fmpz_vec_clear(g, 2 * a - 1); _fmpz_vec_clear(t, 2 * a - 1); } c1 = clock(); c = (double) (c1 - c0) / CLOCKS_PER_SEC; if (verbose) { printf("Evaluation:\n"); printf(" Time = %f\n", c); printf("\n"); fflush(stdout); } /* Step 7 {Norm} *****************************************************/ /* Computes the matrix for $q^{-1} F_q$ at $t = t_1$ as the product $F \sigma(F) \dotsm \sigma^{a-1}(F)$ up appropriate transpositions because our convention of columns vs rows is the opposite of that used by Gerkmann. Note that, in any case, transpositions do not affect the characteristic polynomial. */ c0 = clock(); { const long N = prec->N1 - a * vF1; fmpz_t pN; fmpz_poly_mat_t T; fmpz_init(pN); fmpz_poly_mat_init(T, b, b); fmpz_pow_ui(pN, p, N); fmpz_poly_mat_frobenius(T, F1, 1, p, N, Qq); _qadic_mat_mul(F1, F1, T, pN, Qq); for (i = 2; i < a; i++) { fmpz_poly_mat_frobenius(T, T, 1, p, N, Qq); _qadic_mat_mul(F1, F1, T, pN, Qq); } vF1 = a * vF1; fmpz_poly_mat_canonicalise(F1, &vF1, p); fmpz_clear(pN); fmpz_poly_mat_clear(T); } c1 = clock(); c = (double) (c1 - c0) / CLOCKS_PER_SEC; if (verbose) { printf("Norm:\n"); printf(" Time = %f\n", c); printf("\n"); fflush(stdout); } } /* Step 8 {Reverse characteristic polynomial} ****************************/ c0 = clock(); deformation_revcharpoly(cp, F1, vF1, n, d, prec->N0, prec->r, prec->s, Qq); c1 = clock(); c = (double) (c1 - c0) / CLOCKS_PER_SEC; if (verbose) { printf("Reverse characteristic polynomial:\n"); printf(" p(T) = "), fmpz_poly_print_pretty(cp, "T"), printf("\n"); printf(" Time = %f\n", c); printf("\n"); fflush(stdout); } /* Clean up **************************************************************/ padic_mat_clear(F0); mat_clear(M, ctxFracQt); free(bR); free(bC); fmpz_poly_clear(r); fmpz_poly_mat_clear(C); fmpz_poly_mat_clear(Cinv); fmpz_poly_mat_clear(F); fmpz_poly_mat_clear(F1); fmpz_poly_clear(cp); }